1
|
Alharbi WS, Alshehri AA, Ahmed TA, Shadab M, Almehmady AM, Alshabibi MA, Altamimi RM, El-Say KM. Enhancing the Antiproliferative Activity of Perillyl Alcohol against Glioblastoma Cell Lines through Synergistic Formulation with Natural Oils. Curr Pharm Des 2024; 30:1075-1084. [PMID: 38532602 DOI: 10.2174/0113816128293758240318080527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Due to its volatility, photostability, and gastrointestinal toxicity, Perillyl Alcohol (POH), a monoterpenoid component of various plant species, is a chemotherapeutic drug with insufficient efficacy. Many naturally occurring bioactive compounds have well-known antiproliferative properties, including sefsol, jojoba, tea tree, and moringa oils. OBJECTIVE This study sought to develop an oil-based Self Nanoemulsifying Drug Delivery System (SNEDDS) using tween 80 as the surfactant and Dimethyl Sulfoxide (DMSO) or Polyethylene Glycol (PEG) 400 as the cosurfactant; the oils were used in a range of 10-20% to boost POH's anticancer efficacy. METHODS The formulations' size, charge, and impact on the viability of glioma cell lines, ANGM-CSS and A172, were evaluated. RESULTS The developed SNEDDS formulations ranged from 3 nm to 362 nm in size, with electronegative surface charges between 5.05 and 17.0 mV and polydispersity indices between 0.3 and 1.0. CONCLUSION The findings indicated that the antiproliferative effect of POH-loaded Nanoemulsion (NE) could be used as a possible anticancer therapy for glioblastoma in vitro, particularly when paired with the tested natural oils. Before asserting that this delivery technique is appropriate for glioblastoma therapy, additional in vitro and in vivo investigations are required.
Collapse
Affiliation(s)
- Waleed S Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah A Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md Shadab
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alshaimaa M Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Manal A Alshabibi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Reem M Altamimi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Trivedi JU, Ghalsasi P, Ganguly S, Jenepha Mary S, James C. Raman spectroscopic study of cinnamyl-1 diphenylmethyl-4 piperazine (Cinnarizine) at high pressure. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
|
4
|
Schmied FP, Bernhardt A, Engel A, Klein S. A Customized Screening Tool Approach for the Development of a Self-Nanoemulsifying Drug Delivery System (SNEDDS). AAPS PharmSciTech 2021; 23:39. [PMID: 34961897 PMCID: PMC8816498 DOI: 10.1208/s12249-021-02176-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022] Open
Abstract
The present study focused on establishing a novel, (pre-)screening approach that enables the development of promising performing self-nanoemulsifying drug delivery systems (SNEDDSs) with a limited number of experiments. The strategic approach was based on first identifying appropriate excipients (oils/lipids, surfactants, and co-solvents) providing a high saturation solubility for lipophilic model compounds with poor aqueous solubility. Excipients meeting these requirements were selected for SNEDDS development, and a special triangular mixture design was applied for determining excipient ratios for the SNEDDS formulations. Celecoxib and fenofibrate were used as model drugs. Formulations were studied applying a specific combination of in vitro characterization methods. Specifications for a promising SNEDDS formulation were self-imposed: a very small droplet size (< 50 nm), a narrow size distribution of these droplets (PDI < 0.15) and a high transmittance following SNEDDS dispersion in water (> 99% in comparison with purified water). Excipients that provided a nanoemulsion after dispersion were combined, and ratios were optimized using a customized mapping method in a triangular mixture design. The best performing formulations were finally studied for their in vitro release performance. Results of the study demonstrate the efficiency of the customized screening tool approach. Since it enables successful SNEDDS development in a short time with manageable resources, this novel screening tool approach could play an important role in future SNEDDS development. Graphical abstract ![]()
Collapse
|
5
|
Shakeel F, Kazi M, Alanazi FK, Alam P. Solubility of Cinnarizine in (Transcutol + Water) Mixtures: Determination, Hansen Solubility Parameters, Correlation, and Thermodynamics. Molecules 2021; 26:7052. [PMID: 34834144 PMCID: PMC8618442 DOI: 10.3390/molecules26227052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Between 293.2 and 313.2 K and at 0.1 MPa, the solubility of the weak base, cinnarizine (CNZ) (3), in various {Transcutol-P (TP) (1) + water (2)} combinations is reported. The Hansen solubility parameters (HSP) of CNZ and various {(TP) (1) + water (2)} mixtures free of CNZ were also predicted using HSPiP software. Five distinct cosolvency-based mathematical models were used to link the experimentally determined solubility data of CNZ. The solubility of CNZ in mole fraction was increased with elevated temperature and TP mass fraction in {(TP) (1) + water (2)} combinations. The maximum solubility of CNZ in mole fraction was achieved in neat TP (5.83 × 10-2 at 313.2 K) followed by the minimum in neat water (3.91 × 10-8 at 293.2 K). The values of mean percent deviation (MPD) were estimated as 2.27%, 5.15%, 27.76%, 1.24% and 1.52% for the "Apelblat, van't Hoff, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van't Hoff models", respectively, indicating good correlations. The HSP value of CNZ was closed with that of neat TP, suggesting the maximum solubilization of CNZ in TP compared with neat water and other aqueous mixtures of TP and water. The outcomes of the apparent thermodynamic analysis revealed that CNZ dissolution was endothermic and entropy-driven in all of the {(TP) (1) + water (2)} systems investigated. For {(TP) (1) + water (2)} mixtures, the enthalpy-driven mechanism was determined to be the driven mechanism for CNZ solvation. TP has great potential for solubilizing the weak base, CNZ, in water, as demonstrated by these results.
