1
|
Zhou J, Yang H, Zhang Y, Cao Y, Jing Y. Extracellular AMP Inhibits Pollen Tube Growth in Picea meyeri via Disrupted Calcium Gradient and Disorganized Microfilaments. PLANTS (BASEL, SWITZERLAND) 2024; 14:72. [PMID: 39795332 PMCID: PMC11722819 DOI: 10.3390/plants14010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
Adenosine monophosphate (AMP) is a hydrolysis product of adenosine triphosphate (ATP) and adenosine diphosphate (ADP). In mammalian cells, extracellular AMP functions as a signaling molecule by binding to adenosine A1 receptors, thereby activating various intracellular signaling pathways. However, the role of extracellular AMP in plant cells remains largely unclear, and homologs of A1 receptors have not been identified. Our previous studies have demonstrated that extracellular ATP (eATP) is crucial for the normal germination and growth of Picea meyeri pollen tubes. In the present study, we observed that the exogenous addition of ATP to a pollen culture medium could be degraded into AMP and adenosine. Furthermore, the addition of AMP and adenosine to the culture medium was found to inhibit pollen germination and tube elongation. Notably, the addition of an AMP receptor inhibitor into the culture medium mitigated the inhibitory effects of AMP on pollen tube growth. Through intracellular staining for Ca2+ and microfilaments, we discovered that high concentrations of AMP disrupt the Ca2+ concentration gradient and impair microfilament organization, ultimately resulting in inhibited pollen tube elongation. In conclusion, we propose that extracellular AMP, as a hydrolysis product of eATP, also plays a significant role in regulating P. meyeri pollen germination and tube growth in vitro.
Collapse
Affiliation(s)
- Junhui Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (J.Z.); (H.Y.); (Y.Z.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing 100083, China
| | - Haobo Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (J.Z.); (H.Y.); (Y.Z.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing 100083, China
| | - Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (J.Z.); (H.Y.); (Y.Z.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing 100083, China
| | - Yuan Cao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China;
| | - Yanping Jing
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (J.Z.); (H.Y.); (Y.Z.)
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing 100083, China
| |
Collapse
|
2
|
Aznar F, Negral L, Moreno-Grau S, Costa I, Lara B, Romero-Morte J, Rojo J, Rodríguez-Arias RM, Fernández-González F, Pérez-Badia R, Moreno JM. Increased rupture of cypress pollen type due to atmospheric water in central and southeastern Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176298. [PMID: 39299307 DOI: 10.1016/j.scitotenv.2024.176298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
This study aims to investigate the meteorological variables determining Cupressaceae pollen grain disruption in the environment. A parallel sampling of pollen grains and disrupted Cupressaceae pollen grains was performed in six cities using two Spanish aerobiological networks. The pollen concentrations, disrupted pollen concentrations, percentage of disrupted pollen and number of days when the percentage of disrupted pollen was above or equal to 50 % were quantified during two pollen seasons. The concentrations were determined following the standardised method EN 16868. Results show that the concentrations of pollen grains and disrupted pollen grains were not determined by geographical features and rarely by bioclimatic variables or indexes but by the ornamental use of the specimens in the vicinity of the pollen sampler, highlighting the possibility of using management practices to reduce exposure to allergens in the cities. African dust outbreaks coincided with higher concentrations of pollen grains and disrupted pollen grains, but the reduced percentage of disrupted pollen grains pointed to a non-causal relationship with long-distance transport. The effect of wind and maximum gusts remained negligible. The triggering factor for pollen disruption was the amount of water in the atmosphere, mainly reported as relative humidity. Rainfall increased the effect of disruption due to pollen grain swelling caused by its wash-out effect. The higher the relative humidity, the higher the disrupted pollen concentrations. This aligns with the mechanism of Cupressaceae reproduction since the family needs a water medium in the form of pollination droplets for the pollination tube to develop and the pollen grain to perform its biological function. Therefore, people that develop allergic symptoms to Cupresaceae pollen should avoid exposure during days with high relative humidity in the main pollen season.
