1
|
Malayaperumal S, Sriramulu S, Jothimani G, Banerjee A, Zhang H, Mohammed Rafi ST, Ramachandran I, NR RK, Sun XF, Pathak S. MicroRNA-122 overexpression suppresses the colon cancer cell proliferation by downregulating the astrocyte elevated gene-1/metadherin oncoprotein. Ann Med 2025; 57:2478311. [PMID: 40208016 PMCID: PMC11986857 DOI: 10.1080/07853890.2025.2478311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/09/2024] [Accepted: 02/17/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs that regulate essential cellular functions, such as cell adhesion, proliferation, migration, invasion, and programmed cell death, and therefore, alterations in miRNAs can contribute to carcinogenesis. Previous studies have shown that miRNA-122 is abundant in the liver and regulates cell proliferation, migration, and apoptosis. However, the expression pattern and mechanism of actions of miR-122 remain primarily unknown in colon cancer. METHODS In this study, we analyzed The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) database to assess the clinical significance of astrocyte elevated gene-1 (AEG-1)/metadherin (MTDH) and miR-122 in colon cancer. MiR-122 overexpression studies were performed in HCT116, SW480, and SW620 cell lines. Dual-luciferase assay was carried out to confirm the interaction between AEG-1 and miR-122. In vivo-JetPEI-transfection reagent was used for in-vivo transient transfection of miR-122 in the AOM/DSS-induced colon tumor mouse model. RESULTS Our results demonstrate that miR-122 was downregulated in colon cancer cells, and it influences the expressions of apoptotic factors and inflammatory cytokines. MiR-122 overexpression in HCT116, SW480, and SW620 cells showed upregulation of Caspase 3, Caspase 9, and BAX and decreased expression of BCL2, which are pro-apoptotic and anti-apoptotic members that maintain a ratio between cellular survival and cell death. In vivo transient transfection of miR-122 mimic in AOM/DSS induced colon tumor mouse model showed less inflammation and disease activity. The TCGA-COAD data indicated that AEG-1 expression was higher in patients with low expression of miR-122 and lower AEG-1 expression in patients with higher expression miR-122. CONCLUSION Our findings highlight the key role of miR-122 in the high grade of colonic inflammation, and possibly in colon cancer, and the use of miR-122 mimic might be a therapeutic option.
Collapse
Affiliation(s)
- Sarubala Malayaperumal
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Sushmitha Sriramulu
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Ganesan Jothimani
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Hong Zhang
- Department of Medical Sciences, School of Medicine, Orebro University, Örebro, Sweden
| | - Shabana Thabassum Mohammed Rafi
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - Rajesh Kanna NR
- Department of Pathology, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Xiao-Feng Sun
- Division of Oncology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| |
Collapse
|
2
|
Bravo-Vázquez LA, Castro-Pacheco AM, Pérez-Vargas R, Velázquez-Jiménez JF, Paul S. The Emerging Applications of Artificial MicroRNA-Mediated Gene Silencing in Plant Biotechnology. Noncoding RNA 2025; 11:19. [PMID: 40126343 PMCID: PMC11932238 DOI: 10.3390/ncrna11020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/06/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Improving crop yield potential is crucial to meet the increasing demands of a rapidly expanding global population in an ever-changing and challenging environment. Therefore, different technological approaches have been proposed over the last decades to accelerate plant breeding. Among them, artificial microRNAs (amiRNAs) represent an innovative tool with remarkable potential to assist plant improvement. MicroRNAs (miRNAs) are a group of endogenous, small (20-24 nucleotides), non-coding RNA molecules that play a crucial role in gene regulation. They are associated with most biological processes of a plant, including reproduction, development, cell differentiation, biotic and abiotic stress responses, metabolism, and plant architecture. In this context, amiRNAs are synthetic molecules engineered to mimic the structure and function of endogenous miRNAs, allowing for the targeted silencing of specific nucleic acids. The current review explores the diverse applications of amiRNAs in plant biology and agriculture, such as the management of infectious agents and pests, the engineering of plant metabolism, and the enhancement of plant resilience to abiotic stress. Moreover, we address future perspectives on plant amiRNA-based gene silencing strategies, highlighting the need for further research to fully comprehend the potential of this technology and to translate its scope toward the widespread adoption of amiRNA-based strategies for plant breeding.
