1
|
Xu X, Hu B, Qu X. Effects of propolis intake on endurance exercise and molecular signaling related to inflammation and oxidative stress. Front Nutr 2025; 12:1539701. [PMID: 40078415 PMCID: PMC11896820 DOI: 10.3389/fnut.2025.1539701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Honey bees extract sticky material from the exudates of different plants which transform afterwards to propolis. Propolis from several global locations has been shown to contain a wide variety of polyphenolic chemicals. Recent studies have revealed that propolis possesses antioxidant, anti-inflammatory, and immunomodulatory abilities. In laboratory animal studies, it has been demonstrated that propolis can enhance the functioning of the antioxidant defense system and decrease the activity of nuclear factor-kappa B. As a result, they can effectively alleviate the damage caused by exercise. One of the main flavonoids found in propolis, quercetin, has been demonstrated to enhance muscle mitochondrial biogenesis and exercise capacity. Propolis may aid athletes in preventing oxidative and inflammatory damage to their muscles during exercise and enhance their athletic performance. The goal of the current review was to evaluate how propolis consumption affected the molecular signaling associated with antioxidant/oxidant state, pro/anti-inflammatory cytokines, and anaerobic/aerobic endurance.
Collapse
Affiliation(s)
- Xiaoying Xu
- Sports College, Yantai University, Yantai, Shandong, China
| | - Bing Hu
- Sports Industry Development Service Department, Yantai Sports Industry Development Service Center, Yantai, Shandong, China
| | - Xiaorong Qu
- Training Section, Yantai Shooting and Archery Sports Center, Yantai, Shandong, China
| |
Collapse
|
2
|
Ayhan H, Adiguzel C, Bayram KK, Akin AT, Apaydin FG, Kalender Y. Effect of propolis supplementation on cadmium toxicity associated with renal and hepatic dysfunction in rats. J Trace Elem Med Biol 2025; 87:127587. [PMID: 39764897 DOI: 10.1016/j.jtemb.2024.127587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 02/01/2025]
Abstract
Cadmium (Cd), one of the toxic heavy metals, is of great importance for public health due to its use in many industrial areas. Propolis is a natural product with antioxidant and anti-inflammatory properties collected from plants by honey bees. The aim of this study was to investigate the protective role of propolis against the potential toxic effects of cadmium chloride in blood, liver and kidney tissues. For this purpose, rats were divided into four groups. Control group, propolis (150 mg/kg b.w.) treated group, cadmium chloride (1.76 mg/kg b.w. 1/50 LD50) treated group and cadmium chloride plus propolis (1.76 mg/kg b.w. and 150 mg/kg b.w. respectively) treated group. The substances were given to rats by gavage for 28 days. After 28 days of treatment, a statistically significant change was observed in serum biochemical parameters such as ALT, AST, BUN, LDH, urea, uric acid and creatinine, hematological parameters such as erythrocyte, hemoglobin and hematocrit, and IL-1β and IL-6 cytokine levels of cadmium chloride treated rats compared to the control group. In addition, significant changes were observed in mRNA expression levels of Casp-3, p53 and Tnf-α genes, HSP70, HSP90 and GRP78 protein levels and histopathological/immunohistochemical examinations. Improvement in biochemical and hematologic parameters, cytokines, mRNA expression, heat shock proteins and immunohistochemistry changes were observed in cadmium plus propolis treated group compared to cadmium treated group.
Collapse
Affiliation(s)
- Huseyin Ayhan
- Vocational School of Health Services, Ankara Yıldırım Beyazıt University, Çubuk, Ankara 06760, Turkey.
| | - Caglar Adiguzel
- Department of Biology, Faculty of Science, Gazi University, Ankara 06500, Turkey
| | - Keziban Korkmaz Bayram
- Department of Medical Genetics, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Çankaya, Ankara 06800, Turkey
| | - Ali Tugrul Akin
- Faculty of Medicine, Department of Medical Biology, Istinye University, İstanbul 34396, Turkey
| | - Fatma Gokce Apaydin
- Department of Biology, Faculty of Science, Gazi University, Ankara 06500, Turkey
| | - Yusuf Kalender
- Department of Biology, Faculty of Science, Gazi University, Ankara 06500, Turkey
| |
Collapse
|
3
|
Jiang W, Jiang L, Yin X, Zhang S, Duan X, Chen J, Liu Y, Zheng H, Tao Z. Untargeted Metabolomics Reveals the Metabolic Characteristics and Biomarkers of Antioxidant Properties of Gardeniae Fructus from Different Geographical Origins in China. Metabolites 2025; 15:38. [PMID: 39852381 PMCID: PMC11767249 DOI: 10.3390/metabo15010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Gardeniae Fructus (GF) has been widely used as both food and medicinal purposes for thousands of years, but their antioxidant properties and potential metabolite biomarkers remain unclear. Methods: The purposes of this study were to examine antioxidant activities of 21 GF varieties from different geographical origins in China and identify potential biomarkers of antioxidant properties using an untargeted LC-MS-based metabolomics approach. Results: The results demonstrate that metabolomics had the ability to trace the geographical origins of GF. We found that antioxidant activities varied with different varieties of GF, which was dependent on their chemical compositions. The key chemical categories were obtained as the primary contributors of the antioxidant activity, including prenol lipids, flavonoids, coumarins and derivatives, as well as steroids and steroid derivatives. In addition, adouetine Y, coagulin R 3-glucoside and epicatechin 3-glucoside were identified as potential biomarkers for the antioxidant activity of GF. Conclusions: Therefore, our study sheds light on the metabolic characteristics and biomarkers of the antioxidant properties of GF, contributing to the selection and cultivation of a high antioxidant variety.
Collapse
Affiliation(s)
- Wu Jiang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; (W.J.); (X.D.); (J.C.); (Y.L.)
- Innovation Center of Chinese Medicine Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lingling Jiang
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China;
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, China
| | - Xiaoli Yin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (X.Y.); (S.Z.); (H.Z.)
| | - Shuhui Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (X.Y.); (S.Z.); (H.Z.)
| | - Xiaojing Duan
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; (W.J.); (X.D.); (J.C.); (Y.L.)
- Innovation Center of Chinese Medicine Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiadong Chen
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; (W.J.); (X.D.); (J.C.); (Y.L.)
- Innovation Center of Chinese Medicine Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yingying Liu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; (W.J.); (X.D.); (J.C.); (Y.L.)
- Innovation Center of Chinese Medicine Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (X.Y.); (S.Z.); (H.Z.)
| | - Zhengming Tao
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; (W.J.); (X.D.); (J.C.); (Y.L.)
- Innovation Center of Chinese Medicine Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
4
|
Mirzazadeh M, Bagheri H, Rasi F, Mirzazadeh N, Alam Z, Akhavan-Mahdavi S. Optimization of Instant Beverage Powder Containing Propolis Extract Nanoliposomes. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:9099501. [PMID: 39687482 PMCID: PMC11649347 DOI: 10.1155/ijfo/9099501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Propolis is a natural resinous complex mixture produced by honeybees that contain various bioactive compounds. However, these bioactive compounds are chemically unstable and their absorption in the gastrointestinal tract is influenced by their solubility and stability. Encapsulation technology has been employed to increase their bioavailability and protect them against hostile conditions. Nanoliposomes are nanoscale lipid-based vesicles that can encapsulate various bioactive compounds, including propolis extracts. Therefore, in this study, propolis extract was encapsulated by nanoliposome technique and used in instant drink formulation. Nanoliposome characterization was done regarding particle size (255 ± 0.21 nm), zeta potential (-37.6 ± 1.14 mV), and encapsulation efficiency (73.71 ± 0.94). Response surface methodology (RSM) was employed to determine the effect of nanoliposome concentration (0%-5%) on the beverage characteristics including Brix, acidity, hygroscopicity, water solubility index, total phenol content, total microbial count, and sensory analyses. RSM predicted that a 3.19% nanoliposome would provide the overall optimum region for preparing the beverage with the best characteristics. Therefore, nanoliposome containing propolis can be successfully used in the enrichment of the beverage formulation by maintaining the sensory characteristics and improving its quality.
Collapse
Affiliation(s)
- Mehdi Mirzazadeh
- Department of Food Science and Technology, Faculty of Agriculture, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Hadiseh Bagheri
- Department of Food Science and Technology, Sari Branch, Islamic Azad University, Sari, Iran
| | - Fatemeh Rasi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Nasim Mirzazadeh
- Department of Food Science Engineering, Islamic Azad University Pharmaceutical Sciences Branch, Tehran, Iran
| | - Zahra Alam
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Sahar Akhavan-Mahdavi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
5
|
Kamali M, Sarhadynejad Z, Tajadini H, Keikha M, Salari Z, Dehesh T, Lashkarizadeh M, Esmaili M. Evaluation of the Efficacy of Medicinal Plants in Treating Bacterial Vaginosis: A Comprehensive Systematic Review of Interventional Studies. IRANIAN JOURNAL OF NURSING AND MIDWIFERY RESEARCH 2024; 29:649-659. [PMID: 39759925 PMCID: PMC11694588 DOI: 10.4103/ijnmr.ijnmr_311_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 01/07/2025]
Abstract
Background Bacterial Vaginosis (BV) is the most prevalent cause of vaginal infection among women. This study aimed to summarize the evidence related to the effectiveness of medicinal plants as an alternative therapy for the management of BV. Materials and Methods PubMed, Scopus, Cochrane Library, Web of Science, and Medline PubMed were systematically searched. Moreover, we searched Google Scholar to explore the possible effects of herbal treatments on BV in women of childbearing age up to 2022. All randomized clinical trials investigating the effects of medicinal plants as oral or vaginal monotherapy or in combination for BV treatment in women of childbearing age were included in this systematic review. Results In total, 20 studies comprising 2685 participants were included in our review. The results show that combinations of herbal medicines such as Prangos ferulacea, Berberis vulgaris, Myrtus communis, and Quercus Brantii with metronidazole can have better results in the treatment of BV. Moreover, the main results show that some medicinal plant products alone such as Forzejehe (Tribulus terrestris + Myrtus communis + Foeniculum vulgare + Tamarindus indica), Zataria multiflora, and Calendula officinalis had therapeutic effects similar to metronidazole. Propolis and Brazilian pepper tree (Schinus) were effective in the treatment of BV, but they have less therapeutic effect than metronidazole. Conclusions To reduce the complications caused by chemical treatments and also the resistance of patients to these treatments, it seems necessary to use supportive treatments along with chemical drugs after the necessary approvals have been obtained.