Collapse
Affiliation(s)
- F Aznar
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain.
| | - L Negral
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain.
| | - S Moreno-Grau
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain.
| | - I Costa
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain.
| | - B Lara
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain; Institute of Environmental Sciences, University of Castilla-La Mancha, Toledo, Spain.
| | - J Romero-Morte
- Institute of Environmental Sciences, University of Castilla-La Mancha, Toledo, Spain; Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| | - J Rojo
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| | - R M Rodríguez-Arias
- Institute of Environmental Sciences, University of Castilla-La Mancha, Toledo, Spain.
| | - F Fernández-González
- Institute of Environmental Sciences, University of Castilla-La Mancha, Toledo, Spain.
| | - R Pérez-Badia
- Institute of Environmental Sciences, University of Castilla-La Mancha, Toledo, Spain.
| | - J M Moreno
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain.
| |
Collapse
|
3
|
Zheng S, Wang F, Liu Z, Zhang H, Zhang L, Chen D. The Role of Female and Male Genes in Regulating Pollen Tube Guidance in Flowering Plants. Genes (Basel) 2024; 15:1367. [PMID: 39596567 PMCID: PMC11593715 DOI: 10.3390/genes15111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
In flowering plants, fertilization is a complex process governed by precise communication between the male and female gametophytes. This review focuses on the roles of various female gametophyte cells-synergid, central, and egg cells-in facilitating pollen tube guidance and ensuring successful fertilization. Synergid cells play a crucial role in attracting the pollen tube, while the central cell influences the direction of pollen tube growth, and the egg cell is responsible for preventing polyspermy, ensuring correct fertilization. The review also examines the role of the pollen tube in this communication, highlighting the mechanisms involved in its growth regulation, including the importance of pollen tube receptors, signal transduction pathways, cell wall dynamics, and ion homeostasis. The Ca2+ concentration gradient is identified as a key factor in guiding pollen tube growth toward the ovule. Moreover, the review briefly compares these communication processes in angiosperms with those in non-flowering plants, such as mosses, ferns, and early gymnosperms, providing evolutionary insights into gametophytic signaling. Overall, this review synthesizes the current understanding of male-female gametophyte interactions and outlines future directions for research in plant reproductive biology.
Collapse
Affiliation(s)
- Siyuan Zheng
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Feng Wang
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Zehui Liu
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
| | - Hongbin Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China;
| | - Liangsheng Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Dan Chen
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
| |
Collapse
|
4
|
Althiab-Almasaud R, Teyssier E, Chervin C, Johnson MA, Mollet JC. Pollen viability, longevity, and function in angiosperms: key drivers and prospects for improvement. PLANT REPRODUCTION 2024; 37:273-293. [PMID: 37926761 DOI: 10.1007/s00497-023-00484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Pollen grains are central to sexual plant reproduction and their viability and longevity/storage are critical for plant physiology, ecology, plant breeding, and many plant product industries. Our goal is to present progress in assessing pollen viability/longevity along with recent advances in our understanding of the intrinsic and environmental factors that determine pollen performance: the capacity of the pollen grain to be stored, germinate, produce a pollen tube, and fertilize the ovule. We review current methods to measure pollen viability, with an eye toward advancing basic research and biotechnological applications. Importantly, we review recent advances in our understanding of how basic aspects of pollen/stigma development, pollen molecular composition, and intra- and intercellular signaling systems interact with the environment to determine pollen performance. Our goal is to point to key questions for future research, especially given that climate change will directly impact pollen viability/longevity. We find that the viability and longevity of pollen are highly sensitive to environmental conditions that affect complex interactions between maternal and paternal tissues and internal pollen physiological events. As pollen viability and longevity are critical factors for food security and adaptation to climate change, we highlight the need to develop further basic research for better understanding the complex molecular mechanisms that modulate pollen viability and applied research on developing new methods to maintain or improve pollen viability and longevity.