Collapse
Affiliation(s)
- Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.); (F.K.A.)
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.); (F.K.A.)
| | - Fars K. Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.); (F.K.A.)
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| |
Collapse
|
6
|
Alothaid H, Aldughaim MS, Yusuf AO, Yezdani U, Alhazmi A, Habibullah MM, Khan MG. A comprehensive study of the basic formulation of supersaturated self-nanoemulsifying drug delivery systems (SNEDDS) of albendazolum. Drug Deliv 2021; 28:2119-2126. [PMID: 34612775 PMCID: PMC8510591 DOI: 10.1080/10717544.2021.1986601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Albendazolum (ABZ) is a BCS class II drug. It has challenging biopharmaceutical properties, which include poor solubility and dissolution rate. These properties have laid the ground for developing a supersaturated self-nanoemulsifying drug delivery system (S-SNEDDS) to form oil-in-water nanoemulsion in situ to improve the oral bioavailability of ABZ. Based on the ABZ solubility, emulsifying ability, and stability after dispersion in an aqueous phase, an optimal self-nanoemulsifying drug delivery system (SNEDDS) consisting of oleic acid, Tween® 20, and PEG 600 (X:Y:Z, w/w) was identified, having 10% (w/w) hydroxypropyl methylcellulose (HPMC) E15 lv as its precipitation inhibitor. The optimized system possessed a small mean globule size value (89.2 nm), good dispersion properties (polydispersity index (PDI): 0.278), and preserved the supersaturated state of ABZ. S-SNEDDS was transformed into solid supersaturated self-nanoemulsifying drug delivery systems (SS-SNEDDS) using microcrystalline cellulose as a solid material. The developed S-SNEDDS were characterized for globule size, pH, turbidity, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and flow properties. The data obtained from the results suggest that this S-SNEDDS formulation can enhance the solubility and oral bioavailability of ABZ for appropriate clinical application.
Collapse
Affiliation(s)
- Hani Alothaid
- Department of Basic Sciences, Faculty of Applied Medical Sciences, Al Baha University, Al-Baha, Saudi Arabia
| | | | | | - Umama Yezdani
- Department of Pharmacy Practice, MRM College of Pharmacy, Hyderabad, India
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.,SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Mahmoud M Habibullah
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.,SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | | |
Collapse
|
7
|
Kheawfu K, Pikulkaew S, Rades T, Müllertz A, von Gersdorff Jørgensen L, Okonogi S. Design and optimization of self-nanoemulsifying drug delivery systems of clove oil for efficacy enhancement in fish anesthesia. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Verma R, Kaushik D. Role of Biorelevant Media in the Estimation of In Vitro Lipolysis and Food Impact on Self-emulsifying Drug Delivery Systems. CURRENT DRUG THERAPY 2021. [DOI: 10.2174/1574885515999200727121540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Self-emulsifying drug delivery systems (SEDDS) include self-microemulsifying drug
delivery system (SMEDDS) and self-nanoemulsifying drug delivery system (SNEDDS) whose
major benefits are reduction of inter/intrasubject variability and food effect that results in a better
pharmacological response of the drug. Oral intake of these formulations triggers the digestion process
because of pancreatic lipase which emulsifies/digests the lipidic ingredients of the formulation
leading to precipitation of the drug. As a tool to foresee in vivo medicament precipitation, in vitro
lipolysis models are established. Biorelevant media play an important role to study the effect of in
vitro lipolysis and food impact on the bioavailability of SEDDS formulations. It is vital to generate
the composition of fluids for both fed and fasting conditions of gastric, small intestine and colon to
investigate the impact of in vitro lipolysis and food on drug’s release behavior from the formulation.
Fed/Fasted state simulated gastric fluid (Fe/FaSSGF), and Fed/Fasted state simulated gastric
fluid (Fe/FaSSIF) (Phosphate buffers) are first-generation. While Fa/FeSSIF-V2 (maleate) are second-
generation biorelevant media utilized for these studies. FaSSIF-V3 belongs to the thirdgeneration
which differs from other generations in the composition and source of bile salts. With
updates in physiological data, it is vital to incorporate changes in dissolution media composition to
make it more biorelevant. This review paper mainly emphasized the compositions of biorelevant
media of gastric and small intestine for both fed and fasting conditions. Besides, applications of
biorelevant media to investigate the effect of in vitro lipolysis and food on SEDDS are discussed
with some recent research reports.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak,India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak,India
| |
Collapse
|
9
|
Ghosh B, Chatterjee A, Kirtania MD, Chattopadhyay S. Development of Cinnarizine Microballoons by Sequential Optimization and In Vivo Imaging by Gamma Scintigraphy. CURRENT DRUG THERAPY 2020. [DOI: 10.2174/1574885514666191119105908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background:
The drug cinnarizine is used in the treatment of vertigo and migraine. The
main drawback is its very low water solubility which causes unpredictable bioavailability. Solubility
is better in acidic pH. Therefore, gastro-retentive formulation would be beneficial to improve the
bioavailability of the drug.
Objective:
The objective of the study was to prepare floating microballoons of cinnarizine which
would float in the gastric fluid and release the drug in a sustained manner.
