1
|
Qi W, Bai J, Yu H, Han G. Physiological Adaptations of Vigna radiata to Heavy Metal Stress: Soluble Sugar Accumulation and Biomass Enhancement. PLANTS (BASEL, SWITZERLAND) 2025; 14:1191. [PMID: 40284078 PMCID: PMC12030698 DOI: 10.3390/plants14081191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Heavy metal contamination significantly threatens crop growth and global food security. Understanding plant responses to such stress is crucial to developing stress-tolerant crops. This study explores the physiological and biochemical responses of Vigna radiata (L.) R. Wilczek to mercury, lead, and copper stress, focusing on the role of soluble sugar accumulation and biomass enhancement in conferring heavy metal tolerance. METHODS Commercially available V. radiata seeds were exposed to varying concentrations (50, 150, and 300 mg/L) of mercurous nitrate, lead nitrate, and copper chloride under controlled conditions. The germination rates, seedling growth, and physiological parameters such as the soluble sugar and protein content were analyzed using spectrophotometry and statistical methods, including ANOVA. RESULTS The results demonstrated that lead ion stress significantly increased the seedling dry weight, while all the tested heavy metals promoted soluble sugar accumulation. Although the heavy metals inhibited germination and growth at higher concentrations, Vigna radiata exhibited strong tolerance at moderate stress levels. CONCLUSION This study highlights the adaptive strategies of V. radiata, including soluble-sugar-mediated osmotic adjustment and enhanced biomass allocation, which contribute to its resilience under heavy metal stress. These findings provide insights for breeding stress-resistant crops and managing heavy-metal-contaminated environments.
Collapse
Affiliation(s)
| | | | | | - Guojun Han
- Department of Bioscience, Changchun Normal University, No. 677, Changji North Road, Erdao District, Changchun 130032, China
| |
Collapse
|
2
|
Fatahiyan F, Najafi F, Shirkhani Z. Enhancing salt stress tolerance in Carthamus tinctorius L. through selenium soil treatment: anatomical, biochemical, and physiological insights. BMC PLANT BIOLOGY 2025; 25:100. [PMID: 39856597 PMCID: PMC11760698 DOI: 10.1186/s12870-025-06078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
Selenium (Se) plays a crucial role in ameliorating the negative impact of abiotic stress. The present study was performed to elucidate the efficacy of soil treatment of Se in reducing salt-induced stress in Carthamus tinctorius L. In this study, three different levels of Na2SeO4 (0, 0.01, and 0.02 g kg- 1) and four levels of NaCl (0, 0.5, 1.5, and 2.5 g kg- 1) were applied. The findings revealed that while NaCl decreased seed germination parameters, growth characteristics, K+ content, relative water content (RWC), and photosynthetic pigments, it increased Na+ content, soluble carbohydrates, H2O2 content, and malondialdehyde (MDA) level. The application of Se showed a positive effect on seed germination and growth characteristics under salinity conditions, which is linked to alterations in anatomical, biochemical, and physiological factors. Anatomical studies showed that treatment with Se led to increased stem diameter, cortical parenchyma thickness, and pith diameter under salinity stress. However, variations in the thickness of the xylem and phloem did not reach statistical significance. The application of Se (0.02 g kg- 1) raised Na+ content (7.65%), K+ content (29.24%), RWC (15%), Chl a (17%), Chl b (21.73%), Chl a + b (16.9%), Car (4.22%), and soluble carbohydrates (11%) in plants subjected to NaCl (2.5 g kg- 1) stress. Furthermore, it decreased H2O2 (25.65%) and MDA (11.9%) in the shoots. The findings of the current study advocate the application of the Se-soil treating technique as an approach for salt stress mitigation in crops grown in saline conditions.
Collapse
Affiliation(s)
- Fatemeh Fatahiyan
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, P. O. Box 17719-14911, Tehran, Iran
| | - Farzaneh Najafi
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, P. O. Box 17719-14911, Tehran, Iran.
| | - Zohreh Shirkhani
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, P. O. Box 17719-14911, Tehran, Iran
| |
Collapse
|
3
|
Song LY, Li J, Zhang LD, Guo ZY, Xu CQ, Jiang LW, Liu JY, Wang JC, Li QH, Tang HC, Zheng HL. AmTPS6 promotes trehalose biosynthesis to enhance the Cd tolerance in mangrove Avicennia marina. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135926. [PMID: 39307018 DOI: 10.1016/j.jhazmat.2024.135926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
Cadmium (Cd) pollution poses a significant ecological risk to mangrove ecosystems. Trehalose has excellent potential to mitigate the adverse effects of heavy metals. Unfortunately, the mechanisms related to trehalose-mediated heavy metal tolerance in plants remain elusive. In the present study, we firstly found that Cd induced the accumulation of trehalose and the differential expression of trehalose biosynthesis genes in the roots of mangrove plant Avicennia marina. Then, we found that the application of exogenous trehalose could alleviate the negative effects of Cd on A. marina by phenotypic observation. In addition, photosynthetic parameters and cellular ultrastructure analyses demonstrated that exogenous trehalose could improve the photosynthesis and stabilize the chloroplast and nuclear structure of the leaves of A. marina. Besides, exogenous trehalose could inhibit the Cd2+ influx from the root to reduce the Cd2+ content in A. marina. Subsequently, substrate sensitivity assay combined with ion uptake analysis using yeast cells showed that several trehalose biosynthesis genes may have a regulatory function for Cd2+ transport. Finally, we further identified a positive regulatory factor, AmTPS6, which enhances the Cd tolerance in transgenic Arabidopsis thaliana. Taken together, these findings provide new understanding to the mechanism of Cd tolerance in mangrove A. marina at trehalose aspect and a theoretical basis for the conservation of mangroves in coastal wetlands.