Collapse
Affiliation(s)
- Rasha Althiab-Almasaud
- Université de Toulouse, LRSV, Toulouse INP, CNRS, UPS, 31326, Castanet-Tolosan, France
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Eve Teyssier
- Université de Toulouse, LRSV, Toulouse INP, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Christian Chervin
- Université de Toulouse, LRSV, Toulouse INP, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Mark A Johnson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Jean-Claude Mollet
- Univ Rouen Normandie, GLYCOMEV UR4358, SFR NORVEGE, Fédération Internationale Normandie-Québec NORSEVE, Carnot I2C, RMT BESTIM, GDR Chemobiologie, IRIB, F-76000, Rouen, France.
| |
Collapse
|
5
|
Sofio SPC, Caeiro A, Ribeiro ACF, Cabral AMTDPV, Valente AJM, Canhoto J, Esteso MA. On Interactions of Sulfamerazine with Cyclodextrins from Coupled Diffusometry and Toxicity Tests. Biomolecules 2024; 14:462. [PMID: 38672478 PMCID: PMC11048702 DOI: 10.3390/biom14040462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
This scientific study employs the Taylor dispersion technique for diffusion measurements to investigate the interaction between sulfamerazine (NaSMR) and macromolecular cyclodextrins (β-CD and HP-β-CD). The results reveal that the presence of β-CD influences the diffusion of the solution component, NaSMR, indicating a counterflow of this drug due to solute interaction. However, diffusion data indicate no inclusion of NaSMR within the sterically hindered HP-β-CD cavity. Additionally, toxicity tests were conducted, including pollen germination (Actinidia deliciosa) and growth curve assays in BY-2 cells. The pollen germination tests demonstrate a reduction in sulfamerazine toxicity, suggesting potential applications for this antimicrobial agent with diminished adverse effects. This comprehensive investigation contributes to a deeper understanding of sulfamerazine-cyclodextrin interactions and their implications for pharmaceutical and biological systems.
Collapse
Affiliation(s)
- Sara P. C. Sofio
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (S.P.C.S.); (A.J.M.V.)
- Faculty of Health Sciences, Catholic University of Ávila, Calle Los Canteros s/n, 05005 Ávila, Spain;
| | - André Caeiro
- Laboratory Associate TERRA, Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (A.C.); (J.C.)
| | - Ana C. F. Ribeiro
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (S.P.C.S.); (A.J.M.V.)
| | | | - Artur J. M. Valente
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (S.P.C.S.); (A.J.M.V.)
| | - Jorge Canhoto
- Laboratory Associate TERRA, Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (A.C.); (J.C.)
| | - Miguel A. Esteso
- Faculty of Health Sciences, Catholic University of Ávila, Calle Los Canteros s/n, 05005 Ávila, Spain;
| |
Collapse
|
6
|
Liu J, Yin X, Kou C, Thimmappa R, Hua X, Xue Z. Classification, biosynthesis, and biological functions of triterpene esters in plants. PLANT COMMUNICATIONS 2024; 5:100845. [PMID: 38356259 PMCID: PMC11009366 DOI: 10.1016/j.xplc.2024.100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Triterpene esters comprise a class of secondary metabolites that are synthesized by decorating triterpene skeletons with a series of oxidation, glycosylation, and acylation modifications. Many triterpene esters with important bioactivities have been isolated and identified, including those with applications in the pesticide, pharmaceutical, and cosmetic industries. They also play essential roles in plant defense against pests, diseases, physical damage (as part of the cuticle), and regulation of root microorganisms. However, there has been no recent summary of the biosynthetic pathways and biological functions of plant triterpene esters. Here, we classify triterpene esters into five categories based on their skeletons and find that C-3 oxidation may have a significant effect on triterpenoid acylation. Fatty acid and aromatic moieties are common ligands present in triterpene esters. We further analyze triterpene ester synthesis-related acyltransferases (TEsACTs) in the triterpene biosynthetic pathway. Using an evolutionary classification of BAHD acyltransferases (BAHD-ATs) and serine carboxypeptidase-like acyltransferases (SCPL-ATs) in Arabidopsis thaliana and Oryza sativa, we classify 18 TEsACTs with identified functions from 11 species. All the triterpene-skeleton-related TEsACTs belong to BAHD-AT clades IIIa and I, and the only identified TEsACT from the SCPL-AT family belongs to the CP-I subfamily. This comprehensive review of the biosynthetic pathways and bioactivities of triterpene esters provides a foundation for further study of their bioactivities and applications in industry, agricultural production, and human health.
