1
|
Mishra AK, Gupta GS, Agrawal SB, Tiwari S. Understanding the impact of elevated CO 2 and O 3 on growth and yield in Indian wheat cultivars: Implications for food security in a changing climate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124990. [PMID: 39303935 DOI: 10.1016/j.envpol.2024.124990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/29/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The pressing issue of increasing tropospheric ozone (O3) levels necessitates the development of effective stress management strategies for plant protection. While considerable research has elucidated the adverse impacts of O3, understanding the combined effects of O3 and CO2 requires further investigation. This study focuses on assessing the response of stomatal O3 flux under various O3 and CO2 treatments, individually and in combination, and their repercussions on physiological, growth, and yield attributes in two Indian wheat cultivars, HUW-55 and PBW-550, which exhibit varying levels of sensitivities against elevated O3. Results indicated significant alterations in stomatal O3 flux in both O3-sensitive and tolerant wheat cultivars across different treatments, influencing the overall yield outcomes. Particularly, the ECO2+EO3 treatment demonstrated more positive yield protection in the O3-sensitive cultivar PBW-550, compared to HUW-55 indicating enhanced allocation of photosynthates towards reproductive development in PBW-550, compared to the tolerant cultivar HUW-55, as evidenced by higher harvest index (HI). Furthermore, the study revealed a stronger correlation between yield response and stomatal O3 flux in PBW-550 (R2 = 0.88) compared to HUW-55 (R2 = 0.79), as indicated by a steeper regression slope for PBW-550. The research also confirmed the role of elevated CO2 in reducing stomatal O3- flux in the tested cultivars, with discernible effects on their respective yield responses. Further experimentation is necessary to confirm these results across different cultivars exhibiting varying sensitivities to O3. These findings can potentially revolutionize agricultural productivity in regions affected by O3 stress. The criteria for recommending cultivars for agricultural practices should not be based only on their sensitivity/tolerance to O3. Still, they should also consider the effect of CO2 fertilization in the growing area. This experiment offers hope to sustain global food security, as the O3-sensitive wheat cultivar also showed promising results at elevated CO2. In essence, this research could pave the way for more resilient agricultural systems in the era of changing climate under elevated O3 and CO2 conditions.
Collapse
Affiliation(s)
- Ashish Kumar Mishra
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Gereraj Sen Gupta
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Supriya Tiwari
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Sharps K, Foster J, Vieno M, Beck R, Hayes F. Ozone pollution contributes to the yield gap for beans in Uganda, East Africa, and is co-located with other agricultural stresses. Sci Rep 2024; 14:8026. [PMID: 38580752 PMCID: PMC10997645 DOI: 10.1038/s41598-024-58144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024] Open
Abstract
Air quality negatively impacts agriculture, reducing the yield of staple food crops. While measured data on African ground-level ozone levels are scarce, experimental studies demonstrate the damaging impact of ozone on crops. Common beans (Phaseolus vulgaris), an ozone-sensitive crop, are widely grown in Uganda. Using modelled ozone flux, agricultural surveys, and a flux-effect relationship, this study estimates yield and production losses due to ozone for Ugandan beans in 2015. Analysis at this scale allows the use of localised data, and results can be presented at a sub-regional level. Soil nutrient stress, drought, flood risk, temperature and deprivation were also mapped to investigate where stresses may coincide. Average bean yield losses due to ozone were 17% and 14% (first and second growing season respectively), equating to 184 thousand tonnes production loss. However, for some sub-regions, losses were up to 27.5% and other crop stresses also coincided in these areas. This methodology could be applied widely, allowing estimates of ozone impact for countries lacking air quality and/or experimental data. As crop productivity is below its potential in many areas of the world, changing agricultural practices to mitigate against losses due to ozone could help to reduce the crop yield gap.