Collapse
Affiliation(s)
- Mohadese Kamali
- Faculty of Persian Medicine, Herbal and Traditional Medicines Research Center, Department of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zarrin Sarhadynejad
- Faculty of Persian Medicine, Herbal and Traditional Medicines Research Center, Department of Traditional Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Haleh Tajadini
- Faculty of Persian Medicine, Medical Mycology and Bacteriology Research Center, Department of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Keikha
- Department of Biostatistics and Epidemiology, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Zohreh Salari
- School of Medicine, Obstetrics and Gynecology Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Tania Dehesh
- Department of Biostatistics and Epidemiology, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdiyeh Lashkarizadeh
- School of Medicine, Department of Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mitra Esmaili
- Faculty of Persian Medicine, Herbal and Traditional Medicines Research Center, Department of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Dekebo A, Geba C, Bisrat D, Jeong JB, Jung C. Wound Healing, Anti-Inflammatory and Anti-Oxidant Activities, and Chemical Composition of Korean Propolis from Different Sources. Int J Mol Sci 2024; 25:11352. [PMID: 39518905 PMCID: PMC11547006 DOI: 10.3390/ijms252111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Propolis, such as is used as bio-cosmetics and in functional materials, is increasing because of its antioxidant medicinal benefits. However, its pharmacological and chemical composition is highly variable, relative to its geography and botanical origins. Comparative studies on three propolis samples collected from different regions in Korea have been essential for linking its provenance, chemical composition, and biological activity, thereby ensuring the efficient utilization of its beneficial properties. Here, we report the chemical composition and biological activities such as the antioxidant, wound healing, and anti-inflammatory effects of the ethanolic extract of Korean propolis collected from two regions. We compared the chemical constituents of three 70% ethanol-extracted (EE) samples, including the Andong, Gongju field (GF), and Gongju mountain (GM)-sourced propolis using Gas chromatography-mass spectrometry (GC-MS). The major and common components of these EE Korean propolis were flavonoids such as pinocembrin (12.0-17.7%), chrysin (5.2-6.8%), and apigenin (5.30-5.84%). The antioxidant property using a 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity assay of EEP showed substantial differences among samples with the highest from Andong. The sample 10% GM levigated in simple ointment was found to be the most active in wound healing activity based on the excision, incision, and dead space wound models. The potential of propolis for wound healing is mainly due to its evidenced properties, such as its antimicrobial, anti-inflammatory, analgesic, and angiogenesis promoter effects, which need further study. The anti-inflammatory activity and NO production inhibitory effect were highest in GM samples. However, GM and GF samples demonstrated similar inhibitory effects on the expression of inflammatory mediators such as iNOS, IL-1β, and IL-6. The presence of a higher concentration of flavonoids in Korean EE propolis might be responsible for their promising wound healing, anti-inflammatory, and antioxidant properties.
Collapse
Affiliation(s)
- Aman Dekebo
- Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia;
- Agricultural Science and Technology Research Institute, Andong National University, Andong 36729, Republic of Korea;
| | - Chalshisa Geba
- Department of Pharmacognosy and Pharmaceutical Chemistry, Addis Ababa University, Addis Ababa 1176, Ethiopia;
| | - Daniel Bisrat
- Agricultural Science and Technology Research Institute, Andong National University, Andong 36729, Republic of Korea;
- Department of Pharmacognosy and Pharmaceutical Chemistry, Addis Ababa University, Addis Ababa 1176, Ethiopia;
| | - Jin Boo Jeong
- Department of Forest Science, Andong National University, Andong 36729, Republic of Korea;
| | - Chuleui Jung
- Agricultural Science and Technology Research Institute, Andong National University, Andong 36729, Republic of Korea;
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
7
|
Radić B, Radić S, Mašek T, Šuran J. Anti-wrinkle efficacy of standardized phenolic acids polymer extract (PAPE) from propolis: Implications for antiaging and skin health. J Cosmet Dermatol 2024; 23:3372-3381. [PMID: 38943252 DOI: 10.1111/jocd.16405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND The increasing quest for effective and safe antiaging skincare solutions has led to a surge in the exploration of natural compounds such as phenolic acids. Despite the proven efficacy of traditional antiaging ingredients like retinol, their associated side effects have necessitated the search for alternatives. AIMS This study aimed to assess the anti-wrinkle efficacy of a standardized phenolic acids polymer extract (PAPE) from propolis, employing both in vitro and clinical methodologies to explore its suitability as a novel antiaging skincare ingredient for sensitive and nonsensitive skin types. PATIENTS/METHODS The study comprised of evaluating PAPE effects on key skin health biomarkers in dermal fibroblasts and keratinocytes. A double-blind, randomized clinical trial involving female participants aged 30-70 years assessed the wrinkle-reducing effectiveness of face creams formulated with two concentrations of PAPE (1.5% and 3%) over a 28-day period. RESULTS In vitro studies indicated that PAPE could modulate inflammation and tissue remodeling biomarkers. The clinical trial demonstrated that applying PAPE-enriched cream resulted in significant wrinkle reduction, with 25% and 34% improvements for the 1.5% and 3% PAPE formulations, respectively. Subjective feedback from participants further validated the antiaging efficacy and overall satisfaction with the product. CONCLUSION Incorporating PAPE offers a compelling antiaging solution, significantly reducing wrinkle depth with a favorable safety profile. The study substantiates PAPE's potential as an effective and safe alternative to conventional antiaging ingredients, aligning with the cosmetic industry's shift toward natural, evidence-based formulations.
Collapse
Affiliation(s)
- Božo Radić
- Apiotix Technologies d.o.o., Split, Croatia
| | - Saša Radić
- Apiotix Technologies d.o.o., Split, Croatia
| | - Tomislav Mašek
- Department of Animal Nutrition and Dietetics, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | |
Collapse
|
8
|
Noor SNM, Musa M, Azlina A, Gan SH, Thirumulu KP. Polyphenols in bee products and prevention of cell senescence. Biomedicine (Taipei) 2024; 14:1-11. [PMID: 39386186 PMCID: PMC11460571 DOI: 10.37796/2211-8039.1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/07/2024] [Accepted: 01/14/2024] [Indexed: 10/12/2024] Open
Abstract
Sustaining the continuity of cells and their homeostasis throughout the lifespan is compulsory for the survival of an organism. Cellular senescence is one of mechanisms involved in cell homeostasis and survival, and plays both important and detrimental roles in the maintenance of malfunctioned and normal cells. However, when exposed to various insults (genetic, metabolic and environmental), the cells undergo oxidative stress which may induce premature senescence, or so-called stress-induced premature senescence. Many age-related diseases are associated with premature senescence. Hence, there is growing interest in the intake of natural sources such as dietary food, which has protective functions on human health and diseases as well as on premature senescence. There are many natural food sources which have beneficial effects on delaying cell senescence, of which bee products are one of them. Bee products (honey, propolis, royal jelly, bee pollen, bee bread, venom and wax) are rich in polyphenols, a compound that exerts powerful antioxidant actions against oxidative stress and is able to delay premature senescence that is linked to ageing. This review describes the factors triggering senescence, the biomarkers involved and the prevention of senescence by the polyphenols present in bee products. Thus, it is hoped that this will provide new insights into the clinical management of age-related diseases.
Collapse
Affiliation(s)
- Siti Nuriah M. Noor
- School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan,
Malaysia
| | - Marahaini Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan,
Malaysia
| | - Ahmad Azlina
- School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan,
Malaysia
| | - Siew H. Gan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan,
Malaysia
| | - Kannan P. Thirumulu
- School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan,
Malaysia
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan,
Malaysia
| |
Collapse
|
9
|
Miłek M, Franke G, Tomczyk M, Górecki M, Cwiková O, Jarošová A, Dżugan M. The Influence of Geographical Origin on Poplar Propolis Composition and the Impact of Human Microbiota. Pharmaceuticals (Basel) 2024; 17:768. [PMID: 38931435 PMCID: PMC11206650 DOI: 10.3390/ph17060768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Ethanol extracts obtained from 13 poplar propolis samples originating from various European countries by traditional maceration were tested for total polyphenols, flavonoid content, and antioxidant activity. Moreover, the content of 18 polyphenolic compounds (from the group of phenolic acids and flavonoids) was determined using the HPLC method. The inhibitory effect of six selected extracts with the highest activity was assessed by well-diffusion method against five strains (Bifidobacterium spp., L. rhamnosus, L. acidophilus, E. coli, and Bacteroides spp.) of intestinal bacteria self-isolated from the faeces of obese probands with the use of selective media. It was found that the antioxidant activity of propolis varied depending on geographical origin and even among samples from the same region, which indicates that some other factors also influence propolis quality. The samples of different geographical origin varied mainly in the share of individual phenolic compounds, and it was not possible to find a characteristic marker of origin, excluding the galangin present in the Polish samples only. Assessing the inhibitory activity of propolis (in the range of 70 mg to 10 µg per mL) indicated that the concentration of 100 µg/mL was found as being safe for tested fecal bacteria (Bifidobacterium spp., L. rhamnosus, L. acidophilus, E. coli, and Bacteroides spp.). As no negative effect of low doses of propolis on the intestinal microflora was found, it can be suggested that its use in recommended doses brings only beneficial effects to the body.
