1
|
Khan AL. Silicon: A valuable soil element for improving plant growth and CO 2 sequestration. J Adv Res 2025; 71:43-54. [PMID: 38806098 DOI: 10.1016/j.jare.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Silicon (Si), the second most abundant and quasi-essential soil element, is locked as a recalcitrant silicate mineral in the Earth's crust. The physical abundance of silicates can play an essential role in increasing plant productivity. Plants store Si as biogenic silica (phytoliths), which is mobilized through a chemical weathering process in the soil. AIM OF REVIEW Although Si is a critical element for plant growth, there is still a considerable need to understand its dissolution, uptake, and translocation in agroecosystems. Here, we show recent progress in understanding the interactome of Si, CO2, the microbiome, and soil chemistry, which can sustainably govern silicate dissolution and cycling in agriculture. KEY SCIENTIFIC CONCEPTS OF THIS REVIEW Si cycling is directly related to carbon cycling, and the resulting climate stability can be enhanced by negative feedback between atmospheric CO2 and the silicate uptake process. Improved Si mobilization in the rhizosphere by the presence of reactive elements (for example, Ca, Na, Al, Zn, and Fe) and Si uptake through genetic transporters in plants are crucial to achieving the dual objectives of (i) enhancing crop productivity and (ii) abiotic stress tolerance. Furthermore, the microbiome is a symbiotic partner of plants. Bacterial and fungal microbiomes can solubilize silicate minerals through intriguingly complex bioweathering mechanisms by producing beneficial metabolites and enzymes. However, the interaction of Si with CO2 and the microbiome's function in mobilization have been understudied. This review shows that enhancing our understanding of Si, CO2, the microbiome, and soil chemistry can help in sustainable crop production during climatic stress events.
Collapse
Affiliation(s)
- Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX, USA; Department of Biology and Biochemistry, University of Houston, Houston TX, USA.
| |
Collapse
|
2
|
Zaman W, Ayaz A, Puppe D. Biogeochemical Cycles in Plant-Soil Systems: Significance for Agriculture, Interconnections, and Anthropogenic Disruptions. BIOLOGY 2025; 14:433. [PMID: 40282298 PMCID: PMC12025154 DOI: 10.3390/biology14040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Biogeochemical cycles are fundamental to the functioning of plant-soil systems, driving the availability and transfer of essential nutrients (like carbon (C), nitrogen (N), phosphorus (P), and sulfur (S)) as well as beneficial elements (like silicon (Si)). These interconnected cycles regulate ecosystem productivity, biodiversity, and resilience, forming the basis of critical ecosystem services. This review explores the mechanisms and dynamics of biogeochemical C, N, P, S, and Si cycles, emphasizing their roles in nutrient/element cycling, plant growth, and soil health, especially in agricultural plant-soil systems. The coupling between these cycles, facilitated mainly by microbial communities, highlights the complexity of nutrient/element interactions and corresponding implications for ecosystem functioning and stability. Human activities including industrial agriculture, deforestation, and pollution disrupt the underlying natural processes leading to nutrient/element imbalances, soil degradation, and susceptibility to climate impacts. Technological advancements such as artificial intelligence, remote sensing, and real-time soil monitoring offer innovative solutions for studying and managing biogeochemical cycles. These tools enable precise nutrient/element management, identification of ecosystem vulnerabilities, and the development of sustainable practices. Despite significant progress, research gaps remain, particularly in understanding the interlinkages between biogeochemical cycles and their responses to global change. This review underscores the need for integrated approaches that combine interdisciplinary research, technological innovation, and sustainable land-use strategies to mitigate human-induced disruptions and enhance ecosystem resilience. By addressing these challenges, biogeochemical processes and corresponding critical ecosystem services can be safeguarded, ensuring the sustainability of plant-soil systems in the face of environmental change.
Collapse
Affiliation(s)
- Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - Daniel Puppe
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| |
Collapse
|
3
|
Iqbal S, Begum F, Nguchu BA, Claver UP, Shaw P. The invisible architects: microbial communities and their transformative role in soil health and global climate changes. ENVIRONMENTAL MICROBIOME 2025; 20:36. [PMID: 40133952 PMCID: PMC11938724 DOI: 10.1186/s40793-025-00694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
During the last decades, substantial advancements have been made in identifying soil characteristics that impact the composition of the soil microbiome. However, the impacts of microorganisms on their respective soil habitats have received less attention, with the majority of prior research focusing on the contributions of microbes to the dynamics of soil carbon and nitrogen. Soil microbiome plays a critical role in soil habitats by influencing soil fertility, crop yields, and biotic and abiotic stress tolerance. In addition to their roles in nutrient cycling and organic matter transformations, soil microorganisms affect the soil environment via many biochemical and biophysical mechanisms. For instance, the soil microbiome plays an essential role in soil mechanical stability and pore connectivity and regulates the flow of nutrients, oxygen, and water. Similarly, soil microbiomes perform various critical functions in an ecosystem, which leads to carbon stabilization for a long time and could serve as microbiome engineering targets for global climate change mitigation. In this review, considering soil structure, hydrology, and chemistry, we outline how microorganisms alter the soil ecosystem. Further, this study investigates the mechanisms by which feedback loops can be generated between microorganisms and soil. Moreover, we analyze the potential of microbially mediated modifications of soil properties as a viable strategy to address soil threats and global climate challenges. In addition, the current study propose a deep learning-based approach to develop a synthetic microbial consortium to improve soil health and mitigate climate change.
Collapse
Affiliation(s)
- Sajid Iqbal
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Farida Begum
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Benedictor Alexander Nguchu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Uzabakiriho Pierre Claver
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Peter Shaw
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China.
| |
Collapse
|
4
|
Mastalerczuk G, Borawska-Jarmułowicz B, Sujkowska-Rybkowska M, Bederska-Błaszczyk M, Borucki W, Dąbrowski P. Silicon mitigates the adverse effects of drought on Lolium perenne physiological, morphometric and anatomical characters. PeerJ 2025; 13:e18944. [PMID: 39959829 PMCID: PMC11829632 DOI: 10.7717/peerj.18944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/16/2025] [Indexed: 02/18/2025] Open
Abstract
Limited water resources and natural drought may result in reduced water availability for the population's needs and the maintenance of the proper vegetation condition. Understanding the impact of drought on turfgrass species is essential to developing strategies that enhance the adaptability of plants to drought stress. It is vital for maintaining green areas in cities under changing climatic conditions. Therefore, studies on the ability of turfgrasses to recover after periods of drought without irrigation are becoming increasingly essential. We conducted research to determine the possibility of reducing the negative impact of drought stress on the photosynthetic efficiency, the morphometric features of plant shoots and roots, and the distribution of biomass of Lolium perenne lawn cultivars in the initial period of growth by applying biostimulant with silicon. We also investigated how drought and silicon (Si) application affect the leaf and root anatomical structure of L. perenne plants. Studies on the influence of drought on the physiological, biometric parameters and anatomical characteristics of two L. perenne cultivars were carried out under two levels of soil moisture (well-watered plants-control and drought caused by the cessation of watering) and also two variants of Si application (with and without Si application). Plants were exposed to drought in the tillering phase for 21 days. After this time, all plants were provided with optimal soil moisture conditions for the next 14 days (recovery period). Measurements of physiological parameters and biometric features of plants were evaluated in four terms: after 7, 14 and 21 days of drought and after recovery. Drought stress in L. perenne cvs. resulted in decreasing values of physiological parameters, especially maximal fluorescence, the quantum efficiency of photosystem II and photosynthetic electron transport rate compared with the values of features in well-watered plants. These adverse impacts were reflected in decreased biomass-related traits: shoot number, shoots and roots biomass, as well as area and length of roots. The application of Si reduced the detrimental effects of drought by accelerating plant growth after stress and increasing the values of most of the investigated physiological parameters. Under drought stress conditions, Si application led to the development of two-cell-layer exodermis, which reduced the water losses in L. perenne roots and shoots and, as a result, improved the drought tolerance of plants.
Collapse
Affiliation(s)
- Grażyna Mastalerczuk
- Department of Agronomy, Institute of Agriculture, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | | | | | - Magdalena Bederska-Błaszczyk
- Polish Academy of Sciences Botanical Garden–Center for Biological Diversity Conservation in Warsaw-Powsin, Poland
| | - Wojciech Borucki
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Piotr Dąbrowski
- Department of Environmental Management, Institute of Environmental Engineering, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
5
|
Wen J, Zhou Y, Meng H, Yue Q. Photovoltaic cell-derived silicon fertilizer and its combined effect with silicate-dissolving bacteria Bacillus aryahattai on rice growing during the tillering stage. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 191:160-171. [PMID: 39541835 DOI: 10.1016/j.wasman.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
The widespread retirement of crystalline silicon solar cells in coming years poses a significant obstacle to sustainable development. Arable soils have experienced a gradual decline in available silicon levels due to intensive agricultural production. Therefore, it is feasible to repurpose recovered waste crystalline silicon cells below cell-reuse benchmark into agriculturally usable resources. This study investigates the impact of photovoltaic crystalline silicon-derived fertilizer (Si group), external silicate-dissolving bacteria (Bac group), and their combination (All group) on early rice nutrient uptake, growth development, and soil physical and chemical properties through a 45-day potting experiment. The combined addition of silicon fertilizer and bacteria significantly improved soil nitrification process (nitrate nitrogen NO3-N increased by 73.5%) and soil organic matter content by 16.2%. The increases in soil-available silicon (by 14.9%) and total potassium (by 19%) in the All and Si were significant. For rice growth, the addition of silicon fertilizer did not have a positive effect on dry matter accumulation and plant height possibly due to the Si threshold effect or K stress. However, the chlorophyll content of the Bac and All treatment groups was enhanced by 25% and 29%, respectively, suggesting the positive effect of bacteria on soil nitrogen utilization. The absorption of potassium by the plants was positively correlated with silicon, and the accumulation of silicon reduced the carbon content of the rice's aboveground parts by 7.3% to 9.0%. The study provides a feasible solution of recycling and reusing waste crystalline silicon in agricultural applications, and the results also have indicative significance for the sustainable rice production under non-stress environmental conditions.
Collapse
Affiliation(s)
- Jia Wen
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; Research Institute of Hunan University in Chongqing, Chongqing, PR China.
| | - Yichen Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Han Meng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qing Yue
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| |
Collapse
|
6
|
Kurze S, Ouyang J, Gade F, Katz O, Schaller J, Metz J. Ecotypic differentiation of leaf silicon concentration in the grass Brachypodium hybridum along a rainfall gradient. FRONTIERS IN PLANT SCIENCE 2024; 15:1417721. [PMID: 39524562 PMCID: PMC11544377 DOI: 10.3389/fpls.2024.1417721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Ecotypic differentiation, reflected in substantial trait differences across populations, has been observed in various plant species distributed across aridity gradients. Nevertheless, ecotypic differentiation in leaf silicon concentration, known to alleviate drought stress in plants, remained hardly explored. Here, we provide a systematic test for ecotypic differentiation in leaf silicon concentration along two aridity gradients in the grass Brachypodium hybridum in Israel. Seed material was sampled in 15 sites along a macroclimatic aridity gradient (89 - 926 mm mean annual rainfall) and from corresponding north (moister) and south (more arid) exposed slopes (microclimatic gradient) at similar altitudes (mean north: 381 m a.s.l., mean south: 385 m a.s.l.). Plants were subsequently grown under common conditions and their leaf silicon concentration was analysed. Leaf silicon concentration increased with increasing aridity across the macroclimatic gradient, but did not differ between north and south slopes. The higher leaf silicon concentrations under more arid conditions can enhance the ability of plants to cope with more arid conditions by two mutually not exclusive mechanisms: (i) withstanding drought by reducing water loss and increasing water uptake or (ii) escaping drought by facilitating fast growth. Our study highlights that leaf silicon concentration contributes to ecotypic differentiation in annual grasses along macroclimatic aridity gradients.