Collapse
Affiliation(s)
| | | | | | | | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| |
Collapse
|
3
|
Zhao X, Li Y, Shen J, Guo C, Li J, Chen M, Xu H, Li K. Analysis of the miRNA Transcriptome in Aconitum vilmorinianum and Its Regulation of Diterpenoid Alkaloid Biosynthesis. Int J Mol Sci 2025; 26:348. [PMID: 39796203 PMCID: PMC11720529 DOI: 10.3390/ijms26010348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Aconitum vilmorinianum (A. vilmorinianum) is an important medicinal plant in the Aconitum genus that is known for its diterpenoid alkaloids, which exhibit significant pharmacological activity and toxicity, thus making it valuable for both medicinal use and as a biopesticide. Although the biosynthesis of terpenoids is well characterized, the potential gene regulatory role of microRNAs (miRNAs) in terpenoid biosynthesis in A. vilmorinianum remains unclear, and further research is needed to explore this aspect in this species. In this study, miRNA sequencing was conducted to analyze the miRNA population and its targets in A. vilmorinianum. A total of 22,435 small RNAs were identified across the nine samples. Through miRNA target gene association analysis, 356 target genes from 54 known miRNAs and 977 target genes from 151 novel miRNAs were identified. Target identification revealed that miR6300 targets the hydroxymethylglutaryl-CoA reductase (HMGR) gene, which is involved in the formation of the terpenoid backbone and regulates the synthesis of diterpenoid alkaloids. Additionally, preliminary findings suggest that miR4995 and miR5021 may be involved in the regulation of terpenoid biosynthesis, although further biochemical analysis is needed to confirm these potential roles. This study provides a foundational understanding of the molecular mechanisms by which miRNAs regulate terpenoid biosynthesis in A. vilmorinianum and offers scientific evidence for further research on the biosynthesis of diterpenoid alkaloids in this medicinal plant.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kunzhi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
4
|
Yang J, Lu X, Hu S, Yang X, Cao X. microRNA858 represses the transcription factor gene SbMYB47 and regulates flavonoid biosynthesis in Scutellaria baicalensis. PLANT PHYSIOLOGY 2024; 197:kiae607. [PMID: 39520698 DOI: 10.1093/plphys/kiae607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
MicroRNAs (miRNAs) are noncoding endogenous single-stranded RNAs that regulate target gene expression by reducing their transcription and translation. Several miRNAs in plants function in secondary metabolism. The dried root of Scutellaria baicalensis Georgi is a traditional Chinese medicine that contains flavonoids (baicalin, wogonoside, and baicalein) as its main active ingredients. Although the S. baicalensis genome sequence has been published, information regarding its miRNAs is lacking. In this study, 12 small RNA libraries of different S. baicalensis tissues were compiled, including roots, stems, leaves, and flowers. A total of 129 miRNAs were identified, including 99 miRNAs from 27 miRNA families and 30 predicted miRNAs. Furthermore, 46 reliable target genes of 15 miRNA families were revealed using psRNATarget and confirmed by degradome sequencing. It was speculated that the microRNA858 (miR858)-SbMYB47 module might be involved in flavonoid biosynthesis. Transient assays in Nicotiana benthamiana leaves indicated that miR858 targets SbMYB47 and suppresses its expression. Artificial miRNA-mediated knockdown of miR858 and overexpression of SbMYB47 significantly increased the flavonoid content in S. baicalensis hairy roots, while SbMYB47 knockdown inhibited flavonoid accumulation. Yeast one-hybrid and dual-luciferase assays indicated that SbMYB47 directly binds to and activates the S. baicalensis phenylalanine ammonia-lyase 3 (SbPAL-3) and flavone synthase II (SbFNSⅡ-2) promoters. Our findings reveal the link between the miR858-SbMYB47 module and flavonoid biosynthesis, providing a potential strategy for the production of flavonoids with important pharmacological activities through metabolic engineering.
Collapse
Affiliation(s)
- Jiaxin Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710119, China
- Department of Pharmacy, Medicine School, Xi'an International University, Xi'an 710077, China
| | - Xiayang Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710119, China
| | - Suying Hu
- Shaanxi Institute of Microbiology, Xi'an 710043, China
| | - Xiaozeng Yang
- Institute of Botany, Chinese of Academy Sciences, Beijing 100093, China
| | - Xiaoyan Cao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
5
|
Uriostegui-Pena AG, Reyes-Calderón A, Gutiérrez-García C, Srivastava A, Sharma A, Paul S. Identification of Black Cumin ( Nigella sativa) MicroRNAs by Next-Generation Sequencing and Their Implications in Secondary Metabolite Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2806. [PMID: 39409679 PMCID: PMC11478739 DOI: 10.3390/plants13192806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024]
Abstract
Secondary metabolites are bioactive compounds believed to contribute to the pharmacological properties of plants. MicroRNAs (miRNAs) are small non-coding RNA molecules involved in post-transcriptional regulation and are thought to play an important role in regulating secondary metabolism biosynthesis. Nevertheless, the extent of miRNA involvement in secondary metabolism remains minimal. Nigella sativa (black cumin/black seed) is a popular medicinal and culinary plant known for its pharmaceutical properties; however, its genomic information is scarce. In this study, next-generation sequencing (NGS) technology was employed to obtain the miRNA profile of N. sativa, and their involvement in secondary metabolite biosynthesis was explored. A total of 25,139,003 unique reads ranging from 16 to 40 nucleotides were attained, out of which 240 conserved and 34 novel miRNAs were identified. Moreover, 6083 potential target genes were recognized in this study. Several conserved and novel black cumin miRNAs were found to target enzymes involved in the terpenoid, diterpenoid, phenylpropanoid, carotenoid, flavonoid, steroid, and ubiquinone biosynthetic pathways, among others, for example, beta-carotene 3-hydroxylase, gibberellin 3 beta-dioxygenase, trimethyltridecatetraene synthase, carboxylic ester hydrolases, acetyl-CoA C-acetyltransferase, isoprene synthase, peroxidase, shikimate O-hydroxycinnamoyltransferase, etc. Furthermore, sequencing data were validated through qPCR by checking the relative expression of eleven randomly selected conserved and novel miRNAs (nsa-miR164d, nsa-miR166a, nsa-miR167b, nsa-miR171a, nsa-miR390b, nsa-miR396, nsa-miR159a, nsa-miRN1, nsa-miRN29, nsa-miRN32, and nsa-miRN34) and their expression patterns were found to be corroborated with the sequencing data. We anticipate that this work will assist in clarifying the implications of miRNAs in plant secondary metabolism and aid in the generation of artificial miRNA-based strategies to overproduce highly valuable secondary metabolites from N. sativa.