Collapse
Affiliation(s)
- Michał Miłek
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszow, Poland; (M.T.); (M.D.)
| | - Gabriela Franke
- Department of Food Technology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1 St., 613 00 Brno, Czech Republic; (G.F.); (O.C.); (A.J.)
| | - Monika Tomczyk
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszow, Poland; (M.T.); (M.D.)
| | - Miłosz Górecki
- PROKIT—Miłosz Górecki, Świętokrzyska 25 St., Kazimierów, 05-074 Halinow, Poland;
| | - Olga Cwiková
- Department of Food Technology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1 St., 613 00 Brno, Czech Republic; (G.F.); (O.C.); (A.J.)
| | - Alžbeta Jarošová
- Department of Food Technology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1 St., 613 00 Brno, Czech Republic; (G.F.); (O.C.); (A.J.)
| | - Małgorzata Dżugan
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszow, Poland; (M.T.); (M.D.)
| |
Collapse
|
10
|
Syaifie PH, Ibadillah D, Jauhar MM, Reninta R, Ningsih S, Ramadhan D, Arda AG, Ningrum DWC, Kaswati NMN, Rochman NT, Mardliyati E. Phytochemical Profile, Antioxidant, Enzyme Inhibition, Acute Toxicity, In Silico Molecular Docking and Dynamic Analysis of Apis Mellifera Propolis as Antidiabetic Supplement. Chem Biodivers 2024; 21:e202400433. [PMID: 38584139 DOI: 10.1002/cbdv.202400433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
This study aims to identify the phytochemical profile of Apis mellifera propolis and explore the potential of its anti-diabetic activity through inhibition of α-amylase (α-AE), α-glucosidase(α-GE), as well as novel antidiabetic compounds of propolis. Apis mellifera propolis extract (AMPE) exhibited elevated polyphenol 33.26±0.17 (mg GAE/g) and flavonoid (15.45±0.13 mg RE/g). It also indicated moderate strong antioxidant activity (IC50 793.09±1.94 μg/ml). This study found that AMPE displayed promising α-AE and α-GE inhibition through in vitro study. Based on LC-MS/MS screening, 18 unique AMPE compounds were identified, with majorly belonging to anthraquinone and flavonoid compounds. Furthermore, in silico study determined that 8 compounds of AMPE exhibited strong binding to α-AE that specifically interacted with its catalytic residue of ASP197. Moreover, 2 compounds exhibit potential inhibition of α-GE, by interacting with crucial amino acids of ARG315, ASP352, and ASP69. Finally, we suggested that 2,7-Dihydroxy-1-(p-hydroxybenzyl)-4-methoxy-9,10-dihydrophenanthrene and 3(3-(3,4-Dihydroxybenzyl)-7-hydroxychroman-4-one as novel inhibitors of α-AE and α-GE. Notably, these compounds were initially discovered from Apis mellifera propolis in this study. The molecular dynamic analysis confirmed their stable binding with both enzymes over 100 ns simulations. The in vivo acute toxicity assay reveals AMPE as a practically non-toxic product with an LD50 value of 16,050 mg/kg. Therefore, this propolis may serve as a promising natural product for diabetes mellitus treatment.
Collapse
Affiliation(s)
- Putri Hawa Syaifie
- Center of Excellece Life Sciences, Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, 15314, Banten, Indonesia
| | - Delfritama Ibadillah
- Center of Excellece Life Sciences, Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, 15314, Banten, Indonesia
| | - Muhammad Miftah Jauhar
- Center of Excellece Life Sciences, Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, 15314, Banten, Indonesia
- Biomedical Engineering, Graduate School of Universitas Gadjah Mada, Sleman, 55281, Yogyakarta, Indonesia
| | - Rikania Reninta
- Research Center for Applied Botany, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Sri Ningsih
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Donny Ramadhan
- Center of Excellece Life Sciences, Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, 15314, Banten, Indonesia
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Adzani Gaisani Arda
- Center of Excellece Life Sciences, Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, 15314, Banten, Indonesia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary
| | - Dhecella Winy Cintya Ningrum
- Center of Excellece Life Sciences, Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, 15314, Banten, Indonesia
| | - Nofa Mardia Ningsih Kaswati
- Center of Excellece Life Sciences, Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, 15314, Banten, Indonesia
| | - Nurul Taufiqu Rochman
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang, 15314, Indonesia
| | - Etik Mardliyati
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| |
Collapse
|
11
|
Shalaby ES, Abdelhameed MF, Ismail SA, Ahmed YH, Aboutaleb S. Innovative Indian Propolis Loaded Carnauba Wax Based Lipid Structured Nanocarriers: Preparation, Characterization and In Vitro /In Vivo Antifungal Activities. BIONANOSCIENCE 2024; 14:1726-1743. [DOI: 10.1007/s12668-024-01361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 01/03/2025]
|
12
|
Osés SM, Fernández-Muiño MA, Rodríguez-Fernández A, Sancho MT, Lázaro R, Bayarri S. Phenolic Composition, Antiradical, Antimicrobial, and Anti-Inflammatory Activities of Propolis Extracts from North East Spain. J Med Food 2024; 27:563-574. [PMID: 38868932 DOI: 10.1089/jmf.2023.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Antioxidant-related parameters and anti-inflammatory and antimicrobial activities against Listeria monocytogenes were assessed in eight North East Spain poplar propolis samples. Propolis extracts (PEs) were obtained using 70% ethanol (PEE) and methanol (PME). Yield and total phenol compounds were higher in PEE. Phenolic acids were analyzed by a high-performance liquid chromatograph-diode array detector. Caffeic and ferulic acids were quantified in all PEE and PME. All samples contained p-coumaric acid (quantified in 6 PEE and in 3 PME). Ascorbic acid was detected in all propolis, but mainly quantified in PME (≤0.37 mg/g PE). Biological properties were tested on PEE. As for antiradical activities, trolox equivalent antioxidant capacity (TEAC) [against 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)•+], ranged between 578 and 4620 µmol trolox/g, 2,2-diphenyl-1-picrylhydrazyl (DPPH) (against DPPH free radical), between 0.049 and 0.094 mg/mL, antioxidant activity against hydroxyl (•OH) radical (AOA), between 0.04 and 11.01 mmol uric acid/g, and oxygen radical absorbance capacity (ORAC) against peroxyl (ROO•) radical between 122 and 3282 µmol trolox/g. Results of TEAC, AOA, and ORAC were significantly correlated. IC50 anti-inflammatory activity ranged from 1.08 to 6.19 mg/mL. Propolis showed higher inhibitory activity against L. monocytogenes CECT934 and L. monocytogenes CP101 by agar well diffusion (P < .05) (10.5 and 10.2 mm, respectively) than against L. monocytogenes CP102 (7.0 mm). Data of this research show that North East Spain propolis may be of interest for pharmaceutical and food industry use.
Collapse
Affiliation(s)
- Sandra M Osés
- Department of Biotechnology and Food Science, Universidad de Burgos (University of Burgos), Burgos, Spain
| | - Miguel A Fernández-Muiño
- Department of Biotechnology and Food Science, Universidad de Burgos (University of Burgos), Burgos, Spain
| | - Andrea Rodríguez-Fernández
- Department of Biotechnology and Food Science, Universidad de Burgos (University of Burgos), Burgos, Spain
| | - M Teresa Sancho
- Department of Biotechnology and Food Science, Universidad de Burgos (University of Burgos), Burgos, Spain
| | - Regina Lázaro
- Instituto Agroalimentario de Aragón-IA2. Veterinary School. Universidad de Zaragoza (University of Zaragoza), Zaragoza, Spain
| | - Susana Bayarri
- Instituto Agroalimentario de Aragón-IA2. Veterinary School. Universidad de Zaragoza (University of Zaragoza), Zaragoza, Spain
| |
Collapse
|
13
|
Pătruică S, Adeiza SM, Hulea A, Alexa E, Cocan I, Moraru D, Imbrea I, Floares D, Pet I, Imbrea F, Obiștioiu D. Romanian Bee Product Analysis: Chemical Composition, Antimicrobial Activity, and Molecular Docking Insights. Foods 2024; 13:1455. [PMID: 38790755 PMCID: PMC11119262 DOI: 10.3390/foods13101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Bee products are considered true wonders of nature, used since ancient times, and studied even today for their various biological activities. In this study, we hypothesise that Romanian bee products from different origins (micro apiary products, lyophilised forms, commercial) exhibit distinct chemical compositions, influencing their biological activities. An LC-MS analysis revealed varied polyphenolic content patterns, with cumaric acid, ferulic acid, rosmarinic acid, and quercitine identified in significant amounts across all samples. Primary anti-inflammatory evaluation phases, including the inhibition of haemolysis values and protein denaturation, unveiled a range of protective effects on red blood cells (RBC) and blood proteins, contingent upon the sample concentration. Antimicrobial activity assessments against 12 ATCC strains and 6 pathogenic isolates demonstrated varying efficacy, with propolis samples showing low efficacy, royal jelly forms displaying moderate effectiveness, and apilarnin forms exhibiting good inhibitory activity, mostly against Gram-positive bacteria. Notably, the lyophilised form emerged as the most promising sample, yielding the best results across the biological activities assessed. Furthermore, molecular docking was employed to elucidate the inhibitory potential of compounds identified from these bee products by targeting putative bacterial and fungal proteins. Results from the docking analysis showed rosmarinic and rutin exhibited strong binding energies and interactions with the putative antimicrobial proteins of bacteria (-9.7 kcal/mol to -7.6 kcal/mol) and fungi (-9.5 kcal/mol to -8.1 kcal/mol). The findings in this study support the use of bee products for antimicrobial purposes in a biologically active and eco-friendly proportion while providing valuable insights into their mechanism of action.
Collapse
Affiliation(s)
- Silvia Pătruică
- Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului nr. 119, 300645 Timisoara, Romania; (S.P.); (D.M.); (I.P.)
| | - Suleiman Mukhtar Adeiza
- Faculty of Life Science, Department of Biochemistry, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria
| | - Anca Hulea
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului no. 119, 300645 Timisoara, Romania; (D.F.); (F.I.); (D.O.)
| | - Ersilia Alexa
- Faculty of Food Engineering, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului no. 119, 300645 Timisoara, Romania (I.C.)
| | - Ileana Cocan
- Faculty of Food Engineering, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului no. 119, 300645 Timisoara, Romania (I.C.)
| | - Dragos Moraru
- Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului nr. 119, 300645 Timisoara, Romania; (S.P.); (D.M.); (I.P.)
| | - Ilinca Imbrea
- Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului no. 119, 300645 Timisoara, Romania;
| | - Doris Floares
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului no. 119, 300645 Timisoara, Romania; (D.F.); (F.I.); (D.O.)