Collapse
Affiliation(s)
- Susanne Kurze
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Jinyu Ouyang
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Florian Gade
- Plant Ecology and Nature Conservation, Institute of Biology and Chemistry, University of Hildesheim, Hildesheim, Germany
| | - Ofir Katz
- Dead Sea and Arava Science Center, Mount Masada, Tamar Regional Council, Israel
- Ben-Gurion University of the Negev, Eilat, Israel
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Johannes Metz
- Plant Ecology and Nature Conservation, Institute of Biology and Chemistry, University of Hildesheim, Hildesheim, Germany
| |
Collapse
|
7
|
Shafiq A, Munawar ME, Nadeem M, Khan A, Abbasi GH, Haq MAU, Ayub MA, Iftikhar I, Awais M. Health risk assessment of bread wheat grown under cadmium and nickel stress and impact of silicic acid application on its growth, physiology, and metal uptake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55535-55548. [PMID: 39235755 DOI: 10.1007/s11356-024-34849-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Heavy metal stress poses a significant threat to the productivity of agricultural systems and human health. Silicon (Si) is widely reported to be very effective against the different heavy metal stresses in crops. According to reports, it can help plants that are under cadmium (Cd) and nickel (Ni) stress. The presented work investigated how silicon interacted in Cd- and Ni-stressed wheat and mitigated metal toxicity. A pot experiment was carried out in which wheat crop was irrigated with Cd- and Ni-contaminated water. Application of Cd and Ni-contaminated water to wheat significantly reduced the root and shoot growth parameters and physiological and biochemical factors while increasing the antioxidant enzymatic activity and bioaccumulation of Cd and Ni metal in shoot and root as compared to the control. Application of Si led to an improvement in physiological parameters, i.e., greenness of leaves, i.e., SPAD values (17% and 26%), membrane stability (26% and 25%), and growth parameters i.e., root surface area (42% and 23%), root length (81% and 79%), root dry weight (456% and 190%), root volume (64% and 32%), shoot length (41% and 35%), shoot dry weight of shoot (111% and 117%), and overall grain weight (62% and 72%) under Cd and Ni stress, respectively. It increased the activity of antioxidant activity (max. up to 20%) whereas decreased the metal bioaccumulation of Cd and Ni in the roots and shoot (max. up to 62%) of wheat. It was concluded that the application of Si potentially increases antioxidant activity and metal chelation resulting in decreased oxidative damage and reducing the effect of Cd and Ni stress on wheat which improves growth and physiological parameters as well as inhibits Cd and Ni inclusion in food chain under Cd and Ni toxicity reducing health risks associated with these metals.
Collapse
Affiliation(s)
- Alina Shafiq
- Institute of Agro-Industry and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Emmad Munawar
- Institute of Agro-Industry and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Nadeem
- Institute of Agro-Industry and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Asia Khan
- Institute of Agro-Industry and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ghulam Hasan Abbasi
- Institute of Agro-Industry and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Anwar Ul Haq
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ashar Ayub
- Institute of Agro-Industry and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Irfan Iftikhar
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Awais
- Institute of Soil and Environmental Science, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| |
Collapse
|
8
|
Epihov DZ, Banwart SA, McGrath SP, Martin DP, Steeley IL, Cobbold V, Kantola IB, Masters MD, DeLucia EH, Beerling DJ. Iron Chelation in Soil: Scalable Biotechnology for Accelerating Carbon Dioxide Removal by Enhanced Rock Weathering. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11970-11987. [PMID: 38913808 PMCID: PMC11238546 DOI: 10.1021/acs.est.3c10146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Enhanced rock weathering (EW) is an emerging atmospheric carbon dioxide removal (CDR) strategy being scaled up by the commercial sector. Here, we combine multiomics analyses of belowground microbiomes, laboratory-based dissolution studies, and incubation investigations of soils from field EW trials to build the case for manipulating iron chelators in soil to increase EW efficiency and lower costs. Microbial siderophores are high-affinity, highly selective iron (Fe) chelators that enhance the uptake of Fe from soil minerals into cells. Applying RNA-seq metatranscriptomics and shotgun metagenomics to soils and basalt grains from EW field trials revealed that microbial communities on basalt grains significantly upregulate siderophore biosynthesis gene expression relative to microbiomes of the surrounding soil. Separate in vitro laboratory incubation studies showed that micromolar solutions of siderophores and high-affinity synthetic chelator (ethylenediamine-N,N'-bis-2-hydroxyphenylacetic acid, EDDHA) accelerate EW to increase CDR rates. Building on these findings, we develop a potential biotechnology pathway for accelerating EW using the synthetic Fe-chelator EDDHA that is commonly used in agronomy to alleviate the Fe deficiency in high pH soils. Incubation of EW field trial soils with potassium-EDDHA solutions increased potential CDR rates by up to 2.5-fold by promoting the abiotic dissolution of basalt and upregulating microbial siderophore production to further accelerate weathering reactions. Moreover, EDDHA may alleviate potential Fe limitation of crops due to rising soil pH with EW over time. Initial cost-benefit analysis suggests potassium-EDDHA could lower EW-CDR costs by up to U.S. $77 t CO2 ha-1 to improve EW's competitiveness relative to other CDR strategies.
Collapse
Affiliation(s)
- Dimitar Z Epihov
- Levehulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Steven A Banwart
- Global Food and Environment Institute, University of Leeds, Leeds LS2 9JT, U.K
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, U.K
| | - Steve P McGrath
- Sustainable Soils and Crops, Rothamsted Research, Harpenden AL5 2JQ, U.K
| | - David P Martin
- Levehulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Isabella L Steeley
- Levehulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Vicky Cobbold
- Levehulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Ilsa B Kantola
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael D Masters
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Evan H DeLucia
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David J Beerling
- Levehulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|
9
|
Chakraborty N, Das A, Pal S, Roy S, Sil SK, Adak MK, Hassanzamman M. Exploring Aluminum Tolerance Mechanisms in Plants with Reference to Rice and Arabidopsis: A Comprehensive Review of Genetic, Metabolic, and Physiological Adaptations in Acidic Soils. PLANTS (BASEL, SWITZERLAND) 2024; 13:1760. [PMID: 38999600 PMCID: PMC11243567 DOI: 10.3390/plants13131760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Aluminum (Al) makes up a third of the Earth's crust and is a widespread toxic contaminant, particularly in acidic soils. It impacts crops at multiple levels, from cellular to whole plant systems. This review delves into Al's reactivity, including its cellular transport, involvement in oxidative redox reactions, and development of specific metabolites, as well as the influence of genes on the production of membrane channels and transporters, alongside its role in triggering senescence. It discusses the involvement of channel proteins in calcium influx, vacuolar proton pumping, the suppression of mitochondrial respiration, and the initiation of programmed cell death. At the cellular nucleus level, the effects of Al on gene regulation through alterations in nucleic acid modifications, such as methylation and histone acetylation, are examined. In addition, this review outlines the pathways of Al-induced metabolic disruption, specifically citric acid metabolism, the regulation of proton excretion, the induction of specific transcription factors, the modulation of Al-responsive proteins, changes in citrate and nucleotide glucose transporters, and overall metal detoxification pathways in tolerant genotypes. It also considers the expression of phenolic oxidases in response to oxidative stress, their regulatory feedback on mitochondrial cytochrome proteins, and their consequences on root development. Ultimately, this review focuses on the selective metabolic pathways that facilitate Al exclusion and tolerance, emphasizing compartmentalization, antioxidative defense mechanisms, and the control of programmed cell death to manage metal toxicity.
Collapse
Affiliation(s)
- Nilakshi Chakraborty
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Abir Das
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sayan Pal
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Soumita Roy
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sudipta Kumar Sil
- Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India
| | - Malay Kumar Adak
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Mirza Hassanzamman
- Department of Agronomy, Faculty of Agriculture, Shar-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
Zarebanadkouki M, Al Hamwi W, Abdalla M, Rahnemaie R, Schaller J. The effect of amorphous silica on soil-plant-water relations in soils with contrasting textures. Sci Rep 2024; 14:10277. [PMID: 38704511 PMCID: PMC11069543 DOI: 10.1038/s41598-024-60947-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
This study investigates how amorphous silica (ASi) influences soil-plant-water interactions in distinct soil textures. A sandy loam and silty clay soil were mixed with 0 and 2% ASi, and their impact on soil retention and soil hydraulic conductivity curves were determined. In parallel, tomato plants (Solanum lycopersicum L.) were grown in experimental pots under controlled conditions. When plants were established, the soil was saturated, and a controlled drying cycle ensued until plants reached their wilting points. Soil water content, soil water potential, plant transpiration rate, and leaf water potential were monitored during this process. Results indicate a positive impact of ASi on the sandy loam soil, enhancing soil water content at field capacity (FC, factor of 1.3 times) and at permanent wilting point (PWP, a factor of 3.5 times), while its effect in silty clay loam was negligible (< 1.05 times). In addition, the presence of ASi prevented a significant drop in soil hydraulic conductivity ( K h ) at dry conditions. The K h of ASi-treated sandy loam and silty clay at PWP were 4.3 times higher than their respective control. Transpiration rates in plants grown in ASi-treated sandy loam soil under soil drying conditions were higher than in the control, attributed to improved soil hydraulic conductivity. At the same time, no significant difference was observed in the transpiration of plants treated with ASi in silty clay soil. This suggests ASi boosts soil-plant-water relationships in coarse-textured soils by maintaining heightened hydraulic conductivity, with no significant effect on fine-textured soils.
Collapse
Affiliation(s)
- Mohsen Zarebanadkouki
- Professorship for Soil Biophysics and Environmental Systems, Technical University of Munich, Munich, Germany.
| | - Wael Al Hamwi
- Leibniz Center for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Mohanned Abdalla
- Chair of Root-Soil Interaction, School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Rasoul Rahnemaie
- Department of Soil Science, Tarbiat Modares University, Tehran, Iran
| | - Jörg Schaller
- Leibniz Center for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| |
Collapse
|
11
|
Barbosa LAP, Stein M, Gerke HH, Schaller J. Synergistic effects of organic carbon and silica in preserving structural stability of drying soils. Sci Rep 2024; 14:8330. [PMID: 38594287 PMCID: PMC11004191 DOI: 10.1038/s41598-024-58916-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/04/2024] [Indexed: 04/11/2024] Open
Abstract
Predicted climate warming and prolonged droughts pose a threat to the soil structure as organic carbon losses weaken the stability of soil aggregates. Well-structured soils are important for storage and movement of water, solutes, and air, the development of plant roots, as habitat for soil organisms, and the microbial activity. Structural stability is measured in terms of hydro-mechanical properties. This study compares effects of amorphous silica with those of organic carbon on stability parameters during drying of aggregates from relatively finer- and coarser-textured soils. Silica amendment enhanced the positive effect of organic carbon on structural stability in terms of the tensile strength. Synergistic effects between silica and organic carbon in soil colloids appear to dynamically alter aggregate density and friability (i.e., ability to crumble) during drying. Silica together with organic carbon could help soil management to reduce negative effects of predicted prolonged droughts on soil structure and stability.