Collapse
Affiliation(s)
| | - Almendra Reyes-Calderón
- NatProLab, School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Claudia Gutiérrez-García
- NatProLab, School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Aashish Srivastava
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Ashutosh Sharma
- NatProLab, School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Sujay Paul
- NatProLab, School of Engineering and Sciences, Tecnologico de Monterrey, Queretaro 76130, Mexico
| |
Collapse
|
6
|
Mohd Zahid NII, Syed Othman SMI, Mustaffa AF, Ismail I, Che-Othman MH. Fine-tuning plant valuable secondary metabolite biosynthesis via small RNA manipulation: strategies and potential. PLANTA 2024; 260:89. [PMID: 39254898 DOI: 10.1007/s00425-024-04521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
Plants produce secondary metabolites that serve various functions, including defense against biotic and abiotic stimuli. Many of these secondary metabolites possess valuable applications in diverse fields, including medicine, cosmetic, agriculture, and food and beverage industries, exhibiting their importance in both plant biology and various human needs. Small RNAs (sRNA), such as microRNA (miRNA) and small interfering RNA (siRNA), have been shown to play significant roles in regulating the metabolic pathways post-transcriptionally by targeting specific key genes and transcription factors, thus offering a promising tool for enhancing plant secondary metabolite biosynthesis. In this review, we summarize current approaches for manipulating sRNAs to regulate secondary metabolite biosynthesis in plants. We provide an overview of the latest research strategies for sRNA manipulation across diverse plant species, including the identification of potential sRNAs involved in secondary metabolite biosynthesis in non-model plants. We also highlight the potential future research directions, focusing on the manipulation of sRNAs to produce high-value compounds with applications in pharmaceuticals, nutraceuticals, agriculture, cosmetics, and other industries. By exploring these advanced techniques, we aim to unlock new potentials for biotechnological applications, contributing to the production of high-value plant-derived products.
Collapse
Affiliation(s)
- Nur Irdina Izzatie Mohd Zahid
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Syed Muhammad Iqbal Syed Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Arif Faisal Mustaffa
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Ismanizan Ismail
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Muhamad Hafiz Che-Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
7
|
Ramprosand S, Govinden-Soulange J, Ranghoo-Sanmukhiya VM, Sanan-Mishra N. miRNA, phytometabolites and disease: Connecting the dots. Phytother Res 2024; 38:4570-4591. [PMID: 39072874 DOI: 10.1002/ptr.8287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024]
Abstract
miRNAs are tiny noncoding ribonucleotides that function as critical regulators of gene-expression in eukaryotes. A single miRNA may be involved in the regulation of several target mRNAs forming complex cellular networks to regulate diverse aspects of development in an organism. The deregulation of miRNAs has been associated with several human diseases. Therefore, miRNA-based therapeutics is gaining interest in the pharmaceutical industry as the next-generation drugs for the cure of many diseases. Medicinal plants have also been used for the treatment of several human diseases and their curative potential is attributed to their reserve in bioactive metabolites. A role for miRNAs as regulators of the phytometabolic pathways in plants has emerged in the recent past. Experimental studies have also indicated the potential of plant encoded secondary phytometabolites to act as cross-regulators of mammalian miRNAs and transcripts to regulate human diseases (like cancer). The evidence for this cross-kingdom gene regulation through miRNA has gathered considerable enthusiasm in the scientific field, even though there are on-going debates regarding the reproducibility and the effectiveness of these findings. In this review, we provide information to connect the medicinal and gene regulatory properties of secondary phytometabolites, their regulation by miRNAs in plants and their effects on human miRNAs for regulating downstream metabolic or pathological processes. While further extensive research initiatives and good clinical evidence are required to prove or disapprove these findings, understanding of these regulations will have important implications in the potential use of synthetic or artificial miRNAs as effective alternatives for providing health benefits.
