1
|
Aladwan S, Issa R, Al. Safadi W, Alnsour L, Al‐Halaseh LK. Perceptions and Management of Pregnancy-Related Skin Changes: A Cross-Sectional Study on Knowledge, Practices, and Use of Skincare Product. J Cosmet Dermatol 2025; 24:e70132. [PMID: 40145230 PMCID: PMC11948173 DOI: 10.1111/jocd.70132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND Hormonal, metabolic, and immunologic factors may cause several skin changes during pregnancy. Therefore, it is important for pregnant women to be aware of these expected changes in their skin appearance in order to prevent unwanted effects and to choose the appropriate preventive or treatment measures via trustable sources of information. OBJECTIVE This study would highlight the most common normal and abnormal physiological skin changes mothers usually complain about before or after pregnancy. The most commonly used skin care products, their sources of knowledge, information, perception, and experiences on these problems and products were also considered. In addition, patient satisfaction levels and their sources and types of knowledge were also investigated. METHODS Across sectional survey was distributed among women who met the inclusion criteria and were citizens in the Hashimate Kingdom of Jordan. This survey was composed of a number of questions used for investigating participant's socio-demographic characteristics, during and post-pregnancy characteristics and medications used, comparison of skin related complains reported by these women, in addition to their use of skin care products. Women's knowledge, perception, and experience regarding their use of skin care products were also included. RESULTS Of the 337 participants in this study, 6.5% and 6.8% of women were using thyroid medications and antihypertensive agents. An increase of around 3% in pregnancy-related skin changes, such as hyperpigmentation, hair loss, cellulite, and wrinkles, was predominant among women. Despite the prevalence of hyperpigmentation, only 4% and 17% of women used depigmentation and sunblock products. Moreover, women declare that their information about the use of skin care products was mainly via social media or self-experience. A low rate of consultation with dermatologists and the reliance on self-diagnosis or non-professional advice were shown. CONCLUSION This study suggests a lack of awareness about effective preventive measures for skin-related disorders commonly occurring during pregnancy, potentially exacerbated by reliance on unverified sources of information, such as social media. Therefore, incorporating education about skin changes into routine prenatal care could empower women to make informed decisions and reduce the stigma associated with these changes.
Collapse
Affiliation(s)
- Safwan Aladwan
- Department of Cosmetic Science, Faculty of Allied Medical SciencesAl‐Ahliyya Amman UniversityAmmanJordan
| | - Reem Issa
- Faculty of PharmacyMiddle East UniversityAmmanJordan
| | - Wala'a Al. Safadi
- Biopharmaceutics and Clinical Pharmacy Department, Pharmacological and Diagnostics Research Centre, Faculty of PharmacyAl‐Ahliyya Amman UniversityAmmanJordan
| | - Lilian Alnsour
- Department of Pharmacology and TherapeuticsCollege of Medicine and Health Sciences, United Arab Emirates UniversityAl AinUAE
| | - Lidia Kamal Al‐Halaseh
- Department of Pharmaceutical Chemistry, Faculty of PharmacyMutah UniversityAl‐KarakJordan
| |
Collapse
|
2
|
Muhammad AM, Ismail A, Chong PP, Yap WH, Muhamad A, Alitheen NB, Kam A, Loo S, Lee KW. Skin-penetrating peptides (SKPs): Enhancing skin permeation for transdermal delivery of pharmaceuticals and cosmetic compounds. Int J Pharm 2025; 672:125339. [PMID: 39947363 DOI: 10.1016/j.ijpharm.2025.125339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/16/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Skin-penetrating peptides (SKPs) are emerging as a promising class of permeation enhancers that can facilitate macromolecule delivery across the skin. Although their pharmaceutical applications are under extensive study, SKPs are crucial for enhancing skin permeability, enabling larger molecules to penetrate the stratum corneum. This review explores the transformative role of SKPs in non-invasive transdermal drug delivery. Drawing from an extensive collection of literature, it provides insights into the current usage and application of SKPs as tools to enhance skin permeability and facilitate the delivery of larger molecules. Additionally, it highlights the opportunities, challenges, and future directions for SKP applications in transdermal drug delivery.
Collapse
Affiliation(s)
- Ameerah Montree Muhammad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Alif Ismail
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancement Impact Lab, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Wei Hsum Yap
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia; Food Security and Nutrition Impact Lab, Taylor's University, Subang Jaya 47500 Selangor, Malaysia
| | - Azira Muhamad
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia Kajang Selangor Malaysia
| | - Noorjahan Banu Alitheen
- Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Antony Kam
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Shining Loo
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Khai Wooi Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancement Impact Lab, Taylor's University, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
3
|
Mitrović D, Zaklan D, Đanić M, Stanimirov B, Stankov K, Al-Salami H, Pavlović N. The Pharmaceutical and Pharmacological Potential Applications of Bilosomes as Nanocarriers for Drug Delivery. Molecules 2025; 30:1181. [PMID: 40076403 PMCID: PMC11901966 DOI: 10.3390/molecules30051181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Nano-drug delivery systems provide targeted solutions for addressing various drug delivery challenges, leveraging nanotechnology to enhance drug solubility and permeability. Liposomes, explored for several decades, face hurdles, especially in oral delivery. Bile-acid stabilized vesicles (bilosomes) are flexible lipid vesicles, composed of phospholipids or other surfactants, along with amphiphilic bile salts, and they show superior stability and pharmacokinetic behavior in comparison to conventional vesicular systems (liposomes and niosomes). Bilosomes enhance skin penetration, fluidize the stratum corneum, and improve drug stability. In oral applications, bilosomes overcome drawbacks, offering improved bioavailability, controlled release, and reduced side effects. Vaccines using bilosomes demonstrate efficacy, and bilosomes for intranasal, inhalation, ocular, and buccal applications enhance drug delivery, offering targeted, efficient, and controlled activities. Formulations vary based on active substances and optimization techniques, showcasing the versatility and potential of bilosomes across diverse drug delivery routes. Therefore, the aim of this comprehensive review was to critically explore the state-of-the-art of bilosomes in drug delivery and potential therapeutic applications.