Collapse
Affiliation(s)
- Luis Alfredo Pires Barbosa
- Research Area 1 "Landscape Functioning", Working Group "Silicon Biogeochemistry", Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Strasse 84, 15374, Müncheberg, Germany.
| | - Mathias Stein
- Research Area 1 "Landscape Functioning", Working Group "Silicon Biogeochemistry", Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Strasse 84, 15374, Müncheberg, Germany
| | - Horst H Gerke
- Research Area 1 "Landscape Functioning", Working Group "Silicon Biogeochemistry", Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Strasse 84, 15374, Müncheberg, Germany
| | - Jörg Schaller
- Research Area 1 "Landscape Functioning", Working Group "Silicon Biogeochemistry", Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Strasse 84, 15374, Müncheberg, Germany
| |
Collapse
|
12
|
Mukarram M, Ahmad B, Choudhary S, Konôpková AS, Kurjak D, Khan MMA, Lux A. Silicon nanoparticles vs trace elements toxicity: Modus operandi and its omics bases. FRONTIERS IN PLANT SCIENCE 2024; 15:1377964. [PMID: 38633451 PMCID: PMC11021597 DOI: 10.3389/fpls.2024.1377964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Phytotoxicity of trace elements (commonly misunderstood as 'heavy metals') includes impairment of functional groups of enzymes, photo-assembly, redox homeostasis, and nutrient status in higher plants. Silicon nanoparticles (SiNPs) can ameliorate trace element toxicity. We discuss SiNPs response against several essential (such as Cu, Ni, Mn, Mo, and Zn) and non-essential (including Cd, Pb, Hg, Al, Cr, Sb, Se, and As) trace elements. SiNPs hinder root uptake and transport of trace elements as the first line of defence. SiNPs charge plant antioxidant defence against trace elements-induced oxidative stress. The enrolment of SiNPs in gene expressions was also noticed on many occasions. These genes are associated with several anatomical and physiological phenomena, such as cell wall composition, photosynthesis, and metal uptake and transport. On this note, we dedicate the later sections of this review to support an enhanced understanding of SiNPs influence on the metabolomic, proteomic, and genomic profile of plants under trace elements toxicity.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, School of Agriculture, Universidad de la Republica, Montevideo, Uruguay
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Bilal Ahmad
- Plant Physiology Section, Department of Botany, Government Degree College for Women, Pulwama, Jammu and Kashmir, India
| | - Sadaf Choudhary
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Alena Sliacka Konôpková
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
13
|
Das S, Sengupta S, Patra PK, Dey P. Limestone and yellow gypsum can reduce cadmium accumulation in groundnut (Arachis hypogaea): A study from a three-decade old landfill site. CHEMOSPHERE 2024; 353:141645. [PMID: 38452977 DOI: 10.1016/j.chemosphere.2024.141645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/18/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024]
Abstract
Cadmium (Cd) toxicity has cropped up as an important menace in the soil-plant system. The use of industrial by-products to immobilise Cd in situ in polluted soils is an interesting remediation strategy. In the current investigation, two immobilizing amendments of Cd viz., Limestone (traditionally used) and Yellow gypsum (industrial by-product) have been used through a green-house pot culture experiment. Soil samples were collected from four locations based on four graded levels of DTPA extractable Cd as Site 1 (0.43 mg kg-1), Site 2 (0.92 mg kg-1), Site 3 (1.77 mg kg-1) and Site 4 (4.48 mg kg-1). The experiment was laid out in a thrice replicated Factorial Complete Randomized Design, with one factor as limestone (0, 250, 500 mg kg-1) and the other being yellow gypsum (0, 250, 500 mg kg-1) on the collected soils and groundnut was grown as a test crop. Results revealed that the DTPA-extractable Cd content in soil and Cd concentration in plants decreased significantly with the increasing doses of amendments irrespective of initial soil available Cd and types of amendment used. The effect of amendment was soil specific and in case of Site 1 (low initial Cd) the effect was more prominent. The reduction in DTPA-extractable Cd in combined application of limestone and yellow gypsum @500 mg kg-1 over the absolute control in soil under groundnut for the sites was by far the highest with the values of 83.72%, 77.17%, 48.59% and 40.63% respectively. With the combined application, Target Cancer Risk (TCR) of Cd was also reduced. Hence, combined application of limestone and yellow gypsum can be beneficial in the long run for mitigating Cd pollution.
Collapse
Affiliation(s)
- Shreya Das
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, Nadia, West Bengal, India; ICAR-Agricultural Technology Application Research Institute (ATARI) Kolkata, Sector III, Salt Lake, Kolkata, 700097, West Bengal, India
| | - Sudip Sengupta
- School of Agriculture, Swami Vivekananda University, Barrackpore, 700121, West Bengal, India
| | - Prasanta Kumar Patra
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, Nadia, West Bengal, India
| | - Pradip Dey
- ICAR-Agricultural Technology Application Research Institute (ATARI) Kolkata, Sector III, Salt Lake, Kolkata, 700097, West Bengal, India.
| |
Collapse
|
14
|
Etesami H, Jeong BR, Maathuis FJM, Schaller J. Exploring the potential: Can arsenic (As) resistant silicate-solubilizing bacteria manage the dual effects of silicon on As accumulation in rice? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166870. [PMID: 37690757 DOI: 10.1016/j.scitotenv.2023.166870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Rice (Oryza sativa L.) cultivation in regions marked by elevated arsenic (As) concentrations poses significant health concerns due to As uptake by the plant and its subsequent entry into the human food chain. With rice serving as a staple crop for a substantial share of the global population, addressing this issue is critical for food security. In flooded paddy soils, where As availability is pronounced, innovative strategies to reduce As uptake and enhance agricultural sustainability are mandatory. Silicon (Si) and Si nanoparticles have emerged as potential candidates to mitigate As accumulation in rice. However, their effects on As uptake exhibit complexity, influenced by initial Si levels in the soil and the amount of Si introduced through fertilization. While low Si additions may inadvertently increase As uptake, higher Si concentrations may alleviate As uptake and toxicity. The interplay among existing Si and As availability, Si supplementation, and soil biogeochemistry collectively shapes the outcome. Adding water-soluble Si fertilizers (e.g., Na2SiO3 and K2SiO3) has demonstrated efficacy in mitigating As toxicity stress in rice. Nonetheless, the expense associated with these fertilizers underscores the necessity for low cost innovative solutions. Silicate-solubilizing bacteria (SSB) resilient to As hold promise by enhancing Si availability by accelerating mineral dissolution within the rhizosphere, thereby regulating the Si biogeochemical cycle in paddy soils. Promoting SSB could make cost-effective Si sources more soluble and, consequently, managing the intricate interplay of Si's dual effects on As accumulation in rice. This review paper offers a comprehensive exploration of Si's nuanced role in modulating As uptake by rice, emphasizing the potential synergy between As-resistant SSB and Si availability enhancement. By shedding light on this interplay, we aspire to shed light on an innovative attempt for reducing As accumulation in rice while advancing agricultural sustainability.
Collapse
Affiliation(s)
| | - Byoung Ryong Jeong
- Division of Applied Life Science, Graduate School, Gyeongsang National University, Republic of Korea 52828
| | | | - Jörg Schaller
- "Silicon Biogeochemistry" Working Group, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| |
Collapse
|
15
|
Hussain B, Riaz L, Li K, Hayat K, Akbar N, Hadeed MZ, Zhu B, Pu S. Abiogenic silicon: Interaction with potentially toxic elements and its ecological significance in soil and plant systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122689. [PMID: 37804901 DOI: 10.1016/j.envpol.2023.122689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Abiogenic silicon (Si), though deemed a quasi-nutrient, remains largely inaccessible to plants due to its prevalence within mineral ores. Nevertheless, the influence of Si extends across a spectrum of pivotal plant processes. Si emerges as a versatile boon for plants, conferring a plethora of advantages. Notably, it engenders substantial enhancements in biomass, yield, and overall plant developmental attributes. Beyond these effects, Si augments the activities of vital antioxidant enzymes, encompassing glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), among others. It achieves through the augmentation of reactive oxygen species (ROS) scavenging gene expression, thus curbing the injurious impact of free radicals. In addition to its effects on plants, Si profoundly ameliorates soil health indicators. Si tangibly enhances soil vitality by elevating soil pH and fostering microbial community proliferation. Furthermore, it exerts inhibitory control over ions that could inflict harm upon delicate plant cells. During interactions within the soil matrix, Si readily forms complexes with potentially toxic metals (PTEs), encapsulating them through Si-PTEs interactions, precipitative mechanisms, and integration within colloidal Si and mineral strata. The amalgamation of Si with other soil amendments, such as biochar, nanoparticles, zeolites, and composts, extends its capacity to thwart PTEs. This synergistic approach enhances soil organic matter content and bolsters overall soil quality parameters. The utilization of Si-based fertilizers and nanomaterials holds promise for further increasing food production and fortifying global food security. Besides, gaps in our scientific discourse persist concerning Si speciation and fractionation within soils, as well as its intricate interplay with PTEs. Nonetheless, future investigations must delve into the precise functions of abiogenic Si within the physiological and biochemical realms of both soil and plants, especially at the critical juncture of the soil-plant interface. This review seeks to comprehensively address the multifaceted roles of Si in plant and soil systems during interactions with PTEs.
Collapse
Affiliation(s)
- Babar Hussain
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Luqman Riaz
- Department of Environmental Sciences, Kohsar University Murree, 47150, Punjab, Pakistan
| | - Kun Li
- Sichuan Academy of Forestry, Chengdu, 610081, Sichuan, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Naveed Akbar
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | | | - Bowei Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
16
|
Liu X, Tang X, Compson ZG, Huang D, Zou G, Luan F, Song Q, Fang X, Yang Q, Liu J. Silicon supply promotes differences in growth and C:N:P stoichiometry between bamboo and tree saplings. BMC PLANT BIOLOGY 2023; 23:443. [PMID: 37730551 PMCID: PMC10512617 DOI: 10.1186/s12870-023-04443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Si can be important for the growth, functioning, and stoichiometric regulation of nutrients for high-Si-accumulating bamboo. However, other trees do not actively take up dissolved silicic acid [Si(OH)4] from the soil, likely because they have fewer or no specific Si transporters in their roots. It is unclear what causes differential growth and C:N:P stoichiometry between bamboo and other trees across levels of Si supply. RESULTS Si supply increased the relative growth rate of height and basal diameter of bamboo saplings, likely by increasing its net photosynthetic rate and ratios of N:P. Moreover, a high concentration of Si supply decreased the ratio of C:Si in bamboo leaves due to a partial substitution of C with Si in organic compounds. We also found that there was a positive correlation between leaf Si concentration and its transpiration rate in tree saplings. CONCLUSIONS We demonstrated that Si supply can decrease the ratio of C:Si in bamboo leaves and increase the ratio of N:P without altering nutrient status or the N:P ratio of tree saplings. Our findings provide experimental data to assess the different responses between bamboo and other trees in terms of growth, photosynthesis, and C:N:P stoichiometry. These results have implications for assessing the growth and competition between high-Si-accumulating bamboo and other plants when Si availability is altered in ecosystems during bamboo expansion.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xinghao Tang
- Fujian Academy of Forestry, Fuzhou, 350002, China
| | - Zacchaeus G Compson
- Department of Biological Sciences Advanced Environmental Research Institute, University of North Texas Denton, Denton, Texas, USA
| | - Dongmei Huang
- School of Humanities and Public Administration, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Guiwu Zou
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Fenggang Luan
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qingni Song
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiong Fang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qingpei Yang
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jun Liu
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
17
|
Puppe D, Kaczorek D, Stein M, Schaller J. Silicon in Plants: Alleviation of Metal(loid) Toxicity and Consequential Perspectives for Phytoremediation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2407. [PMID: 37446968 DOI: 10.3390/plants12132407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
For the majority of higher plants, silicon (Si) is considered a beneficial element because of the various favorable effects of Si accumulation in plants that have been revealed, including the alleviation of metal(loid) toxicity. The accumulation of non-degradable metal(loid)s in the environment strongly increased in the last decades by intensified industrial and agricultural production with negative consequences for the environment and human health. Phytoremediation, i.e., the use of plants to extract and remove elemental pollutants from contaminated soils, has been commonly used for the restoration of metal(loid)-contaminated sites. In our viewpoint article, we briefly summarize the current knowledge of Si-mediated alleviation of metal(loid) toxicity in plants and the potential role of Si in the phytoremediation of soils contaminated with metal(loid)s. In this context, a special focus is on metal(loid) accumulation in (soil) phytoliths, i.e., relatively stable silica structures formed in plants. The accumulation of metal(loid)s in phytoliths might offer a promising pathway for the long-term sequestration of metal(loid)s in soils. As specific phytoliths might also represent an important carbon sink in soils, phytoliths might be a silver bullet in the mitigation of global change. Thus, the time is now to combine Si/phytolith and phytoremediation research. This will help us to merge the positive effects of Si accumulation in plants with the advantages of phytoremediation, which represents an economically feasible and environmentally friendly way to restore metal(loid)-contaminated sites.