Collapse
Affiliation(s)
- Srutee Ramprosand
- Faculty of Agriculture, University of Mauritius, Réduit, Mauritius
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
8
|
Li H, Guo Z, Xu M, Zhao J, Xu D. Molecular mechanism of miRNA mediated biosynthesis of secondary metabolites in medicinal plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108524. [PMID: 38518432 DOI: 10.1016/j.plaphy.2024.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/28/2024] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
Plant secondary metabolites are important raw materials for the pharmaceutical industry, and their biosynthetic processes are subject to diverse and precise regulation by miRNA. The identification of miRNA molecules in medicinal plants and exploration of their mechanisms not only contribute to a deeper understanding of the molecular genetic mechanisms of plant growth, development and resistance to stress, but also provide a theoretical basis for elucidating the pharmacological effects of authentic medicinal materials and constructing bioreactors for the synthesis of medicinal secondary metabolite components. This paper summarizes the research reports on the discovery of miRNA in medicinal plants and their regulatory mechanisms on the synthesis of secondary metabolites by searching the relevant literature in public databases. It summarizes the currently discovered miRNA and their functions in medicinal plants, and summarizes the molecular mechanisms regulating the synthesis and degradation of secondary metabolites. Furthermore, it provides a prospect for the research and development of medicinal plant miRNA. The compiled information contributes to a comprehensive understanding of the research progress on miRNA in medicinal plants and provides a reference for the industrial development of related secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road, Xinpu District, Zunyi City, Guizhou Province, 563099, China
| | - Ziyi Guo
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road, Xinpu District, Zunyi City, Guizhou Province, 563099, China
| | - Mengwei Xu
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road, Xinpu District, Zunyi City, Guizhou Province, 563099, China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, No.6 Xuefuxi Road, Xinpu District, Zunyi City, Guizhou Province, 563099, China.
| | - Delin Xu
- Department of Cell Biology, Zunyi Medical University, No.6 Xuefuxi Road, Xinpu District, Zunyi City, Guizhou Province, 563099, China; Department of Medical Instrumental Analysis, Zunyi Medical University, No.6 Xuefuxi Road, Xinpu District, Zunyi City, Guizhou Province, 563099, China.
| |
Collapse
|
9
|
Das P, Chandra T, Negi A, Jaiswal S, Iquebal MA, Rai A, Kumar D. A comprehensive review on genomic resources in medicinally and industrially important major spices for future breeding programs: Status, utility and challenges. Curr Res Food Sci 2023; 7:100579. [PMID: 37701635 PMCID: PMC10494321 DOI: 10.1016/j.crfs.2023.100579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023] Open
Abstract
In the global market, spices possess a high-value but low-volume commodities of commerce. The food industry depends largely on spices for taste, flavor, and therapeutic properties in replacement of cheap synthetic ones. The estimated growth rate for spices demand in the world is ∼3.19%. Since spices grow in limited geographical regions, India is one of the leading producer of spices, contributing 25-30 percent of total world trade. Hitherto, there has been no comprehensive review of the genomic resources of industrially important major medicinal spices to overcome major impediments in varietal improvement and management. This review focuses on currently available genomic resources of 24 commercially significant spices, namely, Ajwain, Allspice, Asafoetida, Black pepper, Cardamom large, Cardamom small, Celery, Chillies, Cinnamon, Clove, Coriander, Cumin, Curry leaf, Dill seed, Fennel, Fenugreek, Garlic, Ginger, Mint, Nutmeg, Saffron, Tamarind, Turmeric and Vanilla. The advent of low-cost sequencing machines has contributed immensely to the voluminous data generation of these spices, cracking the complex genomic architecture, marker discovery, and understanding comparative and functional genomics. This review of spice genomics resources concludes the perspective and way forward to provide footprints by uncovering genome assemblies, sequencing and re-sequencing projects, transcriptome-based studies, non-coding RNA-mediated regulation, organelles-based resources, developed molecular markers, web resources, databases and AI-directed resources in candidate spices for enhanced breeding potential in them. Further, their integration with molecular breeding could be of immense use in formulating a strategy to protect and expand the production of the spices due to increased global demand.
Collapse
Affiliation(s)
- Parinita Das
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ankita Negi
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
10
|
Zeeshan Ul Haq M, Yu J, Yao G, Yang H, Iqbal HA, Tahir H, Cui H, Liu Y, Wu Y. A Systematic Review on the Continuous Cropping Obstacles and Control Strategies in Medicinal Plants. Int J Mol Sci 2023; 24:12470. [PMID: 37569843 PMCID: PMC10419402 DOI: 10.3390/ijms241512470] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Continuous cropping (CC) is a common practice in agriculture, and usually causes serious economic losses due to soil degeneration, decreased crop yield and quality, and increased disease incidence, especially in medicinal plants. Continuous cropping obstacles (CCOs) are mainly due to changes in soil microbial communities, nutrient availability, and allelopathic effects. Recently, progressive studies have illustrated the molecular mechanisms of CCOs, and valid strategies to overcome them. Transcriptomic and metabolomics analyses revealed that identified DEGs (differently expressed genes) and metabolites involved in the response to CCOs are involved in various biological processes, including photosynthesis, carbon metabolism, secondary metabolite biosynthesis, and bioactive compounds. Soil improvement is an effective strategy to overcome this problem. Soil amendments can improve the microbial community by increasing the abundance of beneficial microorganisms, soil fertility, and nutrient availability. In this review, we sum up the recent status of the research on CCOs in medicinal plants, the combination of transcriptomic and metabolomics studies, and related control strategies, including uses of soil amendments, crop rotation, and intercropping. Finally, we propose future research trends for understanding CCOs, and strategies to overcome these obstacles and promote sustainable agriculture practices in medicinal plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ya Liu
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Yougen Wu
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| |
Collapse
|
11
|