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului nr. 119, 300645 Timisoara, Romania; (S.P.); (D.M.); (I.P.)
| | - Florin Imbrea
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului no. 119, 300645 Timisoara, Romania; (D.F.); (F.I.); (D.O.)
| | - Diana Obiștioiu
- Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, Calea Aradului no. 119, 300645 Timisoara, Romania; (D.F.); (F.I.); (D.O.)
| |
Collapse
|
14
|
Acito M, Varfaj I, Brighenti V, Cengiz EC, Rondini T, Fatigoni C, Russo C, Pietrella D, Pellati F, Bartolini D, Sardella R, Moretti M, Villarini M. A novel black poplar propolis extract with promising health-promoting properties: focus on its chemical composition, antioxidant, anti-inflammatory, and anti-genotoxic activities. Food Funct 2024; 15:4983-4999. [PMID: 38606532 DOI: 10.1039/d3fo05059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Propolis is a resinous mixture produced by honeybees which has been used since ancient times for its useful properties. However, its chemical composition and bioactivity may vary, depending on the geographical area of origin and the type of tree bees use for collecting pollen. In this context, this research aimed to investigate the total phenolic content (using the Folin-Ciocalteu assay) and the total antioxidant capacity (using the FRAP, DPPH, and ABTS assays) of three black poplar (Populus nigra L.) propolis (BPP) solutions (S1, S2, and S3), as well as the chemical composition (HPLC-ESI-MSn) and biological activities (effect on cell viability, genotoxic/antigenotoxic properties, and anti-inflammatory activity, and effect on ROS production) of the one which showed the highest antioxidant activity (S1). The hydroalcoholic BPP solution S1 was a prototype of an innovative, research-type product by an Italian nutraceutical manufacturer. In contrast, hydroalcoholic BPP solutions S2 and S3 were conventional products purchased from local pharmacy stores. For the three extracts, 50 phenolic compounds, encompassing phenolic acids and flavonoids, were identified. In summary, the results showed an interesting chemical profile and the remarkable antioxidant, antigenotoxic, anti-inflammatory and ROS-modulating activities of the innovative BPP extract S1, paving the way for future research. In vivo investigations will be a possible line to take, which may help corroborate the hypothesis of the potential health benefits of this product, and even stimulate further ameliorations of the new prototype.
Collapse
Affiliation(s)
- Mattia Acito
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Ina Varfaj
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Emine Ceren Cengiz
- Department of Toxicology, Faculty of Pharmacy, Gazi University, 06560 Ankara, Turkey
| | - Tommaso Rondini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Cristina Fatigoni
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Carla Russo
- Department of Medicine and Surgery, University of Perugia, Piazzale S. Gambuli 1, 06132 Perugia, Italy
| | - Donatella Pietrella
- Department of Medicine and Surgery, University of Perugia, Piazzale S. Gambuli 1, 06132 Perugia, Italy
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Milena Villarini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| |
Collapse
|
15
|
Freitas AS, Oliveira R, Almeida-Aguiar C. Further Insights on Honey and Propolis from Gerês (Portugal) and Their Bioactivities: Unraveling the Impact of Beehive Relocation. Life (Basel) 2024; 14:506. [PMID: 38672776 PMCID: PMC11050790 DOI: 10.3390/life14040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Propolis, a bee product, is known for its variability of chemical and bioactive profiles. However, Portuguese propolis from Gerês, normally obtained by mixing propolis from three places-Bugalho, Felgueiras and Toutelo-has shown similar chemical and biological profiles over the years. Recently, a new propolis place-Roca-was added to the apiary to replace Bugalho, lost to the 2017 wildfires, hence questioning the previously claimed constancy of Gerês propolis. To unravel to what extent the beehive relocation affected this constancy, we studied different Gerês propolis samples collected in three consecutive years (2017-2019) composed of different combinations of source places. Two honey samples, collected before (2017) and after (2018) the occurrence of the wildfire, were also investigated. Total phenolics, flavonoids and ortho-diphenols contents were determined and the antioxidant and antimicrobial activities were evaluated, using the DPPH assay and the agar dilution method, respectively. Although both antimicrobial and antioxidant activities were generally in the ranges usually obtained from Gerês propolis, some variations were detected for the samples, with different compositions when compared to previous years. This work reinforces the importance of the consistency of a combination of several factors for the protection and preservation of the flora near the hives, providing bee products with more constant chemical and biological profiles over the years.
Collapse
Affiliation(s)
- Ana Sofia Freitas
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui Oliveira
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cristina Almeida-Aguiar
- Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
16
|
Buitrago DM, Perdomo SJ, Silva FA, Cely-Veloza W, Lafaurie GI. Physicochemical Characterization, Antioxidant, and Proliferative Activity of Colombian Propolis Extracts: A Comparative Study. Molecules 2024; 29:1643. [PMID: 38611922 PMCID: PMC11013913 DOI: 10.3390/molecules29071643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 04/14/2024] Open
Abstract
Propolis extracts have been widely studied due to their popularity in traditional medicine, presenting incredible biodiversity. This study aimed to analyze propolis extracts' phytochemical, physicochemical, and biological activities from four different biogeographic zones of the Huila region (Colombia). The raw material samples were collected by the scraping method and the ethanolic extracts (EEPs) were obtained by cold maceration with ethanol (96%). The physicochemical and sensory characterization was carried out according to the protocols recommended by the Brazilian Ministry of Agriculture and the main components of the EEPs were identified by LC-HRMS analysis. The determination of total phenols and flavonoids was carried out using colorimetric techniques. The antioxidant activity, cytotoxicity, and cell cycle regulation analyses in L929 and HGnF cells were evaluated using DPPH, Alamar Blue, and 7-amino actinomycin D (7-AAD) assays. The propolis samples presented an average yield of 33.1%, humidity between 1.6 and 2.8%, melting point between 54 and 62 °C, ashes between 1.40 and 2.19%, and waxes of 6.6-17.9%, respectively. The sensory characteristics of all samples were heterogeneous, complying with the quality specifications established by international standards. The polyphenolic and total flavonoid content was representative in the samples from Quebradon (255.9 ± 9.2 mg GAE/g, 543.1 ± 8.4 mg QE/g) and Arcadia (543.1 ± 8.4 mg GAE/g, 32.5 ± 1.18 g QE/g) (p < 0.05) that correlated with high antioxidant activity (Quebradon: 37.2 ± 1.2 µmol/g, Arcadia: 38.19 ± 0.7 µmol/g). In the chemical composition analysis, 19 compounds were characterized as phenolic acids and flavonoids, the most representative being chrysoeriol-O-methyl-ether, ellagic acid, and 3,4-O-dimethylcaffeic acid. Regarding biological activity, Quebradon and Arcadia propolis presented low toxicity with IC50 of 2.83 ± 2.3 mg/mL and 4.28 ± 1.4 mg/mL in HGnF cells, respectively, and an arrest of the cell cycle in the G2/M phase of 71.6% and 50.8% compared to the control (11.9%) (p < 0.05). In general, the results of this study contribute to the identification of valid quality criteria to evaluate Colombian propolis, contributing to its study and chemical and biological characterization as a source of raw material for industrial and pharmaceutical use. In addition, Quebradon and Arcadia propolis can be important sources of bioactive molecules for the development of new drugs.
Collapse
Affiliation(s)
- Diana Marcela Buitrago
- Unidad de Investigación Básica Oral—UIBO, Facultad de Odontología, Universidad El Bosque, Bogotá 110121, Colombia
| | - Sandra J. Perdomo
- Cellular and Molecular Immunology Group-INMUBO, Facultad de Odontología, Universidad El Bosque, Bogotá 110121, Colombia;
| | | | - Willy Cely-Veloza
- Área Bioclínica, Facultad de Odontología, Universidad El Bosque, Bogotá 110121, Colombia;
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajica 250247, Colombia
| | - Gloria Inés Lafaurie
- Unidad de Investigación Básica Oral—UIBO, Facultad de Odontología, Universidad El Bosque, Bogotá 110121, Colombia
| |
Collapse
|
17
|
Rendueles E, Mauriz E, Sanz-Gómez J, González-Paramás AM, Vallejo-Pascual ME, Adanero-Jorge F, García-Fernández C. Biochemical Profile and Antioxidant Properties of Propolis from Northern Spain. Foods 2023; 12:4337. [PMID: 38231851 DOI: 10.3390/foods12234337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
The antioxidant, anti-inflammatory, and antimicrobial characteristics of propolis, a bioactive compound collected from hives, have prompted its use in the food sector in recent times. This study investigated the physicochemical characteristics, phenolic profile, and antioxidant capacity of 31 propolis extracts collected from Northern Spain. The physicochemical composition (resins, waxes, ashes mineral content, and heavy metals) was within the allowable regulatory limits. The analysis of bioactive compounds enabled the identification of 51 constituents: flavonoids (apigenin, catechin, chrysin, quercetin, and pinocembrin) and phenolic acids (caffeic, ferulic, and coumaric). The mean value of total polyphenols was 42.72 ± 13.19 Pinocembrin-Galangin Equivalents/100 g, whereas a range between 1.64 ± 0.04 and 4.95 ± 0.36 Quercetin Equivalents (QE) g/100 g was found for total flavonoids content. The determination of bioactivities revealed significant antioxidant capacity using DPPH (1114.28 ± 10.39 µM Trolox Equivalents and 3487.61 ± 318.66 µM Vitamin C Equivalents). Resin content in propolis samples was positively and significantly correlated with both polyphenols (rho = 0.365; p = 0.043) and flavonoid composition (rho = 0.615; p = 0.000) as well as the antioxidant capacity TEAC DPPH (rho = 0.415; p = 0.020). A multiple regression analysis modeled the correlation between resin composition, flavonoids, and TEAC DPPH values, yielding a significant regression equation (R2 = 0.618; F (2,28) = 22.629; p < 0.000; d = 2.299). Therefore, evaluating physicochemical parameters and biological activities provides a promising framework for predicting propolis' quality and antioxidant properties, thus suggesting its potential as a functional and bioactive compound for the food industry.
Collapse
Affiliation(s)
- Eugenia Rendueles
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
- ALINS, Food Nutrition and Safety Investigation Group, Universidad de León, 24007 León, Spain
| | - Elba Mauriz
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
- ALINS, Food Nutrition and Safety Investigation Group, Universidad de León, 24007 León, Spain
| | - Javier Sanz-Gómez
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
- ALINS, Food Nutrition and Safety Investigation Group, Universidad de León, 24007 León, Spain
| | - Ana M González-Paramás
- GIP-USAL, Polyphenol Investigation Group, Universidad de Salamanca, 37007 Salamanca, Spain
| | - María-E Vallejo-Pascual
- Quantitative Methods Area, Economical and Statistical Department, Universidad de León, 24007 León, Spain
| | - Félix Adanero-Jorge
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
| | - Camino García-Fernández
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
- ALINS, Food Nutrition and Safety Investigation Group, Universidad de León, 24007 León, Spain
| |
Collapse
|
18
|
Vieira ALS, Correia VTDV, Ramos ALCC, da Silva NHA, Jaymes LAC, Melo JOF, de Paula ACCFF, Garcia MAVT, de Araújo RLB. Evaluation of the Chemical Profile and Antioxidant Capacity of Green, Brown, and Dark Propolis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3204. [PMID: 37765368 PMCID: PMC10537587 DOI: 10.3390/plants12183204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/29/2023]
Abstract
The chemical composition of propolis varies between different types, due to the specific vegetation found near the hives and the climatic and soil conditions worldwide. Green propolis is exclusive to Brazil, produced by bees, with the resin of the plant Baccharis dracunculifolia. Brown propolis is a specific variety produced mainly in Northeast Brazil from the plant Hyptis divaricata, also known as "maria miraculosa". Dark propolis is a variety of propolis produced by bees from the resin of the plant known as Jurema Preta (Mimosa hostilis benth). In this study, the aqueous extracts of green, brown, and dark propolis were analyzed for their antioxidant capacity using ABTS, FRAP, and DPPH, and their chemical profiles were determined using paper spray mass spectrometry. Among the three extracts, green propolis had the highest content of total phenolic compounds (2741.71 ± 49.53 mg GAE. 100 g-1), followed by brown propolis (1191.55 ± 36.79 mg GAE. 100 g-1), and dark propolis had the lowest content (901.79 ± 27.80 mg GAE. 100 g-1). The three types of propolis showed high antioxidant capacity, with green showing the highest antioxidant capacity for the three methods used. Using paper spray mass spectrometry, it was possible to suggest the presence of 116 substances, including flavonoids (56), phenylpropanoids (30), terpenes (25), carboxylic acids (1), benzoic acid derivatives (1), fatty acids (1), amino acids (1) and alkaloids (1). The compounds in the green, brown, and dark propolis extracts reinforce the bioactive potential for application in these tree extracts' food and pharmaceutical products.