Collapse
Affiliation(s)
- Jia Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Xue Yin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Chengxi Kou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Ramesha Thimmappa
- Amity Institute of Genome Engineering, Amity University, Noida, UP India 201313, India
| | - Xin Hua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Zheyong Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, P.R. China.
| |
Collapse
|
7
|
Rafińska K, Niedojadło K, Świdziński M, Bednarska-Kozakiewicz E. Distribution of exchangeable Ca 2+ during the process of Larix decidua Mill. pollination and germination. Sci Rep 2024; 14:5639. [PMID: 38454044 PMCID: PMC10920793 DOI: 10.1038/s41598-024-54903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
The involvement of Ca2+ ions in angiosperms sexual processes is well established, while in gymnosperms, such knowledge remains limited and is still a topic of discussion. In this study, we focused on Larix decidua, using Alizarin-red S staining and the pyroantimonate method to examine the tissue and subcellular distribution of free and loosely bound Ca2+ ions at different stages of the male gametophyte's development and its interaction with the ovule. Our findings show that in larch, both the germination of pollen grains and the growth of pollen tubes occur in an environment rich in Ca2+. These ions play a crucial role in the adhesion of the pollen grain to the stigmatic tip and its subsequent movement to the micropylar canal. There is a significant presence of free and loosely bound Ca2+ ions in both the fluid of the micropylar canal and the extracellular matrix of the nucellus. As the pollen tube extends through the nucellus, we observed a notable accumulation of Ca2+ ions just above the entry to the mature archegonium, a region likely crucial for the male gametophyte's directional growth. Meanwhile, the localized presence of free and loosely bound Ca2+ ions within the egg cell cytoplasm may inhibit the pollen tubes growth and rupture, playing an important role in fertilization.
Collapse
Affiliation(s)
- Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland
| | - Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
| | - Michał Świdziński
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
8
|
Kuhn SA, Nogueira FM, Schürer T, Mariath JEA. Reproductive biology of the "Brazilian pine" (Araucaria angustifolia-Araucariaceae): the pollen tube growth and the seed cone development. PLANT REPRODUCTION 2024; 37:1-13. [PMID: 37449999 DOI: 10.1007/s00497-023-00473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
KEY MESSAGE In Araucaria angustifolia, the seed scale is part of the ovule, the female gametophyte presents a monosporic origin and arises from a coenocytic tetrad, and the pollen tube presents a single axis. The seed cone of conifers has many informative features, and its ontogenetic data may help interpret relationships among function, development patterns, and homology among seed plants. We reported the seed cone development, from pollination to pre-fertilization, including seed scale, ovule ontogeny, and pollen tube growth in Araucaria angustifolia. The study was performed using light microscopy, scanning electron microscopy, and X-ray microcomputed tomography (μCT). During the pollination period, the ovule arises right after the seed scale has emerged. From that event to the pre-fertilization period takes about 14 months. Megasporogenesis occurs three weeks after ovule formation, producing a coenocytic tetrad. At the same time as the female gametophyte's first nuclear division begins, the pollen tube grows through the seed scale adaxial face. Until maturity, the megagametophyte goes through the free nuclei stage, cellularization stage, and cellular growth stage. Along its development, many pollen tubes develop in the nucellar tissue extending straight toward the female gametophyte. Our observations show that the seed scale came out of the same primordia of the ovule, agreeing with past studies that this structure is part of the ovule itself. The formation of a female gametophyte with a monosporic origin that arises from a coenocytic tetrad was described for the first time in conifers, and the three-dimensional reconstruction of the ovule revealed the presence of pollen tubes with only one axis and no branches, highlighting a new pattern of pollen tube growth in Araucariaceae.