Collapse
Affiliation(s)
- Darko Mitrović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (D.M.); (D.Z.)
| | - Dragana Zaklan
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (D.M.); (D.Z.)
| | - Maja Đanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (B.S.); (K.S.)
| | - Karmen Stankov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (B.S.); (K.S.)
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia;
- UWA Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (D.M.); (D.Z.)
| |
Collapse
|
4
|
Luna SK, Maciel Tabosa MA, Khoo TC, Evans CL. Developing a method for the study of perfusion effects in topical product pharmacokinetics. Eur J Pharm Sci 2025; 205:106975. [PMID: 39631633 DOI: 10.1016/j.ejps.2024.106975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/08/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Topical drug products are delivered to skin structures to treat numerous skin diseases. Due to the complexities of the skin environment and barrier, topical drug pharmacokinetics are difficult to determine, especially in vivo, as most pharmacokinetic assessment methods can only be performed ex vivo. Notably, in vivo conditions include perfusion via dermal capillaries, which influences topical drug uptake by acting as a clearance route and a "sink" driving permeation through the skin. In this study, we develop a method to examine the effects of perfusion on topical drug uptake in vivo using stimulated Raman scattering (SRS) microscopy, a chemically-specific imaging modality ideal for visualizing topical drug permeation over time. In this pilot study, we imaged the in vivo and ex vivo uptake of tazarotene in 70/30 v/v Transcutol:EtOH in paired mouse ear skin, comparing the effects of perfusion on tazarotene concentration (linearly proportional to SRS signal intensity) over time and pharmacokinetic parameters (Tmax, Cmax, AUC) in lipid-rich and lipid-poor regions in the stratum corneum and sebaceous glands. Obvious variations in SRS signal-time trends and statistically significant differences in stratum corneum pharmacokinetic parameters comparing uptake in lipid-rich and lipid-poor regions in vivo and ex vivo indicated slowed tazarotene flux through ex vivo skin in the absence of perfusion. The observed permeation differences in lipid-rich and lipid-poor regions in perfused and non-perfused skin reflects increased tazarotene permeation rate and removal in the presence of perfusion (in vivo) and decreased permeation rate and lack of elimination route in the absence of perfusion (ex vivo). Our method is demonstrated to be effective in assessing in vivo perfusion effects on topical drug uptake, promoting a better understanding of the influence of perfusion on topical drug delivery.
Collapse
Affiliation(s)
- Saara K Luna
- Wellman Center for Photomedicine, Massachusetts General Hospital, 149 13th St, Charlestown, 02129, MA, USA; Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St, Cambridge, 02138, MA, USA
| | - M Alice Maciel Tabosa
- Wellman Center for Photomedicine, Massachusetts General Hospital, 149 13th St, Charlestown, 02129, MA, USA
| | - Ting Chean Khoo
- Wellman Center for Photomedicine, Massachusetts General Hospital, 149 13th St, Charlestown, 02129, MA, USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, 149 13th St, Charlestown, 02129, MA, USA.
| |
Collapse
|
5
|
Panda P, Mohanty T, Mohapatra R. Advancements in Transdermal Drug Delivery Systems: Harnessing the Potential of Macromolecular Assisted Permeation Enhancement and Novel Techniques. AAPS PharmSciTech 2025; 26:29. [PMID: 39789371 DOI: 10.1208/s12249-024-03029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Transdermal drug delivery (TDD) represents a transformative paradigm in drug administration, offering advantages such as controlled drug release, enhanced patient adherence, and circumvention of hepatic first-pass metabolism. Despite these benefits, the inherent barrier function of the skin, primarily attributed to the stratum corneum, remains a significant impediment to the efficient permeation of therapeutic agents. Recent advancements have focused on macromolecular-assisted permeation enhancers, including carbohydrates, lipids, amino acids, nucleic acids, and cell-penetrating peptides, which modulate skin permeability by transiently altering its structural integrity. Concurrently, innovative methodologies such as iontophoresis, electroporation, microneedles, ultrasound, and sonophoresis have emerged as potent tools to enhance drug transport by creating transient microchannels or altering the skin's microenvironment. Among the novel approaches, the development of nanocarriers such as Liposome, niosomes, and transethosomes etc. has garnered substantial attention. These elastic vesicular systems, comprising lipids and edge activators, exhibit superior skin penetration owing to their deformability and enhanced payload delivery capabilities. Furthermore, the integration of nanocarriers with physical enhancement techniques demonstrates a synergistic potential, effectively addressing the limitations of conventional TDD systems. This comprehensive convergence of macromolecular-assisted enhancers, advanced physical techniques, and next-generation nanocarriers underscores the evolution of TDD, paving the way for optimized therapeutic outcomes.