Methods:
Microballoons were prepared by diffusion solvent evaporation technique using polymers
(Eudragit® S100, Eudragit® RLPO, Eudragit RL®100), characterised by FTIR, XRD, DSC and optimized
by sequential simplex design. For optimization, formulations were graded with respect to
formulation efficiency (percentages of yield, sphericity and drug content) and performance index
(buoyancy and dissolution efficiency), from which the overall response of the formulations was
determined. Finally, the optimized formulation was radiolabelled with 99mTc-MIBI and fed to Wistar
albino rats and was evaluated for gastric retention by gamma scintigraphic study.
Results:
FTIR studies indicated drug and polymers were compatible. DSC and XRD analysis confirmed
that the drug was in amorphous state in the formulation. SEM studies confirmed the sphericity
of the microballoons. Formulation N7 showed the best overall response (65.61) which was the
nearest to the target. Gamma scintigraphic study confirmed that the formulation was retained in the
stomach for more than 5 h.
Conclusion:
The results indicated that floating microballoons of cinnarizine would stay in the
stomach for prolonged period and thereby improve the bioavailability of the drug.
Collapse
Affiliation(s)
- Bijaya Ghosh
- NSHM College of Pharmaceutical Technology, NSHM Knowledge Campus, 124 BL Saha Road, Kolkata-700053, West Bengal, India
| | - Arka Chatterjee
- NSHM College of Pharmaceutical Technology, NSHM Knowledge Campus, 124 BL Saha Road, Kolkata-700053, West Bengal, India
| | - Moumita Das Kirtania
- School of Pharmaceutical Technology, Adamas University, Adamas Knowledge City, Barasat- Barrackpore Road, Jagannathpur, Kolkata-700126, West Bengal, India
| | - Sankha Chattopadhyay
- Variable Energy Cyclotron Centre, Board of Radiation & Isotope Technology, Sector 1 Block AF, Bidhan Nagar, Kolkata-700 064, West Bengal, India
| |
Collapse
|
10
|
Ye JY, Chen ZY, Huang CL, Huang B, Zheng YR, Zhang YF, Lu BY, He L, Liu CS, Long XY. A Non-Lipolysis Nanoemulsion Improved Oral Bioavailability by Reducing the First-Pass Metabolism of Raloxifene, and Related Absorption Mechanisms Being Studied. Int J Nanomedicine 2020; 15:6503-6518. [PMID: 32922013 PMCID: PMC7457831 DOI: 10.2147/ijn.s259993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022] Open
Abstract
Objective A non-lipolysis nanoemulsion (NNE) was designed to reduce the first-pass metabolism of raloxifene (RAL) by intestinal UDP-glucuronosyltransferases (UGTs) for increasing the oral absorption of RAL, coupled with in vitro and in vivo studies. Methods In vitro stability of NNE was evaluated by lipolysis and the UGT metabolism system. The oral bioavailability of NNE was studied in rats and pigs. Finally, the absorption mechanisms of NNE were investigated by in situ single-pass intestinal perfusion (SPIP) in rats, Madin-Darby canine kidney (MDCK) cells model, and lymphatic blocking model. Results The pre-NNE consisted of isopropyl palmitate, linoleic acid, Cremophor RH40, and ethanol in a weight ratio of 3.33:1.67:3:2. Compared to lipolysis nanoemulsion of RAL (RAL-LNE), the RAL-NNE was more stable in in vitro gastrointestinal buffers, lipolysis, and UGT metabolism system (p < 0.05). The oral bioavailability was significantly improved by the NNE (203.30%) and the LNE (205.89%) relative to the suspension group in rats. However, 541.28% relative bioavailability was achieved in pigs after oral NNE intake compared to the suspension and had two-fold greater bioavailability than the LNE (p < 0.05). The RAL-NNE was mainly absorbed in the jejunum and had high permeability at the intestine of rats. The results of both SPIP and MDCK cell models demonstrated that the RAL-NNE was absorbed via endocytosis mediated by caveolin and clathrin. The other absorption route, the lymphatic transport (cycloheximide as blocking agent), was significantly improved by the NNE compared with the LNE (p < 0.05). Conclusion A NNE was successfully developed to reduce the first-pass metabolism of RAL in the intestine and enhance its lymphatic transport, thereby improving the oral bioavailability. Altogether, NNE is a promising carrier for the oral delivery of drugs with significant first-pass metabolism.