Collapse
Affiliation(s)
- Ling-Yu Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China; Houji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030000, China
| | - Zhao-Yu Guo
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Chao-Qun Xu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Li-Wei Jiang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Jin-Yu Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Ji-Cheng Wang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Qing-Hua Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Han-Chen Tang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
4
|
Rihacek M, Kosaristanova L, Fialova T, Rypar T, Sterbova DS, Adam V, Zurek L, Cihalova K. Metabolic adaptations of Escherichia coli to extended zinc exposure: insights into tricarboxylic acid cycle and trehalose synthesis. BMC Microbiol 2024; 24:384. [PMID: 39354342 PMCID: PMC11443826 DOI: 10.1186/s12866-024-03463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/16/2024] [Indexed: 10/03/2024] Open
Abstract
Balanced bacterial metabolism is essential for cell homeostasis and growth and can be impacted by various stress factors. In particular, bacteria exposed to metals, including the nanoparticle form, can significantly alter their metabolic processes. It is known that the extensive and intensive use of food and feed supplements, including zinc, in human and animal nutrition alters the intestinal microbiota and this may negatively impact the health of the host. This study examines the effects of zinc (zinc oxide and zinc oxide nanoparticles) on key metabolic pathways of Escherichia coli. Transcriptomic and proteomic analyses along with quantification of intermediates of tricarboxylic acid (TCA) were employed to monitor and study the bacterial responses. Multi-omics analysis revealed that extended zinc exposure induced mainly oxidative stress and elevated expression/production of enzymes of carbohydrate metabolism, especially enzymes for synthesis of trehalose. After the zinc withdrawal, E. coli metabolism returned to a baseline state. These findings shed light on the alteration of TCA and on importance of trehalose synthesis in metal-induced stress and its broader implications for bacterial metabolism and defense and consequently for the balance and health of the human and animal microbiome.
Collapse
Affiliation(s)
- Martin Rihacek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Ludmila Kosaristanova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Tatiana Fialova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Tomas Rypar
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Dagmar Skopalova Sterbova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Kristyna Cihalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic.
| |
Collapse
|
5
|
Thakral V, Sudhakaran S, Jadhav H, Mahakalkar B, Sehra A, Dhar H, Kumar S, Sonah H, Sharma TR, Deshmukh R. Unveiling silicon-mediated cadmium tolerance mechanisms in mungbean (Vigna radiata (L.) Wilczek): Integrative insights from gene expression, antioxidant responses, and metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134671. [PMID: 38833953 DOI: 10.1016/j.jhazmat.2024.134671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
Cadmium (Cd), one of the most phytotoxic heavy metals, is a major contributor to yield losses in several crops. Silicon (Si) is recognized for its vital role in mitigating Cd toxicity, however, the specific mechanisms governing this mitigation process are still not fully understood. In the present study, the effect of Si supplementation on mungbean (Vigna radiata (L.) Wilczek) plants grown under Cd stress was investigated to unveil the intricate pathways defining Si derived stress tolerance. Non-invasive leaf imaging technique revealed improved growth, biomass, and photosynthetic efficiency in Si supplemented mungbean plants under Cd stress. Further, physiological and biochemical analysis revealed Si mediated increase in activity of glutathione reductase (GR), ascorbate peroxidase (APX), and catalase (CAT) enzymes involved in reactive oxygen species (ROS) metabolism leading to mitigation of cellular damage and oxidative stress. Untargeted metabolomic analysis using liquid chromatography coupled with mass spectrometry (LC-MS/MS) provided insights into Si mediated changes in metabolites and their respective pathways under Cd stress. Alteration in five different metabolic pathways with major changes in flavanols and flavonoids biosynthesis pathway which is essential for controlling plants antioxidant defense system and oxidative stress management were observed. The information reported here about the effects of Si on photosynthetic efficiency, antioxidant responses, and metabolic changes will be helpful in understanding the Si-mediated resistance to Cd stress in plants.
Collapse
Affiliation(s)
- Vandana Thakral
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India; Department of Biotechnology, Panjab University, Chandigarh, India; National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Sreeja Sudhakaran
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Harish Jadhav
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Badal Mahakalkar
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Anupam Sehra
- Department of Zoology, Government College, Hisar, India
| | - Hena Dhar
- Department of Microbiology, School of Biosciences, RIMT University, Mandi Gobindgarh, India
| | - Sudhir Kumar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Humira Sonah
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India.
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agriculture Research (ICAR), Krishi Bhavan, New Delhi, India
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India.
| |
Collapse
|
6
|
Renganathan P, Puente EOR, Sukhanova NV, Gaysina LA. Hydroponics with Microalgae and Cyanobacteria: Emerging Trends and Opportunities in Modern Agriculture. BIOTECH 2024; 13:27. [PMID: 39051342 PMCID: PMC11270261 DOI: 10.3390/biotech13030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
The global population is expected to reach 9.5 billion, which means that crop productivity needs to double to meet the growing population's food demand. Soil degradation and environmental factors, such as climate events, significantly threaten crop production and global food security. Furthermore, rapid urbanization has led to 55% of the world's population migrating to cities, and this proportion is expected to increase to 75% by 2050, which presents significant challenges in producing staple foods through conventional hinterland farming. Numerous studies have proposed various sustainable farming techniques to combat the shortage of farmable land and increase food security in urban areas. Soilless farming techniques such as hydroponics have gained worldwide popularity due to their resource efficiency and production of superior-quality fresh products. However, using chemical nutrients in a conventional hydroponic system can have significant environmental impacts, including eutrophication and resource depletion. Incorporating microalgae into hydroponic systems as biostimulants offers a sustainable and ecofriendly approach toward circular bioeconomy strategies. The present review summarizes the plant growth-promoting activity of microalgae as biostimulants and their mechanisms of action. We discuss their effects on plant growth parameters under different applications, emphasizing the significance of integrating microalgae into a closed-loop circular economy model to sustainably meet global food demands.
Collapse
Affiliation(s)
- Prabhaharan Renganathan
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450000 Ufa, Russia; (P.R.); (N.V.S.)
| | - Edgar Omar Rueda Puente
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo 83000, Sonora, Mexico;
| | - Natalia V. Sukhanova
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450000 Ufa, Russia; (P.R.); (N.V.S.)
| | - Lira A. Gaysina
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450000 Ufa, Russia; (P.R.); (N.V.S.)