Collapse
Affiliation(s)
- Sofia A Kuhn
- Laboratório de Anatomia Vegetal (LAVeg), Instituto de Biociências, Departamento de Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil.
| | - Fernanda M Nogueira
- Laboratório de Biologia Molecular de Plantas, Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP) - Universidade de São Paulo-USP, Av. Bandeirantes 3900, Ribeirão Preto, 14040-901, Brazil
| | - Tainá Schürer
- Laboratório de Anatomia Vegetal (LAVeg), Instituto de Biociências, Departamento de Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
| | - Jorge E A Mariath
- Laboratório de Anatomia Vegetal (LAVeg), Instituto de Biociências, Departamento de Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Surso M, Khviyuzov S, Chukhchin D. Compounds composition of pollen tubes of Scots pine ( Pinus sylvestris L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1261-1268. [PMID: 38024955 PMCID: PMC10678875 DOI: 10.1007/s12298-023-01353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 12/01/2023]
Abstract
The aim of this research was to study the composition of pollen tubes of Scots pine (Pinus sylvestris L.). Pollen cultivation on deionized distilled water excluded the potential influence of the cultivation medium on the pollen tube growth and development. The fluorescent study indicated a gradual distribution of chemical compounds along the length of the tube. It was shown that the protoplast apical zone and the parietal layer near the tube's tip are most likely actively involved in the ion transport regulation in the growing pollen tube. The callose synthesis in the tip of matured pine tube completed the first stage of its active growth. Significant differences and pH gradients at the nucleus region and the parietal layer of the tube wall indicate that H+ gradient is the direct driving force of vesicle transport and can regulate the growth of pollen tubes. The distribution of amino acids, RNA, proteins and lipids was uniform throughout the length of the pine pollen tube. The content of amino acids, RNA, DNA and proteins slightly increased near the cell nucleus and drastically increased in the apical zone. At the very tip of the tube, a slight increase in the concentration of polysaccharides and a significant decrease in the content of amino acids, RNA, DNA, proteins and lipids were detected.
Collapse
Affiliation(s)
- Mikhail Surso
- Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Arkhangelsk, Russian Federation
| | - Sergei Khviyuzov
- Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Arkhangelsk, Russian Federation
| | - Dmitry Chukhchin
- Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk, Russian Federation
| |
Collapse
|
10
|
Breygina M, Voronkov A, Ivanova T, Babushkina K. Fatty Acid Composition of Dry and Germinating Pollen of Gymnosperm and Angiosperm Plants. Int J Mol Sci 2023; 24:ijms24119717. [PMID: 37298668 DOI: 10.3390/ijms24119717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
A pollen grain is a unique haploid organism characterized by a special composition and structure. The pollen of angiosperms and gymnosperms germinate in fundamentally similar ways, but the latter also have important features, including slow growth rates and lower dependence on female tissues. These features are, to some extent, due to the properties of pollen lipids, which perform a number of functions during germination. Here, we compared the absolute content and the fatty acid (FA) composition of pollen lipids of two species of flowering plants and spruce using GC-MS. The FA composition of spruce pollen differed significantly, including the predominance of saturated and monoene FAs, and a high proportion of very-long-chain FAs (VLCFAs). Significant differences between FAs from integumentary lipids (pollen coat (PC)) and lipids of gametophyte cells were found for lily and tobacco, including a very low unsaturation index of the PC. The proportion of VLCFAs in the integument was several times higher than in gametophyte cells. We found that the absolute content of lipids in lily pollen is almost three times higher than in tobacco and spruce pollen. For the first time, changes in the FA composition were analyzed during pollen germination in gymnosperms and angiosperms. The stimulating effect of H2O2 on spruce germination also led to noticeable changes in the FA content and composition of growing pollen. For tobacco in control and test samples, the FA composition was stable.