Kaur R, Pathania S, Kajal M, Thakur V, Kaur J, Singh K. Integrated analysis of smRNAome, transcriptome, and degradome data to decipher microRNAs regulating costunolide biosynthesis in Saussurea lappa. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111689. [PMID: 36965630 DOI: 10.1016/j.plantsci.2023.111689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Saussurea lappa (S. lappa) has been known to synthesize medicinally important, costunolide. Due to its immense therapeutic importance, understanding of regulatory mechanism associated with its biosynthesis is crucial. The identification of genes and transcription factors (TFs) in S. lappa, created a clear picture of costunolide biosynthesis pathways. Further to understand the regulation of costunolide biosynthesis by miRNAs, an integrated study of transcriptome, miRNAs, and degradome was performed. Identified candidate miRNAs and associated feed-forward loops (FFLs) illustrates their regulatory role in secondary metabolite biosynthesis. Small RNA and degradome sequencing were performed for leaf and root tissues to determine miRNAs-targets pairs. A total of 711 and 525 such targets were obtained for novel and known miRNAs respectively. This data was used to generate costunolide-specific miRNA-TF-gene interactome to perform systematic analyses through graph theoretical approach. Interestingly, miR171c.1 and sla-miR121 were identified as key regulators to connect and co-regulate both mevalonate and sesquiterpenoid pathways to bio-synthesize costunolide. Tissue-specific FFLs were identified to be involved in costunolide biosynthesis which further suggests the evolutionary co-relation of root-specific networks in synthesis of secondary metabolites in addition to leaf-specific networks. This integrative approach allowed us to determine candidate miRNAs and associated tissue-specific motifs involved in the diversification of secondary metabolites. MiRNAs identified in present study can provide alternatives for bioengineering tool to enhance the synthesis of costunolide and other secondary metabolites in S. lappa.
Collapse
Affiliation(s)
- Ravneet Kaur
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India.
| | - Shivalika Pathania
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Monika Kajal
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Vasundhara Thakur
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| |
Collapse
|
12
|
Trivedi TS, Patel MP, Nanavaty V, Mankad AU, Rawal RM, Patel SK. MicroRNAs from Holarrhena pubescens stems: Identification by small RNA Sequencing and their Potential Contribution to Human Gene Targets. Funct Integr Genomics 2023; 23:149. [PMID: 37148427 DOI: 10.1007/s10142-023-01078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Holarrhena pubescens is an effective medicinal plant from the Apocynaceae family, widely distributed over the Indian subcontinent and extensively used by Ayurveda and ethno-medicine systems without apparent side effects. We postulated that miRNAs, endogenous non-coding small RNAs that regulate gene expression at the post-transcriptional level, may, after ingestion into the human body, contribute to the medicinal properties of plants of this species by inducing regulated human gene expression to modulate. However, knowledge is scarce about miRNA in Holarrhena. In addition, to test the hypothesis on the potential pharmacological properties of miRNA, we performed a high-throughput sequencing analysis using the Next Generation Sequencing Illumina platform; 42,755,236 raw reads have been generated from H. pubescens stems from a library of small RNA isolated, identifying 687 known and 50 new miRNAs led. The novel H. pubescens miRNAs were predicted to regulate specific human genes, and subsequent annotations of gene functions suggested a possible role in various biological processes and signaling pathways, such as Wnt, MAPK, PI3K-Akt, and AMPK signaling pathways and endocytosis. The association of these putative targets with many diseases, including cancer, congenital malformations, nervous system disorders, and cystic fibrosis, has been demonstrated. The top hub proteins STAT3, MDM2, GSK3B, NANOG, IGF1, PRKCA, SNAP25, SRSF1, HTT, and SNCA show their interaction with human diseases, including cancer and cystic fibrosis. To our knowledge, this is the first report of uncovering H. pubescens miRNAs based on high-throughput sequencing and bioinformatics analysis. This study has provided new insight into a potential cross-species control of human gene expression. The potential for miRNA transfer should be evaluated as one possible mechanism of action to account for the beneficial properties of this valuable species.
Collapse
Affiliation(s)
- Tithi S Trivedi
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Maulikkumar P Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Vishal Nanavaty
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
- Neuberg Centre for Genomic Medicine, Neuberg Supratech Reference Laboratory, Ahmedabad, 380006, Gujarat, India
| | - Archana U Mankad
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Rakesh M Rawal
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Saumya K Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
13
|
Reyes-Calderón A, Gutiérrez-García C, Urióstegui-Pena AG, Srivastava A, Aguilar-Marcelino L, Iqbal HMN, Ahmed SSSJ, Paul S, Sharma A. Identification of Cumin ( Cuminum cyminum) MicroRNAs through Deep Sequencing and Their Impact on Plant Secondary Metabolism. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091756. [PMID: 37176813 PMCID: PMC10180537 DOI: 10.3390/plants12091756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
The pharmacological properties of plants lie in the content of secondary metabolites that are classified into different categories based on their biosynthesis, structures, and functions. MicroRNAs (miRNAs) are small non-coding RNA molecules that play crucial post-transcriptional regulatory roles in plants, including development and stress-response signaling; however, information about their involvement in secondary metabolism is still limited. Cumin is one of the most popular seeds from the plant Cuminum cyminum, with extensive applications in herbal medicine and cooking; nevertheless, no previous studies focus on the miRNA profile of cumin. In this study, the miRNA profile of C. cyminum and its association with the biosynthesis of secondary metabolites were determined using NGS technology. The sequencing data yielded 10,956,054 distinct reads with lengths ranging from 16 to 40 nt, of which 349 miRNAs were found to be conserved and 39 to be novel miRNAs. Moreover, this work identified 1959 potential target genes for C. cyminum miRNAs. It is interesting to note that several conserved and novel miRNAs have been found to specifically target important terpenoid backbone, flavonoid biosynthesis, and lipid/fatty acid pathways enzymes. We believe this investigation will aid in elucidating the implications of miRNAs in plant secondary metabolism.