Collapse
Affiliation(s)
- Daniel Puppe
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Danuta Kaczorek
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
- Department of Soil Environment Sciences, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland
| | - Mathias Stein
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| |
Collapse
|
18
|
Gowda RSR, Sharma S, Gill RS, Mangat GS, Bhatia D. Genome wide association studies and candidate gene mining for understanding the genetic basis of straw silica content in a set of Oryza nivara (Sharma et Shastry) accessions. FRONTIERS IN PLANT SCIENCE 2023; 14:1174266. [PMID: 37324704 PMCID: PMC10266271 DOI: 10.3389/fpls.2023.1174266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023]
Abstract
Rice is a high-silica (SiO2·nH2O) accumulator. Silicon (Si) is designated as a beneficial element associated with multiple positive effects on crops. However, the presence of high silica content is detrimental to rice straw management, hampering its use as animal feed and as raw material in multiple industries. Rice straw management is a serious concern in north-western India, and it is eventually burned in situ by farmers, contributing to air pollution. A practical solution could lie in reducing the silica content in rice while also attaining sound plant growth. A set of 258 Oryza nivara accessions along with 25 cultivated varieties of Oryza sativa was used to assess the variation in straw silica content using the molybdenum blue colorimetry method. A large continuous variation was observed for straw silica content in O. nivara accessions, ranging from 5.08% to 16%, while it varied from 6.18% to 15.81% in the cultivated varieties. The O. nivara accessions containing 43%-54% lower straw silica content than the currently prominent cultivated varieties in the region were identified. A set of 22,528 high-quality single nucleotide polymorphisms (SNPs) among 258 O. nivara accessions was used for estimating population structure and genome-wide association studies (GWAS). A weak population structure with 59% admixtures was identified among O. nivara accessions. Further, multi-locus GWAS revealed the presence of 14 marker-trait associations (MTAs) for straw silica content, with six of them co-localizing with previously reported quantitative trait loci (QTL). Twelve out of 14 MTAs showed statistically significant allelic differences. Thorough candidate gene analyses revealed the presence of promising candidate genes, including those encoding the ATP-binding cassette (ABC) transporter, Casparian thickening, multi-drug and toxin extrusion (MATE) protein, F-box, and MYB-transcription factors. Besides, ortho-QTLs among rice and maize genomes were identified, which could open ways for further genetic analysis of this trait. The findings of the study could aid in further understanding and characterizing genes for Si transport and regulation in the plant body. The donors carrying the alleles for lower straw silica content can be used in further marker-assisted breeding programs to develop rice varieties with lower silica content and higher yield potential.
Collapse
Affiliation(s)
- Rakshith S. R. Gowda
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Sandeep Sharma
- Department of Soil Science, Punjab Agricultural University, Ludhiana, India
| | - Ranvir Singh Gill
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Gurjit Singh Mangat
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Dharminder Bhatia
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
19
|
Orzoł A, Cruzado-Tafur E, Gołębiowski A, Rogowska A, Pomastowski P, Górecki RJ, Buszewski B, Szultka-Młyńska M, Głowacka K. Comprehensive Study of Si-Based Compounds in Selected Plants ( Pisum sativum L., Medicago sativa L., Triticum aestivum L.). Molecules 2023; 28:4311. [PMID: 37298792 PMCID: PMC10254194 DOI: 10.3390/molecules28114311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
This review describes the role of silicon (Si) in plants. Methods of silicon determination and speciation are also reported. The mechanisms of Si uptake by plants, silicon fractions in the soil, and the participation of flora and fauna in the Si cycle in terrestrial ecosystems have been overviewed. Plants of Fabaceae (especially Pisum sativum L. and Medicago sativa L.) and Poaceae (particularly Triticum aestivum L.) families with different Si accumulation capabilities were taken into consideration to describe the role of Si in the alleviation of the negative effects of biotic and abiotic stresses. The article focuses on sample preparation, which includes extraction methods and analytical techniques. The methods of isolation and the characterization of the Si-based biologically active compounds from plants have been overviewed. The antimicrobial properties and cytotoxic effects of known bioactive compounds obtained from pea, alfalfa, and wheat were also described.
Collapse
Affiliation(s)
- Aleksandra Orzoł
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (A.O.); (A.G.); (B.B.)
| | - Edith Cruzado-Tafur
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-720 Olsztyn, Poland; (E.C.-T.); (R.J.G.)
| | - Adrian Gołębiowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (A.O.); (A.G.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland; (A.R.); (P.P.)
| | - Agnieszka Rogowska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland; (A.R.); (P.P.)
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland; (A.R.); (P.P.)
| | - Ryszard J. Górecki
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-720 Olsztyn, Poland; (E.C.-T.); (R.J.G.)
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (A.O.); (A.G.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100 Torun, Poland; (A.R.); (P.P.)
| | - Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (A.O.); (A.G.); (B.B.)
| | - Katarzyna Głowacka
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-720 Olsztyn, Poland; (E.C.-T.); (R.J.G.)
| |
Collapse
|
20
|
Chen T, Duan L, Cheng S, Jiang S, Yan B. The preparation of paddy soil amendment using granite and marble waste: Performance and mechanisms. J Environ Sci (China) 2023; 127:564-576. [PMID: 36522086 DOI: 10.1016/j.jes.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 06/17/2023]
Abstract
The wastes generated from the mining and processing of granite and marble stone are generally regarded as useless. However, these waste materials were used as the soil amendments for the first time. The functional groups, crystalline structure and micro-morphology of granite and marble wastes amendments (GMWA) were different from the original wastes demonstrated by X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FT-IR) and Scanning electron microscope-energy dispersive spectrometer (SEM-EDS) analyses. With the addition of the amendments, the cation exchange capacity, electrical conductivity and nutrient availability of the soil increased, and the extractable heavy metals of the soil reduced significantly. Under the condition of the addition of 3% amendments, 7.0%, 99.9%, 99.7% and 70.5% of Cu, Pb, Zn and Cd in exchangeable fractions in soil were transformed to the more stable Fe-Mn oxides- or carbonates-bounded fractions. Tessier method and correlation analysis showed that the reduction of extractable metals in the acidic paddy soil can be attributed to the adsorption of available SiO2, the co-precipitation induced by the elevated pH value, the complexation induced by Fe-Mn oxides and the cation exchange induced by mineral nutrients. This study provides a new strategy for resource recovery of waste stones and remediation of heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Lianxin Duan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Sheng Cheng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Shaojun Jiang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
21
|
Schaller J, Stimmler P, Göckede M, Augustin J, Lacroix F, Hoffmann M. Arctic soil CO 2 release during freeze-thaw cycles modulated by silicon and calcium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161943. [PMID: 36731574 DOI: 10.1016/j.scitotenv.2023.161943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Arctic soils are the largest pool of soil organic carbon worldwide. Temperatures in the Arctic have risen faster than the global average during the last decades, decreasing annual freezing days and increasing the number of freeze-thaw cycles (temperature oscillations passing through zero degrees) per year as the temperature is expected to fluctuate more around 0 °C. At the same time, proceeding deepening of seasonal thaw may increase silicon (Si) and calcium (Ca) concentrations in the active layer of Arctic soils as the concentrations in the thawing permafrost layer might be higher depending on location. We analyzed the importance of freeze-thaw cycles for Arctic soil CO2 fluxes. Furthermore, we tested how Si (mobilizing organic C) and Ca (immobilizing organic C) interfere with the soil CO2 fluxes in the context of freeze-thaw cycles. Our results show that with each freeze-thaw cycle the CO2 fluxes from the Arctic soils decreased. Our data revealed a considerable CO2 emission below 0 °C. We also show that pronounced differences emerge in Arctic soil CO2 fluxes with Si increasing and Ca decreasing CO2 fluxes. Furthermore, we show that both Si and Ca concentrations in Arctic soils are central controls on Arctic soil CO2 release, with Si increasing Arctic soil CO2 release especially when temperatures are just below 0 °C. Our findings could provide an important constraint on soil CO2 emissions upon soil thaw, as well as on the greenhouse gas budget of high latitudes. Thus we call for work improving understanding of freeze-thaw cycles as well as the effect of Ca and Si on carbon fluxes, as well as for increased consideration of those factors in wide-scale assessments of carbon fluxes in the high latitudes.
Collapse
Affiliation(s)
- Jörg Schaller
- Leibniz Center for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany.
| | - Peter Stimmler
- Leibniz Center for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | | | - Jürgen Augustin
- Leibniz Center for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Fabrice Lacroix
- Max Planck Institute for Biogeochemistry, Jena, Germany; Climate and Environmental Physics, University of Bern, Bern, Switzerland
| | - Mathias Hoffmann
- Leibniz Center for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| |
Collapse
|
22
|
Zhang P, Wei X, Zhang Y, Zhan Q, Bocharnikova E, Matichenkov V. Silicon-mediated alleviation of cadmium toxicity in soil-plant system: historical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48617-48627. [PMID: 36840874 DOI: 10.1007/s11356-023-25983-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/13/2023] [Indexed: 04/16/2023]
Abstract
The contamination of crops by Cd is a worldwide problem that needs to be addressed for minimizing risk for human health. Today, numerous investigations have demonstrated that Si plays a role in reducing Cd toxicity and accumulation in cultivated plants. The evolution of scientific understanding - the Cd behavior in soil and in plant is discussed for the first time. Our analysis evidences that the research on Si-Cd interactions in the soil-plant system has quickened only in recent years, although basic interactions between silicic acid and Cd cations in aqueous systems were studied over 40-50 years ago. Today, numerous direct and indirect mechanisms of the Si impact on mobility and translocation of Cd in soil and in plants are reported. More productive studies in this area are those that considered the soil-plant system as a whole. Analysis of the development of the Cd-Si-related ideas suggests the prospects of further studies aimed at finding synergetic action of Si and other substances on Cd behavior in the soil-plant system.
Collapse
Affiliation(s)
- Pengbo Zhang
- Hunan University of Finance and Economics, Changsha, 410205, China
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Xiao Wei
- Hunan University of Finance and Economics, Changsha, 410205, China
| | - Yangzhu Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Qiang Zhan
- Hunan University of Finance and Economics, Changsha, 410205, China
| | - Elena Bocharnikova
- Institute Basic Biological Problems Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Vladimir Matichenkov
- Hunan University of Finance and Economics, Changsha, 410205, China.
- Institute Basic Biological Problems Russian Academy of Sciences, Pushchino, 142290, Russia.
| |
Collapse
|
23
|
Saberi Riseh R, Vatankhah M, Hassanisaadi M, Kennedy JF. Chitosan/silica: A hybrid formulation to mitigate phytopathogens. Int J Biol Macromol 2023; 239:124192. [PMID: 36996949 DOI: 10.1016/j.ijbiomac.2023.124192] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Long-term and indiscriminate use of synthetic pesticides to mitigate plant pathogens have created serious issues of water health, soil contamination, non-target organisms, resistant species, and unpredictable environmental and human health hazards. These constraints have forced scientists to develop alternative plant disease management strategies to reduce synthetic chemical' dependency. During the last 20 years, biological agents and resistance elicitors have been the most important used alternatives. Silica-based materials/chitosan with a dual mode of action have been proposed as promising alternatives to prevent plant diseases through direct and indirect mechanisms. Moreover, the combined application of nano-silica and chitosan, due to their controllable morphology, high loading capacity, low toxicity, and efficient encapsulation, act as suitable carriers for biological agents, pesticides, and essential oils, making them proper candidates for mitigation of phytopathogens. Based on this potential, this literature study reviewed the silica and chitosan properties and their function in the plant. It also assessed their role in the fighting against soil and aerial phytopathogens, directly and indirectly, as novel hybrid formulations in future managing platforms.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 771897111, Iran.
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 771897111, Iran
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 771897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
24
|
de Tombeur F, Raven JA, Toussaint A, Lambers H, Cooke J, Hartley SE, Johnson SN, Coq S, Katz O, Schaller J, Violle C. Why do plants silicify? Trends Ecol Evol 2023; 38:275-288. [PMID: 36428125 DOI: 10.1016/j.tree.2022.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022]
Abstract
Despite seminal papers that stress the significance of silicon (Si) in plant biology and ecology, most studies focus on manipulations of Si supply and mitigation of stresses. The ecological significance of Si varies with different levels of biological organization, and remains hard to capture. We show that the costs of Si accumulation are greater than is currently acknowledged, and discuss potential links between Si and fitness components (growth, survival, reproduction), environment, and ecosystem functioning. We suggest that Si is more important in trait-based ecology than is currently recognized. Si potentially plays a significant role in many aspects of plant ecology, but knowledge gaps prevent us from understanding its possible contribution to the success of some clades and the expansion of specific biomes.