Collapse
Affiliation(s)
- Pratikeswar Panda
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, 751003, Odisha, India
| | - Tejaswini Mohanty
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, 751003, Odisha, India
| | - Rajaram Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
6
|
Kaydan HH, Moghimipour E, Dalvand H, Jamali N, Salimi A, Salimi A. Design, Preparation, and Ex Vivo Skin Permeation of Doxepin Microemulsion System for Topical Delivery. J Cosmet Dermatol 2025; 24:e16786. [PMID: 39838580 PMCID: PMC11751381 DOI: 10.1111/jocd.16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/29/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND Doxepin (DX) is used orally to relieve itching but can cause side effects like blurred vision, dry mouth, and drowsiness due to its antimuscarinic effect. To reduce these adverse effects and improve skin permeation, DX is being developed in topical formulations. This study aims to improve DX skin absorption by developing a microemulsion (ME) formulation (ME-DX). METHOD AND MATERIALS ME formulations containing 5% DX were prepared using the phase diagram method with a mixture of essential oil (oleic acid), surfactant (Tween 80 and Labrazol), and cosurfactant (propylene glycol or PG). The physicochemical properties of these formulations were assessed to improve the topical application of DX. RESULTS ME droplet sizes ranged from 9.8 to 61.6 nm, with viscosities between 114 and 239 cps. Studies showed a significant correlation between DX release percentages and viscosity. ME-DX-2 released 46.51% of the drug after 24 h. Selected ME-DX formulations demonstrated Weibull, Log Wagner, and zero-order release kinetics, and improved skin permeability. ME-DX-8 exhibited an eightfold increase in Jss and P parameters compared to the control group. MEs maintained 99.9% of DX after 6 months without color changes or phase separation, indicating long-term stability. CONCLUSION This research demonstrates that altering the content and composition of MEs can change the physicochemical properties and permeability characteristics of DX when introduced into rats. Additionally, ME formulation shows promise as an effective vehicle for topical DX delivery in atopic dermatitis treatment.
Collapse
Affiliation(s)
- Hossein Heidari Kaydan
- Department of Pharmaceutics, Faculty of PharmacyAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Eskandar Moghimipour
- Department of Pharmaceutics, Faculty of PharmacyAhvaz Jundishapur University of Medical SciencesAhvazIran
- Medicinal Plant Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
- Nanotechnology Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Hossein Dalvand
- Nanotechnology Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Nasibeh Jamali
- Nanotechnology Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Arghavan Salimi
- Student Research CommitteeAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Anayatollah Salimi
- Department of Pharmaceutics, Faculty of PharmacyAhvaz Jundishapur University of Medical SciencesAhvazIran
- Medicinal Plant Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
- Nanotechnology Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
7
|
Han J, Choi Y, Kang S. Synergistic Strategies of Biomolecular Transport Technologies in Transdermal Healthcare Systems. Adv Healthc Mater 2024; 13:e2401753. [PMID: 39087395 PMCID: PMC11616266 DOI: 10.1002/adhm.202401753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Transdermal healthcare systems have gained significant attention for their painless and convenient drug administration, as well as their ability to detect biomarkers promptly. However, the skin barrier limits the candidates of biomolecules that can be transported, and reliance on simple diffusion poses a bottleneck for personalized diagnosis and treatment. Consequently, recent advancements in transdermal transport technologies have evolved toward active methods based on external energy sources. Multiple combinations of these technologies have also shown promise for increasing therapeutic effectiveness and diagnostic accuracy as delivery efficiency is maximized. Furthermore, wearable healthcare platforms are being developed in diverse aspects for patient convenience, safety, and on-demand treatment. Herein, a comprehensive overview of active transdermal delivery technologies is provided, highlighting the combination-based diagnostics, therapeutics, and theragnostics, along with the latest trends in platform advancements. This offers insights into the potential applications of next-generation wearable transdermal medical devices for personalized autonomous healthcare.
Collapse
Affiliation(s)
- Jieun Han
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Yi‐Jeong Choi
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Seung‐Kyun Kang
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- Interdisciplinary Program of BioengineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Research Institute of Advanced Materials (RIAM)Seoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Nano Systems Institute SOFT FoundrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
| |
Collapse
|
8
|
Li M, Xu Y, Yu Y, Li W, Chen L, Zhao B, Gao Y, Gao J, Lin H. Transdermal delivery of natural products against atopic dermatitis. Chin J Nat Med 2024; 22:1076-1088. [PMID: 39725509 DOI: 10.1016/s1875-5364(24)60681-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Indexed: 12/28/2024]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition. Natural products have gained traction in AD treatment due to their accessibility, low toxicity, and favorable pharmacological properties. However, their application is primarily constrained by poor solubility, instability, and limited permeability. The transdermal drug delivery system (TDDS) offers potential solutions for transdermal delivery, enhanced penetration, improved efficacy, and reduced toxicity of natural drugs, aligning with the requirements of modern AD treatment. This review examines the application of hydrogels, microneedles (MNs), liposomes, nanoemulsions, and other TDDS-carrying natural products in AD treatment, with a primary focus on their effects on penetration and accumulation in the skin. The aim is to provide valuable insights into the treatment of AD and other dermatological conditions.
Collapse
Affiliation(s)
- Minghui Li
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Yihua Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanan Yu
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Wanshu Li
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Lixia Chen
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Bo Zhao
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Yuli Gao
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hangjuan Lin
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China.
| |
Collapse
|
9
|
Srishti SA, Pinky PP, Taylor R, Guess J, Karlik N, Janjic JM. Quality by Design (QbD)-Driven Development and Optimization of Tacrolimus-Loaded Microemulsion for the Treatment of Skin Inflammation. Pharmaceutics 2024; 16:1487. [PMID: 39771467 PMCID: PMC11678404 DOI: 10.3390/pharmaceutics16121487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Skin inflammation represents a hallmark of many skin conditions, from psoriasis to eczema. Here, we present a novel microemulsion formulation for delivering a low dose of potent immunosuppressant, tacrolimus, to the skin for local inflammation control. The efficacy of topically delivered tacrolimus in controlling skin inflammation can be enhanced by packaging it into microemulsions. Microemulsions are small-size, thermodynamically stable, and surfactant-rich emulsions that can enhance tissue penetration and local tissue retention of poorly soluble drugs, which can reduce dosing frequency and potentially improve patient compliance. Methods: We present a novel approach for microemulsion manufacturing that uses a combination of both low and high-energy methods. The microemulsion composition and manufacturing parameters were optimized by adopting Quality by Design methodologies. The FMECA (Failure, Mode, Effects, Criticality Analysis)-based risk assessment, D-optimal Design of Experiment (DoE), and statistical analysis of parameters impacting responses through the multiple linear regression (MLR) was implemented for identifying critical formulation and process parameters. Results: Through QbD strategy, a stable microemulsion with optimized drug loading that met all critical quality attributes (CQAs) was identified. The optimal microemulsion candidate was successfully scaled up three-fold with retained CQAs. The presented microemulsion showed a slow and extended drug release profile in vitro. Conclusions: Presented findings suggest that microemulsions are a promising novel approach for tacrolimus delivery to the skin. Further, we also demonstrated that a combination of low-energy emulsification and microfluidization processes can produce stable and robust microemulsions with small droplet size that can be implemented in drug delivery of poorly soluble anti-inflammatory drugs. To the best of our knowledge, this is the first report of QbD-driven optimization of microemulsion manufacturing by microfluidization.