- All-Russian Research Institute of Phytopathology, 143050 Bolshye Vyazemy, Russia
| |
Collapse
|
7
|
Alhudhaibi AM, Ibrahim MAR, Abd-Elaziz SMS, Farag HRM, Elsayed SM, Ibrahim HA, Hossain AS, Alharbi BM, Haouala F, Elkelish A, Srour HAM. Enhancing salt stress tolerance in wheat (Triticum aestivum) seedlings: insights from trehalose and mannitol. BMC PLANT BIOLOGY 2024; 24:472. [PMID: 38811894 PMCID: PMC11138042 DOI: 10.1186/s12870-024-04964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/29/2024] [Indexed: 05/31/2024]
Abstract
Salinity stress, an ever-present challenge in agriculture and environmental sciences, poses a formidable hurdle for plant growth and productivity in saline-prone regions worldwide. Therefore, this study aimed to explore the effectiveness of trehalose and mannitol induce salt resistance in wheat seedlings. Wheat grains of the commercial variety Sakha 94 were divided into three groups : a group that was pre-soaked in 10 mM trehalose, another group was soaked in 10 mM mannitol, and the last was soaked in distilled water for 1 hour, then the pre soaked grains cultivated in sandy soil, each treatment was divided into two groups, one of which was irrigated with 150 mM NaCl and the other was irrigated with tap water. The results showed that phenols content in wheat seedlings increased and flavonoids reduced due to salt stress. Trehalose and mannitol cause slight increase in total phenols content while total flavonoids were elevated highy in salt-stressed seedlings. Furthermore, Trehalose or mannitol reduced salt-induced lipid peroxidation. Salt stress increases antioxidant enzyme activities of guaiacol peroxidase (G-POX), ascorbate peroxidase (APX), and catalase (CAT) in wheat seedlings, while polyphenol oxidase (PPO) unchanged. Trehalose and mannitol treatments caused an increase in APX, and CAT activities, whereas G-POX not altered but PPO activity were decreased under salt stress conditions. Molecular docking confirmed the interaction of Trehalose or mannitol with peroxidase and ascorbic peroxidase enzymes. Phenyl alanine ammonia layase (PAL) activity was increased in salt-stressed seedlings. We can conclude that pre-soaking of wheat grains in 10 mM trehalose or mannitol improves salinity stress tolerance by enhancing antioxidant defense enzyme and/or phenol biosynthesis, with docking identifying interactions with G-POX, CAT, APX, and PPO.
Collapse
Affiliation(s)
- Abdulrahman M Alhudhaibi
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Kingdom of Saudi Arabia.
| | - Mervat A R Ibrahim
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, 11241, Shoubra Alkheima, Cairo, Egypt
| | - Seham M S Abd-Elaziz
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, 11241, Shoubra Alkheima, Cairo, Egypt
| | - Hanaa R M Farag
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, 11241, Shoubra Alkheima, Cairo, Egypt
| | - Salwa M Elsayed
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, 11241, Shoubra Alkheima, Cairo, Egypt
| | - Hemmat A Ibrahim
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, 11241, Shoubra Alkheima, Cairo, Egypt
| | - Abm Sharif Hossain
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Kingdom of Saudi Arabia
| | - Basmah M Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Faouzi Haouala
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Kingdom of Saudi Arabia
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Kingdom of Saudi Arabia.
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt.
| | - Hany A M Srour
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, 11241, Shoubra Alkheima, Cairo, Egypt
| |
Collapse
|
8
|
Elkelish A, Alhudhaibi AM, Hossain AS, Haouala F, Alharbi BM, El-Banna MF, Rizk A, Badji A, AlJwaizea NI, Sayed AAS. Alleviating chromium-induced oxidative stress in Vigna radiata through exogenous trehalose application: insights into growth, photosynthetic efficiency, mineral nutrient uptake, and reactive oxygen species scavenging enzyme activity enhancement. BMC PLANT BIOLOGY 2024; 24:460. [PMID: 38797833 PMCID: PMC11129419 DOI: 10.1186/s12870-024-05152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Trehalose serves as a crucial osmolyte and plays a significant role in stress tolerance. The influence of exogenously added trehalose (1 and 5 mM) in alleviating the chromium (Cr; 0.5 mM) stress-induced decline in growth, photosynthesis, mineral uptake, antioxidant system and nitrate reductase activity in Vigna radiata was studied. Chromium (Cr) significantly declined shoot height (39.33%), shoot fresh weight (35.54%), shoot dry weight (36.79%), total chlorophylls (50.70%), carotenoids (29.96%), photosynthesis (33.97%), net intercellular CO2 (26.86%), transpiration rate (36.77%), the content of N (35.04%), P (35.77%), K (31.33%), S (23.91%), Mg (32.74%), and Ca (29.67%). However, the application of trehalose considerably alleviated the decline. Application of trehalose at both concentrations significantly reduced hydrogen peroxide accumulation, lipid peroxidation and electrolyte leakage, which were increased due to Cr stress. Application of trehalose significantly mitigated the Cr-induced oxidative damage by up-regulating the activity of reactive oxygen species (ROS) scavenging enzymes, including superoxide dismutase (182.03%), catalase (125.40%), ascorbate peroxidase (72.86%), and glutathione reductase (68.39%). Besides this, applied trehalose proved effective in enhancing ascorbate (24.29%) and reducing glutathione content (34.40%). In addition, also alleviated the decline in ascorbate by Cr stress to significant levels. The activity of nitrate reductase enhanced significantly (28.52%) due to trehalose activity and declined due to Cr stress (34.15%). Exogenous application of trehalose significantly improved the content of osmolytes, including proline, glycine betaine, sugars and total phenols under normal and Cr stress conditions. Furthermore, Trehalose significantly increased the content of key mineral elements and alleviated the decline induced by Cr to considerable levels.
Collapse
Affiliation(s)
- Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Abdulrahman M Alhudhaibi
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Abm Sharif Hossain
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Faouzi Haouala
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Basmah M Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Mostafa F El-Banna
- Agricultural Botany Department, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Amira Rizk
- Department, Faculty of Agriculture, Tanta University, Tanta City, 31527, Egypt
| | - Arfang Badji
- Department of Agricultural Production, College of Agricultural and Environmental Studies, Makerere University, P.O. Box 7062, Kampala, Uganda.