Collapse
Affiliation(s)
- Ana Luiza Santos Vieira
- Department of Food, Faculty of Pharmacy, Campus Belo Horizonte, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.S.V.); (V.T.d.V.C.); (A.L.C.C.R.); (N.H.A.d.S.); (L.A.C.J.); (M.A.V.T.G.); (R.L.B.d.A.)
| | - Vinícius Tadeu da Veiga Correia
- Department of Food, Faculty of Pharmacy, Campus Belo Horizonte, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.S.V.); (V.T.d.V.C.); (A.L.C.C.R.); (N.H.A.d.S.); (L.A.C.J.); (M.A.V.T.G.); (R.L.B.d.A.)
| | - Ana Luiza Coeli Cruz Ramos
- Department of Food, Faculty of Pharmacy, Campus Belo Horizonte, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.S.V.); (V.T.d.V.C.); (A.L.C.C.R.); (N.H.A.d.S.); (L.A.C.J.); (M.A.V.T.G.); (R.L.B.d.A.)
| | - Nayana Hayss Araújo da Silva
- Department of Food, Faculty of Pharmacy, Campus Belo Horizonte, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.S.V.); (V.T.d.V.C.); (A.L.C.C.R.); (N.H.A.d.S.); (L.A.C.J.); (M.A.V.T.G.); (R.L.B.d.A.)
| | - Leonardo Assis Campos Jaymes
- Department of Food, Faculty of Pharmacy, Campus Belo Horizonte, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.S.V.); (V.T.d.V.C.); (A.L.C.C.R.); (N.H.A.d.S.); (L.A.C.J.); (M.A.V.T.G.); (R.L.B.d.A.)
| | - Julio Onésio Ferreira Melo
- Department of Exact and Biological Sciences, Campus Sete Lagoas, Federal University of São João del-Rei, Sete Lagoas 36307-352, MG, Brazil
| | | | - Maria Aparecida Vieira Teixeira Garcia
- Department of Food, Faculty of Pharmacy, Campus Belo Horizonte, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.S.V.); (V.T.d.V.C.); (A.L.C.C.R.); (N.H.A.d.S.); (L.A.C.J.); (M.A.V.T.G.); (R.L.B.d.A.)
| | - Raquel Linhares Bello de Araújo
- Department of Food, Faculty of Pharmacy, Campus Belo Horizonte, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.S.V.); (V.T.d.V.C.); (A.L.C.C.R.); (N.H.A.d.S.); (L.A.C.J.); (M.A.V.T.G.); (R.L.B.d.A.)
| |
Collapse
|
19
|
Suhandi C, Wilar G, Lesmana R, Zulhendri F, Suharyani I, Hasan N, Wathoni N. Propolis-Based Nanostructured Lipid Carriers for α-Mangostin Delivery: Formulation, Characterization, and In Vitro Antioxidant Activity Evaluation. Molecules 2023; 28:6057. [PMID: 37630309 PMCID: PMC10458397 DOI: 10.3390/molecules28166057] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
α-Mangostin (a xanthone derivative found in the pericarp of Garcinia mangostana L.) and propolis extract (which is rich in flavonoids and phenols) are known for their antioxidant properties, making them potential supplements for the treatment of oxidative stress-related conditions. However, these two potential substances have the same primary drawback, which is low solubility in water. The low water solubility of α-mangostin and propolis can be overcome by utilizing nanotechnology approaches. In this study, a propolis-based nanostructured lipid carrier (NLC) system was formulated to enhance the delivery of α-mangostin. The aim of this study was to characterize the formulation and investigate its influence on the antioxidant activity of α-mangostin. The results showed that both unloaded propolis-based NLC (NLC-P) and α-mangostin-loaded propolis-based NLC (NLC-P-α-M) had nanoscale particle sizes (72.7 ± 1.082 nm and 80.3 ± 1.015 nm, respectively), neutral surface zeta potential (ranging between +10 mV and -10 mV), and good particle size distribution (indicated by a polydispersity index of <0.3). The NLC-P-α-M exhibited good entrapment efficiency of 87.972 ± 0.246%. Dissolution testing indicated a ~13-fold increase in the solubility of α-mangostin compared to α-mangostin powder alone. The incorporation into the propolis-based NLC system correlated well with the enhanced antioxidant activity of α-mangostin (p < 0.01) compared to NLC-P and α-mangostin alone. Therefore, the modification of the delivery system by incorporating α-mangostin into the propolis-based NLC overcomes the physicochemical challenges of α-mangostin while enhancing its antioxidant effectiveness.
Collapse
Affiliation(s)
- Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (C.S.); (I.S.)
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | | | - Ine Suharyani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (C.S.); (I.S.)
- Department of Pharmacy, Sekolah Tinggi Farmasi Muhammadiyah Cirebon, Cirebon 45153, Indonesia
| | - Nurhasni Hasan
- Department of Pharmacy Science and Technology, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia;
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (C.S.); (I.S.)
| |
Collapse
|
20
|
Ibáñez B, Melero A, Montoro A, San Onofre N, Soriano JM. Radioprotective Effects from Propolis: A Review. Molecules 2023; 28:5842. [PMID: 37570811 PMCID: PMC10420827 DOI: 10.3390/molecules28155842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Propolis is a natural bee-produced substance with antimicrobial, anti-inflammatory, and wound-healing properties, containing some components from the leaves, buds and resins of plants. It has been used for centuries for various health benefits. In this manuscript, our group reviewed the radioprotective effect of propolis using PubMed and Embase, and our review was conducted according to the PRISMA statement. Finally, 27 articles were included in this review, which includes the radioprotective effect of propolis from cell-based studies (n = 8), animal models (n = 14), and human trials (n = 5). Results reflected that the dosage forms of propolis extracted in the scientific literature were ethanolic extracts of propolis, a water-soluble derivate of propolis, or capsules. The efficacy of the radioprotective properties from propolis is extracted from the bibliography, as several compounds of this resinous mixture individually or synergistically are possible candidates that have the radioprotective effect. In fact, studies prior to 2011 lacked a comprehensive characterization of propolis due to the variability in active compounds among different batches of propolis and were limited to analytical techniques. Furthermore, in this manuscript, we have selected studies to include primarily propolis types from Brazil, Croatia, Egypt, European countries, and those commercialized in Spain. They all contained ethanolic extract of propolis (EEP) and were influenced by different dosage forms. EEP showed a significant presence of lipophilic bioactive compounds like flavones, flavonols, and flavanones.
Collapse
Affiliation(s)
- Blanca Ibáñez
- Food & Health Laboratory, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - Nadia San Onofre
- Food & Health Laboratory, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain
- Department of Community Nursing, Preventive Medicine and Public Health and History of Science, University of Alicante, 03690 Alicante, Spain
| | - Jose M. Soriano
- Food & Health Laboratory, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute La Fe, 46026 Valencia, Spain
| |
Collapse
|
21
|
Stefanowska K, Woźniak M, Sip A, Mrówczyńska L, Majka J, Kozak W, Dobrucka R, Ratajczak I. Characteristics of Chitosan Films with the Bioactive Substances-Caffeine and Propolis. J Funct Biomater 2023; 14:358. [PMID: 37504853 PMCID: PMC10381157 DOI: 10.3390/jfb14070358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Chitosan is a natural and biodegradable polymer with promising potential for biomedical applications. This study concerns the production of chitosan-based materials for future use in the medical industry. Bioactive substances-caffeine and ethanolic propolis extract (EEP)-were incorporated into a chitosan matrix to increase the bioactivity of the obtained films and improve their mechanical properties. Acetic and citric acids were used as solvents in the production of the chitosan-based films. The obtained materials were characterized in terms of their antibacterial and antifungal activities, as well as their mechanical properties, including tensile strength and elongation at break. Moreover, the chemical structures and surface morphologies of the films were assessed. The results showed that the solution consisting of chitosan, citric acid, caffeine, and EEP exhibited an excellent antiradical effect. The activity of this solution (99.13%) was comparable to that of the standard antioxidant Trolox (92.82%). In addition, the film obtained from this solution showed good antibacterial activity, mainly against Escherichia coli and Enterococcus faecalis. The results also revealed that the films produced with citric acid exhibited higher activity levels against pathogenic bacteria than the films obtained with acetic acid. The antimicrobial effect of the chitosan-based films could be further enhanced by adding bioactive additives such as caffeine and propolis extract. The mechanical tests showed that the solvents and additives used affected the mechanical properties of the films obtained. The film produced from chitosan and acetic acid was characterized by the highest tensile strength value (46.95 MPa) while the chitosan-based film with citric acid showed the lowest value (2.28 MPa). The addition of caffeine and propolis to the film based on chitosan with acetic acid decreased its tensile strength while in the case of the chitosan-based film with citric acid, an increase in strength was observed. The obtained results suggested that chitosan films with natural bioactive substances can be a promising alternative to the traditional materials used in the medical industry, for example, as including biodegradable wound dressings or probiotic encapsulation materials.