Collapse
Affiliation(s)
- Almendra Reyes-Calderón
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro 76130, Mexico
| | - Claudia Gutiérrez-García
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro 76130, Mexico
| | - Andrea G Urióstegui-Pena
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro 76130, Mexico
| | - Aashish Srivastava
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Liliana Aguilar-Marcelino
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, INIFAP, Jiutepec 62550, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Shiek S S J Ahmed
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, India
| | - Sujay Paul
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro 76130, Mexico
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro 76130, Mexico
| |
Collapse
|
14
|
Bravo-Vázquez LA, Angulo-Bejarano PI, Bandyopadhyay A, Sharma A, Paul S. Regulatory roles of noncoding RNAs in callus induction and plant cell dedifferentiation. PLANT CELL REPORTS 2023; 42:689-705. [PMID: 36753041 DOI: 10.1007/s00299-023-02992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Plant regulatory noncoding RNAs (ncRNAs) have emerged as key modulators of gene expression during callus induction. Their further study may promote the design of innovative plant tissue culture protocols. The use of plants by humans has recently taken on a new and expanding insight due to the advent of genetic engineering technologies. In this context, callus cultures have shown remarkable potential for synthesizing valuable biomolecules, crop improvement, plant micropropagation, and biodiversity preservation. A crucial stage in callus production is the conversion of somatic cells into totipotent cells; compelling evidence indicates that stress factors, transcriptional regulators, and plant hormones can trigger this biological event. Besides, posttranscriptional regulators of gene expression might be essential participants in callus induction. However, research related to the analysis of noncoding RNAs (ncRNAs) that modulate callogenesis and plant cell dedifferentiation in vitro is still at an early stage. During the last decade, some relevant studies have enlightened the fact that different classes of ncRNAs, such as microRNAs (miRNAs), small interfering RNAs (siRNAs), and long noncoding RNAs (lncRNAs) are implicated in plant cell dedifferentiation through regulating the expression levels of diverse gene targets. Hence, understanding the molecular relevance of these ncRNAs in the aforesaid biological processes might represent a promising source of new biotechnological approaches for callus culture and plant improvement. In this current work, we review the experimental evidence regarding the prospective roles of ncRNAs in callus induction and plant cell dedifferentiation to promote this field of study.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Paola Isabel Angulo-Bejarano
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico
| | - Anindya Bandyopadhyay
- International Rice Research Institute, 4031, Manila, Philippines
- Reliance Industries Ltd., Navi Mumbai, 400701, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico.
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130, Queretaro, Mexico.
| |
Collapse
|
15
|
Othman SMIS, Mustaffa AF, Che-Othman MH, Samad AFA, Goh HH, Zainal Z, Ismail I. Overview of Repressive miRNA Regulation by Short Tandem Target Mimic (STTM): Applications and Impact on Plant Biology. PLANTS (BASEL, SWITZERLAND) 2023; 12:669. [PMID: 36771753 PMCID: PMC9918958 DOI: 10.3390/plants12030669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The application of miRNA mimic technology for silencing mature miRNA began in 2007. This technique originated from the discovery of the INDUCED BY PHOSPHATE STARVATION 1 (IPS1) gene, which was found to be a competitive mimic that prevents the cleavage of the targeted mRNA by miRNA inhibition at the post-transcriptional level. To date, various studies have been conducted to understand the molecular mimic mechanism and to improve the efficiency of this technology. As a result, several mimic tools have been developed: target mimicry (TM), short tandem target mimic (STTM), and molecular sponges (SPs). STTM is the most-developed tool due to its stability and effectiveness in decoying miRNA. This review discusses the application of STTM technology on the loss-of-function studies of miRNA and members from diverse plant species. A modified STTM approach for studying the function of miRNA with spatial-temporal expression under the control of specific promoters is further explored. STTM technology will enhance our understanding of the miRNA activity in plant-tissue-specific development and stress responses for applications in improving plant traits via miRNA regulation.