Collapse
Affiliation(s)
- Félix de Tombeur
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France; School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, Australia.
| | - John A Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, UK; School of Biological Sciences, The University of Western Australia, Perth, Australia; Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, Australia
| | - Aurèle Toussaint
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Hans Lambers
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, Australia
| | - Julia Cooke
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK
| | - Sue E Hartley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Sylvain Coq
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Ofir Katz
- Dead Sea and Arava Science Center, Mount Masada, Tamar Regional Council, Israel; Eilat Campus, Ben-Gurion University of the Negev, Eilat, Israel
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
25
|
Constantinescu-Aruxandei D, Oancea F. Closing the Nutrient Loop-The New Approaches to Recovering Biomass Minerals during the Biorefinery Processes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2096. [PMID: 36767462 PMCID: PMC9915181 DOI: 10.3390/ijerph20032096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The recovery of plant mineral nutrients from the bio-based value chains is essential for a sustainable, circular bioeconomy, wherein resources are (re)used sustainably. The widest used approach is to recover plant nutrients on the last stage of biomass utilization processes-e.g., from ash, wastewater, or anaerobic digestate. The best approach is to recover mineral nutrients from the initial stages of biomass biorefinery, especially during biomass pre-treatments. Our paper aims to evaluate the nutrient recovery solutions from a trans-sectorial perspective, including biomass processing and the agricultural use of recovered nutrients. Several solutions integrated with the biomass pre-treatment stage, such as leaching/bioleaching, recovery from pre-treatment neoteric solvents, ionic liquids (ILs), and deep eutectic solvents (DESs) or integrated with hydrothermal treatments are discussed. Reducing mineral contents on silicon, phosphorus, and nitrogen biomass before the core biorefinery processes improves processability and yield and reduces corrosion and fouling effects. The recovered minerals are used as bio-based fertilizers or as silica-based plant biostimulants, with economic and environmental benefits.
Collapse
Affiliation(s)
| | - Florin Oancea
- Department of Bioresources, Bioproducts Group, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței nr. 202, Sector 6, 060021 Bucharest, Romania
| |
Collapse
|
26
|
Raza T, Abbas M, Amna, Imran S, Khan MY, Rebi A, Rafie-Rad Z, Eash NS. Impact of Silicon on Plant Nutrition and Significance of Silicon Mobilizing Bacteria in Agronomic Practices. SILICON 2023; 15:3797-3817. [PMCID: PMC9876760 DOI: 10.1007/s12633-023-02302-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 01/13/2023] [Indexed: 08/01/2023]
Abstract
Globally, rejuvenation of soil health is a major concern due to the continuous loss of soil fertility and productivity. Soil degradation decreases crop yields and threatens global food security. Improper use of chemical fertilizers coupled with intensive cultivation further reduces both soil health and crop yields. Plants require several nutrients in varying ratios that are essential for the plant to complete a healthy growth and development cycle. Soil, water, and air are the sources of these essential macro- and micro-nutrients needed to complete plant vegetative and reproductive cycles. Among the essential macro-nutrients, nitrogen (N) plays a significant in non-legume species and without sufficient plant access to N lower yields result. While silicon (Si) is the 2nd most abundant element in the Earth’s crust and is the backbone of soil silicate minerals, it is an essential micro-nutrient for some plants. Silicon is just beginning to be recognized as an important micronutrient to some plant species and, while it is quite abundant, Si is often not readily available for plant uptake. The manufacturing cost of synthetic silica-based fertilizers is high, while absorption of silica is quite slow in soil for many plants. Rhizosphere biological weathering processes includes microbial solubilization processes that increase the dissolution of minerals and increases Si availability for plant uptake. Therefore, an important strategy to improve plant silicon uptake could be field application of Si-solubilizing bacteria. In this review, we evaluate the role of Si in seed germination, growth, and morphological development and crop yield under various biotic and abiotic stresses, different pools and fluxes of silicon (Si) in soil, and the bacterial genera of the silicon solubilizing microorganisms. We also elaborate on the detailed mechanisms of Si-solubilizing/mobilizing bacteria involved in silicate dissolution and uptake by a plant in soil. Last, we discuss the potential of silicon and silicon solubilizing/mobilizing to achieve environmentally friendly and sustainable crop production.
Collapse
Affiliation(s)
- Taqi Raza
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, USA
| | | | - Amna
- Department of Plant Sciences, Quaid-I-Azam University Islamabad, Islamabad, Pakistan
| | - Shakeel Imran
- UAF Sub Campus Burewala, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Yahya Khan
- UAF Sub Campus Burewala, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ansa Rebi
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083 China
| | - Zeinab Rafie-Rad
- Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Neal S. Eash
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, USA
| |
Collapse
|
27
|
Verma KK, Song XP, Li DM, Singh M, Wu JM, Singh RK, Sharma A, Zhang BQ, Li YR. Silicon and soil microorganisms improve rhizospheric soil health with bacterial community, plant growth, performance and yield. PLANT SIGNALING & BEHAVIOR 2022; 17:2104004. [PMID: 35943127 PMCID: PMC9364706 DOI: 10.1080/15592324.2022.2104004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The interaction of silicon and soil microorganisms stimulates crop enhancement to ensure sustainable agriculture. Silicon may potentially increase nutrient availability in rhizosphere with improved plants' growth, development as it does not produce phytotoxicity. The rhizospheric microbiome accommodates a variety of microbial species that live in a small area of soil directly associated with the hidden half plants' system. Plant growth-promoting rhizobacteria (PGPR) play a major role in plant development in response to adverse climatic conditions. PGPRs may enhance the growth, quality, productivity in variety of crops, and mitigate abiotic stresses by reprogramming stress-induced physiological variations in plants via different mechanisms, such as synthesis of indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate deaminase, exopolysaccharides, volatile organic compounds, atmospheric nitrogen fixation, and phosphate solubilization. Our article eye upon interactions of silicon and plant microbes which seems to be an opportunity for sustainable agriculture for series of crops and cropping systems in years to come, essential to safeguard the food security for masses.
Collapse
Affiliation(s)
- Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Dong-Mei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow, India
| | - Jian-Ming Wu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Bao-Qing Zhang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
28
|
Silicon as a potential limiting factor for phosphorus availability in paddy soils. Sci Rep 2022; 12:16329. [PMID: 36175535 PMCID: PMC9521874 DOI: 10.1038/s41598-022-20805-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Rice cultivation requires high amounts of phosphorus (P). However, significant amounts of P fertilizer additions may be retained by iron (Fe) oxides and are thus unavailable for plants. At the same time, rice cultivation has a high demand for silicic acid (Si), reducing Si availability after short duration of rice cultivation. By studying a paddy chronosequence with rice cultivation up to 2000 years, we show that Si limitation, observed as early as a few decades of rice cultivation, is limiting P availability along the paddy soils chronosequence. Using near edge X-ray absorption fine structure spectroscopy (NEXAFS) in a scanning transmission (soft) X-ray microscope (STXM) we show release of available P was linked to a Si-induced change in speciation of Fe-phases in soil particles and competition of Si with P for binding sites. Hence, low Si availability is limiting P availability in paddy soils. We propose that proper management of Si availability is a promising tool to improve the P supply of paddy plants.
Collapse
|
29
|
Merdy P, Meunier JD, Ziarelli F, Lucas Y. Evidence of humic acid-aluminium‑silicon complexes under controlled conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154601. [PMID: 35307449 DOI: 10.1016/j.scitotenv.2022.154601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
The chemistry of silicon (Si), the second most abundant element in soil after oxygen, is not yet fully understood in the soil-water-plant continuum. Although Si is widely accepted as an element that has little or no interaction with natural organic matter, some data seems to show the opposite. To identify a potential interaction between natural organic matter and Si, batch experiments were achieved at various pH and Si concentrations, involving also Al3+ as a common ion in soil and using humic acid (HA) as a typical model for natural organic matter. Several complementary techniques were used to characterize the possible complexes formed in the dissolved or solid phases: molecular fluorescence spectroscopy, 29Si solid-state NMR, Fourier transform infrared spectroscopy, quantification of Si, Al and organic carbon, and nanoparticle size distribution. These tools revealed that humic acid indeed interacts, but weakly, with Si alone. In the presence of Al, however, a ternary complex HA-Al-Si forms, likely with Al as the bridging atom. The presence of Si promotes the maintenance of both Al and dissolved organic matter (DOM) in solution, which is likely to modify the result or the kinetics of pedogenesis. Such complexes can also play a role in the control of Al toxicity towards plants and probably also exists with other metals, such as Fe or Mn, and other metalloids such as As.
Collapse
Affiliation(s)
- Patricia Merdy
- Université de Toulon, Aix Marseille Univ, CNRS, IM2NP, 83041 Toulon CEDEX 9, France.
| | | | - Fabio Ziarelli
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, FR1739, 13013 Marseille, France
| | - Yves Lucas
- Université de Toulon, Aix Marseille Univ, CNRS, IM2NP, 83041 Toulon CEDEX 9, France
| |
Collapse
|
30
|
Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR. Sci Rep 2022; 12:11708. [PMID: 35810178 PMCID: PMC9271067 DOI: 10.1038/s41598-022-15882-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
There is increased interest in the terrestrial silicon cycle in the last decades as its different compounds and species have large implications for ecosystem performance in terms of soil nutrient and water availability, ecosystem productivity as well as ecological aspects such as plant–microbe and plant-animal feedbacks. The currently existing analytical methods are limited. Fourier-transform infrared spectroscopy (FTIR) analysis is suggested being a promising tool to differentiate between the different Si species. We report here on the differentiation of varying Si-species/Si-binding (in synthetic material) using FTIR-analyses. Therefore, we collected FTIR-spectra of five different amorphous silica, Ca-silicate, sodium silicate (all particulate), a water-soluble fraction of amorphous silica and soil affected by volcanic activity and compared their spectra with existing data. A decrease of the internal order of the materials analyzed was indicated by peak broadening of the Si–O–Si absorption band. Peak shifts at this absorption band were induced by larger ions incorporated in the Si–O–Si network. Additionally, short-range ordered aluminosilicates (SROAS) have specific IR absorption bands such as the Si–O–Al band. Hence, SROAS and Si phases containing other ions can be distinguished from pure amorphous Si species using FTIR-analyses.
Collapse
|
31
|
Mavrič Čermelj A, Fideršek E, Golob A, Kacjan Maršić N, Vogel Mikuš K, Germ M. Different Concentrations of Potassium Silicate in Nutrient Solution Affects Selected Growth Characteristics and Mineral Composition of Barley (Hordeum vulgare L.). PLANTS 2022; 11:plants11111405. [PMID: 35684178 PMCID: PMC9182727 DOI: 10.3390/plants11111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/11/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
Abstract
This study was undertaken to determine the effect of potassium silicate (K2SiO3) on the physiological and growth characteristics and elemental composition of barley plants. Hydroponically grown barley (Hordeum vulgare L.) var. Wilma was exposed to four different levels of Si in the form of K2SiO3 at concentrations of 0 (Si0), 0.5 (Si0.5), 1 (Si1) or 1.5 (Si1.5) mM Si. Plants were analyzed for root length, number of dry leaves, number of trichomes, electron transport system activity in mitochondria (ETS), leaf pigment content and elemental composition of roots and leaves. Treatment with Si0.5 significantly increased the concentration of total chlorophylls, root length and ETS activity in barley. Plants with no Si added to the nutrient solution had significantly more dry leaves than plants from all Si-treated groups. Necrosis was observed in Si0 plants, while leaf damage was not visible in treated plants. According to the results of the study, we evidenced that plants were stressed due to Si deficiency. The addition of K2SiO3 significantly affected the concentration of Si, K, Ca, Cl, S, Mn, Fe and Zn in roots and leaves of barley. In barley treated with Si0.5, plants showed the best performance in terms of their physiological characteristics and growth.
Collapse
Affiliation(s)
- Anja Mavrič Čermelj
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (E.F.); (A.G.); (N.K.M.); (K.V.M.); (M.G.)
- Correspondence:
| | - Eva Fideršek
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (E.F.); (A.G.); (N.K.M.); (K.V.M.); (M.G.)
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (E.F.); (A.G.); (N.K.M.); (K.V.M.); (M.G.)
| | - Nina Kacjan Maršić
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (E.F.); (A.G.); (N.K.M.); (K.V.M.); (M.G.)
| | - Katarina Vogel Mikuš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (E.F.); (A.G.); (N.K.M.); (K.V.M.); (M.G.)