- Makerere University Regional Centre for Crop Improvement, Makerere University, Kampala, 7062, Uganda.
| | - Nada Ibrahim AlJwaizea
- Department of Biology, College of science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ali A S Sayed
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
9
|
Hussain M, Kaousar R, Haq SIU, Shan C, Wang G, Rafique N, Shizhou W, Lan Y. Zinc-oxide nanoparticles ameliorated the phytotoxic hazards of cadmium toxicity in maize plants by regulating primary metabolites and antioxidants activity. FRONTIERS IN PLANT SCIENCE 2024; 15:1346427. [PMID: 38304740 PMCID: PMC10830903 DOI: 10.3389/fpls.2024.1346427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Cadmium stress is a major threat to plant growth and survival worldwide. The current study aims to green synthesis, characterization, and application of zinc-oxide nanoparticles to alleviate cadmium stress in maize (Zea mays L.) plants. In this experiment, two cadmium levels (0, 0.6 mM) were applied to check the impact on plant growth attributes, chlorophyll contents, and concentration of various primary metabolites and antioxidants under exogenous treatment of zinc-oxide nanoparticles (25 and 50 mg L-1) in maize seedlings. Tissue sampling was made 21 days after the zinc-oxide nanoparticles application. Our results showed that applying cadmium significantly reduced total chlorophyll and carotenoid contents by 52.87% and 23.31% compared to non-stress. In comparison, it was increased by 53.23%, 68.49% and 9.73%, 37.53% with zinc-oxide nanoparticles 25, 50 mg L-1 application compared with cadmium stress conditions, respectively. At the same time, proline, superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase contents were enhanced in plants treated with cadmium compared to non-treated plants with no foliar application, while it was increased by 12.99 and 23.09%, 23.52 and 35.12%, 27.53 and 36.43%, 14.19 and 24.46%, 14.64 and 37.68% by applying 25 and 50 mg L-1 of zinc-oxide nanoparticles dosages, respectively. In addition, cadmium toxicity also enhanced stress indicators such as malondialdehyde, hydrogen peroxide, and non-enzymatic antioxidants in plant leaves. Overall, the exogenous application of zinc-oxide nanoparticles (25 and 50 mg L-1) significantly alleviated cadmium toxicity in maize. It provides the first evidence that zinc-oxide nanoparticles 25 ~ 50 mg L-1 can be a candidate agricultural strategy for mitigating cadmium stress in cadmium-polluted soils for safe agriculture practice.
Collapse
Affiliation(s)
- Mujahid Hussain
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Rehana Kaousar
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Syed Ijaz Ul Haq
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Changfeng Shan
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Guobin Wang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Nadia Rafique
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Wang Shizhou
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Yubin Lan
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
- National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology (NPAAC), Ministry of Science and Technology, College of Electronics Engineering, South China Agricultural University, Guangzhou, China
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
10
|
Li Y, Jiang G, Long H, Liao Y, Wu L, Huang W, Liu X. Contribution of trehalose to ethanol stress tolerance of Wickerhamomyces anomalus. BMC Microbiol 2023; 23:239. [PMID: 37644381 PMCID: PMC10463620 DOI: 10.1186/s12866-023-02982-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND The ascomycetous heterothallic yeast Wickerhamomyces anomalus (WA) has received considerable attention and has been widely reported in the winemaking industry for its distinctive physiological traits and metabolic attributes. An increased concentration of ethanol during ethanol fermentation, however, causes ethanol stress (ES) on the yeast cells. Trehalose has been implicated in improving survival under various stress conditions in microorganisms. Herein, we determined the effects of trehalose supplementation on the survival, differentially expressed genes (DEGs), cellular morphology, and oxidative stress tolerance of WA in response to ES. RESULTS The results indicated that trehalose improved the survival and anomalous surface and ultrastructural morphology of WA. Additionally, trehalose improved redox homeostasis by reducing the levels of reactive oxygen species (ROS) and inducing the activities of antioxidant enzymes. In addition, DEGs affected by the application of trehalose were enriched in these categories including in gene expression, protein synthesis, energy metabolism, and cell cycle pathways. Additionally, trehalose increased the content of intracellular malondialdehyde (MDA) and adenosine triphosphate. CONCLUSIONS These results reveal the protective role of trehalose in ES mitigation and strengthen the possible uses of WA in the wine fermentation sector.
Collapse
Affiliation(s)
- Yinfeng Li
- Guizhou Institute of Technology, Guiyang, 550000, People's Republic of China
| | - Guilan Jiang
- Guizhou Institute of Technology, Guiyang, 550000, People's Republic of China
| | - Hua Long
- Guizhou Institute of Technology, Guiyang, 550000, People's Republic of China
| | - Yifa Liao
- Guizhou Institute of Technology, Guiyang, 550000, People's Republic of China
| | - Liuliu Wu
- Henan Institute of Science and Technology, Xinxiang, 453000, People's Republic of China
| | - Wenyue Huang
- Guizhou Institute of Technology, Guiyang, 550000, People's Republic of China
| | - Xiaozhu Liu
- Guizhou Institute of Technology, Guiyang, 550000, People's Republic of China.
| |
Collapse
|
11
|
Saravanan K, Vidya N, Halka J, Priyanka Preethi R, Appunu C, Radhakrishnan R, Arun M. Exogenous application of stevioside enhances root growth promotion in soybean (Glycine max (L.) Merrill). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107881. [PMID: 37437344 DOI: 10.1016/j.plaphy.2023.107881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/18/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
The present study aims to investigate the impact of externally applied stevioside (a sugar-based glycoside) on soybean root growth by examining morpho-physiological characteristics, biochemical parameters, and gene expression. Soybean seedlings (10-day-old) were treated with stevioside (0, 8.0 μM, 24.5 μM, and 40.5 μM) for four times at six days' intervals by soil drenching. Treatment with 24.5 μM stevioside significantly increased root length (29.18 cm plant-1), root numbers (38.5 plant-1), root biomass (0.95 g plant-1 FW; 0.18 g plant-1 DW), shoot length (30.96 cm plant-1), and shoot biomass (2.14 g plant-1 FW; 0.36 g plant-1 DW) compared to the control. Moreover, 24.5 μM of stevioside was effective in enhancing photosynthetic pigments, leaf relative water content, and antioxidant enzymes compared to control. Conversely, plants exposed to a higher concentration of stevioside (40.5 μM), elevated total polyphenolic content, total flavonoid content, DPPH activity, total soluble sugars, reducing sugars, and proline content. Furthermore, gene expression of root growth development-related genes such as GmYUC2a, GmAUX2, GmPIN1A, GmABI5, GmPIF, GmSLR1, and GmLBD14 in stevioside-treated soybean plants were evaluated. Stevioside (8.0 μM) showed significant expression of GmPIN1A, whereas, 40.5 μM of stevioside enhanced GmABI5 expression. In contrast, most of the root growth development genes such as GmYUC2a, GmAUX2, GmPIF, GmSLR1, and GmLBD14, were highly expressed at 24.5 μM of stevioside treatment. Taken together, our results demonstrate the potential of stevioside in improving morpho-physiological traits, biochemical status, and the expression of root development genes in soybean. Hence, stevioside could be used as a supplement to enhance plant performance.