Collapse
Affiliation(s)
- Jing-Yi Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Zhong-Yun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Chuan-Li Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Bei Huang
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Yu-Rong Zheng
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Ying-Feng Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Ban-Yi Lu
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Lin He
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Chang-Shun Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xiao-Ying Long
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.,Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
11
|
Liu J, Hirschberg C, Fanø M, Mu H, Müllertz A. Evaluation of self-emulsifying drug delivery systems for oral insulin delivery using an in vitro model simulating the intestinal proteolysis. Eur J Pharm Sci 2020; 147:105272. [PMID: 32084584 DOI: 10.1016/j.ejps.2020.105272] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/09/2020] [Accepted: 02/17/2020] [Indexed: 10/25/2022]
Abstract
The gentle preparation and the functionalization potential of self-emulsifying drug delivery systems (SEDDS) make them an interesting formulation strategy for oral administration of peptide and protein (p/p) drugs. A series of Kolliphor® RH40 (RH40) and Labrasol® (LAB)-based SEDDS containing either long-chain (LC) or medium-chain (MC) glycerides were formulated and characterized with regard to their rheological behavior, as well as the size distribution and zeta potential of the generated emulsions. Insulin, in order to be incorporated in SEDDS, was complexed with soybean phosphatidylcholine. The ability of different SEDDS to protect the incorporated insulin against enzymatic hydrolysis was evaluated by an in vitro model simulating the intestinal proteolysis. SEDDS were incubated in simulated intestinal fluids in the presence of α-Chymotrypsin (α-CT), and HPLC was used to quantify the remaining insulin. Principal component analysis (PCA) was applied to identify the relations between different excipients and properties of SEDDS that describe the SEDDS protective effect on insulin during in vitro proteolysis. The RH40-SEDDS behaved Newtonian in the presence of ethanol (EtOH) and non-Newtonian in the absence of EtOH, which generated emulsion with droplets between 30 to 300 nm. The LAB-SEDDS always behaved Newtonian and generated polydisperse emulsions with broad size distribution (190-4000 nm). During the in vitro proteolysis, insulin can be effectively protected against α-CT (> 60% remaining insulin after 60 min in vitro proteolysis). According to PCA analysis, insulin was better protected in MC-SEDDS compared to LC-SEDDS, and better in LAB-SEDDS compared to RH40-SEDDS. Monoacyl phosphatidylcholine and Capmul® MCM C8 were recognized as excipients favored for SEDDS protection on insulin. However, SEDDS viscosity and the addition of EtOH in SEDDS played insignificant roles on the remaining insulin after in vitro proteolysis. In summary, an in vitro proteolysis model with increased physiological relevance was applied to enable the optimal design of SEDDS for oral p/p drug delivery.
Collapse
Affiliation(s)
- Jingying Liu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Cosima Hirschberg
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Mathias Fanø
- Bioneer: FARMA, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark; Bioneer: FARMA, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
12
|
Ye J, Wu H, Huang C, Lin W, Zhang C, Huang B, Lu B, Xu H, Li X, Long X. Comparisons of in vitro Fick's first law, lipolysis, and in vivo rat models for oral absorption on BCS II drugs in SNEDDS. Int J Nanomedicine 2019; 14:5623-5636. [PMID: 31440045 PMCID: PMC6664859 DOI: 10.2147/ijn.s203911] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023] Open
Abstract
Purpose The objective of this study was to compare the in vitro Fick’s first law, in vitro lipolysis, and in vivo rat assays for oral absorption of Biopharmaceutical Classification Systems Class II (BCS II) drugs in self-nanoemulsifying drug delivery system (SNEDDS), and studied drugs and oils properties effects on the absorption. Methods The transport abilities of griseofulvin (GRI), phenytoin (PHE), indomethacin (IND), and ketoprofen (KET) in saturated water solutions and SNEDDS were investigated using the in vitro Madin-Darby canine kidney cell model. GRI and cinnarizine (CIN) in medium-chain triglycerides (MCT)-SNEDDS and long-chain triglycerides (LCT)-SNEDDS were administered in the in vivo SD rat and in vitro lipolysis models to compare the oral absorption and the distribution behaviors in GIT and build an in vitro-in vivo correlation (IVIVC). Results In the cell model, the solubility of GRI, PHE, IND, and KET increased 6–8 fold by SNEDDS, but their permeability were only 18%, 4%, 8%, and 33% of those of their saturated water solutions, respectively. However, in vivo absorption of GRI-SNEDDS was twice that of the GRI suspension and those of CIN-SNEDDS were 15–21 fold those of the CIN suspension. In the lipolysis model, the GRI% in aqueous and pellet phases of MCT were similar to that in LCT. In contrast, the CIN% in the aqueous and pellet phases were decreased but that of the lipid phase increased. In addition, an IVIVC was found between the CIN% in the lipid phase and in vivo relative oral bioavailability (Fr). Conclusion The in vitro cell model was still a suitable tool to study drug properties effects on biofilm transport and SNEDDS absorption mechanisms. The in vitro lipolysis model provided superior oral absorption simulation of SNEDDS and helped to build correlation with in vivo rats. The oral drug absorption was affected by drug and oil properties in SNEDDS.
Collapse
Affiliation(s)
- Jingyi Ye
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Huiyi Wu
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Chuanli Huang
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Wanting Lin
- Department of Pharmacy of Chinese Materia Medica, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Caifeng Zhang
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Bei Huang
- Department of Pharmacy of Chinese Materia Medica, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Banyi Lu
- Department of Pharmacy of Chinese Materia Medica, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Hongyu Xu
- Department of Pharmacy of Chinese Materia Medica, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Xiaoling Li
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Xiaoying Long
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.,Department of Oral Delivery, Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
13
|
Maghrebi S, Prestidge CA, Joyce P. An update on polymer-lipid hybrid systems for improving oral drug delivery. Expert Opin Drug Deliv 2019; 16:507-524. [PMID: 30957577 DOI: 10.1080/17425247.2019.1605353] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION A promising approach that has recently emerged to overcome the complex biobarriers and interrelated challenges associated with oral drug absorption is to combine the benefits of polymeric and lipid-based nanocarriers within one hybrid system. This multifaceted formulation strategy has given rise to a plethora of polymer-lipid hybrid (PLH) systems with varying nanostructures and biological activities, all of which have demonstrated the ability to improve the biopharmaceutical performance of a wide range of challenging therapeutics. AREAS COVERED The multitude of polymers that can be combined with lipids to exert a synergistic effect for oral drug delivery have been identified, reviewed and critically evaluated. Specific focus is attributed to preclinical studies performed within the past 5 years that have elucidated the role and mechanism of the polymer phase in altering the oral absorption of encapsulated therapeutics. EXPERT OPINION The potential of PLH systems has been clearly identified; however, improved understanding of the structure-activity relationship between PLH systems and oral absorption is fundamental for translating this promising delivery approach into a clinically relevant formulation. Advancing research within this field to identify optimal polymer, lipid combinations and engineering conditions for specific therapeutics are therefore encouraged.