- Department of Low and Medium Energy Physics, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (E.F.); (A.G.); (N.K.M.); (K.V.M.); (M.G.)
| |
Collapse
|
32
|
Krettek A, Stein M, Rennert T. Distribution of Al, Fe, Si, and DOC between size fractions mobilised from topsoil horizons with progressing degree of podzolisation. Sci Rep 2022; 12:8384. [PMID: 35589948 PMCID: PMC9120154 DOI: 10.1038/s41598-022-12616-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022] Open
Abstract
Aluminium, Fe, Si, and dissolved organic C (DOC) accumulate in the subsoil of Podzols after mobilisation in the topsoil. We conducted laboratory experiments with topsoil horizons with progressing degree of podzolisation by irrigation with artificial rainwater at varying intensity and permanence. We monitored the concentrations and distribution of mobilised Al, Fe, Si, and DOC between size fractions (< 1000 Dalton, 1 kDa– < 0.45 µm, and > 0.45 µm). Total eluate concentrations were increased at the onset of the experiments and after the first irrigation interruption, indicating non-equilibrium release. There was no statistical effect of the degree of podzolisation on element concentrations. Release of Al, Fe, and DOC was mostly dominant in the fraction 1 kDa– < 0.45 µm, indicating metals complexed by larger organic molecules and colloids. Silicon released was dominantly monomeric silicic acid < 1 kDa. Particularly with the least podzolised soils, Al and Si concentrations < 1 kDa might have been controlled by short-range ordered aluminosilicates, while their transport in colloidal form was unlikely. Our study pointed to both quantitative and qualitative seasonality of element release during podzolisation, to decoupling of Al and Si release regarding size, and to different minerals that control element release as a function of the degree of podzolisation.
Collapse
Affiliation(s)
- Agnes Krettek
- Department of Soil Chemistry and Pedology, Institute of Soil Science and Land Evaluation, University of Hohenheim, 70593, Stuttgart, Germany
| | - Mathias Stein
- Department of Soil Chemistry and Pedology, Institute of Soil Science and Land Evaluation, University of Hohenheim, 70593, Stuttgart, Germany
| | - Thilo Rennert
- Department of Soil Chemistry and Pedology, Institute of Soil Science and Land Evaluation, University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
33
|
Kovács S, Kutasy E, Csajbók J. The Multiple Role of Silicon Nutrition in Alleviating Environmental Stresses in Sustainable Crop Production. PLANTS (BASEL, SWITZERLAND) 2022; 11:1223. [PMID: 35567224 PMCID: PMC9104186 DOI: 10.3390/plants11091223] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 05/25/2023]
Abstract
In addition to the application of macronutrients (N, P, K), there has been an increasing interest in studying the effects of different micronutrients on growth and development in plant populations under abiotic and biotic stresses. Experimental results have demonstrated the role of silicon in mitigating environmental stresses on plants (especially in silicon accumulating plant species). Furthermore, as the silicon content of soils available to plants can vary greatly depending on soil type, the many positive results have led to increased interest in silicon as a nutrient in sustainable agriculture over the last decade. The grouping of plant species according to silicon accumulation is constantly changing as a result of new findings. There are also many new research results on the formation of phytoliths and their role in the plants. The use of silicon as a nutrient is becoming more widespread in crop production practices based on research results reporting beneficial effects. Controversial results have also been obtained on the use of different Si-containing materials as fertilizers. Many questions remain to be clarified about the uptake, transport, and role of silicon in plant life processes, such as stress management. Future research is needed to address these issues. This review discusses the role and beneficial effects of silicon in plants as a valuable tool for regulating biological and abiotic stresses. Our aim was to provide an overview of recent research on the role and importance of silicon in sustainable crop production and to highlight possible directions for further research.
Collapse
|
34
|
Zexer N, Elbaum R. Hydrogen peroxide modulates silica deposits in sorghum roots. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1450-1463. [PMID: 34791152 DOI: 10.1093/jxb/erab497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Hydrated silica (SiO2·nH2O) aggregates in the root endodermis of grasses. Application of soluble silicates (Si) to roots is associated with variations in the balance of reactive oxygen species (ROS), increased tolerance to a broad range of stresses affecting ROS concentrations, and early lignin deposition. In sorghum (Sorghum bicolor L.), silica aggregation is patterned in an active silicification zone (ASZ) by a special type of aromatic material forming a spotted pattern. The deposition has a signature typical of lignin. Since lignin polymerization is mediated by ROS, we studied the formation of root lignin and silica controlled by ROS via modulating hydrogen peroxide (H2O2) concentrations in the growth medium. Sorghum seedlings were grown hydroponically and supplemented with Si, H2O2, and KI, an ionic compound that catalyses H2O2 decomposition. Lignin and silica deposits in the endodermis were studied by histology, scanning electron and Raman microscopies. Cell wall composition was quantified by thermal gravimetric analysis. Endodermal H2O2 concentration correlated to the extent of lignin-like deposition along the root, but did not affect its patterning in spots. Our results show that the ASZ spots were necessary for root silica aggregation, and suggest that silicification is intensified under oxidative stress as a result of increased ASZ lignin-like deposition.
Collapse
Affiliation(s)
- Nerya Zexer
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, 7610001 Rehovot, Israel
| | - Rivka Elbaum
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, 7610001 Rehovot, Israel
| |
Collapse
|
35
|
Shivaraj SM, Mandlik R, Bhat JA, Raturi G, Elbaum R, Alexander L, Tripathi DK, Deshmukh R, Sonah H. Outstanding Questions on the Beneficial Role of Silicon in Crop Plants. PLANT & CELL PHYSIOLOGY 2022; 63:4-18. [PMID: 34558628 DOI: 10.1093/pcp/pcab145] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Silicon (Si) is widely accepted as a beneficial element for plants. Despite the substantial progress made in understanding Si transport mechanisms and modes of action in plants, several questions remain unanswered. In this review, we discuss such outstanding questions and issues commonly encountered by biologists studying the role of Si in plants in relation to Si bioavailability. In recent years, advances in our understanding of the role of Si-solubilizing bacteria and the efficacy of Si nanoparticles have been made. However, there are many unknown aspects associated with structural and functional features of Si transporters, Si loading into the xylem, and the role of specialized cells like silica cells and compounds preventing Si polymerization in plant tissues. In addition, despite several 1,000 reports showing the positive effects of Si in high as well as low Si-accumulating plant species, the exact roles of Si at the molecular level are yet to be understood. Some evidence suggests that Si regulates hormonal pathways and nutrient uptake, thereby explaining various observed benefits of Si uptake. However, how Si modulates hormonal pathways or improves nutrient uptake remains to be explained. Finally, we summarize the knowledge gaps that will provide a roadmap for further research on plant silicon biology, leading to an exploration of the benefits of Si uptake to enhance crop production.
Collapse
Affiliation(s)
- S M Shivaraj
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140308, India
| | - Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140308, India
- Department of Biotechnology, Panjab University, Chandigarh, Punjab 160014, India
| | - Javaid Akhter Bhat
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140308, India
- Department of Biotechnology, Panjab University, Chandigarh, Punjab 160014, India
| | - Rivka Elbaum
- R H Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Lux Alexander
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Bratislava SK-84215, Slovakia
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University, Noida, Uttar Pradesh 201313, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140308, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140308, India
| |
Collapse
|
36
|
Costa MG, dos Santos Sarah MM, de Mello Prado R, Palaretti LF, de Cássia Piccolo M, de Souza Júnior JP. Impact of Si on C, N, and P stoichiometric homeostasis favors nutrition and stem dry mass accumulation in sugarcane cultivated in tropical soils with different water regimes. FRONTIERS IN PLANT SCIENCE 2022; 13:949909. [PMID: 35968098 PMCID: PMC9372460 DOI: 10.3389/fpls.2022.949909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/12/2022] [Indexed: 05/10/2023]
Abstract
Studies with silicon (Si) in sugarcane indicate a greater response in productivity in plants under stress, and the underlying mechanisms of Si in the crop are poorly reported. In this context, the benefits of Si in the crop's stem production are expected to occur at the C:N:P stoichiometry level in plant tissues, benefiting plants with and without stress. However, the extension of this response may vary in different soils. Thus, this research aimed to evaluate if fertigation with Si modifies the C:N:P stoichiometry and if it can increase sugarcane's nutritional efficiency and vegetative and productive parameters. Therefore, three experiments were installed using pre-sprouted seedlings to cultivate sugarcane in tropical soils belonging to the Quartzarenic Neosol, Eutrophic Red Latosol, and Dystrophic Red Latosol classes. The treatments comprised a 2 × 2 factorial scheme in each soil. The first factor was composed without water restriction (water retention = 70%; AWD) and with water restriction (water retention = 35%; PWD). The second factor presented Si concentrations (0 mM and 1.8 mM) arranged in randomized blocks with five replications. Fertigation with Si increases the Si and P concentration, the C and N efficiency, the C:N ratio, and the dry mass production. However, it decreases the C and N concentration and the C:P, C:Si, and N:P ratios in sugarcane leaves and stems regardless of the water regime adopted in the three tropical soils. Cluster and principal components analysis indicated that the intensity of the beneficial effects of Si fertigation on sugarcane plants varies depending on the cultivation soil and water conditions. We found that Si can be used in sugarcane with and without water stress. It changes the C:N:P homeostasis enough to improve the nutritional efficiency of C, P, N, and, consequently, the dry mass accumulation on the stems, with variation in the different cultivated soils.
Collapse
Affiliation(s)
- Milton Garcia Costa
- Laboratory of Plant Nutrition, Department of Agricultural Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
- *Correspondence: Milton Garcia Costa,
| | | | - Renato de Mello Prado
- Laboratory of Plant Nutrition, Department of Agricultural Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Luiz Fabiano Palaretti
- Laboratory of Irrigation, Department of Rural Engineering, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Marisa de Cássia Piccolo
- Laboratory of Nutrient Cycling, Center of Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Jonas Pereira de Souza Júnior
- Laboratory of Plant Nutrition, Department of Agricultural Sciences, São Paulo State University, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
37
|
Aftabtalab A, Rinklebe J, Shaheen SM, Niazi NK, Moreno-Jiménez E, Schaller J, Knorr KH. Review on the interactions of arsenic, iron (oxy)(hydr)oxides, and dissolved organic matter in soils, sediments, and groundwater in a ternary system. CHEMOSPHERE 2022; 286:131790. [PMID: 34388870 DOI: 10.1016/j.chemosphere.2021.131790] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
High concentrations of arsenic (As) in groundwater threaten the environment and public health. Geogenically, groundwater As contamination predominantly occurs via its mobilization from underground As-rich sediments. In an aquatic ecosystem, As is typically driven by several underlying processes, such as redox transitions, microbially driven reduction of iron (Fe) oxide minerals, and release of associated As. Notably, dissolved As mobilized from soils and sediments exhibits high affinity for dissolved organic matter (DOM). Thus, high DOM concentrations can increase As mobility. Therefore, it is crucial to understand the complex interactions and biogeochemical cycling of As, DOM, and Fe oxides. This review collates knowledge regarding the fate of As in multicomponent As-DOM-Fe systems, including ternary complexes involving both Fe and DOM. Additionally, the release mechanisms of As from sediments into groundwater in the presence of both Fe and DOM have been discussed. The mechanisms of As mobilization/sorption at the solid-water interface can be affected by negatively charged DOM competing for sorption sites with As on Fe (oxy)(hydr)oxides and may be further modified by other anionic ubiquitous species such as phosphate, silicic acid, or sulfur. This review emphasizes the need for a comprehensive understanding of the impact of DOM, Fe oxides, and related biogeochemical processes on As mobilization to aquifers. The review identifies important knowledge gaps that may aid in developing applicable practices for preventing the spread of As contamination in aquatic resources and traditional soil management practices.
Collapse
Affiliation(s)
- Adeleh Aftabtalab
- Ecohydrology & Biogeochemistry Group, Institute of Landscape Ecology, FB 14 Geosciences, University of Münster, Germany.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, 05006, Republic of Korea.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589, Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt.