Collapse
Affiliation(s)
- Maria Breygina
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow 119991, Russia
| | - Alexander Voronkov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, Moscow 127276, Russia
| | - Tatiana Ivanova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, Moscow 127276, Russia
| | - Ksenia Babushkina
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow 119991, Russia
| |
Collapse
|
11
|
Weng X, Shen Y, Jiang L, Zhao L, Wang H. Spatiotemporal organization and correlation of tip-focused exocytosis and endocytosis in regulating pollen tube tip growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111633. [PMID: 36775070 DOI: 10.1016/j.plantsci.2023.111633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/09/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Pollen tube polar growth is a key cellular process during plant fertilization and is regulated by tip-focused exocytosis and endocytosis. However, the spatiotemporal dynamics and localizations of apical exocytosis and endocytosis in the tip region are still a matter of debate. Here, we use a refined spinning-disk confocal microscope coupled with fluorescence recovery after photobleaching for sustained live imaging and quantitative analysis of rapid vesicular activities in growing pollen tube tips. We traced and analyzed the occurrence site of exocytic plasma membrane-targeting of Arabidopsis secretory carrier membrane protein 4 and its subsequent endocytosis in tobacco pollen tube tips. We demonstrated that the pollen tube apex is the site for both vesicle polar exocytic fusion and endocytosis to take place. In addition, we disrupted either tip-focused exocytosis or endocytosis and found that their dynamic activities are closely correlated with one another basing on the spatial organization of actin fringe. Collectively, our findings attempt to propose a new exocytosis and endocytosis-coordinated yin-yang working model underlying the apical membrane organization and dynamics during pollen tube tip growth.
Collapse
Affiliation(s)
- Xun Weng
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yifan Shen
- Utahloy International School of Guangzhou, Guangzhou 510642, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Institute of Plant Molecular Biology & Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Lifeng Zhao
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Hao Wang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
12
|
Breygina M, Voronkov A, Galin I, Akhiyarova G, Polevova S, Klimenko E, Ivanov I, Kudoyarova G. Dynamics of endogenous levels and subcellular localization of ABA and cytokinins during pollen germination in spruce and tobacco. PROTOPLASMA 2023; 260:237-248. [PMID: 35579760 DOI: 10.1007/s00709-022-01766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
We used the enzyme-linked immunosorbent assay (ELISA) to assess the level of endogenous hormones in spruce pollen, and immunolocalization and confocal microscopy to study hormone localization in spruce and tobacco pollen. During pollen activation, the levels of ABA, zeatin, and its riboside significantly decreased. After the initiation of polar growth, the levels of all cytokinins increased sharply; ABA level also increased. In dormant spruce pollen grains, zeatin and ABA were localized uniformly throughout the cytoplasm. Zeatin was not detected in the nuclei, and the antheridial cell showed higher levels than the vegetative cell; ABA signal was detected in the cytoplasm and the nuclei. In germinating pollen, both hormones were detected mainly in plastids. The similar pattern was found in growing pollen tubes; signal from ABA also had a noticeable level in the cytosol of the tube cell, and was weaker in the antheridial cell. Zeatin fluorescence, on the other hand, was more pronounced in the antheridial cell. In non-germinated grains of tobacco, zeatin was localized mainly in organelles. ABA in dormant pollen grains demonstrated uniform localization, including the nuclei and cytoplasm of both cells. After germination, zeatin was accumulated in the plasmalemma or cell wall. ABA signal in the cytoplasm decreased; in the nuclei, it remained high. In growing tubes, the strongest zeatin and ABA signals were observed at the plasma membrane. The differences in ABA and cytokinin localization between species and dynamic changes in their level in spruce pollen highlight the key spatial and temporal parameters of hormonal regulation of gymnosperm pollen germination.