Collapse
Affiliation(s)
- Krishnagowdu Saravanan
- Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Nandakumar Vidya
- Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Jayachandran Halka
- Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | | | - Chinnaswamy Appunu
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, 641 007, Tamil Nadu, India
| | | | - Muthukrishnan Arun
- Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
12
|
Cuypers A, Vanbuel I, Iven V, Kunnen K, Vandionant S, Huybrechts M, Hendrix S. Cadmium-induced oxidative stress responses and acclimation in plants require fine-tuning of redox biology at subcellular level. Free Radic Biol Med 2023; 199:81-96. [PMID: 36775109 DOI: 10.1016/j.freeradbiomed.2023.02.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Cadmium (Cd) is one of the most toxic compounds released into our environment and is harmful to human health, urging the need to remediate Cd-polluted soils. To this end, it is important to increase our insight into the molecular mechanisms underlying Cd stress responses in plants, ultimately leading to acclimation, and to develop novel strategies for economic validation of these soils. Albeit its non-redox-active nature, Cd causes a cellular oxidative challenge, which is a crucial determinant in the onset of diverse signalling cascades required for long-term acclimation and survival of Cd-exposed plants. Although it is well known that Cd affects reactive oxygen species (ROS) production and scavenging, the contribution of individual organelles to Cd-induced oxidative stress responses is less well studied. Here, we provide an overview of the current information on Cd-induced organellar responses with special attention to redox biology. We propose that an integration of organellar ROS signals with other signalling pathways is essential to finetune plant acclimation to Cd stress.
Collapse
Affiliation(s)
- Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium.
| | - Isabeau Vanbuel
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Verena Iven
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Kris Kunnen
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Stéphanie Vandionant
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Michiel Huybrechts
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Sophie Hendrix
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| |
Collapse
|
13
|
Arbuscular Mycorrhizal Fungi Enhance Biomass Growth, Mineral Content, and Antioxidant Activity in Tomato Plants under Drought Stress. J FOOD QUALITY 2023. [DOI: 10.1155/2023/2581608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are symbiotically associated with crops. They increase biomass production, nutritional elements, and antioxidant activities in food and vegetable crops grown in soil under stress conditions. The present study focused on the effects of AMF (Acaulospora morrowiae, Paraglomus occultum, Funneliformis mosseae, Rhizophagus clarus, and Rhizophagus intraradices) on biomass growth and yield, contents of chlorophyll and carotenoids, activities of catalase (CAT) and ascorbate peroxidase (APX), and contents of hydrogen peroxide (H2O2), malondialdehyde (MDA), and minerals (Na, K, Ca, Mg, and Fe) in Unnayan, LT896, and Minto super tomato (Solanum lycopersicum L.) varieties grown in soil under drought stress (<10% moisture). The results showed that root length and shoot mass in plants treated with R. clarus and P. occultum were significantly higher than those of the control (non-AMF) in Minto super tomato. Compared to the control, the shoot’s dry weight and yield were enhanced by 28% and 20% with AMF-treated tomatoes. The CAT activity in P. occultum-treated plants was statistically higher than that of the control in Unnayan tomatoes. H2O2 content was detected higher in the control than R. clarus-treated LT896 tomatoes. In plants treated with A. morrowiae and R. clarus, APX activity was significantly higher than that of the control in the Unnayan tomatoes. CAT and APX activity increased by 42% and 66% in AMF-treated leaves of tomatoes compared to non-AMF. Treatment with AMF reduced the content of MDA and H2O2 (ROS) in the leaves of tomato plants by 50% and 2% compared to the control, respectively. Potassium (K), calcium (Ca), magnesium (Mg), and iron (Fe) of tomato fruits increased by 2%, 13%, 24%, and 37% with AMF treatment compared to the control. These results suggested that biomass growth, yield, photosynthetic pigments, antioxidant enzyme activity, and mineral contents could be enhanced by AMF in food crops grown under drought stress. It is concluded that AMF might be used for the development of AMF-enriched biofertilizers that will improve the nutritional quality of food crops grown under stress conditions.
Collapse
|
14
|
Hussain S, Ahmed S, Akram W, Li G, Yasin NA. Selenium seed priming enhanced the growth of salt-stressed Brassica rapa L. through improving plant nutrition and the antioxidant system. FRONTIERS IN PLANT SCIENCE 2023; 13:1050359. [PMID: 36714767 PMCID: PMC9880270 DOI: 10.3389/fpls.2022.1050359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Various abiotic stresses may affect the germination, growth, and yield of direct-seeded vegetable crops. Seed priming with effective antioxidant mediators may alleviate these environmental stresses by maintaining uniformity in seed germination and improving the subsequent health of developing seedlings. Salt-induced stress has become a limiting factor for the successful cultivation of Brassica rapa L., especially in Southeast Asian countries. The present study was performed to elucidate the efficacy of seed priming using selenium (Se) in mitigating salt-induced oxidative stress in turnip crops by reducing the uptake of Na+. In this study, we administered three different levels of Se (Se-1, 75 μmol L-1; Se-2, 100 μmol L-1; and Se-3, 125 μmol L-1) alone or in combination with NaCl (200 mM). Conspicuously, salinity and Se-2 modulated the expression levels of the antioxidant genes, including catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and ascorbate peroxidase (APX). The upregulated expression of stress-responsive genes alleviated salt stress by scavenging the higher reactive oxygen species (ROS) level. The stress ameliorative potential of Se (Se-2 = 100 μmol L-1) enhanced the final seed germination percentage, photosynthetic content, and seedling biomass production up to 48%, 56%, and 51%, respectively, under stress. The advantageous effects of Se were attributed to the alleviation of salinity stress through the reduction of the levels of malondialdehyde (MDA), proline, and H2O2. Generally, treatment with Se-2 (100 μmo L-1) was more effective in enhancing the growth attributes of B. rapa compared to Se-1 (75 μmo L-1) and Se-3 (125 μmo L-1) under salt-stressed and non-stressed conditions. The findings of the current study advocate the application of the Se seed priming technique as an economical and eco-friendly approach for salt stress mitigation in crops grown under saline conditions.