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Eduardo Moreno-Jiménez
- Department of Agricultural and Food Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany.
| | - Klaus-Holger Knorr
- Ecohydrology & Biogeochemistry Group, Institute of Landscape Ecology, FB 14 Geosciences, University of Münster, Germany.
| |
Collapse
|
38
|
Ribeiro PG, Aragão OODS, Martins GC, Rodrigues M, Souza JMP, Moreira FMDS, Li YC, Guilherme LRG. Hydrothermally-altered feldspar reduces metal toxicity and promotes plant growth in highly metal-contaminated soils. CHEMOSPHERE 2022; 286:131768. [PMID: 34426129 DOI: 10.1016/j.chemosphere.2021.131768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/19/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Novel green technologies for soil remediation have been focusing on altering soil properties and improving soil health. Hydrothermally-altered feldspar (HYP, HydroPotash), recently developed, is being related as both an efficient amendment to immobilize heavy metals in soils and a plant nutrients source, consisting in a promising technology for revegetation of contaminated sites. In order to evaluate the effectiveness of using HYP for phytostabilization programs, two different soils (Technosol and Oxisol) collected from a smelting site were amended with increasing doses of HYPs (HYP-1 and HYP-2): 15, 30, 60, and 120 Mg ha-1. For comparison, a control (soil without amendment) and a soil amended with zeolite (clinoptilolite) were also included as treatments. After 90 days of incubation, HYPs decreased up to 83.8 % of Cd availability and reduced exchangeable Al up to 100 %. HydroPotash increased pH, cation exchange capacity, and contents of potassium, calcium, and phosphorus, as well as microbial biomass carbon, and fluorescein diacetate hydrolysis of soils. Andropogon gayanus, Eucalyptus grandis, and Heterocondylus vitalbae started growing from the dose of 15 Mg ha-1 HYPs in the Oxisol and 60 Mg ha-1 HYPs in the Technosol. Principal component analysis indicates that plant shoot dry weight was negatively correlated with extractable Cd and Zn and positively with pH, CEC, and Ca content. Besides promoting plant growth, HYPs reduced heavy metals (Cd and Zn) absorption by plants, indicating that HYP has potential use as an amendment in phytostabilization programs.
Collapse
Affiliation(s)
- Paula Godinho Ribeiro
- Federal University of Lavras, Department of Soil Science, School of Agriculture, Lavras, Minas Gerais, Brazil
| | | | | | - Marcos Rodrigues
- APT - Advanced Potash Technologies Ltd., 89 Nexus Way, Grand Cayman, KY1-9007, Cayman Islands
| | - Jean Michel Pereira Souza
- Federal University of Lavras, Department of Soil Science, School of Agriculture, Lavras, Minas Gerais, Brazil
| | | | - Yuncong C Li
- Department of Soil and Water Sciences, Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL, 33031, USA
| | | |
Collapse
|
39
|
Stein M, Georgiadis A, Ingwersen J, Rennert T. Does silica addition affect translocation and leaching of cadmium and copper in soil? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117738. [PMID: 34256290 DOI: 10.1016/j.envpol.2021.117738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Soil and groundwater contamination with potentially toxic elements (PTEs) including cadmium (Cd) and copper (Cu) has become a serious problem for ecosystem functioning. Silicon (Si) may precipitate these metals as silicates, and may also form, at undersaturation of silicates, 'Si-contaminant compounds', i.e. particles of polymerized silica with PTEs incorporated or adsorbed by inner-sphere complexes. While the formation of these compounds in aqueous solution has been proven, their formation in soil remains unclear yet. Therefore, we conducted column experiments with a topsoil horizon artificially contaminated with Cd or Cu solutions (10 mM) in the presence (10 mM) and absence of monomeric Si, and monitored the elemental composition of the eluates during 12 irrigation steps with artificial rainwater by microwave-plasma atomic emission spectrometry, the size and charge of the particles eluted by dynamic light scattering and phase analysis light scattering, and determined the spatial distribution of total and exchangeable Cd and Cu in soil after the experiments. When Si was previously applied to soil, significantly larger particles (up to > 200 nm) in the eluates indicated Si polymerization and formation of Si-contaminant compounds. However, Cd and Cu concentrations were very low (<0.4 μM), pointing to efficient retardation in soil. In any variant, the particles formed were slightly negatively charged (-11 mV). The molar metal:Si ratios in the eluates and significant correlations between the amounts of Si and metals in soil extracted by NH4NO3 pointed to the formation of Si-contaminant compounds, too. More Cu than Cd was retained in soil, and significantly more in the presence of Si, but less Cu than Cd was in exchangeable form. While particularly Cu formed Si-contaminant compounds, which reduced the concentration of Cu ions, the Si-contaminant-compound particles in the eluates remained very small, thus potentially susceptible to particulate export from soil into the groundwater.
Collapse
Affiliation(s)
- Mathias Stein
- Fachgebiet Bodenchemie mit Pedologie, Institut für Bodenkunde und Standortslehre, Universität Hohenheim, 70593, Stuttgart, Germany
| | - Anna Georgiadis
- Fachgebiet Bodenchemie mit Pedologie, Institut für Bodenkunde und Standortslehre, Universität Hohenheim, 70593, Stuttgart, Germany
| | - Joachim Ingwersen
- Fachgebiet Biogeophysik, Institut für Bodenkunde und Standortslehre, Universität Hohenheim, 70593, Stuttgart, Germany
| | - Thilo Rennert
- Fachgebiet Bodenchemie mit Pedologie, Institut für Bodenkunde und Standortslehre, Universität Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
40
|
Schaller J, Scherwietes E, Gerber L, Vaidya S, Kaczorek D, Pausch J, Barkusky D, Sommer M, Hoffmann M. Silica fertilization improved wheat performance and increased phosphorus concentrations during drought at the field scale. Sci Rep 2021; 11:20852. [PMID: 34675299 PMCID: PMC8531131 DOI: 10.1038/s41598-021-00464-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/05/2021] [Indexed: 12/03/2022] Open
Abstract
Drought and the availability of mineable phosphorus minerals used for fertilization are two of the important issues agriculture is facing in the future. High phosphorus availability in soils is necessary to maintain high agricultural yields. Drought is one of the major threats for terrestrial ecosystem performance and crop production in future. Among the measures proposed to cope with the upcoming challenges of intensifying drought stress and to decrease the need for phosphorus fertilizer application is the fertilization with silica (Si). Here we tested the importance of soil Si fertilization on wheat phosphorus concentration as well as wheat performance during drought at the field scale. Our data clearly showed a higher soil moisture for the Si fertilized plots. This higher soil moisture contributes to a better plant performance in terms of higher photosynthetic activity and later senescence as well as faster stomata responses ensuring higher productivity during drought periods. The plant phosphorus concentration was also higher in Si fertilized compared to control plots. Overall, Si fertilization or management of the soil Si pools seem to be a promising tool to maintain crop production under predicted longer and more serve droughts in the future and reduces phosphorus fertilizer requirements.
Collapse
Affiliation(s)
- Jörg Schaller
- "Silicon Biogeochemistry" Working Group, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany.
| | | | - Lukas Gerber
- University of Bayreuth, 95440, Bayreuth, Germany
| | - Shrijana Vaidya
- "Isotope Biogeochemistry and Gas Fluxes" Working Group, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany
| | - Danuta Kaczorek
- "Landscape Pedology" Working Group, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany
| | | | - Dietmar Barkusky
- "Experimental Infrastructure Platform", Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany
| | - Michael Sommer
- "Silicon Biogeochemistry" Working Group, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany.,Institute of Geography and Environmental Science, University of Potsdam, 14476, Potsdam, Germany
| | - Mathias Hoffmann
- "Isotope Biogeochemistry and Gas Fluxes" Working Group, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany
| |
Collapse
|
41
|
Kuhla J, Pausch J, Schaller J. Effect on soil water availability, rather than silicon uptake by plants, explains the beneficial effect of silicon on rice during drought. PLANT, CELL & ENVIRONMENT 2021; 44:3336-3346. [PMID: 34302368 DOI: 10.1111/pce.14155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Various studies showed a decrease of drought stress specific parameters of plants after silicon (Si) fertilization. But all studies differed in soil Si concentration between the control and Si treatments. As amorphous silica (ASi) was recently found to cause a strong increase of water holding capacity and plant available water in soils, a combined effect of soil moisture and plant response due to Si addition was assumed. In this study, the influence of the soil Si content was excluded by using the same Si enriched soil for treatments of two rice lines, lsi1 mutant defective in Si uptake and its wild-type rice. Most plant parameters, such as nutrient contents, biomass, specific leaf area, specific root length, leaf water content and C allocation did not differ significantly between the genotypes neither under flooded conditions, nor under drought conditions. Only photosynthesis and stomatal conductance were slightly higher for the wild type in both drought and flooded treatments. Overall, our data showed that Si accumulation within the plant tissues has only a minor effect on plant performance under drought stress. Hence, existing studies should be reinterpreted in light of the fact that Si additions may increase soil water availability.
Collapse
Affiliation(s)
- Jana Kuhla
- Agroecology, BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Johanna Pausch
- Agroecology, BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Jörg Schaller
- Silicon Biogeochemistry Group, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| |
Collapse
|
42
|
Baggio G, Dupas E, Galindo FS, Megda MM, Pereira NCM, Luchetta MO, Tritapepe CA, da Silva MR, Jalal A, Teixeira Filho MCM. Silicon Application Induced Alleviation of Aluminum Toxicity in Xaraés Palisadegrass. AGRONOMY 2021; 11:1938. [DOI: 10.3390/agronomy11101938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aluminum (Al) toxicity is a major abiotic constraint for agricultural production in acidic soils that needs a sustainable solution to deal with plant tolerance. Silicon (Si) plays important roles in alleviating the harmful effects of Al in plants. The genus Urochloa includes most important grasses and hybrids, and it is currently used as pastures in the tropical regions. Xaraés palisadegrass (Urochloa brizantha cv. Xaraés) is a forage that is relatively tolerant to Al toxicity under field-grown conditions, which might be explained by the great uptake and accumulation of Si. However, studies are needed to access the benefits of Si application to alleviate Al toxicity on Xaraés palisadegrass nutritional status, production, and chemical–bromatological composition. The study was conducted under greenhouse conditions with the effect of five Si concentrations evaluated (0, 0.3, 0.6, 1.2, and 2.4 mM) as well as with nutrient solutions containing 1 mM Al in two sampling dates (two forage cuts). The following evaluations were performed: number of tillers and leaves, shoot biomass, N, P, K, Ca, Mg, S, B, Cu, Fe, Mn, Zn, Al, and Si concentration in leaf tissue, Al and Si concentration in root tissue, neutral detergent fiber (NDF), and acid detergent fiber (ADF) content in Xaraés palisadegrass shoot. Silicon supply affected the relation between Si and Al uptake by increasing root Al concentration in detriment to Al transport to the leaves, thereby alleviating Al toxicity in Xaraés palisadegrass. The concentrations between 1.4 and 1.6 mM Si in solution decreased roots to shoots Al translocation by 259% (from 3.26 to 1.26%), which contributed to a higher number of leaves per plot and led to a greater shoot dry mass without affecting tillering. Xaraés palisadegrass could be considered one of the greatest Si accumulator plants with Si content in leaves above 4.7% of dry mass. In addition, Si supply may benefit nutrient-use efficiency with enhanced plant growth and without compromising the chemical–bromatological content of Xaraés palisadegrass.