Collapse
Affiliation(s)
- Karolina Stefanowska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| | - Magdalena Woźniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| | - Anna Sip
- Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 48, 60627 Poznań, Poland
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61614 Poznań, Poland
| | - Jerzy Majka
- Department of Wood Science and Thermal Techniques, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60637 Poznań, Poland
| | - Wojciech Kozak
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61875 Poznań, Poland
| | - Renata Dobrucka
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61875 Poznań, Poland
| | - Izabela Ratajczak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| |
Collapse
|
22
|
Kurek-Górecka A, Ramos P, Kłósek M, Bobela E, Czuba ZP, Balwierz R, Olczyk P. Propolis as a Cariostatic Agent in Lozenges and Impact of Storage Conditions on the Stability of Propolis. Pharmaceutics 2023; 15:1768. [PMID: 37376216 DOI: 10.3390/pharmaceutics15061768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Propolis is known as a source of compounds with strong antibacterial activity. Due to the antibacterial effect against streptococci of the oral cavity, it seems to be a useful agent in decreasing the accumulation of dental plaque. It is rich in polyphenols which are responsible for a beneficial impact on the oral microbiota and antibacterial effect. The aim of the study was to evaluate the antibacterial effect of Polish propolis against cariogenic bacteria. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined on cariogenic streptococci related to the occurrence of dental caries. Lozenges based on xylitol, glycerin, gelatin, water, and ethanol extract of propolis (EEP) were prepared. The effect of prepared lozenges on cariogenic bacteria was assessed. Propolis was compared to chlorhexidine which is used in dentistry as the gold standard. In addition, the prepared propolis formulation was stored under stress conditions to assess the influence of physical conditions (i.e., temperature, relative humidity, and UV radiation). In the experiment, thermal analyses were also performed to evaluate the compatibility of propolis with the substrate used to create the base of lozenges. The observed antibacterial effect of propolis and prepared lozenges with EEP may suggest directing subsequent research on prophylactic and therapeutic properties decreasing the accumulation of dental plaque. Therefore, it is worth highlighting that propolis may play an important role in the management of dental health and bring advantages in preventing periodontal diseases and caries as well as dental plaque. The colorimetric analyses carried out in the CIE L*a*b* system, microscopic examinations, and TGA/DTG/c-DTA measurements indicate the unfavorable effect of the tested storage conditions on the lozenges with propolis. This fact is particularly evident for lozenges stored under stress conditions, i.e., 40 °C/75% RH/14 days, and lozenges exposed to UVA radiation for 60 min. In addition, the obtained thermograms of the tested samples indicate the thermal compatibility of the ingredients used to create the formulation of lozenges.
Collapse
Affiliation(s)
- Anna Kurek-Górecka
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Kasztanowa 3, 41-200 Sosnowiec, Poland
| | - Paweł Ramos
- Department of Biophysics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8, 41-200 Sosnowiec, Poland
| | - Małgorzata Kłósek
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Elżbieta Bobela
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Zenon P Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Radosław Balwierz
- Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Kasztanowa 3, 41-200 Sosnowiec, Poland
| |
Collapse
|
23
|
Ruiz Ruiz JC, Pacheco López NA, Rejón Méndez EG, Samos López FA, Medina Medina L, Quezada-Euán JJG. Phenolic Content and Bioactivity as Geographical Classifiers of Propolis from Stingless Bees in Southeastern Mexico. Foods 2023; 12:foods12071434. [PMID: 37048257 PMCID: PMC10093637 DOI: 10.3390/foods12071434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Propolis collected by stingless bees is a valuable biocultural resource and a source of bioactive compounds. Methodologies to establish both the geographic origin and the potential pharmacological activity of propolis of stingless bees are required to regulate their sustainable use. The aim of this study was to classify Melipona beecheii propolis according to its phenolic compound content and potential pharmacological activity, using in vitro assays and statistical methodologies of multivariate analysis, hierarchical cluster analysis, and principal component analysis. Propolis samples were collected from seven states in southeastern Mexico. Total phenolic content and flavonoids were determined spectrophotometrically, and antioxidant, anti-inflammatory, and antimicrobial activities were evaluated. Both total phenolic content and flavonoids, and in vitro bioactivity potential of propolis extracts showed significant variations. Multivariate analysis, hierarchical cluster analysis, and principal component analysis enabled us to distinguish and classify propolis produced by M. beecheii according to similarity in terms of total phenolic content, in vitro bioactivity potential, and geographical origin. This strategy could be used to establish regulations for sustainable use, marketing, and industrial applications.
Collapse
Affiliation(s)
- Jorge Carlos Ruiz Ruiz
- Escuela de Nutrición, División de Ciencias de la Salud, Universidad Anáhuac-Mayab, Km 15.5 Carretera Mérida a Progreso, Int. Km 2 Carretera a Chablekal, Mérida 97310, Yucatán, Mexico
- Correspondence:
| | - Neith Aracely Pacheco López
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Subsede Sureste, Parque Científico Tecnológico de Yucatán, Km 5.5 Sierra Papacal-Chuburná Puerto, Mérida 97302, Yucatán, Mexico;
| | - Estephania Guadalupe Rejón Méndez
- Departamento de Apicultura, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Mérida 97100, Yucatán, Mexico; (E.G.R.M.); (F.A.S.L.); (L.M.M.); (J.J.G.Q.-E.)
| | - Felipe Antonio Samos López
- Departamento de Apicultura, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Mérida 97100, Yucatán, Mexico; (E.G.R.M.); (F.A.S.L.); (L.M.M.); (J.J.G.Q.-E.)
| | - Luis Medina Medina
- Departamento de Apicultura, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Mérida 97100, Yucatán, Mexico; (E.G.R.M.); (F.A.S.L.); (L.M.M.); (J.J.G.Q.-E.)
| | - José Javier G. Quezada-Euán
- Departamento de Apicultura, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Mérida 97100, Yucatán, Mexico; (E.G.R.M.); (F.A.S.L.); (L.M.M.); (J.J.G.Q.-E.)
| |
Collapse
|
24
|
Sahu A, Nayak G, Bhuyan SK, Bhuyan R, Kar D, Kuanar A. A comparative study on antioxidant activity of propolis ethanolic extract and oil from different agroclimatic regions of Eastern India. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
25
|
Yang J, He Y, Nan S, Li J, Pi A, Yan L, Xu J, Hao Y. Therapeutic effect of propolis nanoparticles on wound healing. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
26
|
Peng S, Zhu M, Li S, Ma X, Hu F. Ultrasound-assisted extraction of polyphenols from Chinese propolis. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1131959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
IntroductionPropolis is a beneficial bioactive food with rich polyphenols content. Nowadays, an increasing interest is attracted to the extraction of polyphenols from raw propolis. This study utilized the novel ultrasound-assisted approach for polyphenol extraction from Chinese propolis, aiming to improve its extraction yield and reveal the relevant mechanisms via extraction kinetic study as well as the compositional and structural analysis.MethodsThe optimum ultrasound-assisted extraction conditions were optimized according to the total phenolic content and total flavonoids content. Compositional and structural analysis were conducted using high performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry, high-performance liquid chromatography, Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM).Results and discussionThe optimum ultrasound-assisted extraction conditions were as follows: ratio of liquid to solid, 60:1; ultrasound power, 135 W; ultrasound duration, 20 min. Under the optimum conditions, the antioxidant activities of the extract were increased by 95.55% and 64.46% by 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability assay and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging ability assay, respectively, compared to those obtained by traditional maceration. The second-order kinetics model was employed to study the extraction process; it was found that ultrasound significantly accelerated the extraction of propolis and increased the maximum extraction volume of phenolic compounds. The qualitative and quantitative analysis of polyphenol compositions showed that ultrasound did not change the polyphenol types in the extract but it significantly improved the contents of various flavonoids and phenolic acids such as galangin, chrysin, pinocembrin, pinobanksin and isoferulic acid. Likewise, the FT-IR analysis indicated that the types of functional groups were similar in the two extracts. The SEM analysis revealed that the ultrasound-assisted extraction enhanced the contact areas between propolis and ethanol by breaking down the propolis particles and eroding the propolis surface.
Collapse
|
27
|
A melissopalynological and chemical characterization of Anatolian propolis and an assessment of its antioxidant potential. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
28
|
Maria Nichitoi M, Maria Josceanu A, Daniela Isopescu R, Olimpia Isopencu G, Geana EI, Teodora Ciucure C, Lavric V. Do ultrasonic field effects upon the polyphenolics profile of propolis extracts improve their antioxidant and antimicrobial activity? ULTRASONICS SONOCHEMISTRY 2023; 92:106274. [PMID: 36566521 PMCID: PMC9803952 DOI: 10.1016/j.ultsonch.2022.106274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/03/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Ultrasound-assisted extraction (UAE) was applied for polyphenols extraction from Romanian propolis, followed by comparison with previous maceration work. The effects consisted not only in time reduction and extraction yield increase, but also in polyphenolics profile modification in terms of flavonoids / polyphenolic acids ratio. The operating parameters were ultrasounds (US) field exposure time (10-100 min), solvent composition (water, 25 % and 50 % ethanolic solutions, w/w), and liquid:solid ratio (2:1, 4:1 and 6:1, w:w), while keeping temperature constant. 24 polyphenolic derivatives were quantified by UHPLC-HRMS. UAE favored the extraction of pinocembrin, isorhamnetin and chrysin in water and 25 % ethanol, leading to different profiles than maceration, and further influences upon the antioxidant and antimicrobial activity. All extracts demonstrated increased antibacterial and antifungal activity compared to maceration, particularly the 50 % ethanolic extracts, which presented a three-times larger antioxidant capacity. Chemometric methods (Principal Component Analysis - PCA and Partial Least Squares Regression - PLS) and a saturation type model were used to correlate the polyphenolics profiles and antioxidant capacity. Experimental and modelling results concluded that 50 % ethanolic solutions and UAE represent the favorable operating conditions in terms of yield and extracts quality.