Collapse
Affiliation(s)
| | | | | | | | | | - Jelena M. Janjic
- School of Pharmacy, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
10
|
Kushwaha R, Palei NN. Transdermal Drug Delivery Systems: Different Generations and Dermatokinetic Assessment of Drug Concentration in Skin. Pharmaceut Med 2024; 38:407-427. [PMID: 39400929 DOI: 10.1007/s40290-024-00537-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
Transdermal drug delivery systems (TDDS) are a highly appealing and innovative method of administering drugs through the skin, as it enables the drugs to achieve systemic effects. A TDDS offers patient convenience, avoids first-pass hepatic metabolism, enables local targeting, and reduces the toxic effect of drug. This review details several generations of TDDS and the advancements made in their development to address the constraints associated with skin delivery systems. Transdermal delivery methods of the first generation have been consistently growing in their clinical application for administering small, lipophilic, low-dose drugs. Second-generation TDDS, utilizing chemical enhancers and iontophoresis, have led to the development of clinical products. Third-generation delivery systems employ microneedles, thermal ablation, and electroporation to specifically target the stratum corneum, which is the skin's barrier layer. Dermatokinetics is the study of the movement of drugs and formulations applied to the skin over a period of time. It provides important information regarding the rate and extent to which drugs penetrate skin layers. Several dermatokinetic techniques, including tape stripping, microdialysis, and laser scanning microscopy, have been used to study the intricate barrier properties and clearance mechanisms of the skin. This understanding is essential for developing and improving effective TDDS.
Collapse
Affiliation(s)
- Rahul Kushwaha
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Narahari N Palei
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
11
|
Brito S, Baek M, Bin BH. Skin Structure, Physiology, and Pathology in Topical and Transdermal Drug Delivery. Pharmaceutics 2024; 16:1403. [PMID: 39598527 PMCID: PMC11597055 DOI: 10.3390/pharmaceutics16111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Several industries are increasingly focused on enhancing the delivery of active ingredients through the skin to optimize therapeutic outcomes. By facilitating the penetration of active ingredients through the skin barrier, these enhancers can significantly improve the efficacy of various formulations, ranging from skincare products to therapeutic agents targeting systemic circulation. As the understanding of skin physiology and the mechanisms of drug absorption deepen, these industries are adopting permeation enhancers more widely, ultimately leading to better patient outcomes and expanded treatment options. However, the structure and physiological function of the skin can vary according to different factors, such as the area of the body and between individuals. These variations, along with external environmental exposures, aging and pathological conditions, introduce complexities that must be carefully considered when designing effective delivery systems. Considering the intricacies of skin structure and physiology, tailoring systems to account for regional differences, individual variability, and changes induced by environmental factors or disease is critical to optimizing therapeutic outcomes. This review discusses the features of skin structure, physiology, and pathologies, as well as the application of permeation enhancers in these contexts. Furthermore, it addresses the use of animal skin models in transdermal delivery and dermatological studies, along with the latest developments in this field.
Collapse
Affiliation(s)
- Sofia Brito
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
- Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Moonki Baek
- Department of Applied Biotechnology, Ajou University, Suwon 16499, Republic of Korea;
- Department of Biological Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Bum-Ho Bin
- Department of Applied Biotechnology, Ajou University, Suwon 16499, Republic of Korea;
- Department of Biological Sciences, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
12
|
Chen L, Xue X, Wang F, Song R, Zhu Y, Ning J, Zha W, Deng X, Hang L, Gu W, Yuan H. Differences in the permeation of Licoricchalcone A-polysaccharide self-assembled nanoparticles on healthy and DNCB-induced atopic dermatitis in Balb/c mice. Int J Biol Macromol 2024; 282:136984. [PMID: 39490465 DOI: 10.1016/j.ijbiomac.2024.136984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Nanoformulation have been widely used in skin and transdermal drug delivery. However, the differences in integral nanoparticles absorption in healthy and diseased skin have not yet fully analyzed. The present study attempted to explore the percutaneous absorption of drugs via lesional skin by using atopic dermatitis (AD) as a model, dinitrochlorobenzene (DNCB) induced AD-like skin. In here, the small molecules of insoluble Licoricchalcone A (LA) and macromolecules glycyrrhizin polysaccharide were used to prepare LA-polysaccharide self-assembled nanoparticles (GPA-SANs) by micro-precipitation. An environment-responsive dye, P4, was loaded into SAN to track the transdermal translocation of the nanoparticles, while the drug marked with coumarin 6 (C6). Compared to healthy skin, the permeability of GPA-SANs on AD-like skin is stronger, which may be due to damage to the stratum corneum of the AD-like skin and increased intercellular spaces, resulting in an increased permeability coefficient. Therefore, the storage of nanoparticles and their diffusion at the lesion site also increased accordingly. CLSM shown that the fluorescence of P4 and C6 is observed to concentrate around the hair follicles and disseminate in the surrounding area in both AD-affected and healthy skin. It can be clearly seen that fluorescence signal of C6 in the intercellular spaces of the dermis and epidermis of AD-like skin, indicating that nano-drug on the disease skin can penetrate through the intercellular pathway to achieve therapeutic. The focus of the present study is to assess the permeability of healthy and disease skin, discuss their characteristics and discrepancy, aiming to provide a reference for the further study of nano-formulations in transdermal delivery.