Collapse
Affiliation(s)
- Saber Hussain
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Waheed Akram
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Nasim Ahmad Yasin
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Senior Superintendent Gardner (SSG) Department, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
15
|
Li Y, Yang Z, Zhang Y, Guo J, Liu L, Wang C, Wang B, Han G. The roles of HD-ZIP proteins in plant abiotic stress tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1027071. [PMID: 36311122 PMCID: PMC9598875 DOI: 10.3389/fpls.2022.1027071] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 05/31/2023]
Abstract
Homeodomain leucine zipper (HD-ZIP) proteins are plant-specific transcription factors that contain a homeodomain (HD) and a leucine zipper (LZ) domain. The highly conserved HD binds specifically to DNA and the LZ mediates homodimer or heterodimer formation. HD-ZIP transcription factors control plant growth, development, and responses to abiotic stress by regulating downstream target genes and hormone regulatory pathways. HD-ZIP proteins are divided into four subclasses (I-IV) according to their sequence conservation and function. The genome-wide identification and expression profile analysis of HD-ZIP proteins in model plants such as Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) have improved our understanding of the functions of the different subclasses. In this review, we mainly summarize and discuss the roles of HD-ZIP proteins in plant response to abiotic stresses such as drought, salinity, low temperature, and harmful metals. HD-ZIP proteins mainly mediate plant stress tolerance by regulating the expression of downstream stress-related genes through abscisic acid (ABA) mediated signaling pathways, and also by regulating plant growth and development. This review provides a basis for understanding the roles of HD-ZIP proteins and potential targets for breeding abiotic stress tolerance in plants.
Collapse
|
16
|
Trehalose: a promising osmo-protectant against salinity stress-physiological and molecular mechanisms and future prospective. Mol Biol Rep 2022; 49:11255-11271. [PMID: 35802276 DOI: 10.1007/s11033-022-07681-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 01/09/2023]
Abstract
Salt stress is one of the leading threats to crop growth and productivity across the globe. Salt stress induces serious alterations in plant physiological, metabolic, biochemical functioning and it also disturbs antioxidant activities, cellular membranes, photosynthetic performance, nutrient uptake and plant water uptake and resulting in a significant reduction in growth and production. The application of osmoprotectants is considered as an important strategy to induce salt tolerance in plants. Trehalose (Tre) has emerged an excellent osmolyte to induce salinity tolerance and it got considerable attention in recent times. Under salinity stress, Tre helps to maintain the membrane integrity, and improves plant water relations, nutrient uptake and reduces the electrolyte leakage and lipid per-oxidation. Tre also improves gas exchange characteristics, protects the photosynthetic apparatus from salinity induced oxidative damages and brings ultra-structure changes in the plant body to induce salinity tolerance. Moreover, Tre also improves antioxidant activities and expression of stress responsive proteins and genes and confers salt tolerance in plants. Additionally, Tre is also involved in signaling association with signaling molecules and phytohormones and resultantly improved the plant performance under salt stress. Thus, it is interesting to understand the role of Tre in mediating the salinity tolerance in plants. Therefore, in this review we have summarized the different physiological and molecular roles of Tre to induce salt tolerance in plants. Moreover, we have also provided the information on Tre cross-talk with various osmolytes and hormones, and its role in stress responsive genes and antioxidant activities. Lastly, we also shed light on research gaps that need to be addressed in future studies. Therefore, this review will help the scientists to learn more about the Tre in changing climate conditions and it will also provide new insights to insights that could be used to develop salinity tolerance in plants.
Collapse
|
17
|
Tang H, Hassan MU, Feng L, Nawaz M, Shah AN, Qari SH, Liu Y, Miao J. The Critical Role of Arbuscular Mycorrhizal Fungi to Improve Drought Tolerance and Nitrogen Use Efficiency in Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:919166. [PMID: 35873982 PMCID: PMC9298553 DOI: 10.3389/fpls.2022.919166] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 05/14/2023]
Abstract
Drought stress (DS) is a serious abiotic stress and a major concern across the globe as its intensity is continuously climbing. Therefore, it is direly needed to develop new management strategies to mitigate the adverse effects of DS to ensure better crop productivity and food security. The use of arbuscular mycorrhizal fungi (AMF) has emerged as an important approach in recent years to improve crop productivity under DS conditions. AMF establishes a relationship with 80% of land plants and it induces pronounced impacts on plant growth and provides protection to plants from abiotic stress. Drought stress significantly reduces plant growth and development by inducing oxidative stress, disturbing membrane integrity, plant water relations, nutrient uptake, photosynthetic activity, photosynthetic apparatus, and anti-oxidant activities. However, AMF can significantly improve the plant tolerance against DS. AMF maintains membrane integrity, improves plant water contents, nutrient and water uptake, and water use efficiency (WUE) therefore, improve the plant growth under DS. Moreover, AMF also protects the photosynthetic apparatus from drought-induced oxidative stress and improves photosynthetic efficiency, osmolytes, phenols and hormone accumulation, and reduces the accumulation of reactive oxygen species (ROS) by increasing anti-oxidant activities and gene expression which provide the tolerance to plants against DS. Therefore, it is imperative to understand the role of AMF in plants grown under DS. This review presented the different functions of AMF in different responses of plants under DS. We have provided a detailed picture of the different mechanisms mediated by AMF to induce drought tolerance in plants. Moreover, we also identified the potential research gaps that must be fulfilled for a promising future for AMF. Lastly, nitrogen (N) is an important nutrient needed for plant growth and development, however, the efficiency of applied N fertilizers is quite low. Therefore, we also present the information on how AMF improves N uptake and nitrogen use efficiency (NUE) in plants.
Collapse
Affiliation(s)
- Haiying Tang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Liang Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco-physiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ying Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, China
| | - Jianqun Miao
- School of Computer Information and Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
18
|
Rasheed A, Jie Y, Nawaz M, Jie H, Ma Y, Shah AN, Hassan MU, Gillani SFA, Batool M, Aslam MT, Naseem AR, Qari SH. Improving Drought Stress Tolerance in Ramie ( Boehmeria nivea L.) Using Molecular Techniques. FRONTIERS IN PLANT SCIENCE 2022; 13:911610. [PMID: 35845651 PMCID: PMC9280341 DOI: 10.3389/fpls.2022.911610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Ramie is one of the most significant fiber crops and contributes to good quality fiber. Drought stress (DS) is one of the most devastating abiotic factors which is accountable for a substantial loss in crop growth and production and disturbing sustainable crop production. DS impairs growth, plant water relation, and nutrient uptake. Ramie has evolved a series of defense responses to cope with DS. There are numerous genes regulating the drought tolerance (DT) mechanism in ramie. The morphological and physiological mechanism of DT is well-studied; however, modified methods would be more effective. The use of novel genome editing tools like clustered regularly interspaced short palindromic repeats (CRISPR) is being used to edit the recessive genes in crops to modify their function. The transgenic approaches are used to develop several drought-tolerant varieties in ramie, and further identification of tolerant genes is needed for an effective breeding plan. Quantitative trait loci (QTLs) mapping, transcription factors (TFs) and speed breeding are highly studied techniques, and these would lead to the development of drought-resilient ramie cultivars. The use of hormones in enhancing crop growth and development under water scarcity circumstances is critical; however, using different concentrations and testing genotypes in changing environments would be helpful to sort the tolerant genotypes. Since plants use various ways to counter DS, investigating mechanisms of DT in plants will lead to improved DT in ramie. This critical review summarized the recent advancements on DT in ramie using novel molecular techniques. This information would help ramie breeders to conduct research studies and develop drought tolerant ramie cultivars.