Collapse
Affiliation(s)
- Sajedehsadat Maghrebi
- a School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia , Australia.,b ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of South Australia , Adelaide , South Australia , Australia
| | - Clive A Prestidge
- a School of Pharmacy and Medical Sciences , University of South Australia , Adelaide , South Australia , Australia.,b ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , University of South Australia , Adelaide , South Australia , Australia
| | - Paul Joyce
- c Department of Physics , Chalmers University of Technology , Gothenburg , Sweden
| |
Collapse
|
14
|
Siqueira Jørgensen S, Rades T, Mu H, Graeser K, Müllertz A. Exploring the utility of the Chasing Principle: influence of drug-free SNEDDS composition on solubilization of carvedilol, cinnarizine and R3040 in aqueous suspension. Acta Pharm Sin B 2019; 9:194-201. [PMID: 30766791 PMCID: PMC6361727 DOI: 10.1016/j.apsb.2018.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/06/2018] [Accepted: 04/12/2018] [Indexed: 01/16/2023] Open
Abstract
This study assessed the influence of the composition of drug-free SNEDDS co-dosed with aqueous suspensions of carvedilol (CAR), cinnarizine (CIN) or R3040 on drug solubilization in a two-compartment in vitro lipolysis model. Correlation of drug logP or solubility in SNEDDS with drug solubilization during in vitro lipolysis in the presence of drug-free SNEDDS was assessed. SNEDDS with varying ratios of soybean oil:Maisine 35-1 (1:1, w/w) and Kolliphor RH40, with ethanol at 10% (w/w) were used. SNEDDS were named F65, F55 and F20 (numbers refer to the percentage of lipids) and aqueous suspensions without drug-free SNEDDS (F0) were also analyzed. While the ranking order of drug solubilization was F65=F55=F20>F0 for CAR; F65=F55>F20>F0 for CIN and F65=F55=F20>F0 for R3040 - with higher CAR solubilization than for R3040 and CIN - the ranking of S eq of CAR, CIN and R3040 in SNEDDS was F65F20 and F65>F55>F20, respectively. Therefore, the composition of SNEDDS influenced the solubilization of CIN, but not CAR and R3040. Furthermore, high S eq in SNEDDS did not reflect high drug solubilization. As CAR (logP 3.8) showed higher solubilization than CIN (logP 5.8) and R3040 (logP 10.4), a correlation between drug logP and drug solubilization was observed.
Collapse
Affiliation(s)
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kirsten Graeser
- Roche Pharma Research and Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann - La Roche, Switzerland
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
15
|
Shahba AAW, Alanazi FK, Abdel-Rahman SI. Stabilization benefits of single and multi-layer self-nanoemulsifying pellets: A poorly-water soluble model drug with hydrolytic susceptibility. PLoS One 2018; 13:e0198469. [PMID: 30024877 PMCID: PMC6053139 DOI: 10.1371/journal.pone.0198469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/18/2018] [Indexed: 11/19/2022] Open
Abstract
Solidified self-nanoemulsifying drug delivery systems (SNEDDS) offer strong option to enhance both drug aqueous solubility and stability. The current study was designed to evaluate the potential stabilization benefits of solidifying cinnarizine (CN) liquid SNEDDS into single and multi-layer self-nanoemulsifying pellets (SL-SNEP and ML-SNEP, respectively). The selected formulations were enrolled into accelerated, intermediate and long-term stability studies. The chemical stability was assessed based on the % of intact CN remaining in formulation. The physical stability was assessed by monitoring the in-vitro dissolution and physical appearance of the formulations. The degradation pathway of CN within lipid-based formulation was proposed to involve a hydroxylation reaction of CN molecule. The chemical stability study revealed significant CN degradation in liquid SNEDDS, SL-SNEP and ML-SNEP (lacking moisture-sealing) within all the storage conditions. In contrast, the moisture sealed ML-SNEP showed significant enhancement of CN chemical stability within the formulation. In particular, ML-SNEP coated with Kollicoat Smartseal 30D showed superior CN stabilization and no significant decrease in dissolution efficiency, at all the storage conditions. The observed stability enhancement is owing to the complete isolation between CN and SNEDDS layer as well as the effective moisture protection provided by Kollicoat Smartseal 30D. Hence, the degradation problem could be eradicated completely. The incorporation of silicon dioxide had an important role in the inhibition of pellet agglomeration upon storage. Accordingly, ML-SNEP coated with Kollicoat Smartseal 30D and/or silicon dioxide could be an excellent dosage form that combine dual enhancement of CN solubilization and stabilization.