Collapse
Affiliation(s)
- Li Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, Sichuan, China; Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China
| | - Xuye Xue
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China
| | - Fang Wang
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China
| | - Rui Song
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China
| | - YuWen Zhu
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China
| | - Jiantao Ning
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China
| | - Wenting Zha
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China
| | - Xiang Deng
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China
| | - Lingyu Hang
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China.
| | - Weijie Gu
- Department of Dermatology, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China.
| | - Hailong Yuan
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China.
| |
Collapse
|
13
|
Tunçel E, Tort S, Han S, Yücel Ç, Tırnaksız F. Development and optimization of hydrogel-forming microneedles fabricated with 3d-printed molds for enhanced dermal diclofenac sodium delivery: a comprehensive in vitro, ex vivo, and in vivo study. Drug Deliv Transl Res 2024:10.1007/s13346-024-01728-1. [PMID: 39455506 DOI: 10.1007/s13346-024-01728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
With the developing manufacturing technologies, the use of 3D printers in microneedle production is becoming widespread. Hydrogel-forming microneedles (HFMs), a variant of microneedles, demonstrate distinctive features such as a high loading capacity and controlled drug release. In this study, the conical microneedle master molds with approximately 500 μm needle height and 250 μm base diameter were created using a Stereolithography (SLA) 3D printer and were utilized to fabricate composite HFMs containing diclofenac sodium. Using Box-Behnken Design, the effects of different polymers on swelling index and mechanical strength of the developed HFMs were evaluated. The optimum HFMs were selected according to experimental design results with the aim of the highest mechanical strength with varying swelling indexes, which was needed to use 20% Gantrez S97 and 0.1% (F22), 0.42% (F23), and 1% (F24) hyaluronic acid. The skin penetration and drug release properties of the optimum formulations were assessed. Ex vivo studies were conducted on formulations to determine drug penetration and accumulation. F24, which has the highest mechanical strength and optimized swelling index, achieved the highest drug accumulation in the skin tissue (17.70 ± 3.66%). All optimum HFMs were found to be non-cytotoxic by the MTT cell viability test (> 70% cell viability). In in vivo studies, the efficacy of the F24 was assessed for the treatment of xylene-induced ear edema by contrasting it to the conventional dosage form. It was revealed that HFMs might be an improved replacement for conventional dosage forms in terms of dermal diseases such as actinic keratosis.
Collapse
Affiliation(s)
- Emre Tunçel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Serdar Tort
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Sevtap Han
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri, Türkiye
| | - Figen Tırnaksız
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye.
| |
Collapse
|
14
|
Abbasi M, Heath B. Iontophoresis and electroporation-assisted microneedles: advancements and therapeutic potentials in transdermal drug delivery. Drug Deliv Transl Res 2024:10.1007/s13346-024-01722-7. [PMID: 39433696 DOI: 10.1007/s13346-024-01722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Transdermal drug delivery (TDD) using electrically assisted microneedle (MN) systems has emerged as a promising alternative to traditional drug administration routes. This review explores recent advancements in this technology across various therapeutic applications. Integrating iontophoresis (IP) and electroporation (EP) with MN technology has shown significant potential in improving treatment outcomes for various conditions. Studies demonstrate their effectiveness in enhancing vaccine and DNA delivery, improving diabetes management, and increasing efficacy in dermatological applications. The technology has also exhibited promise in delivering nonsteroidal anti-inflammatory drugs (NSAIDs), treating multiple sclerosis, and advancing obesity and cancer therapy. These systems offer improved drug permeation, targeted delivery, and enhanced therapeutic effects. While challenges remain, including safety concerns and technological limitations, ongoing research focuses on optimizing these systems for broader clinical applications. The future of electrically assisted MN technologies in TDD appears promising, with potential advancements in personalized medicine, smart monitoring systems, and expanded therapeutic applications.
Collapse
Affiliation(s)
- Mehrnaz Abbasi
- College of Human Sciences, Department of Nutritional Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Braeden Heath
- College of Sciences and Mathematics, Department of Biomedical Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
15
|
Lv Y, Yang L, Mao Z, Zhou M, Zhu B, Chen Y, Ding Z, Zhou F, Ye Y. Tetrastigma hemsleyanum polysaccharides alleviate imiquimod-induced psoriasis-like skin lesions in mice by modulating the JAK/STAT3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155917. [PMID: 39153275 DOI: 10.1016/j.phymed.2024.155917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND The pathogenesis of psoriasis involves the interaction between keratinocytes and immune cells, leading to immune imbalance. While most current clinical treatment regimens offer rapid symptom relief, they often come with significant side effects. Tetrastigma hemsleyanum polysaccharides (THP), which are naturally nontoxic, possess remarkable immunomodulatory and anti-inflammatory properties. METHODS In this study, we utilized an imiquimod (IMQ)-induced psoriasis mouse model and a LPS/IL-6-stimulated HaCaT model. The potential and mechanism of action of THP in psoriasis treatment were assessed through methods including Psoriasis Area Severity Index (PASI) scoring, histopathology, flow cytometry, immunoblotting, and reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Percutaneous administration of THP significantly alleviated symptoms and manifestations in IMQ-induced psoriatic mice, including improvements in psoriatic skin appearance (erythema, folds, scales), histopathological changes, decreased PASI scores, and spleen index. Additionally, THP suppressed abnormal proliferation of Th17 cells and excessive proliferation and inflammation of keratinocytes. Furthermore, THP exhibited the ability to regulate the JAK/STAT3 signaling pathway. CONCLUSION Findings from in vivo and in vitro studies suggest that THP can inhibit abnormal cell proliferation and excessive inflammation in lesional skin, balance Th17 immune cells, and disrupt the interaction between keratinocytes and Th17 cells. This mechanism of action may involve the modulation of the JAK/STAT3 signaling pathway, offering potential implications for psoriasis treatment.