Collapse
Affiliation(s)
- K Sharps
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK.
| | - J Foster
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - M Vieno
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
| | - R Beck
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
| | - F Hayes
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
3
|
Pei J, Liu P, Feng Z, Chang M, Wang J, Fang H, Wang L, Huang B. Long-term trajectory of ozone impact on maize and soybean yields in the United States: A 40-year spatial-temporal analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123407. [PMID: 38244900 DOI: 10.1016/j.envpol.2024.123407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
Understanding the long-term change trends of ozone-induced yield losses is crucial for formulating strategies to alleviate ozone damaging effects, aiming towards achieving the Zero Hunger Sustainable Development Goal. Despite a wealth of experimental research indicating that ozone's influence on agricultural production exhibits marked fluctuations and differs significantly across various geographical locations, previous studies using global statistical models often failed to capture this spatial-temporal variability, leading to uncertainties in ozone impact estimation. To address this issue, we conducted a comprehensive assessment of the spatial-temporal variability of ozone impacts on maize and soybean yields in the United States (1981-2021) using a geographically and temporally weighted regression (GTWR) model. Our results revealed that over the past four decades, ozone pollution has led to average yield losses of -3.5% for maize and -6.1% for soybean, translating into an annual economic loss of approximately $2.6 billion. Interestingly, despite an overall downward trend in ozone impacts on crop yields following the implementation of stringent ozone emission control measures in 1997, our study identified distinct peaks of abnormally high yield reduction rates in drought years. Significant spatial heterogeneity was detected in ozone impacts across the study area, with ozone damage hotspots located in the Southeast Region and the Mississippi River Basin for maize and soybean, respectively. Furthermore, we discovered that hydrothermal factors modulate crop responses to ozone, with maize showing an inverted U-shaped yield loss trend with temperature increases, while soybean demonstrated an upward trend. Both crops experienced amplified ozone-induced yield losses with rising precipitation. Overall, our study highlights the necessity of incorporating spatiotemporal variability into assessments of crop yield losses attributable to ozone pollution. The insights garnered from our findings can contribute to the formulation of region-specific pollutant emission policies, based on the distinct profiles of ozone-induced agricultural damage across different regions.
Collapse
Affiliation(s)
- Jie Pei
- School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai, 519082, China; Key Laboratory of Natural Resources Monitoring in Tropical and Subtropical Area of South China, Ministry of Natural Resources, Zhuhai, 519082, China
| | - Pengyu Liu
- School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai, 519082, China
| | - Zhaozhong Feng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Ming Chang
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 510632, China
| | - Jian Wang
- Department of Geography, The Ohio State University, Columbus, OH, 43210, USA
| | - Huajun Fang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; The Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China
| | - Li Wang
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| | - Bo Huang
- Department of Geography, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
4
|
Liu X, Chu B, Tang R, Liu Y, Qiu B, Gao M, Li X, Xiao J, Sun HZ, Huang X, Desai AR, Ding A, Wang H. Air quality improvements can strengthen China's food security. NATURE FOOD 2024; 5:158-170. [PMID: 38168777 DOI: 10.1038/s43016-023-00882-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 10/31/2023] [Indexed: 01/05/2024]
Abstract
Air pollution exerts crucial influence on crop yields and impacts regional and global food supplies. Here we employ a statistical model using satellite-based observations and flexible functional forms to analyse the synergistic effects of reductions in ozone and aerosols on China's food security. The model consistently shows that ozone is detrimental to crops, whereas aerosol has variable effects. China's maize, rice and wheat yields are projected to increase by 7.84%, 4.10% and 3.43%, respectively, upon reaching two air quality targets (60 μg m-3 for peak-season ozone and 35 μg m-3 for annual fine particulate matter). Average calories produced from these crops would surge by 4.51%, potentially allowing China to attain grain self-sufficiency 2 years earlier than previously estimated. These results show that ozone pollution control should be a high priority to increase staple crop edible calories, and future stringent air pollution regulations would enhance China's food security.