Collapse
Affiliation(s)
- Adnan Rasheed
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yucheng Jie
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hongdong Jie
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yushen Ma
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | | | - Maria Batool
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Ahmad Raza Naseem
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
19
|
Hassan MU, Mahmood A, Awan MI, Maqbool R, Aamer M, Alhaithloul HAS, Huang G, Skalicky M, Brestic M, Pandey S, El Sabagh A, Qari SH. Melatonin-Induced Protection Against Plant Abiotic Stress: Mechanisms and Prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:902694. [PMID: 35755707 PMCID: PMC9218792 DOI: 10.3389/fpls.2022.902694] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 05/23/2023]
Abstract
Global warming in this century increases incidences of various abiotic stresses restricting plant growth and productivity and posing a severe threat to global food production and security. The plant produces different osmolytes and hormones to combat the harmful effects of these abiotic stresses. Melatonin (MT) is a plant hormone that possesses excellent properties to improve plant performance under different abiotic stresses. It is associated with improved physiological and molecular processes linked with seed germination, growth and development, photosynthesis, carbon fixation, and plant defence against other abiotic stresses. In parallel, MT also increased the accumulation of multiple osmolytes, sugars and endogenous hormones (auxin, gibberellic acid, and cytokinins) to mediate resistance to stress. Stress condition in plants often produces reactive oxygen species. MT has excellent antioxidant properties and substantially scavenges reactive oxygen species by increasing the activity of enzymatic and non-enzymatic antioxidants under stress conditions. Moreover, the upregulation of stress-responsive and antioxidant enzyme genes makes it an excellent stress-inducing molecule. However, MT produced in plants is not sufficient to induce stress tolerance. Therefore, the development of transgenic plants with improved MT biosynthesis could be a promising approach to enhancing stress tolerance. This review, therefore, focuses on the possible role of MT in the induction of various abiotic stresses in plants. We further discussed MT biosynthesis and the critical role of MT as a potential antioxidant for improving abiotic stress tolerance. In addition, we also addressed MT biosynthesis and shed light on future research directions. Therefore, this review would help readers learn more about MT in a changing environment and provide new suggestions on how this knowledge could be used to develop stress tolerance.
Collapse
Affiliation(s)
- Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Masood Iqbal Awan
- Department of Agronomy, Sub-Campus Depalpur, Okara, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Rizwan Maqbool
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Aamer
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
- Department of Agronomy, Sub-Campus Depalpur, Okara, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Guoqin Huang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, India
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
20
|
Chattha MU, Hassan MUU, Khan I, Nawaz M, Shah AN, Sattar A, Hashem M, Alamri S, Aslam MT, Alhaithloul HAS, Hassan MU, Qari SH. Hydrogen peroxide priming alleviates salinity induced toxic effect in maize by improving antioxidant defense system, ionic homeostasis, photosynthetic efficiency and hormonal crosstalk. Mol Biol Rep 2022; 49:5611-5624. [PMID: 35618939 DOI: 10.1007/s11033-022-07535-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Salinity stress (SS) is a serious detrimental factor for crop growth and productivity and its intensity it is continuously increasing which is posing serious threat to global food security. Hydrogen peroxide (H2O2) priming has emerged as an excellent strategy to mitigate the adverse impacts of SS. However, the role of H2O2 priming in mitigating the salinity induced toxicity is not fully explored. METHODS AND RESULTS Therefore, in this context the present study was conducted in complete randomized design (CRD) in factorial combination to determine the impact of H2O2 priming on germination, growth, physiological and biochemical traits, osmo-regulating compounds, hormonal balance and ionic homeostasis. The experiment was based on different levels of SS; control, 6 and 12 dS m-1 SS and priming treatments, control and H2O2 priming (2%). Salinity stress significantly reduced the growth, leaf water status (- 15.55%), calcium (Ca2+), potassium (K+) and magnesium (Mg2+) accumulation and increased malondialdehyde (MDA: + 29.95%), H2O2 (+ 21.48%) contents, osmo-regulating compounds (proline, soluble sugars), indole acetic acid (IAA), anti-oxidant activities (ascorbate peroxidase: APX, catalase: CAT, peroxidase: POD and ascorbic acid: AsA) and accumulation of sodium (Na+) and chloride (Cl-.). H2O2 priming effectively reduced the effects of SS on germination and growth and strengthen the anti-oxidant activities through reduced MDA (- 12.36%) and H2O2 (- 21.13%) and increasing leaf water status (16.90%), soluble protein (+ 71.32%), free amino acids (+ 26.41%), proline (+ 49.18%), soluble sugars (+ 71.02%), IAA (+ 57.59%) and gibberlic acid (GA) (+ 21.11%). Above all, H2O2 priming reduced the massive entry of noxious ions (Na+ and Cl-) while increased the entry of Ca2+, K+ and Mg2+ thus improved the plant performance under SS. CONCLUSION In conclusion H2O2 priming was proved beneficial for improving maize growth under SS thorough enhanced anti-oxidant activities, photosynthetic pigments, leaf water status, accumulation of osmo-regulating compounds, hormonal balance and ionic homeostasis.
Collapse
Affiliation(s)
| | - Muhammad Uzair Ul Hassan
- Department of Seed Science and Technology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Imran Khan
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Punjab, Pakistan.