Collapse
Affiliation(s)
- Yishan Lv
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Liu Yang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Zian Mao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Mingyuan Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yuchi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Yujian Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China; Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
16
|
Modarresi Chahardehi A, Ojaghi HR, Motedayyen H, Arefnezhad R. Nano-based formulations of thymoquinone are new approaches for psoriasis treatment: a literature review. Front Immunol 2024; 15:1416842. [PMID: 39188726 PMCID: PMC11345144 DOI: 10.3389/fimmu.2024.1416842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Psoriasis, a persistent immune-mediated inflammatory skin condition, affects approximately 2-3% of the global population. Current treatments for psoriasis are fraught with limitations, including adverse effects, high costs, and diminishing efficacy over time. Thymoquinone (TQ), derived from Nigella sativa seeds, exhibits promising anti-inflammatory, antioxidant, and immunomodulatory properties that could prove beneficial in managing psoriasis. However, TQ's hydrophobic nature and poor bioavailability have hindered its usefulness as a therapeutic agent. Recent research has strategically addressed these challenges by developing nano-thymoquinone (nano-TQ) formulations to enhance delivery and efficacy in treating psoriasis. Preclinical studies employing mouse models have demonstrated that nano-TQ effectively mitigates inflammation, erythema, scaling, epidermal thickness, and cytokine levels in psoriatic lesions. Various nano-TQ formulations, including nanoemulsions, lipid vesicles, nanostructured lipid carriers, and ethosomes, have been explored to improve solubility, facilitate skin penetration, ensure sustained release, and achieve site-specific targeting. Although clinical trials are currently scarce, the outcomes from in vitro and animal models are promising. The potential co-delivery of nano-TQ with other anti-psoriatic agents also presents avenues for further investigation.
Collapse
Affiliation(s)
| | - Hamid Reza Ojaghi
- Department of Dermatology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Anwar I, Zafar N, Mahmood A, Zulcaif, Latif R. Sustained release microneedle patch for pronounced systemic delivery of doxazosin mesylate. BIOIMPACTS : BI 2024; 15:30257. [PMID: 40161943 PMCID: PMC11954738 DOI: 10.34172/bi.30257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 04/02/2025]
Abstract
Introduction Microneedle patch is one of the fascinating drug delivery approaches that offers low invasiveness and a painless physical application to enhance the delivery of micro and macro-molecules into the skin. Methods Variable contents of chitosan and polyvinyl alcohol were used for the development of doxazosin mesylate containing sustained release microneedle patches via solvent casting technique. The prepared patches were evaluated for microscopic evaluation, mechanical strength, drug loading (%) and Fourier transform infrared spectroscopy (FTIR) etc. The skin penetration study was performed by using pig ear skin and results were captured through confocal microscopy. Ex-vivo release study and pharmacokinetic evaluation were also performed. Results Sharp needle tips with a height of 600µm and a base of 200µm were confirmed through microscopic examination. Optimized formulation (SRF-6) exhibited loading of 92.11% doxazosin mesylate with appreciable strength up to 1.94N force. Ex-vivo release studies revealed 87.24% release within 48 hours. Moreover, the pharmacokinetic parameters in case of optimized patch formulation (SRF-6) were markedly improved i.e. MRT (19.46 h), AUC (57.12 μg.h /mL), Cmax (2.16 µg /mL), tmax (10.10 h) and t1/2 (6.32 h) as compared to commercially available tablet. Biocompatibility of the developed patches was validated from skin irritation studies. Conclusion Results confirmed the successful fabrication of microneedle patch having sufficient strength and effective penetration ability into the skin to ensure controlled release of incorporated drug for the intended duration. It can be employed as an efficient carrier system for other therapeutics those are prone to bioavailability issues due to first pass effect after their oral administration.
Collapse
Affiliation(s)
- Imran Anwar
- Faculty of Pharmacy, The University Lahore, Lahore, Pakistan
| | - Nadiah Zafar
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam Campus, Bandar Puncak Alam, Malaysia
| | - Asif Mahmood
- Department of Pharmacy, University of Chakwal, Chakwal, Pakistan
| | - Zulcaif
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Riffat Latif
- Avera Health and Science, Department of Pharmaceutical Sciences, South Dakota State University, United States
| |
Collapse
|
18
|
Adwani G, Bharti S, Kumar A. Engineered nanoparticles in non-invasive insulin delivery for precision therapeutics of diabetes. Int J Biol Macromol 2024; 275:133437. [PMID: 38944087 DOI: 10.1016/j.ijbiomac.2024.133437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Diabetes mellitus is a chronic disease leading to the death of millions a year across the world. Insulin is required for Type 1, Type 2, and gestational diabetic patients, however, there are various modes of insulin delivery out of which oral delivery is noninvasive and convenient. Moreover, factors like insulin degradation and poor intestinal absorption play a crucial role in its bioavailability and effectiveness. This review discusses various types of engineered nanoparticles used in-vitro, in-vivo, and ex-vivo insulin delivery along with their administration routes and physicochemical properties. Injectable insulin formulations, currently in use have certain limitations, leading to invasiveness, low patient compliance, causing inflammation, and side effects. Based on these drawbacks, this review emphasizes more on the non-invasive route, particularly oral delivery. The article is important because it focuses on how engineered nanoparticles can overcome the limitations of free therapeutics (drugs alone), navigate the barriers, and accomplish precision therapeutics in diabetes. In future, more drugs could be delivered with a similar strategy to cure various diseases and resolve challenges in drug delivery. This review significantly describes the role of various engineered nanoparticles in improving the bioavailability of insulin by protecting it from various barriers during non-invasive routes of delivery.