Collapse
Affiliation(s)
- Syed Muhammad Iqbal Syed Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Arif Faisal Mustaffa
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - M. Hafiz Che-Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Abdul Fatah A. Samad
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor Bahru 81310, Johor, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Zamri Zainal
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Ismanizan Ismail
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| |
Collapse
|
16
|
Non-coding RNAs as key players in the neurodegenerative diseases: Multi-platform strategies and approaches for exploring the Genome's dark matter. J Chem Neuroanat 2023; 129:102236. [PMID: 36709005 DOI: 10.1016/j.jchemneu.2023.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
A growing amount of evidence in the last few years has begun to unravel that non-coding RNAs have a myriad of functions in gene regulation. Intensive investigation on non-coding RNAs (ncRNAs) has led to exploring their broad role in neurodegenerative diseases (NDs) owing to their regulatory role in gene expression. RNA sequencing technologies and transcriptome analysis has unveiled significant dysregulation of ncRNAs attributed to their biogenesis, upregulation, downregulation, aberrant epigenetic regulation, and abnormal transcription. Despite these advances, the understanding of their potential as therapeutic targets and biomarkers underpinning detailed mechanisms is still unknown. Advancements in bioinformatics and molecular technologies have improved our knowledge of the dark matter of the genome in terms of recognition and functional validation. This review aims to shed light on ncRNAs biogenesis, function, and potential role in NDs. Further deepening of their role is provided through a focus on the most recent platforms, experimental approaches, and computational analysis to investigate ncRNAs. Furthermore, this review summarizes and evaluates well-studied miRNAs, lncRNAs and circRNAs concerning their potential role in pathogenesis and use as biomarkers in NDs. Finally, a perspective on the main challenges and novel methods for the future and broad therapeutic use of ncRNAs is offered.
Collapse
|
17
|
Cajanus platycarpus Flavonoid 3'5' Hydroxylase_2 ( CpF3'5'H_2) Confers Resistance to Helicoverpa armigera by Modulating Total Polyphenols and Flavonoids in Transgenic Tobacco. Int J Mol Sci 2023; 24:ijms24021755. [PMID: 36675270 PMCID: PMC9862005 DOI: 10.3390/ijms24021755] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Pod borer Helicoverpa armigera, a polyphagus herbivorous pest, tremendously incurs crop damage in economically important crops. This necessitates the identification and utility of novel genes for the control of the herbivore. The present study deals with the characterization of a flavonoid 3'5' hydroxylase_2 (F3'5'H_2) from a pigeonpea wild relative Cajanus platycarpus, possessing a robust chemical resistance response to H. armigera. Though F3'5'H_2 displayed a dynamic expression pattern in both C. platycarpus (Cp) and the cultivated pigeonpea, Cajanus cajan (Cc) during continued herbivory, CpF3'5'H_2 showed a 4.6-fold increase vis a vis 3-fold in CcF3'5'H_2. Despite similar gene copy numbers in the two Cajanus spp., interesting genic and promoter sequence changes highlighted the stress responsiveness of CpF3'5'H_2. The relevance of CpF3'5'H_2 in H. armigera resistance was further validated in CpF3'5'H_2-overexpressed transgenic tobacco based on reduced leaf damage and increased larval mortality through an in vitro bioassay. As exciting maiden clues, CpF3'5'H_2 deterred herbivory in transgenic tobacco by increasing total flavonoids, polyphenols and reactive oxygen species (ROS) scavenging capacity. To the best of our knowledge, this is a maiden attempt ascertaining the role of F3'5'H_2 gene in the management of H. armigera. These interesting leads suggest the potential of this pivotal branch-point gene in biotic stress management programs.
Collapse
|
18
|
MicroRNAs in Medicinal Plants. Int J Mol Sci 2022; 23:ijms231810477. [PMID: 36142389 PMCID: PMC9500639 DOI: 10.3390/ijms231810477] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Medicinal plant microRNAs (miRNAs) are an endogenous class of small RNA central to the posttranscriptional regulation of gene expression. Biosynthetic research has shown that the mature miRNAs in medicinal plants can be produced from either the standard messenger RNA splicing mechanism or the pre-ribosomal RNA splicing process. The medicinal plant miRNA function is separated into two levels: (1) the cross-kingdom level, which is the regulation of disease-related genes in animal cells by oral intake, and (2) the intra-kingdom level, which is the participation of metabolism, development, and stress adaptation in homologous or heterologous plants. Increasing research continues to enrich the biosynthesis and function of medicinal plant miRNAs. In this review, peer-reviewed papers on medicinal plant miRNAs published on the Web of Science were discussed, covering a total of 78 species. The feasibility of the emerging role of medicinal plant miRNAs in regulating animal gene function was critically evaluated. Staged progress in intra-kingdom miRNA research has only been found in a few medicinal plants, which may be mainly inhibited by their long growth cycle, high demand for growth environment, immature genetic transformation, and difficult RNA extraction. The present review clarifies the research significance, opportunities, and challenges of medicinal plant miRNAs in drug development and agricultural production. The discussion of the latest results furthers the understanding of medicinal plant miRNAs and helps the rational design of the corresponding miRNA/target genes functional modules.
Collapse
|
19
|
Bravo-Vázquez LA, Srivastava A, Bandyopadhyay A, Paul S. The elusive roles of chloroplast microRNAs: an unexplored facet of the plant transcriptome. PLANT MOLECULAR BIOLOGY 2022; 109:667-671. [PMID: 35614291 DOI: 10.1007/s11103-022-01279-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc., 76130, San Pablo, Queretaro, Mexico
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Anindya Bandyopadhyay
- International Rice Research Institute, 4031, Manila, Philippines.
- Reliance Industries Ltd., 400701, Navi Mumbai, India.