Collapse
Affiliation(s)
- Ahmad Abdul-Wahhab Shahba
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
- * E-mail:
| | - Fars Kaed Alanazi
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | | |
Collapse
|
16
|
Singh H, Kumar M, Gupta S, Sekharan TR, Tamilvanan S. Influence of hydrophilic polymers addition into cinnarizine–β-cyclodextrin complexes on drug solubility, drug liberation behaviour and drug permeability. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-017-2203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Larsen A, Holm R, Müllertz A. Solution or suspension – Does it matter for lipid based systems? In vivo studies of chase dosing lipid vehicles with aqueous suspensions of a poorly soluble drug. Eur J Pharm Biopharm 2017; 117:308-314. [DOI: 10.1016/j.ejpb.2017.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/17/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
|
18
|
Bibi HA, Holm R, Bauer-Brandl A. Simultaneous lipolysis/permeation in vitro model, for the estimation of bioavailability of lipid based drug delivery systems. Eur J Pharm Biopharm 2017; 117:300-307. [DOI: 10.1016/j.ejpb.2017.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/24/2017] [Accepted: 05/01/2017] [Indexed: 01/08/2023]
|
19
|
Siqueira SDVS, Müllertz A, Gräeser K, Kasten G, Mu H, Rades T. Influence of drug load and physical form of cinnarizine in new SNEDDS dosing regimens: in vivo and in vitro evaluations. AAPS JOURNAL 2017; 19:587-594. [PMID: 28070714 DOI: 10.1208/s12248-016-0038-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/27/2016] [Indexed: 11/30/2022]
Abstract
The aim of this work was to evaluate the influence of drug load and physical form of cinnarizine (CIN) in self-nanoemulsifying drug delivery systems (SNEDDS) on absorption in rats. Further, the predictivity of the dynamic in vitro lipolysis model was evaluated. The following dosing regimens were assessed: (1) CIN dissolved in SNEDDS at 80% of equilibrium solubility (Seq) (SNEDDS 80%); (2) supersaturated SNEDDS with CIN dissolved at 200% Seq (super-SNEDDS solution); (3) SNEDDS suspension with CIN added at 200% Seq (CIN partially dissolved and partially suspended) (super-SNEDDS suspension); (4) drug-free SNEDDS co-dosed with aqueous CIN suspension (Chasing principle), and (5) CIN aqueous suspension. The CIN dose was kept constant for all dosing regimens. Therefore, the super-SNEDDS solution and super-SNEDDS suspension contained 2.5-fold less SNEDDS pre-concentrate than SNEDDS 80% and the Chasing principle. In vivo, a higher AUC after dosing CIN in SNEDDS 80% and the Chasing principle was obtained when compared to the super-SNEDDS solution, super-SNEDDS suspension, and aqueous suspension. In vitro, a higher extent of CIN in the aqueous phase was observed for all SNEDDS-containing dosing regimens, compared to the aqueous suspension. Since the drug level in the aqueous phase is traditionally considered as the fraction available for absorption, a lack of in vitro-in vivo relation was observed. This study revealed that the physical form of CIN in the current SNEDDS does not affect CIN absorption and solubilization, whereas the drug load, or amount of co-dosed lipid, significantly influenced CIN bioavailability.
Collapse
Affiliation(s)
- Scheyla D V S Siqueira
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Kirsten Gräeser
- Roche Pharma Research and Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Georgia Kasten
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| |
Collapse
|
20
|
Sassene PJ, Michaelsen MH, Mosgaard MD, Jensen MK, Van Den Broek E, Wasan KM, Mu H, Rades T, Müllertz A. In Vivo Precipitation of Poorly Soluble Drugs from Lipid-Based Drug Delivery Systems. Mol Pharm 2016; 13:3417-3426. [DOI: 10.1021/acs.molpharmaceut.6b00413] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- P. J. Sassene
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - M. H. Michaelsen
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
- Faculty
of Pharmaceutical Sciences, University of British Columbia, 2146
East Mall, Vancouver, BC V6T 1Z3, Canada
| | - M. D. Mosgaard
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - M. K. Jensen
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - E. Van Den Broek
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - K. M. Wasan
- Faculty
of Pharmaceutical Sciences, University of British Columbia, 2146
East Mall, Vancouver, BC V6T 1Z3, Canada
- College
of Pharmacy and Nutrition, University of Saskatchewan, E3122-104
Clinic Place, Saskatoon, SK S7N 2Z4, Canada
| | - H. Mu
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - T. Rades
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - A. Müllertz
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| |
Collapse
|
21
|
Effect of food intake and co-administration of placebo self-nanoemulsifying drug delivery systems on the absorption of cinnarizine in healthy human volunteers. Eur J Pharm Sci 2016; 84:77-82. [PMID: 26775868 DOI: 10.1016/j.ejps.2016.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/30/2015] [Accepted: 01/12/2016] [Indexed: 01/04/2023]
Abstract
Positive food effects may be observed for low aqueous soluble compounds, these effects could potentially be circumvented using lipid based formulations. However, as all compounds are not chemically stable in lipid based systems, alternative dosage regimes could be investigated to evade the stability issue. The two aims for this present study were therefore; i) to investigate if a nutritional drink, Fresubin Energy®, could induce food effect in humans for the poorly soluble compound cinnarizine; and ii) to investigate if co-administration of a self-nano-emulsifying drug delivery systems (SNEDDS) with a conventional cinnarizine tablet could reduce the observed food-effect. A commercial conventional cinnarizine tablet was dosed to 10 healthy volunteers in a cross-over design in both fasted and fed state, with and without co-administration of a SNEDDS, with a one week wash-out period between dosing. The fed state was induced using a nutritional drink (Fresubin Energy®) and gastric emptying was assessed by administration of paracetamol as a marker. The pharmacokinetic analysis showed that the nutritional drink delayed the uptake and increased the fraction of absorbed cinnarizine, indicative of a food effect on the compound. This was in agreement with a previous dog study and indicates that the nutritional drink can be used for inducing the same level of food effect in humans. Though not statistically significant, the co-administration of SNEDDS exhibited a tendency towards a reduction of the observed food effect and an increased absorption of cinnarizine in the fasted state; based upon the individual ratios, which was not reflected in the mean data. However, the co-administration of SNEEDS in the fasted state, also induce a slower gastric emptying rate, which was observed as a delayed tmax for both cinnarizine and paracetamol.