Collapse
Affiliation(s)
- Gunjan Adwani
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India
| | - Sharda Bharti
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India.
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India.
| |
Collapse
|
19
|
Purushothaman JR, Rizwanullah M. Ferulic Acid: A Comprehensive Review. Cureus 2024; 16:e68063. [PMID: 39347187 PMCID: PMC11438535 DOI: 10.7759/cureus.68063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Ferulic acid (FA), a phenolic compound abundant in the cell walls of seeds, leaves, and roots of various fruits, vegetables, cereals, and grains, is renowned for its wide range of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and anticancer properties. Despite its therapeutic potential, the clinical application of FA is hindered by challenges such as poor water solubility, limited bioavailability, rapid metabolism, and instability under physiological conditions. To address these issues, nanotechnology has emerged as a transformative approach, enhancing FA's pharmacokinetic profile. Various nanoparticle-based systems, including polymer-based and lipid-based nanoparticles, have been developed to encapsulate FA. These systems have demonstrated significant improvements in FA's solubility, stability, and bioavailability, with studies showing enhanced antioxidant activity and controlled release profiles. Further, the surface engineering of these nanoparticles provides targeted drug/phytochemical delivery potential. The targeted delivery of drugs/phytochemicals significantly enhances the therapeutic efficacy and minimizes systemic side effects. This review explores the therapeutic potential of FA, the limitations in its clinical application, and the advancements in nanoparticle-based delivery systems that are paving the way for its effective therapeutic use.
Collapse
Affiliation(s)
- Jaganathan R Purushothaman
- Department of Orthopedics, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Md Rizwanullah
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| |
Collapse
|
20
|
Baumann F, Paul T, Ossmann S, Enke D, Aigner A. Mesoporous Silica-Based Membranes in Transdermal Drug Delivery: The Role of Drug Loss in the Skin. Pharmaceutics 2024; 16:995. [PMID: 39204340 PMCID: PMC11358937 DOI: 10.3390/pharmaceutics16080995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Compared to other forms of drug administration, the use of Transdermal Drug Delivery Systems (TDDSs) offers significant advantages, including uniform drug release profiles that contribute to lower side effects and higher tolerability, avoidance of direct exposure to the gastrointestinal tract, better patient compliance due to their non-invasive means of application and others. Mesoporous silica membranes are of particular interest in this regard, due to their chemical stability and their tunable porous system, with adjustable pore sizes, pore volumes and surface chemistries. While this allows for fine-tuning and, thus, the development of optimized TDDSs with high loading capacities and the desired release profile of a given drug, its systemic availability also relies on skin penetration. In this paper, using a TDDS based on mesoporous silica membranes in Franz cell experiments on porcine skin, we demonstrate surprisingly substantial drug loss during skin penetration. Drug passage through porcine skin was found to be dependent on the age and pre-treatment of the skin. pH and temperature were major determinants of drug recovery rates as well, indicating drug loss in the skin by enzymatic metabolization. Regarding the TDDS, higher loading obtained by SO3H surface modification of the mesoporous silica membranes reduced drug loss. Still, high loss rates in the skin were determined for different drugs, including anastrozole, xylazine and imiquimod. We conclude that, beyond the fine-tuned drug release profiles from the mesoporous silica membrane TDDS, remarkably high drug loss in the skin is a major issue for achieving desired skin penetration and, thus, the systemic availability of drugs. This also poses critical requirements for defining an optimal TDDS based on mesoporous silica membranes.
Collapse
Affiliation(s)
- Frank Baumann
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, 04107 Leipzig, Germany;
| | - Theresa Paul
- Institute of Chemical Technology, Leipzig University, 04103 Leipzig, Germany;
| | - Susann Ossmann
- Leipzig Heart Center, University Department for Cardiac Surgery, 04289 Leipzig, Germany;
| | - Dirk Enke
- Institute of Chemical Technology, Leipzig University, 04103 Leipzig, Germany;
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, 04107 Leipzig, Germany;
| |
Collapse
|
21
|
Babu MR, Vishwas S, Khursheed R, Harish V, Sravani AB, Khan F, Alotaibi B, Binshaya A, Disouza J, Kumbhar PS, Patravale V, Gupta G, Loebenberg R, Arshad MF, Patel A, Patel S, Dua K, Singh SK. Unravelling the role of microneedles in drug delivery: Principle, perspectives, and practices. Drug Deliv Transl Res 2024; 14:1393-1431. [PMID: 38036849 DOI: 10.1007/s13346-023-01475-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2023] [Indexed: 12/02/2023]
Abstract
In recent year, the research of transdermal drug delivery systems has got substantial attention towards the development of microneedles (MNs). This shift has occurred due to multifaceted advantages of MNs as they can be utilized to deliver the drug deeper to the skin with minimal invasion, offer successful delivery of drugs and biomolecules that are susceptible to degradation in gastrointestinal tract (GIT), act as biosensors, and help in monitoring the level of biomarkers in the body. These can be fabricated into different types based on their applications as well as material for fabrication. Some of their types include solid MNs, hollow MNs, coated MNs, hydrogel forming MNs, and dissolving MNs. These MNs deliver the therapeutics via microchannels deeper into the skin. The coated and hollow MNs have been found successful. However, they suffer from poor drug loading and blocking of pores. In contrast, dissolving MNs offer high drug loading. These MNs have also been utilized to deliver vaccines and biologicals. They have also been used in cosmetics. The current review covers the different types of MNs, materials used in their fabrication, properties of MNs, and various case studies related to their role in delivering therapeutics, monitoring level of biomarkers/hormones in body such as insulin. Various patents and clinical trials related to MNs are also covered. Covered are the major bottlenecks associated with their clinical translation and potential future perspectives.