Collapse
Affiliation(s)
- Xiang Liu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, China
| | - Bowen Chu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, China
| | - Rong Tang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, China
| | - Yifan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Bo Qiu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, China
| | - Meng Gao
- Department of Geography, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xing Li
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jingfeng Xiao
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
| | - Haitong Zhe Sun
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Xin Huang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, China
- Collaborative Innovation Center of Climate Change, Jiangsu Province, Nanjing, China
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Ankur R Desai
- Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Aijun Ding
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, China
- Collaborative Innovation Center of Climate Change, Jiangsu Province, Nanjing, China
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
- Nanjing-Helsinki Institute in Atmospheric and Earth Sciences, Nanjing University, Nanjing, China
| | - Haikun Wang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, China.
- Collaborative Innovation Center of Climate Change, Jiangsu Province, Nanjing, China.
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China.
- Nanjing-Helsinki Institute in Atmospheric and Earth Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Brewster C, Fenner N, Hayes F. Chronic ozone exposure affects nitrogen remobilization in wheat at key growth stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168288. [PMID: 37924890 DOI: 10.1016/j.scitotenv.2023.168288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
The interaction between nitrogen storage and translocation, senescence, and late phase photosynthesis is critical to the post-anthesis grain fill period in wheat, but ozone's effect on nitrogen dynamics within the wheat plant is not well understood. This study used solardomes to expose a widely grown elite spring wheat cultivar, cv. Skyfall, to four levels of ozone (30 ppb, 45 ppb, 70 ppb, 85 ppb) for 11 weeks, with two levels of nitrogen fertilization, 140 kg ha-1 and 160 kg ha-1, the higher rate including an additional 20 kg N ha-1 at anthesis. Chronic ozone exposure triggered earlier senescence in the 4th, 3rd and 2nd leaves but not the flag leaf, with a similar pattern of reduced chlorophyll content in the lower, older leaf cohorts, which started before senescence became visible. At anthesis there was no evidence of any effect of ozone on nitrogen storage in upper plant parts. However, high ozone increased levels of residual nitrogen found within plant parts at harvest, with concomitant reductions in C:N ratios and Nitrogen Remobilization Efficiency. Extra nitrogen fertilization applied at anthesis appeared to ameliorate the effect of ozone on nitrogen content and nitrogen translocation. The application of 15N ammonium nitrate at anthesis confirmed that the majority of post-anthesis nitrogen uptake had been translocated to the ear/grain by harvest, with no effect of ozone on the translocation of nitrogen around the plant. These data can inform future modelling of ozone's effect on nitrogen dynamics and global wheat yields.
Collapse
Affiliation(s)
- Clare Brewster
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, Wales, UK; Bangor University, School of Natural Sciences, Bangor, Wales, UK.
| | - Nathalie Fenner
- Bangor University, School of Natural Sciences, Bangor, Wales, UK.
| | - Felicity Hayes
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, Wales, UK.
| |
Collapse
|
6
|
Nowroz F, Hasanuzzaman M, Siddika A, Parvin K, Caparros PG, Nahar K, Prasad PV. Elevated tropospheric ozone and crop production: potential negative effects and plant defense mechanisms. FRONTIERS IN PLANT SCIENCE 2024; 14:1244515. [PMID: 38264020 PMCID: PMC10803661 DOI: 10.3389/fpls.2023.1244515] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024]
Abstract
Ozone (O3) levels on Earth are increasing because of anthropogenic activities and natural processes. Ozone enters plants through the leaves, leading to the overgeneration of reactive oxygen species (ROS) in the mesophyll and guard cell walls. ROS can damage chloroplast ultrastructure and block photosynthetic electron transport. Ozone can lead to stomatal closure and alter stomatal conductance, thereby hindering carbon dioxide (CO2) fixation. Ozone-induced leaf chlorosis is common. All of these factors lead to a reduction in photosynthesis under O3 stress. Long-term exposure to high concentrations of O3 disrupts plant physiological processes, including water and nutrient uptake, respiration, and translocation of assimilates and metabolites. As a result, plant growth and reproductive performance are negatively affected. Thus, reduction in crop yield and deterioration of crop quality are the greatest effects of O3 stress on plants. Increased rates of hydrogen peroxide accumulation, lipid peroxidation, and ion leakage are the common indicators of oxidative damage in plants exposed to O3 stress. Ozone disrupts the antioxidant defense system of plants by disturbing enzymatic activity and non-enzymatic antioxidant content. Improving photosynthetic pathways, various physiological processes, antioxidant defense, and phytohormone regulation, which can be achieved through various approaches, have been reported as vital strategies for improving O3 stress tolerance in plants. In plants, O3 stress can be mitigated in several ways. However, improvements in crop management practices, CO2 fertilization, using chemical elicitors, nutrient management, and the selection of tolerant crop varieties have been documented to mitigate O3 stress in different plant species. In this review, the responses of O3-exposed plants are summarized, and different mitigation strategies to decrease O3 stress-induced damage and crop losses are discussed. Further research should be conducted to determine methods to mitigate crop loss, enhance plant antioxidant defenses, modify physiological characteristics, and apply protectants.