Collapse
Affiliation(s)
- Maria Breygina
- Biological Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119991, Russia.
| | - Alexander Voronkov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, Moscow, 127276, Russia
| | - Ilshat Galin
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054, Ufa, Russia
| | - Guzel Akhiyarova
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054, Ufa, Russia
| | - Svetlana Polevova
- Biological Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119991, Russia
| | - Ekaterina Klimenko
- Biological Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow, 119991, Russia
| | - Igor Ivanov
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054, Ufa, Russia
| | - Guzel Kudoyarova
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054, Ufa, Russia
| |
Collapse
|
13
|
Dauphin BG, Ranocha P, Dunand C, Burlat V. Cell-wall microdomain remodeling controls crucial developmental processes. TRENDS IN PLANT SCIENCE 2022; 27:1033-1048. [PMID: 35710764 DOI: 10.1016/j.tplants.2022.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/27/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Plant cell walls display cellular and subcellular specificities. At the subcellular level, wall regional territories with specific compositions are necessary for macroscopic developmental processes. These regional specificities were named differently throughout the years, and are unified here under the term 'cell-wall microdomains' that define the local composition and organization of wall polymers underlying territories of wall loosening and/or softening or stiffening. We review the occurrence and developmental role of wall microdomains in different cell types. We primarily focus on the contribution of two categories of wall-remodeling molecular actors: fine-tuning of homogalacturonan (HG; pectin) demethylesterification patterns and two classes of oxidoreductases [class III peroxidases (CIII PRXs) and laccases (LACs)], but we also highlight two different molecular scaffolds recently identified for positioning specific CIII PRXs.
Collapse
Affiliation(s)
- Bastien G Dauphin
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse 3, Institut National Polytechnique de Toulouse, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Philippe Ranocha
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse 3, Institut National Polytechnique de Toulouse, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse 3, Institut National Polytechnique de Toulouse, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier Toulouse 3, Institut National Polytechnique de Toulouse, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France.
| |
Collapse
|
14
|
Castillo SE, Tovar JC, Shamin A, Gutirerrez J, Pearson P, Gehan MA. A protocol for Chenopodium quinoa pollen germination. PLANT METHODS 2022; 18:65. [PMID: 35585546 PMCID: PMC9118578 DOI: 10.1186/s13007-022-00900-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Quinoa is an increasingly popular seed crop frequently studied for its tolerance to various abiotic stresses as well as its susceptibility to heat. Estimations of quinoa pollen viability through staining methods have resulted in conflicting results. A more effective alternative to stains is to estimate pollen viability through in vitro germination. Here we report a method for in vitro quinoa pollen germination that could be used to understand the impact of various stresses on quinoa fertility and therefore seed yield or to identify male-sterile lines for breeding. RESULTS A semi-automated method to count germinating pollen was developed in PlantCV, which can be widely used by the community. Pollen collected on day 4 after first anthesis at zeitgeber time 5 was optimum for pollen germination with an average germination of 68% for accession QQ74 (PI 614886). The optimal length of pollen incubation was found to be 48 h, because it maximizes germination rates while minimizing contamination. The pollen germination medium's pH, boric acid, and sucrose concentrations were optimized. The highest germination rates were obtained with 16% sucrose, 0.03% boric acid, 0.007% calcium nitrate, and pH 5.5. This medium was tested on quinoa accessions QQ74, and cherry vanilla with 68%, and 64% germination efficiencies, respectively. CONCLUSIONS We provide an in vitro pollen germination method for quinoa with average germination rates of 64 and 68% on the two accessions tested. This method is a valuable tool to estimate pollen viability in quinoa, and to test how stress affects quinoa fertility. We also developed an image analysis tool to semi-automate the process of counting germinating pollen. Quinoa produces many new flowers during most of its panicle development period, leading to significant variation in pollen maturity and viability between different flowers of the same panicle. Therefore, collecting pollen at 4 days after first anthesis is very important to collect more uniformly developed pollen and to obtain high germination rates.
Collapse
Affiliation(s)
| | - Jose C Tovar
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | | | | | - Paige Pearson
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Malia A Gehan
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
| |
Collapse
|