Collapse
Affiliation(s)
- Mădălina Maria Nichitoi
- University Politehnica of Bucharest, Doctoral School "Chemical Engineering and Biotechnologies", Bucharest, Romania
| | - Ana Maria Josceanu
- University Politehnica of Bucharest, Department of Analytical Chemistry and Environmental Engineering, Bucharest, Romania.
| | - Raluca Daniela Isopescu
- University Politehnica of Bucharest, Department of Chemical and Biochemical Engineering, Bucharest, Romania
| | - Gabriela Olimpia Isopencu
- University Politehnica of Bucharest, Department of Chemical and Biochemical Engineering, Bucharest, Romania.
| | - Elisabeta-Irina Geana
- National Research and Development Institute for Cryogenics and Isotopic Technologies - ICIT, Râmnicu-Vâlcea, Romania
| | - Corina Teodora Ciucure
- National Research and Development Institute for Cryogenics and Isotopic Technologies - ICIT, Râmnicu-Vâlcea, Romania
| | - Vasile Lavric
- University Politehnica of Bucharest, Department of Chemical and Biochemical Engineering, Bucharest, Romania
| |
Collapse
|
29
|
Biological Activity and Chemical Composition of Propolis from Various Regions of Poland. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010141. [PMID: 36615334 PMCID: PMC9822435 DOI: 10.3390/molecules28010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Propolis is one of the bee products, with multiple biological properties used in numerous applications. The research objective was to determine the chemical composition and biological properties (antibacterial, antifungal, antiviral, antioxidant, and cytoprotective activity) of propolis extracts collected from various regions of Poland. The results indicated that the total content of phenols (116.16-219.41 mg GAE/g EEP) and flavonoids (29.63-106.07 mg QE/g EEP) in propolis extracts depended on their geographic origin. The high content of epicatechin, catechin, pinobanksin, myricetin, and acids: vanillic and syringic in propolis samples was confirmed by chromatographic analysis. Moreover, the presence of caffeic acid phenethyl ester was confirmed in all samples. The origin of propolis also influenced the biological properties of its extracts. The propolis extracts were characterized by moderate DPPH free radical scavenging activity (29.22-35.14%), and relatively low ferrous iron chelating activity (9.33-32.32%). The results indicated also that the propolis extracts showed high activity in the protection of human red blood cells against free radicals generated from 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH). The extracts exhibited diversified activity against the tested pathogenic bacteria and limited activity against fungal strains. The research of selected propolis extracts showed that only 2 of 5 examined samples showed moderate activity against HPV (human papillomaviruses) and the activity depended on its geographical distribution.
Collapse
|
30
|
Extracts from European Propolises as Potent Tyrosinase Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010055. [PMID: 36615251 PMCID: PMC9822166 DOI: 10.3390/molecules28010055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Tyrosinase is a key enzyme in the melanogenesis pathway. Melanin, the product of this process, is the main pigment of the human skin and a major protection factor against harmful ultraviolet radiation (UVR). Increased melanin synthesis due to tyrosinase hyperactivity can cause hyperpigmentation disorders, which in consequence causes freckles, age spots, melasma, or postinflammatory hyperpigmentation. Tyrosinase overproduction and hyperactivity are triggered by the ageing processes and skin inflammation as a result of oxidative stress. Therefore, the control of tyrosinase activity is the main goal of the prevention and treatment of pigmentation disorders. Natural products, especially propolis, according to their phytochemical profile abundant in polyphenols, is a very rich resource of new potential tyrosinase inhibitors. Therefore, this study focused on the assessment of the tyrosinase inhibitory potential of six extracts obtained from the European propolis samples of various origins. The results showed the potent inhibitory activity of all tested propolis extracts towards commercially available mushroom tyrosinase. The four most active propolis extracts showed inhibitory activity in the range of 86.66-93.25%. Apart from the evaluation of the tyrosinase inhibition, the performed research included UHPLC-DAD-MS/MS (ultra high performance liquid chromatography coupled with diode array detection and tandem mass spectrometry) phytochemical profiling as well as antioxidant activity assessment using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the 2,2"-azino-bis(3-ethylbenzothiazoline-6-sulfuric acid (ABTS) radical scavenging tests. Moreover, statistical analysis was used to correlate the tyrosinase inhibitory and antioxidant activities of propolis extracts with their phytochemical composition. To summarise, the results of our research showed that tested propolis extracts could be used for skin cosmeceutical and medical applications.
Collapse
|
31
|
Sevgi Kolaylı, Ureyen Esertas UZ, Kara Y. The Antimicrobial, Anti-Quorum Sensing, and Anti-Biofilm Activities of Ethanolic Propolis Extracts Used as Food Supplements. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022150134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
32
|
Woźniak M. Antifungal Agents in Wood Protection—A Review. Molecules 2022; 27:molecules27196392. [PMID: 36234929 PMCID: PMC9570806 DOI: 10.3390/molecules27196392] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/10/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
The biodegradation of wood and wood products caused by fungi is recognized as one of the most significant problems worldwide. To extend the service life of wood products, wood is treated with preservatives, often with inorganic compounds or synthetic pesticides that have a negative impact on the environment. Therefore, the development of new, environmentally friendly wood preservatives is being carried out in research centers around the world. The search for natural, plant, or animal derivatives as well as obtaining synthetic compounds that will be safe for humans and do not pollute the environment, while at the same time present biological activity is crucial in terms of environmental protection. The review paper presents information in the literature on the substances and chemical compounds of natural origin (plant and animal derivatives) and synthetic compounds with a low environmental impact, showing antifungal properties, used in research on the ecological protection of wood. The review includes literature reports on the potential application of various antifungal agents including plant extracts, alkaloids, essential oils and their components, propolis extract, chitosan, ionic liquids, silicon compounds, and nanoparticles as well as their combinations.
Collapse
Affiliation(s)
- Magdalena Woźniak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznań, Poland
| |
Collapse
|
33
|
Zullkiflee N, Taha H, Usman A. Propolis: Its Role and Efficacy in Human Health and Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186120. [PMID: 36144852 PMCID: PMC9504311 DOI: 10.3390/molecules27186120] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 02/07/2023]
Abstract
With technological advancements in the medicinal and pharmaceutical industries, numerous research studies have focused on the propolis produced by stingless bees (Meliponini tribe) and Apis mellifera honeybees as alternative complementary medicines for the potential treatment of various acute and chronic diseases. Propolis can be found in tropical and subtropical forests throughout the world. The composition of phytochemical constituents in propolis varies depending on the bee species, geographical location, botanical source, and environmental conditions. Typically, propolis contains lipid, beeswax, essential oils, pollen, and organic components. The latter include flavonoids, phenolic compounds, polyphenols, terpenes, terpenoids, coumarins, steroids, amino acids, and aromatic acids. The biologically active constituents of propolis, which include countless organic compounds such as artepillin C, caffeic acid, caffeic acid phenethyl ester, apigenin, chrysin, galangin, kaempferol, luteolin, genistein, naringin, pinocembrin, coumaric acid, and quercetin, have a broad spectrum of biological and therapeutic properties such as antidiabetic, anti-inflammatory, antioxidant, anticancer, rheumatoid arthritis, chronic obstruct pulmonary disorders, cardiovascular diseases, respiratory tract-related diseases, gastrointestinal disorders, as well as neuroprotective, immunomodulatory, and immuno-inflammatory agents. Therefore, this review aims to provide a summary of recent studies on the role of propolis, its constituents, its biologically active compounds, and their efficacy in the medicinal and pharmaceutical treatment of chronic diseases.
Collapse
Affiliation(s)
- Nadzirah Zullkiflee
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Hussein Taha
- Environmental and Life Science, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Anwar Usman
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
- Correspondence:
| |
Collapse
|
34
|
Bobiş O. Plants: Sources of Diversity in Propolis Properties. PLANTS 2022; 11:plants11172298. [PMID: 36079680 PMCID: PMC9460479 DOI: 10.3390/plants11172298] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022]
Abstract
Propolis or “bee glue” is a resinous waxy substance that is produced by honeybees (Apis mellifera) by mixing the exudates collected from plants, namely tree buds, sap flows, leaves, branches and barks with their saliva and beeswax. Propolis composition is very complex. Its main constituents are resins and volatiles originating from plants and wax added by the bee. The biological activity of propolis is assigned to these plant-derived substances. The main three types of propolis are European propolis, called poplar type propolis; Green Brazilian propolis (derived mainly from the leaf resin of Baccharis dracunculifolia) and Red Cuban propolis (from the floral resin of Clusia rosea). The plant’s source gives it a specific composition and properties for the propolis types that are coming from different regions of the world. For this reason, studies on the chemical composition of propolis as well as its botanical sources resulting in its geographically conditioned diversity, were a very good theme for the present Special Issue (SI) of Plants journal. The present SI contains nine original contributions addressing propolis plant sources, their chemical composition and different bioactive properties derived from this origin. The chemical composition of propolis that is made by the bees was also discussed, as well as the different medical activities of propolis extract. The papers cover a wide range of subjects, including (i) the plant species used by the bees as raw material for propolis production, (ii) the biological activities of plant extracts related to propolis, (iii) the chemical composition of different types of propolis, (iv) the biological activity of propolis, (v) propolis and human health, and (vi) synergism between plants and propolis in human health. The studies have been carried out in both in vitro and in vivo surveys and a wide range of geographic regions are covered in the sample collection.
Collapse
Affiliation(s)
- Otilia Bobiş
- Department of Apiculture and Sericiculture, Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| |
Collapse
|
35
|
Mixing Propolis from Different Apiaries and Harvesting Years: Towards Propolis Standardization? Antibiotics (Basel) 2022; 11:antibiotics11091181. [PMID: 36139960 PMCID: PMC9495078 DOI: 10.3390/antibiotics11091181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 01/05/2023] Open
Abstract
Global demand for safe, effective and natural products has been increasing in parallel with consumers’ concerns about personal and environmental health. Propolis, a traditional and potentially medicinal product with several health benefits, is a beehive product with a worldwide reputation. However, despite the bioactivities reported, the low productivity and high chemical heterogeneity have been extensively hampering broader industrial uses. To assist in overcoming some of these problems, we prepared and characterized mixtures of ethanol extracts of a heterogeneous propolis sample (Pereiro) collected over a five-year period (2011–2015) and, additionally, we mixed two different propolis samples from distinct regions of Portugal (Pereiro and Gerês), also harvested at different times. An investigation of the antimicrobial and antioxidant properties, as well as characterization of the chemical composition of the eleven propolis blends were performed in this work. The antioxidant and antimicrobial activities of such blends of propolis samples, either from different localities and/or different years, were maintained, or even enhanced, when a comparison of the individual extracts was conducted. The differences in the chemical composition of the original propolis samples were also diluted in the mixtures. The results reemphasize the great potential of propolis and suggest that mixing different samples, regardless of provenance or harvesting date, can contribute to propolis standardization while simultaneously increasing its availability and adding value to this beehive byproduct.