Collapse
Affiliation(s)
- Farzana Nowroz
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Ayesha Siddika
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Khursheda Parvin
- Department of Horticulture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Pedro Garcia Caparros
- Agronomy Department of Superior School Engineering, University of Almería, Almería, Spain
| | - Kamrun Nahar
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - P.V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
7
|
Cheesman AW, Brown F, Farha MN, Rosan TM, Folberth GA, Hayes F, Moura BB, Paoletti E, Hoshika Y, Osborne CP, Cernusak LA, Ribeiro RV, Sitch S. Impacts of ground-level ozone on sugarcane production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166817. [PMID: 37673248 DOI: 10.1016/j.scitotenv.2023.166817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Sugarcane is a vital commodity crop often grown in (sub)tropical regions which have been experiencing a recent deterioration in air quality. Unlike for other commodity crops, the risk of air pollution, specifically ozone (O3), to this C4 crop has not yet been quantified. Yet, recent work has highlighted both the potential risks of O3 to C4 bioenergy crops, and the emergence of O3 exposure across the tropics as a vital factor determining global food security. Given the large extent, and planned expansion of sugarcane production in places like Brazil to meet global demand for biofuels, there is a pressing need to characterize the risk of O3 to the industry. In this study, we sought to a) derive sugarcane O3 dose-response functions across a range of realistic O3 exposure and b) model the implications of this across a globally important production area. We found a significant impact of O3 on biomass allocation (especially to leaves) and production across a range of sugarcane genotypes, including two commercially relevant varieties (e.g. CTC4, Q240). Using these data, we calculated dose-response functions for sugarcane and combined them with hourly O3 exposure across south-central Brazil derived from the UK Earth System Model (UKESM1) to simulate the current regional impact of O3 on sugarcane production using a dynamic global vegetation model (JULES vn 5.6). We found that between 5.6 % and 18.3 % of total crop productivity is likely lost across the region due to the direct impacts of current O3 exposure. However, impacts depended critically on the substantial differences in O3 susceptibility observed among sugarcane genotypes and how these were implemented in the model. Our work highlights not only the urgent need to fully elucidate the impacts of O3 in this important bioenergetic crop, but the potential implications air quality may have upon tropical food production more generally.
Collapse
Affiliation(s)
- Alexander W Cheesman
- College of Science & Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, Queensland, Australia; Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK.