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc., 76130, San Pablo, Queretaro, Mexico.
| |
Collapse
|
20
|
Ražná K, Harenčár Ľ, Kučka M. The Involvement of microRNAs in Plant Lignan Biosynthesis—Current View. Cells 2022; 11:cells11142151. [PMID: 35883592 PMCID: PMC9323225 DOI: 10.3390/cells11142151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023] Open
Abstract
Lignans, as secondary metabolites synthesized within a phenylpropanoid pathway, play various roles in plants, including their involvement in growth and plant defense processes. The health and nutritional benefits of lignans are unquestionable, and many studies have been devoted to these attributes. Although the regulatory role of miRNAs in the biosynthesis of secondary metabolites has been widely reported, there is no systematic review available on the miRNA-based regulatory mechanism of lignans biosynthesis. However, the genetic background of lignan biosynthesis in plants is well characterized. We attempted to put together a regulatory mosaic based on current knowledge describing miRNA-mediated regulation of genes, enzymes, or transcription factors involved in this biosynthesis process. At the same time, we would like to underline the fact that further research is necessary to improve our understanding of the miRNAs regulating plant lignan biosynthesis by exploitation of current approaches for functional identification of miRNAs.
Collapse
|
21
|
Almatroudi A. Non-Coding RNAs in Tuberculosis Epidemiology: Platforms and Approaches for Investigating the Genome's Dark Matter. Int J Mol Sci 2022; 23:4430. [PMID: 35457250 PMCID: PMC9024992 DOI: 10.3390/ijms23084430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023] Open
Abstract
A growing amount of information about the different types, functions, and roles played by non-coding RNAs (ncRNAs) is becoming available, as more and more research is done. ncRNAs have been identified as potential therapeutic targets in the treatment of tuberculosis (TB), because they may be essential regulators of the gene network. ncRNA profiling and sequencing has recently revealed significant dysregulation in tuberculosis, primarily due to aberrant processes of ncRNA synthesis, including amplification, deletion, improper epigenetic regulation, or abnormal transcription. Despite the fact that ncRNAs may have a role in TB characteristics, the detailed mechanisms behind these occurrences are still unknown. The dark matter of the genome can only be explored through the development of cutting-edge bioinformatics and molecular technologies. In this review, ncRNAs' synthesis and functions are discussed in detail, with an emphasis on the potential role of ncRNAs in tuberculosis. We also focus on current platforms, experimental strategies, and computational analyses to explore ncRNAs in TB. Finally, a viewpoint is presented on the key challenges and novel techniques for the future and for a wide-ranging therapeutic application of ncRNAs.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
22
|
Yan W, Cao S, Wu Y, Ye Z, Zhang C, Yao G, Yu J, Yang D, Zhang J. Integrated Analysis of Physiological, mRNA Sequencing, and miRNA Sequencing Data Reveals a Specific Mechanism for the Response to Continuous Cropping Obstacles in Pogostemon cablin Roots. FRONTIERS IN PLANT SCIENCE 2022; 13:853110. [PMID: 35432413 PMCID: PMC9010791 DOI: 10.3389/fpls.2022.853110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 06/02/2023]
Abstract
Pogostemon cablin (patchouli) is a commercially important medicinal and industrial crop grown worldwide for its medicinal and aromatic properties. Patchoulol and pogostone, derived from the essential oil of patchouli, are considered valuable components in the cosmetic and pharmaceutical industries. Due to its high application value in the clinic and industry, the demand for patchouli is constantly growing. Unfortunately, patchouli cultivation has suffered due to severe continuous cropping obstacles, resulting in a significant decline in yield and quality. Moreover, the physiological and transcriptional changes in patchouli in response to continuous cropping obstacles remain unclear. This has greatly restricted the development of the patchouli industry. To explore the mechanism underlying the rapid response of patchouli roots to continuous cropping stress, integrated analysis of the transcriptome and miRNA profiles of patchouli roots under continuous and noncontinuous cropping conditions in different growth periods was conducted using RNA sequencing (RNA-seq) and miRNA-seq and complemented with physiological data. The physiological and biochemical results showed that continuous cropping significantly inhibited root growth, decreased root activity, and increased the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and the levels of osmoregulators (malondialdehyde, soluble protein, soluble sugar, and proline). Subsequently, we found 4,238, 3,494, and 7,290 upregulated and 4,176, 3,202, and 8,599 downregulated differentially expressed genes (DEGs) in the three growth periods of continuously cropped patchouli, many of which were associated with primary carbon and nitrogen metabolism, defense responses, secondary metabolite biosynthesis, and transcription factors. Based on miRNA-seq, 927 known miRNAs and 130 novel miRNAs were identified, among which 67 differentially expressed miRNAs (DEMIs) belonging to 24 miRNA families were induced or repressed by continuous cropping. By combining transcriptome and miRNA profiling, we obtained 47 miRNA-target gene pairs, consisting of 18 DEMIs and 43 DEGs, that likely play important roles in the continuous cropping response of patchouli. The information provided in this study will contribute to clarifying the intricate mechanism underlying the patchouli response to continuous cropping obstacles. In addition, the candidate miRNAs and genes can provide a new strategy for breeding continuous cropping-tolerant patchouli.
Collapse
|