Collapse
|
22
|
Sassene PJ, Mosgaard MD, Löbmann K, Mu H, Larsen FH, Rades T, Müllertz A. Elucidating the Molecular Interactions Occurring during Drug Precipitation of Weak Bases from Lipid-Based Formulations: A Case Study with Cinnarizine and a Long Chain Self-Nanoemulsifying Drug Delivery System. Mol Pharm 2015; 12:4067-76. [DOI: 10.1021/acs.molpharmaceut.5b00498] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Philip J. Sassene
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Mette D. Mosgaard
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Korbinian Löbmann
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Huiling Mu
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Flemming H. Larsen
- Department
of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej
26, 1958 Frederiksberg, Denmark
| | - Thomas Rades
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anette Müllertz
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Bioneer:Farma,
Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
23
|
|
24
|
Müllertz A, Reppas C, Psachoulias D, Vertzoni M, Fatouros DG. Structural features of colloidal species in the human fasted upper small intestine. J Pharm Pharmacol 2015; 67:486-92. [DOI: 10.1111/jphp.12336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/21/2014] [Indexed: 01/02/2023]
Abstract
Abstract
Objectives
This paper aims to study the features of colloidal species in the lumen of the upper small intestine of two healthy adults at fasted state by means of electron microscopy.
Methods
Samples were aspirated from a location near the ligament of Treitz 30 min (volunteer no. 1, Aspirate30min sample) and 60 min (volunteer no. 2, Aspirate60min sample), after administration of 240 ml of an aqueous solution in the fasted state.
Key findings
In the Aspirate30min sample micelles coexist with multi-, oligo- and unilamellar vesicles. Tubular structures and long structures were frequently visualised. In the Aspirate60min sample micelles, few unilamellar vesicles, long structures and tubular structures were the dominating structural features. In both samples, multivesicular structures and faceted vesicles (previously visualised at fed state) were absent. Structural features of both samples bear similarities with previously studied samples from the lower intestine in the fasted state. Micelles and unilamellar vesicles observed in both samples closely resemble morphological characteristics of those found in fluids simulating the colloidal species in fasted upper intestinal environment.
Conclusions
Features of colloidal species in contents of fasted small intestine have similarities with fluids simulating the contents in fasted upper small intestine and with contents of lower intestine in the fasted state.
Collapse
Affiliation(s)
- Anette Müllertz
- Bioneer:FARMA, Department of Pharmaceutics and Analytical Chemistry, The Faculty of Pharmaceutical Science, University of Copenhagen, Copenhagen, Denmark
| | - Christos Reppas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Psachoulias
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Vertzoni
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios G Fatouros
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
25
|
Recent advances in delivery systems and therapeutics of cinnarizine: a poorly water soluble drug with absorption window in stomach. JOURNAL OF DRUG DELIVERY 2014; 2014:479246. [PMID: 25478230 PMCID: PMC4247907 DOI: 10.1155/2014/479246] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/15/2014] [Indexed: 11/18/2022]
Abstract
Low solubility causing low dissolution in gastrointestinal tract is the major problem for drugs meant for systemic action after oral administration, like cinnarizine. Pharmaceutical products of cinnarizine are commercialized globally as immediate release preparations presenting low absorption with low and erratic bioavailability. Approaches to enhance bioavailability are widely cited in the literature. An attempt has been made to review the bioavailability complications and clinical therapeutics of poorly water soluble drug: cinnarizine. The interest of writing this paper is to summarize the pharmacokinetic limitations of drug with special focus on strategies to improvise bioavailability along with effectiveness of novel dosage forms to circumvent the obstacle. The paper provides insight to the approaches to overcome low and erratic bioavailability of cinnarizine by cyclodextrin complexes and novel dosage forms: self-nanoemulsifying systems and buoyant microparticulates. Nanoformulations need to systematically explored in future, for their new clinical role in prophylaxis of migraine attacks in children. Clinical reports have affirmed the role of cinnarizine in migraine prophylaxis. Research needs to be dedicated to develop dosage forms for efficacious bioavailability and drug directly to brain.
Collapse
|
26
|
Cinnarizine food-effects in beagle dogs can be avoided by administration in a Self Nano Emulsifying Drug Delivery System (SNEDDS). Eur J Pharm Sci 2014; 57:164-72. [DOI: 10.1016/j.ejps.2013.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/04/2013] [Accepted: 11/05/2013] [Indexed: 12/26/2022]
|
27
|
Kuentz M. Analytical technologies for real-time drug dissolution and precipitation testing on a small scale. J Pharm Pharmacol 2014; 67:143-59. [DOI: 10.1111/jphp.12271] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/13/2014] [Indexed: 12/24/2022]
Abstract
Abstract
Objectives
This review focuses on real-time analytics of drug dissolution and precipitation testing on a comparatively small scale.