| | - Flossie Brown
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Mst Nahid Farha
- College of Science & Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, Queensland, Australia; Department of Chemistry, Rajshahi University of Engineering &Technology, Rajshahi 6204, Bangladesh
| | - Thais M Rosan
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | | | - Felicity Hayes
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, Gwynedd LL57 2UW, UK
| | - Barbara B Moura
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Sesto Fiorentino, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Sesto Fiorentino, Italy; Italian Integrated Environmental Research Infrastructures System (ITINERIS), Tito Scalo, 85050 Potenza, Italy
| | - Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Sesto Fiorentino, Italy; Italian Integrated Environmental Research Infrastructures System (ITINERIS), Tito Scalo, 85050 Potenza, Italy
| | - Colin P Osborne
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Lucas A Cernusak
- College of Science & Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, Queensland, Australia
| | - Rafael V Ribeiro
- Laboratory of Crop Physiology (LCroP), Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Stephen Sitch
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| |
Collapse
|
8
|
Pandey D, Sharps K, Simpson D, Ramaswami B, Cremades R, Booth N, Jamir C, Büker P, Sinha V, Sinha B, Emberson LD. Assessing the costs of ozone pollution in India for wheat producers, consumers, and government food welfare policies. Proc Natl Acad Sci U S A 2023; 120:e2207081120. [PMID: 37523550 PMCID: PMC10410720 DOI: 10.1073/pnas.2207081120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/17/2023] [Indexed: 08/02/2023] Open
Abstract
We assess wheat yield losses occurring due to ozone pollution in India and its economic burden on producers, consumers, and the government. Applying an ozone flux-based risk assessment, we show that ambient ozone levels caused a mean 14.18% reduction in wheat yields during 2008 to 2012. Furthermore, irrigated wheat was particularly sensitive to ozone-induced yield losses, indicating that ozone pollution could undermine climate-change adaptation efforts through irrigation expansion. Applying an economic model, we examine the effects of a counterfactual, "pollution-free" scenario on yield losses, wheat prices, consumer and producer welfare, and government costs. We explore three policy scenarios in which the government support farmers at observed levels of either procurement prices (fixed-price), procurement quantities (fixed-procurement), or procurement expenditure (fixed-expenditure). In pollution-free conditions, the fixed-price scenario absorbs the fall in prices, thus increasing producer welfare by USD 2.7 billion, but total welfare decreases by USD 0.24 billion as government costs increase (USD 2.9 billion). In the fixed-procurement and fixed-expenditure scenarios, ozone mitigation allows wheat prices to fall by 38.19 to 42.96%. The producers lose by USD 5.10 to 6.01 billion, but the gains to consumers and governments (USD 8.7 to 10.2 billion) outweigh these losses. These findings show that the government and consumers primarily bear the costs of ozone pollution. For pollution mitigation to optimally benefit wheat production and maximize social welfare, new approaches to support producers other than fixed-price grain procurement may be required. We also emphasize the need to consider air pollution in programs to improve agricultural resilience to climate change.
Collapse
Affiliation(s)
- Divya Pandey
- Isotope Biogeochemistry and Gas Fluxes, Leibniz Centre for Agricultural Landscape Research, Müncheberg15374, Germany
| | - Katrina Sharps
- UK Centre for Ecology & Hydrology, Environment Centre Wales, BangorLL57 2UW, United Kingdom
| | - David Simpson
- Meteorological Synthesizing Centre-West of European Monitoring and Evaluation Programme, Norwegian Meteorological Institute, Oslo N-0313, Norway
- Department of Space, Earth & Environment, Chalmers University of Technology, Gothenburg412 96, Sweden
| | - Bharat Ramaswami
- Department of Economics, Ashoka University, Rajiv Gandhi Education City, Sonepat, Haryana, 131029India
| | - Roger Cremades
- Urban Economics Group, Department of Social Sciences, Wageningen University & Research, 6706KNWageningen, the Netherlands
- Fondazione Eni Enrico Mattei, Venice30135, Italy
| | - Nathan Booth
- Department of Environment & Geography, University of York, YorkYO10 5NG, United Kingdom
| | - Chubamenla Jamir