Collapse
|
36
|
An Insight into Anticancer Effect of Propolis and Its Constituents: A Review of Molecular Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5901191. [PMID: 35754701 PMCID: PMC9232326 DOI: 10.1155/2022/5901191] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/30/2022] [Indexed: 12/29/2022]
Abstract
Propolis is a natural compound collected by honeybees from different parts of plants. Honeybees produce a sticky component besides honey by mixing the tree resin and other botanical sources with saliva called propolis or bee glue. Propolis was traditionally used as a wound healing substance, cosmetic, medicine, and many other conditions. Till now, there is no definite curable treatment for most cancers and chemotherapeutic drugs and drugs used for targeted therapies have serious side effects. According to a recent research, natural products are becoming increasingly essential in cancer prevention. Natural products are a great source of potential therapeutic agents, especially in the treatment of cancer. Previous studies have reported that the presence of caffeic acid phenethyl ester (CAPE), artepillin C, and chrysin is responsible for the anticancer potential of propolis. Most of the previous studies suggested that propolis and its active compounds inhibit cancer progression by targeting multiple signaling pathways including phosphoinositide 3-kinases (PI3K)/Akt and mitogen-activated protein kinase (MAPK) signaling molecules, and induce cell cycle arrest. Induction of apoptosis by propolis is mediated through extrinsic and intrinsic apoptotic pathways. The aim of this review is to highlight and summarize the molecular targets and anticancer potential of propolis and its active compounds on cell survival, proliferation, metastasis, and apoptosis in cancer cells.
Collapse
|
37
|
Sama-ae I, Sangkanu S, Siyadatpanah A, Norouzi R, Chuprom J, Mitsuwan W, Surinkaew S, Boonhok R, Paul AK, Mahboob T, Abtahi NS, Jimoh TO, Oliveira SM, Gupta M, Sin C, de Lourdes Pereira M, Wilairatana P, Wiart C, Rahmatullah M, Dolma KG, Nissapatorn V. Targeting Acanthamoeba proteins interaction with flavonoids of Propolis extract by in vitro and in silico studies for promising therapeutic effects. F1000Res 2022; 11:1274. [PMID: 36936052 PMCID: PMC10015121 DOI: 10.12688/f1000research.126227.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Background : Propolis is a natural resinous mixture produced by bees. It provides beneficial effects on human health in the treatment/management of many diseases. The present study was performed to demonstrate the anti- Acanthamoeba activity of ethanolic extracts of Propolis samples from Iran. The interactions of the compounds and essential proteins of Acanthamoeba were also visualized through docking simulation. Methods: The minimal inhibitory concentrations (MICs) of Propolis extract against Acanthamoeba trophozoites and cysts was determined in vitro. In addition, two-fold dilutions of each of the agents were tested for encystment, excystment and adhesion inhibitions. Three major compounds of Propolis extract such as chrysin, tectochrysin and pinocembrin have been selected in molecular docking approach to predict the compounds that might be responsible for encystment, excystment and adhesion inhibitions of A. castellanii. Furthermore, to confirm the docking results, molecular dynamics (MD) simulations were also carried out for the most promising two ligand-pocket complexes from docking studies. Results : The minimal inhibitory concentrations (MICs) 62.5 and 125 µg/mL of the most active Propolis extract were assessed in trophozoites stage of Acanthamoeba castellanii ATCC30010 and ATCC50739, respectively. At concentrations lower than their MICs values (1/16 MIC), Propolis extract revealed inhibition of encystation. However, at 1/2 MIC, it showed a potential inhibition of excystation and anti-adhesion. The molecular docking and dynamic simulation revealed the potential capability of Pinocembrin to form hydrogen bonds with A. castellanii Sir2 family protein (AcSir2), an encystation protein of high relevance for this process in Acanthamoeba. Conclusions : The results obtained provided a candidate for the development of therapeutic drugs against Acanthamoeba infection. In vivo experiments and clinical trials are necessary to support this claim.
Collapse
Affiliation(s)
- Imran Sama-ae
- Department of Medical Technology, School of Allied Health Sciences and Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
- Department of Microbiology, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Julalak Chuprom
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College and Research Center of Excellence in Innovation of Essential Oil, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sirirat Surinkaew
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, TAS, Australia
| | - Tooba Mahboob
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Najme Sadat Abtahi
- Department of Clinical Biochemistry, Faculty of Medicine International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tajudeen O. Jimoh
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda
| | - Sónia M.R. Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Hunter Medical Research Institute, NSW, Australia
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Chea Sin
- Faculty of Pharmacy, University of Puthisastra, Phnom Penh, Cambodia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Sabah, Malaysia
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
38
|
Sama-ae I, Sangkanu S, Siyadatpanah A, Norouzi R, Chuprom J, Mitsuwan W, Surinkaew S, Boonhok R, Paul AK, Mahboob T, Abtahi NS, Jimoh TO, Oliveira SM, Gupta M, Sin C, de Lourdes Pereira M, Wilairatana P, Wiart C, Rahmatullah M, Dolma KG, Nissapatorn V. Targeting Acanthamoeba proteins interaction with flavonoids of Propolis extract by in vitro and in silico studies for promising therapeutic effects. F1000Res 2022; 11:1274. [PMID: 36936052 PMCID: PMC10015121.3 DOI: 10.12688/f1000research.126227.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Background : Propolis is a natural resinous mixture produced by bees. It provides beneficial effects on human health in the treatment/management of many diseases. The present study was performed to demonstrate the anti- Acanthamoeba activity of ethanolic extracts of Propolis samples from Iran. The interactions of the compounds and essential proteins of Acanthamoeba were also visualized through docking simulation. Methods: The minimal inhibitory concentrations (MICs) of Propolis extract against Acanthamoeba trophozoites and cysts was determined in vitro. In addition, two-fold dilutions of each of agents were tested for encystment, excystment and adhesion inhibitions. Three major compounds of Propolis extract such as chrysin, tectochrysin and pinocembrin have been selected in molecular docking approach to predict the compounds that might be responsible for encystment, excystment and adhesion inhibitions of A. castellanii. Furthermore, to confirm the docking results, molecular dynamics (MD) simulations were also carried out for the most promising two ligand-pocket complexes from docking studies. Results : The minimal inhibitory concentrations (MICs) 62.5 and 125 µg/mL of the most active Propolis extract were assessed in trophozoites stage of Acanthamoeba castellanii ATCC30010 and ATCC50739, respectively. At concentrations lower than their MICs values (1/16 MIC), Propolis extract revealed inhibition of encystation. However, at 1/2 MIC, it showed a potential inhibition of excystation and anti-adhesion. The molecular docking and dynamic simulation revealed the potential capability of Pinocembrin to form hydrogen bonds with A. castellanii Sir2 family protein (AcSir2), an encystation protein of high relevance for this process in Acanthamoeba. Conclusions : The results provided a candidate for the development of therapeutic drugs against Acanthamoeba infection. In vivo experiments and clinical trials are necessary to support this claim.
Collapse
Affiliation(s)
- Imran Sama-ae
- Department of Medical Technology, School of Allied Health Sciences and Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Abolghasem Siyadatpanah
- Department of Microbiology, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Julalak Chuprom
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College and Research Center of Excellence in Innovation of Essential Oil, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sirirat Surinkaew
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, TAS, Australia
| | - Tooba Mahboob
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Najme Sadat Abtahi
- Department of Clinical Biochemistry, Faculty of Medicine International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tajudeen O. Jimoh
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda
| | - Sónia M.R. Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Hunter Medical Research Institute, NSW, Australia
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Chea Sin
- Faculty of Pharmacy, University of Puthisastra, Phnom Penh, Cambodia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Sabah, Malaysia
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
39
|
Sama-ae I, Sangkanu S, Siyadatpanah A, Norouzi R, Chuprom J, Mitsuwan W, Surinkaew S, Boonhok R, Paul AK, Mahboob T, Abtahi NS, Jimoh TO, Oliveira SM, Gupta M, Sin C, de Lourdes Pereira M, Wilairatana P, Wiart C, Rahmatullah M, Dolma KG, Nissapatorn V. Targeting Acanthamoeba proteins interaction with flavonoids of Propolis extract by in vitro and in silico studies for promising therapeutic effects. F1000Res 2022; 11:1274. [PMID: 36936052 PMCID: PMC10015121 DOI: 10.12688/f1000research.126227.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Background : Propolis is a natural resinous mixture produced by bees. It provides beneficial effects on human health in the treatment/management of many diseases. The present study was performed to demonstrate the anti- Acanthamoeba activity of ethanolic extracts of Propolis samples from Iran. The interactions of the compounds and essential proteins of Acanthamoeba were also visualized through docking simulation. Methods: The minimal inhibitory concentrations (MICs) of Propolis extract against Acanthamoeba trophozoites and cysts was determined in vitro. In addition, two-fold dilutions of each of agents were tested for encystment, excystment and adhesion inhibitions. Three major compounds of Propolis extract such as chrysin, tectochrysin and pinocembrin have been selected in molecular docking approach to predict the compounds that might be responsible for encystment, excystment and adhesion inhibitions of A. castellanii. Furthermore, to confirm the docking results, molecular dynamics (MD) simulations were also carried out for the most promising two ligand-pocket complexes from docking studies. Results : The minimal inhibitory concentrations (MICs) 62.5 and 125 µg/mL of the most active Propolis extract were assessed in trophozoites stage of Acanthamoeba castellanii ATCC30010 and ATCC50739, respectively. At concentrations lower than their MICs values (1/16 MIC), Propolis extract revealed inhibition of encystation. However, at 1/2 MIC, it showed a potential inhibition of excystation and anti-adhesion. The molecular docking and dynamic simulation revealed the potential capability of Pinocembrin to form hydrogen bonds with A. castellanii Sir2 family protein (AcSir2), an encystation protein of high relevance for this process in Acanthamoeba. Conclusions : The results provided a candidate for the development of therapeutic drugs against Acanthamoeba infection. In vivo experiments and clinical trials are necessary to support this claim.
Collapse
Affiliation(s)
- Imran Sama-ae
- Department of Medical Technology, School of Allied Health Sciences and Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
- Department of Microbiology, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Julalak Chuprom
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College and Research Center of Excellence in Innovation of Essential Oil, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sirirat Surinkaew
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, TAS, Australia
| | - Tooba Mahboob
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Najme Sadat Abtahi
- Department of Clinical Biochemistry, Faculty of Medicine International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tajudeen O. Jimoh
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda
| | - Sónia M.R. Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Hunter Medical Research Institute, NSW, Australia
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Chea Sin
- Faculty of Pharmacy, University of Puthisastra, Phnom Penh, Cambodia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Sabah, Malaysia
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|