Collapse
Affiliation(s)
- Molakpogu Ravindra Babu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Anne Boyina Sravani
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Farhan Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Abdulkarim Binshaya
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala , Kolhapur, Maharashtra, 416113, India
| | - Popat S Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala , Kolhapur, Maharashtra, 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura , 30201, Jaipur, India
| | - Raimar Loebenberg
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton , AB T6G2N8, Alberta, Canada
| | - Mohammed Faiz Arshad
- Department of Scientific Communications, Isthmus Research and Publishing House, New Delhi, 110044, India
| | - Archita Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Samir Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
22
|
Gaikwad SS, Zanje AL, Somwanshi JD. Advancements in transdermal drug delivery: A comprehensive review of physical penetration enhancement techniques. Int J Pharm 2024; 652:123856. [PMID: 38281692 DOI: 10.1016/j.ijpharm.2024.123856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
Transdermal drug administration has grown in popularity in the pharmaceutical research community due to its potential to improve drug bioavailability, compliance among patients, and therapeutic effectiveness. To overcome the substantial barrier posed by the stratum corneum (SC) and promote drug absorption within the skin, various physical penetration augmentation approaches have been devised. This review article delves into popular physical penetration augmentation techniques, which include sonophoresis, iontophoresis, magnetophoresis, thermophoresis, needle-free injection, and microneedles (MNs) Sonophoresis is a technique that uses low-frequency ultrasonic waves to break the skin's barrier characteristics, therefore improving drug transport and distribution. In contrast, iontophoresis uses an applied electric current to push charged molecules of drugs inside the skin, effectively enhancing medication absorption. Magnetophoresis uses magnetic fields to drive drug carriers into the dermis, a technology that has shown promise in aiding targeted medication delivery. Thermophoresis is the regulated heating of the skin in order to improve drug absorption, particularly with thermally sensitive drug carriers. Needle-free injection technologies, such as jet injectors (JIs) and microprojection arrays, offer another option by producing temporary small pore sizes in the skin, facilitating painless and effective drug delivery. MNs are a painless, minimally invasive method, easy to self-administration, as well as high drug bioavailability. This study focuses on the underlying processes, current breakthroughs, and limitations connected with all of these approaches, with an emphasis on their applicability in diverse therapeutic areas. Finally, a thorough knowledge of these physical enhancement approaches and their incorporation into pharmaceutical research has the potential to revolutionize drug delivery, providing more efficient and secure treatment choices for a wide range of health-related diseases.
Collapse
Affiliation(s)
- Sachin S Gaikwad
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| | - Abhijit L Zanje
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Jeevan D Somwanshi
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Savitribai Phule Pune University, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| |
Collapse
|
23
|
Cao Z, Pang Y, Pu J, Liu J. Bacteria-based drug delivery for treating non-oncological diseases. J Control Release 2024; 366:668-683. [PMID: 38219912 DOI: 10.1016/j.jconrel.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Bacteria inhabit all over the human body, especially the skin, gastrointestinal tract, respiratory tract, urogenital tract, as well as specific lesion sites, such as wound and tumor. By leveraging their distinctive attributes including rapid proliferation, inherent abilities to colonize various biointerfaces in vivo and produce diverse biomolecules, and the flexibility to be functionalized via genetic engineering or surface modification, bacteria have been widely developed as living therapeutic agents, showing promising potential to make a great impact on the exploration of advanced drug delivery systems. In this review, we present an overview of bacteria-based drug delivery and its applications in treating non-oncological diseases. We systematically summarize the physiological positions where living bacterial therapeutic agents can be delivered to, including the skin, gastrointestinal tract, respiratory tract, and female genital tract. We discuss the success of using bacteria-based drug delivery systems in the treatment of diseases that occur in specific locations, such as skin wound healing/infection, inflammatory bowel disease, respiratory diseases, and vaginitis. We also discuss the advantages as well as the limitations of these living therapeutics and bacteria-based drug delivery, highlighting the key points that need to be considered for further translation. This review article may provide unique insights for designing next-generation bacteria-based therapeutics and developing advanced drug delivery systems.
Collapse
Affiliation(s)
- Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yan Pang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
24
|
Wang G, Meng X, Zhang F. Past, present, and future of global research on artificial intelligence applications in dermatology: A bibliometric analysis. Medicine (Baltimore) 2023; 102:e35993. [PMID: 37960748 PMCID: PMC10637496 DOI: 10.1097/md.0000000000035993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
In recent decades, artificial intelligence (AI) has played an increasingly important role in medicine, including dermatology. Worldwide, numerous studies have reported on AI applications in dermatology, rapidly increasing interest in this field. However, no bibliometric studies have been conducted to evaluate the past, present, or future of this topic. This study aimed to illustrate past and present research and outline future directions for global research on AI applications in dermatology using bibliometric analysis. We conducted an online search of the Web of Science Core Collection database to identify scientific papers on AI applications in dermatology. The bibliometric metadata of each selected paper were extracted, analyzed, and visualized using VOS viewer and Cite Space. A total of 406 papers, comprising 8 randomized controlled trials and 20 prospective studies, were deemed eligible for inclusion. The United States had the highest number of papers (n = 166). The University of California System (n = 24) and Allan C. Halpern (n = 11) were the institution and author with the highest number of papers, respectively. Based on keyword co-occurrence analysis, the studies were categorized into 9 distinct clusters, with clusters 2, 3, and 7 containing keywords with the latest average publication year. Wound progression prediction using machine learning, the integration of AI into teledermatology, and applications of the algorithms in skin diseases, are the current research priorities and will remain future research aims in this field.
Collapse
Affiliation(s)
- Guangxin Wang
- Shandong Innovation Center of Intelligent Diagnosis, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Xianguang Meng
- Department of Dermatology, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Fan Zhang
- Shandong Innovation Center of Intelligent Diagnosis, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|