- Department of Energy and Environment, The Energy and Resources Institute - School of Advanced Studies, Vasant Kunj New Delhi110 070, India
| | - Patrick Büker
- Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH, Bonn53113, Germany
| | - Vinayak Sinha
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab140306, India
| | - Baerbel Sinha
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab140306, India
| | - Lisa D. Emberson
- Department of Environment & Geography, University of York, YorkYO10 5NG, United Kingdom
| |
Collapse
|
9
|
Madheshiya P, Gupta GS, Sahoo A, Tiwari S. Role of Elevated Ozone on Development and Metabolite Contents of Lemongrass [ Cymbopogon flexuosus (Steud.) (Wats.)]. Metabolites 2023; 13:metabo13050597. [PMID: 37233638 DOI: 10.3390/metabo13050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
The present study was conducted to assess the effect of elevated ozone stress on the development and metabolite contents of lemongrass, a medicinal plant. The experimental plant was exposed to two elevated ozone concentrations (ambient + 15 ppb, and ambient + 30 ppb) using open-top chambers. Samplings were carried out at 45 and 90 days after transplantation (DAT), for the analysis of different characteristics, while the metabolite contents of leaves and essential oils were analyzed at 110 DAT. Both the doses of elevated ozone had notable negative effects on the carbon fixation efficiency of plants, resulting in a significant reduction in plant biomass. Enzymatic antioxidant activity increased during the second sampling, which suggests that the scavenging of reactive oxygen species was more prominent in lemongrass during the later developmental stage. The results of the present study showed a stimulated diversion of resources towards the phenylpropanoid pathway, which is made evident by the increase in the number and contents of metabolites in foliar extract and essential oils of plants grown at elevated ozone doses, as compared to ambient ozone. Elevated ozone not only upregulated the contents of medicinally important components of lemongrass, it also induced the formation of some pharmaceutically active bio compounds. On the basis of this study, it is expected that increasing ozone concentrations in near future will enhance the medicinal value of lemongrass. However, more experiments are required to validate these findings.
Collapse
Affiliation(s)
- Parvati Madheshiya
- Laboratory of Ecotoxicology, Centre of Advanced Studies, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Gereraj Sen Gupta
- Laboratory of Ecotoxicology, Centre of Advanced Studies, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ansuman Sahoo
- Laboratory of Ecotoxicology, Centre of Advanced Studies, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Supriya Tiwari
- Laboratory of Ecotoxicology, Centre of Advanced Studies, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
10
|
Gupta A, Yadav DS, Agrawal SB, Agrawal M. Sensitivity of agricultural crops to tropospheric ozone: a review of Indian researches. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:894. [PMID: 36242703 DOI: 10.1007/s10661-022-10526-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/20/2022] [Indexed: 06/16/2023]
Abstract
Tropospheric ozone (O3) is a long-range transboundary secondary air pollutant, causing significant damage to agricultural crops worldwide. There are substantial spatial variations in O3 concentration in different areas of India due to seasonal and geographical variations. The Indo-Gangetic Plain (IGP) region is one of the most crop productive and air-polluted regions in India. The concentration of tropospheric O3 over the IGP is increasing by 6-7.2% per decade. The annual trend of increase is 0.4 ± 0.25% year-1 over the Northeastern IGP. High O3 concentrations were reported during the summer, while they were at their minimum during the monsoon months. To explore future potential impacts of O3 on major crop plants, the responses of different crops grown under ambient and elevated O3 concentrations were compared. The studies clearly showed that O3 is an important stress factor, negatively affecting the yield of crops. In this review, we have discussed yield losses in agricultural crops due to rising O3 pollution and variations in O3 sensitivity among cultivars and species. The use of ethylene diurea (EDU) as a research tool in assessing the losses in yield under ambient and elevated O3 levels also discussed. Besides, an overview of interactive effects of O3 and nitrogen on crop productivity has been included. Several recommendations are made for future research and policy development on rising concentration of O3 in India.