Collapse
Affiliation(s)
- Guilherme Baggio
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira 15345-000, Brazil
| | - Elisângela Dupas
- Department of Agronomy, Federal University of Grande Dourados (UFGD), Dourados 79825-900, Brazil
| | | | | | | | - Monique Oliveira Luchetta
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira 15345-000, Brazil
| | - Caio Augusto Tritapepe
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira 15345-000, Brazil
| | - Marcelo Rinaldi da Silva
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira 15345-000, Brazil
| | - Arshad Jalal
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira 15345-000, Brazil
| | | |
Collapse
|
43
|
Klotz M, Schaller J, Kurze S, Engelbrecht BMJ. Variation of foliar silicon concentrations in temperate forbs: effects of soil silicon, phylogeny and habitat. Oecologia 2021; 196:977-987. [PMID: 34259905 PMCID: PMC8367921 DOI: 10.1007/s00442-021-04978-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/21/2021] [Indexed: 10/24/2022]
Abstract
Silicon (Si) accumulation is known to alleviate various biotic and abiotic stressors in plants with potential ecological consequences. However, for dicotyledonous plants our understanding of Si variation remains limited. We conducted a comparative experimental study to investigate (1) interspecific variation of foliar Si concentrations across 37 dicotyledonous forbs of temperate grasslands, (2) intraspecific variation in foliar Si concentration in response to soil Si availability, the influence of (3) phylogenetic relatedness, and (4) habitat association to moisture. Foliar Si differed markedly (approx. 70-fold) across the investigated forbs, with some species exhibiting Si accumulation similar to grasses. Foliar Si increased with soil Si availability, but the response varied across species: species with higher Si accumulation capacity showed a stronger response, indicating that they did not actively upregulate Si uptake under low soil Si availability. Foliar Si showed a pronounced phylogenetic signal, i.e., closely related species exhibited more similar foliar Si concentrations than distantly related species. Significant differences in foliar Si concentration within closely related species pairs nevertheless support that active Si uptake and associated high Si concentrations has evolved multiple times in forbs. Foliar Si was not higher in species associated with drier habitats, implying that in dicotyledonous forbs of temperate grasslands high foliar Si is not an adaptive trait to withstand drought. Our results demonstrated considerable inter- and intraspecific variation in foliar Si concentration in temperate forbs. This variation should have pervasive, but so far understudied, ecological consequences for community composition and functioning of temperate grasslands under land-use and climate change.
Collapse
Affiliation(s)
- Marius Klotz
- Department of Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany.
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany
| | - Susanne Kurze
- Department of Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Bettina M J Engelbrecht
- Department of Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
44
|
Nakamura R, Imai N, Aoyagi R, Kitayama K, Kitajima K. Litterfall silicon flux in relation to vegetation differences in old‐growth and logged lowland forests in Borneo. Ecol Res 2021. [DOI: 10.1111/1440-1703.12253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryosuke Nakamura
- Graduate School of Asian and African Area Studies Kyoto University Kyoto Japan
- Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Nobuo Imai
- Department of Forest Science Tokyo University of Agriculture Tokyo Japan
| | - Ryota Aoyagi
- Forestry and Forest Products Research Institute Ibaraki Japan
| | | | - Kaoru Kitajima
- Graduate School of Agriculture Kyoto University Kyoto Japan
| |
Collapse
|
45
|
Galindo FS, Pagliari PH, Rodrigues WL, Fernandes GC, Boleta EHM, Santini JMK, Jalal A, Buzetti S, Lavres J, Teixeira Filho MCM. Silicon Amendment Enhances Agronomic Efficiency of Nitrogen Fertilization in Maize and Wheat Crops under Tropical Conditions. PLANTS (BASEL, SWITZERLAND) 2021; 10:1329. [PMID: 34209953 PMCID: PMC8309197 DOI: 10.3390/plants10071329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 02/05/2023]
Abstract
Sustainable management strategies are needed to improve agronomic efficiency and cereal yield production under harsh abiotic climatic conditions such as in tropical Savannah. Under these environments, field-grown crops are usually exposed to drought and high temperature conditions. Silicon (Si) application could be a useful and sustainable strategy to enhance agronomic N use efficiency, leading to better cereal development. This study was developed to explore the effect of Si application as a soil amendment source (Ca and Mg silicate) associated with N levels applied in a side-dressing (control, low, medium and high N levels) on maize and wheat development, N uptake, agronomic efficiency and grain yield. The field experiments were carried out during four cropping seasons, using two soil amendment sources (Ca and Mg silicate and dolomitic limestone) and four N levels (0, 50, 100 and 200 kg N ha-1). The following evaluations were performed in maize and wheat crops: the shoots and roots biomass, total N, N-NO3-, N-NH4+ and Si accumulation in the shoots, roots and grain tissue, leaf chlorophyll index, grain yield and agronomic efficiency. The silicon amendment application enhanced leaf chlorophyll index, agronomic efficiency and N-uptake in maize and wheat plants, benefiting shoots and roots development and leading to a higher grain yield (an increase of 5.2 and 7.6%, respectively). It would be possible to reduce N fertilization in maize from 185-180 to 100 kg N ha-1 while maintaining similar grain yield with Si application. Additionally, Si application would reduce N fertilization in wheat from 195-200 to 100 kg N ha-1. Silicon application could be a key technology for improving plant-soil N-management, especially in Si accumulator crops, leading to a more sustainable cereal production under tropical conditions.
Collapse
Affiliation(s)
- Fernando Shintate Galindo
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba 13416-000, Brazil
| | - Paulo Humberto Pagliari
- Department of Soil, Water, and Climate, Southwest Research and Outreach Center (SWROC), University of Minnesota (UMN), Lamberton, MN 56152, USA;
| | - Willian Lima Rodrigues
- Department of Plant Health, Rural Engineering, and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15345-000, Brazil; (W.L.R.); (G.C.F.); (E.H.M.B.); (J.M.K.S.); (A.J.); (S.B.); (J.L.); (M.C.M.T.F.)
| | - Guilherme Carlos Fernandes
- Department of Plant Health, Rural Engineering, and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15345-000, Brazil; (W.L.R.); (G.C.F.); (E.H.M.B.); (J.M.K.S.); (A.J.); (S.B.); (J.L.); (M.C.M.T.F.)
| | - Eduardo Henrique Marcandalli Boleta
- Department of Plant Health, Rural Engineering, and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15345-000, Brazil; (W.L.R.); (G.C.F.); (E.H.M.B.); (J.M.K.S.); (A.J.); (S.B.); (J.L.); (M.C.M.T.F.)
| | - José Mateus Kondo Santini
- Department of Plant Health, Rural Engineering, and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15345-000, Brazil; (W.L.R.); (G.C.F.); (E.H.M.B.); (J.M.K.S.); (A.J.); (S.B.); (J.L.); (M.C.M.T.F.)
| | - Arshad Jalal
- Department of Plant Health, Rural Engineering, and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15345-000, Brazil; (W.L.R.); (G.C.F.); (E.H.M.B.); (J.M.K.S.); (A.J.); (S.B.); (J.L.); (M.C.M.T.F.)
| | - Salatiér Buzetti
- Department of Plant Health, Rural Engineering, and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15345-000, Brazil; (W.L.R.); (G.C.F.); (E.H.M.B.); (J.M.K.S.); (A.J.); (S.B.); (J.L.); (M.C.M.T.F.)
| | - José Lavres
- Department of Plant Health, Rural Engineering, and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15345-000, Brazil; (W.L.R.); (G.C.F.); (E.H.M.B.); (J.M.K.S.); (A.J.); (S.B.); (J.L.); (M.C.M.T.F.)
| | - Marcelo Carvalho Minhoto Teixeira Filho
- Department of Plant Health, Rural Engineering, and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15345-000, Brazil; (W.L.R.); (G.C.F.); (E.H.M.B.); (J.M.K.S.); (A.J.); (S.B.); (J.L.); (M.C.M.T.F.)
| |
Collapse
|
46
|
Pavlovic J, Kostic L, Bosnic P, Kirkby EA, Nikolic M. Interactions of Silicon With Essential and Beneficial Elements in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:697592. [PMID: 34249069 PMCID: PMC8261142 DOI: 10.3389/fpls.2021.697592] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 05/18/2023]
Abstract
Silicon (Si) is not classified as an essential element for plants, but numerous studies have demonstrated its beneficial effects in a variety of species and environmental conditions, including low nutrient availability. Application of Si shows the potential to increase nutrient availability in the rhizosphere and root uptake through complex mechanisms, which still remain unclear. Silicon-mediated transcriptional regulation of element transporters for both root acquisition and tissue homeostasis has recently been suggested as an important strategy, varying in detail depending on plant species and nutritional status. Here, we summarize evidence of Si-mediated acquisition, uptake and translocation of nutrients: nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), boron (B), chlorine (Cl), and nickel (Ni) under both deficiency and excess conditions. In addition, we discuss interactions of Si-with beneficial elements: aluminum (Al), sodium (Na), and selenium (Se). This review also highlights further research needed to improve understanding of Si-mediated acquisition and utilization of nutrients and vice versa nutrient status-mediated Si acquisition and transport, both processes which are of high importance for agronomic practice (e.g., reduced use of fertilizers and pesticides).
Collapse
Affiliation(s)
- Jelena Pavlovic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Kostic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Predrag Bosnic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Ernest A. Kirkby
- Faculty of Biological Sciences, Leeds University, Leeds, United Kingdom
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
47
|
Katz O, Puppe D, Kaczorek D, Prakash NB, Schaller J. Silicon in the Soil-Plant Continuum: Intricate Feedback Mechanisms within Ecosystems. PLANTS (BASEL, SWITZERLAND) 2021; 10:652. [PMID: 33808069 PMCID: PMC8066056 DOI: 10.3390/plants10040652] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 11/28/2022]
Abstract
Plants' ability to take up silicon from the soil, accumulate it within their tissues and then reincorporate it into the soil through litter creates an intricate network of feedback mechanisms in ecosystems. Here, we provide a concise review of silicon's roles in soil chemistry and physics and in plant physiology and ecology, focusing on the processes that form these feedback mechanisms. Through this review and analysis, we demonstrate how this feedback network drives ecosystem processes and affects ecosystem functioning. Consequently, we show that Si uptake and accumulation by plants is involved in several ecosystem services like soil appropriation, biomass supply, and carbon sequestration. Considering the demand for food of an increasing global population and the challenges of climate change, a detailed understanding of the underlying processes of these ecosystem services is of prime importance. Silicon and its role in ecosystem functioning and services thus should be the main focus of future research.
Collapse
Affiliation(s)
- Ofir Katz
- Dead Sea and Arava Science Center, Mt. Masada, Tamar Regional Council, 86910 Tamar, Israel
- Eilat Campus, Ben-Gurion University of the Negev, Hatmarim Blv, 8855630 Eilat, Israel
| | - Daniel Puppe
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (D.P.); (D.K.); (J.S.)
| | - Danuta Kaczorek
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (D.P.); (D.K.); (J.S.)
- Department of Soil Environment Sciences, Warsaw University of Life Sciences (SGGW), 02776 Warsaw, Poland
| | - Nagabovanalli B. Prakash
- Department of Soil Science and Agricultural Chemistry, University of Agricultural Sciences, GKVK, Bangalore 560065, India;
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (D.P.); (D.K.); (J.S.)
| |
Collapse
|
48
|
Hömberg A, Knorr KH, Schaller J. Methane Production Rate during Anoxic Litter Decomposition Depends on Si Mass Fractions, Nutrient Stoichiometry, and Carbon Quality. PLANTS 2021; 10:plants10040618. [PMID: 33805021 PMCID: PMC8063934 DOI: 10.3390/plants10040618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
While Si influences nutrient stoichiometry and decomposition of graminoid litter, it is still unclear how Si influences anoxic litter decomposition and CH4 formation in graminoid dominated fen peatlands. First, Eriophorum vaginatum plants were grown under different Si and P availabilities, then shoots and roots were characterized regarding their proportions of C, Si, N and P and regarding C quality. Subsequently the Eriophorum shoots were subjected to anoxic decomposition. We hypothesized; that (I) litter grown under high Si availability would show a higher Si but lower nutrient mass fractions and a lower share of recalcitrant carbon moieties; (II) high-Si litter would show higher CH4 and CO2 production rates during anoxic decomposition; (III) methanogenesis would occur earlier in less recalcitrant high-Si litter, compared to low-Si litter. We found a higher Si mass fraction that coincides with a general decrease in C and N mass fractions and decreased share of recalcitrant organic moieties. For high-Si litter, the CH4 production rate was higher, but there was no long-term influence on the CO2 production rate. More labile high-Si litter and a differential response in nutrient stoichiometry led to faster onset of methanogenesis. This may have important implications for our understanding of anaerobic carbon turnover in graminoid-rich fens.
Collapse
Affiliation(s)
- Annkathrin Hömberg
- Ecohydrology & Biogeochemistry Group, University of Münster, Heisenbergstraße 2, 48149 Münster, Germany;
- Correspondence:
| | - Klaus-Holger Knorr
- Ecohydrology & Biogeochemistry Group, University of Münster, Heisenbergstraße 2, 48149 Münster, Germany;
| | - Jörg Schaller
- Leibniz Center for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany;
| |
Collapse
|