Key findings
Miniaturisation of test equipment is an important trend in pharmaceutics, and several small-scale experiments have been reported for drug dissolution and precipitation testing. Such tests typically employ analytics in real-time. Fibre optic ultraviolet (UV) analytics has become a well-established method in this field. Novel imaging techniques are emerging that use visible or UV light; also promising is Fourier transform infrared imaging based on attenuated total reflection. More information than just a rate constant is obtained from these methods. The early phase of a dissolution process can be assessed and drug precipitation may eventually be observed. Some real-time techniques are particularly well suited to studying drug precipitation during formulation dispersion; for example, turbidity, focused beam reflectance measurement and Raman spectroscopy.
Summary
Small-scale dissolution tests equipped with real-time analytics have become important to screen drug candidates as well as to study prototype formulations in early development. Future approaches are likely to combine different analytical techniques including imaging. Miniaturisation started with mini-vessels or small vials and future assays of dissolution research will probably more often reach the level of parallel well plates and microfluidic channels.
Collapse
Affiliation(s)
- Martin Kuentz
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| |
Collapse
|
28
|
Christophersen PC, Christiansen ML, Holm R, Kristensen J, Jacobsen J, Abrahamsson B, Müllertz A. Fed and fasted state gastro-intestinal in vitro lipolysis: In vitro in vivo relations of a conventional tablet, a SNEDDS and a solidified SNEDDS. Eur J Pharm Sci 2013; 57:232-9. [PMID: 24056027 DOI: 10.1016/j.ejps.2013.09.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/23/2013] [Accepted: 09/10/2013] [Indexed: 11/19/2022]
Abstract
The present study aims at evaluating the ability of a gastro-intestinal in vitro lipolysis model to predict the performance of two lipid formulations and a conventional tablet containing a poorly soluble drug, cinnarizine, in dogs, both in the fasted and fed state. A self-nano-emulsifying drug delivery system (SNEDDS) was either dosed in a hard gelatin capsule (SNEDDS-C) or loaded onto a porous tablet core (SNEDDS-T) and compared to a marketed conventional tablet (Conv) in an in vitro lipolysis model. The model simulates the digestion in the stomach and intestine during either the fasted or the fed state. Whole fat milk (3.5%) was used in the fed state model to mimic the dynamic lipolysis events after ingestion of food. The results were compared to a dog study published in this issue. In the fasted state in vitro lipolysis model, the amount of solubilized cinnarizine decreased in the order SNEDDS-C>SNEDDS-T>Conv, which correlated well with the in vivo bioavailability. In the fed state in vitro lipolysis model, cinnarizine was solubilized to the same degree for all formulations. Compared to the fasted state model, only the performance of the conventional tablet was improved, indicating food effect. This correlated with the in vivo study, where the tablet was the only formulation with a significant food effect. The fasted state model correlated well with the in vivo results and although the fed state model did not accurately predict the fed state in vivo results, it could predict which formulation that would exhibit a food effect.
Collapse
Affiliation(s)
- Philip Carsten Christophersen
- Department of Pharmacy, Faculty of Health & Medical Science, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Martin Lau Christiansen
- Department of Pharmacy, Faculty of Health & Medical Science, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Rene Holm
- Department of Pharmacy, Faculty of Health & Medical Science, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Biologics and Pharmaceutical Science, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Jakob Kristensen
- Ferring Pharmaceuticals A/S, Kay Fiskers Plads 11, 2300 Copenhagen, Denmark
| | - Jette Jacobsen
- Department of Pharmacy, Faculty of Health & Medical Science, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | - Anette Müllertz
- Department of Pharmacy, Faculty of Health & Medical Science, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Bioneer:FARMA, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
29
|
Larsen AT, Åkesson P, Juréus A, Saaby L, Abu-Rmaileh R, Abrahamsson B, Østergaard J, Müllertz A. Bioavailability of cinnarizine in dogs: effect of SNEDDS loading level and correlation with cinnarizine solubilization during in vitro lipolysis. Pharm Res 2013; 30:3101-13. [PMID: 23949249 DOI: 10.1007/s11095-013-1145-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 07/01/2013] [Indexed: 01/13/2023]
Abstract
PURPOSE To investigate the effect of increasing the loading level of the poorly soluble drug cinnarizine in a self-nanoemulsifying drug delivery system (SNEDDS) both in vitro and in vivo. METHODS A fixed dose of cinnarizine was administered orally to dogs in solution in different amounts of SNEDDS vehicle. Furthermore, the SNEDDSs were characterised using the dynamic in vitro lipolysis model. RESULTS Statistical differences in bioavailability were not obtained between the different amounts of SNEDDS vehicle, in spite of differences in the tendency of cinnarizine to precipitate during in vitro lipolysis of the treatments. Use of the SNEDDS concept decreased the variation in cinnarizine exposure observed between dogs as compared to administering cinnarizine in an aqueous suspension. CONCLUSIONS Optimization of SNEDDSs towards keeping the drug compound in solution upon in vitro lipolysis of the SNEDDSs may not be as important as previously suggested.
Collapse
Affiliation(s)
- Anne T Larsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Thomas N, Rades T, Müllertz A. Recent developments in oral lipid-based drug delivery. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50054-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Oral bioavailability of cinnarizine in dogs: Relation to SNEDDS droplet size, drug solubility and in vitro precipitation. Eur J Pharm Sci 2013. [DOI: 10.1016/j.ejps.2012.11.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|