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Punjab, Pakistan.
| | - Abdul Sattar
- College of Agriculture, Bahauddin Zakariya University, Multan Bahadur Sub Campus, Layyah, Punjab, 31200, Pakistan
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia.,Faculty of Science, Botany and Microbiology Department, Assiut University, Assiut, 71516, Egypt
| | - Saad Alamri
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | | | | | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Sameer H Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Mecca, 21955, Saudi Arabia
| |
Collapse
|
21
|
Razzaq S, Zhou B, Zia-ur-Rehman M, Aamer Maqsood M, Hussain S, Bakhsh G, Zhang Z, Yang Q, Altaf AR. Cadmium Stabilization and Redox Transformation Mechanism in Maize Using Nanoscale Zerovalent-Iron-Enriched Biochar in Cadmium-Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2022; 11:1074. [PMID: 35448802 PMCID: PMC9024939 DOI: 10.3390/plants11081074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd) is a readily available metal in the soil matrix, which obnoxiously affects plants and microbiota; thus, its removal has become a global concern. For this purpose, a multifunctional nanoscale zerovalent-iron enriched biochar (nZVI/BC) was used to alleviate the Cd-toxicity in maize. Results revealed that the nZVI/BC application significantly enhanced the plant growth (57%), chlorophyll contents (65%), intracellular permeability (61%), and biomass production index (76%) by restraining Cd uptake relative to Cd control. A Cd stabilization mechanism was proposed, suggesting that high dispersion of organic functional groups (C-O, C-N, Fe-O) over the surface of nZVI/BC might induce complex formations with cadmium by the ion exchange process. Besides this, the regular distribution and deep insertion of Fe particles in nZVI/BC prevent self-oxidation and over-accumulation of free radicals, which regulate the redox transformation by alleviating Cd/Fe+ translations in the plant. Current findings have exposed the diverse functions of nanoscale zerovalent-iron-enriched biochar on plant health and suggest that nZVI/BC is a competent material, feasible to control Cd hazards and improve crop growth and productivity in Cd-contaminated soil.
Collapse
Affiliation(s)
- Sehar Razzaq
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China;
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan; (M.Z.-u.-R.); (M.A.M.)
| | - Beibei Zhou
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China;
| | - Muhammad Zia-ur-Rehman
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan; (M.Z.-u.-R.); (M.A.M.)
| | - Muhammad Aamer Maqsood
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan; (M.Z.-u.-R.); (M.A.M.)
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Ghous Bakhsh
- Training and Publicity, Agriculture Extension, Jaffarabad Balochistan, Dera Allah Yar 08289, Pakistan;
| | - Zhenshi Zhang
- Power China Northwest Engineering Corporation Limited, Xi’an 710065, China; (Z.Z.); (Q.Y.)
| | - Qiang Yang
- Power China Northwest Engineering Corporation Limited, Xi’an 710065, China; (Z.Z.); (Q.Y.)
| | - Adnan Raza Altaf
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China;
| |
Collapse
|
22
|
Chattha MU, Amjad T, Khan I, Nawaz M, Ali M, Chattha MB, Ali HM, Ghareeb RY, Abdelsalam NR, Azmat S, Barbanti L, Hassan MU. Mulberry based zinc nano-particles mitigate salinity induced toxic effects and improve the grain yield and zinc bio-fortification of wheat by improving antioxidant activities, photosynthetic performance, and accumulation of osmolytes and hormones. FRONTIERS IN PLANT SCIENCE 2022; 13:920570. [PMID: 36237512 PMCID: PMC9551613 DOI: 10.3389/fpls.2022.920570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/24/2022] [Indexed: 05/14/2023]
Abstract
Salinity stress (SS) is a challenging abiotic stress that limits crop growth and productivity. Sustainable and cost effective methods are needed to improve crop production and decrease the deleterious impacts of SS. Zinc (Zn) nano-particles (NPs) have emerged as an important approach to regulating plant tolerance against SS. However, the mechanisms of SS tolerance mediated by Zn-NPs are not fully explained. Thus, this study was performed to explore the role of Zn-NPs (seed priming and foliar spray) in reducing the deleterious impacts of SS on wheat plants. The study comprised different SS levels: control, 6 and 12 dS m-1, and different Zn-NPs treatments: control, seed priming (40 ppm), foliar spray (20 ppm), and their combination. Salinity stress markedly reduced plant growth, biomass, and grain yield. This was associated with enhanced electrolyte leakage (EL), malondialdehyde (MDA), hydrogen peroxide (H2O2), sodium (Na), chloride (Cl) accumulation, reduced photosynthetic pigments, relative water contents (RWC), photosynthetic rate (Pn), transpiration rate (Tr), stomata conductance (Gs), water use efficiency (WUE), free amino acids (FAA), total soluble protein (TSP), indole acetic acid (IAA), gibberellic acid (GA), and nutrients (Ca, Mg, K, N, and P). However, the application of Zn-NPs significantly improved the yield of the wheat crop, which was associated with reduced abscisic acid (ABA), MDA, H2O2 concentration, and EL, owing to improved antioxidant activities, and an increase in RWC, Pn, Tr, WUE, and the accumulation of osmoregulating compounds (proline, soluble sugars, TSP, and FAA) and hormones (GA and IAA). Furthermore, Zn-NPs contrasted the salinity-induced uptake of toxic ions (Na and Cl) and increased the uptake of Ca, K, Mg, N, and P. Additionally, Zn-NPs application substantially increased the wheat grain Zn bio-fortification. Our results support previous findings on the role of Zn-NPs in wheat growth, yield, and grain Zn bio-fortification, demonstrating that beneficial effects are obtained under normal as well as adverse conditions, thanks to improved physiological activity and the accumulation of useful compounds. This sets the premise for general use of Zn-NPs in wheat, to which aim more experimental evidence is intensively being sought. Further studies are needed at the genomic, transcriptomic, proteomic, and metabolomic level to better acknowledge the mechanisms of general physiological enhancement observed with Zn-NPs application.
Collapse
Affiliation(s)
| | - Tahira Amjad
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Imran Khan
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
- *Correspondence: Muhammad Nawaz,
| | - Muqarrab Ali
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Muhammad Bilal Chattha
- Department of Agronomy, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rehab Y. Ghareeb
- Department of Plant Protection and Biomolecular Diagnosis, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, New Borg El Arab, Egypt
| | - Nader R. Abdelsalam
- Department of Agricultural Botany, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Saira Azmat
- Agriculture Extension and Adaptive Research, Department of Agriculture, Government of the Punjab, Punjab, Pakistan
| | - Lorenzo Barbanti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Muhammad Umair Hassan
- Research Center Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
- Muhammad Umair Hassan,
| |
Collapse
|