Collapse
Affiliation(s)
- Akanksha Gupta
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Durgesh Singh Yadav
- Department of Botany, Government Raza P.G. College, Rampur, U.P. 244901, India
| | - Shashi Bhushan Agrawal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Madhoolika Agrawal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
11
|
Shrestha RK, Shi D, Obaid H, Elsayed NS, Xie D, Ni J, Ni C. Crops' response to the emergent air pollutants. PLANTA 2022; 256:80. [PMID: 36097229 DOI: 10.1007/s00425-022-03993-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Consequences of air pollutants on physiology, biology, yield and quality in the crops are evident. Crop and soil management can play significant roles in attenuating the impacts of air pollutants. With rapid urbanization and industrialization, air pollution has emerged as a serious threat to quality crop production. Assessing the effect of the elevated level of pollutants on the performance of the crops is crucial. Compared to the soil and water pollutants, the air pollutants spread more rapidly to the extensive area. This paper has reviewed and highlighted the major findings of the previous research works on the morphological, physiological and biochemical changes in some important crops and fruits exposed to the increasing levels of air pollutants. The crop, soil and environmental factors governing the effect of air pollutants have been discussed. The majority of the observations suggest that the air pollutants alter the physiology and biochemical in the plants, i.e., while some pollutants are beneficial to the growth and yields and modify physiological and morphological processes, most of them appeared to be detrimental to the crop yields and their quality. A better understanding of the mechanisms of the uptake of air pollutants and crop responses is quite important for devising the measures ‒ at both policy and program levels ‒ to minimize their possible negative impacts on crops. Further research directions in this field have also been presented.
Collapse
Affiliation(s)
- Ram Kumar Shrestha
- College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China
- Lamjung Campus, Institute of Agriculture and Animal Science, Tribhuvan University, Lamjung, Nepal
| | - Dan Shi
- College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China
- Key Laboratory of Arable Land Conservation (Southwest China), Ministry of Agriculture, Chongqing, 400715, China
| | - Hikmatullah Obaid
- College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China
- Department of Soil Science and Plant Nutrition, Afghanistan National Agricultural Sciences and Technology University, Kandahar, Afghanistan
| | - Nader Saad Elsayed
- College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China
- Soil and Agricultural Chemistry Department, Faculty of Agriculture (Saba-Basha), Alexandria University, Alexandria, Egypt
| | - Deti Xie
- College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China
- Key Laboratory of Arable Land Conservation (Southwest China), Ministry of Agriculture, Chongqing, 400715, China
| | - Jiupai Ni
- College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China
- Key Laboratory of Arable Land Conservation (Southwest China), Ministry of Agriculture, Chongqing, 400715, China
| | - Chengsheng Ni
- College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China.
- Key Laboratory of Arable Land Conservation (Southwest China), Ministry of Agriculture, Chongqing, 400715, China.
- National Base of International S and T Collaboration On Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Chongqing, 400716, China.
| |
Collapse
|
12
|
Sharps K, Vieno M, Beck R, Hayes F, Harmens H. Quantifying the impact of ozone on crops in Sub-Saharan Africa demonstrates regional and local hotspots of production loss. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62338-62352. [PMID: 34191262 DOI: 10.1007/s11356-021-14967-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Tropospheric ozone can have a detrimental effect on vegetation, including reducing the quantity of crop yield. This study uses modelled ozone flux values (POD3IAM; phytotoxic ozone dose above 3 nmol m-2 s-1, parameterised for integrated assessment modelling) for 2015, together with species-specific flux-effect relationships, spatial data on production and growing season dates to quantify the impact of ozone on the production of common wheat (Triticum aestivum) and common beans (Phaseolus vulgaris) across Sub-Saharan Africa (SSA). A case study for South Africa was also done using detailed data per province. Results suggest that ozone pollution could decrease wheat yield by between 2 and 13%, with a total annual loss of 453,000 t across SSA. The impact on bean production depended on the season; however, estimated yield losses were up to 21% in some areas of SSA, with an annual loss of ~300,000 t for each of the two main growing seasons. Production losses tended to be greater in countries with the highest production, for example, Ethiopia (wheat) and Tanzania (beans). This study provides an indication of the location of areas at high risk of crop losses due to ozone. Results emphasise that efforts to reduce ozone precursors could contribute to reducing the yield gap in SSA. More stringent air pollution abatement policies are required to reduce crop losses to ozone in the future.
Collapse
Affiliation(s)
- Katrina Sharps
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK.
| | - Massimo Vieno
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
| | - Rachel Beck
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
| | - Felicity Hayes
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Harry Harmens
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
13
|
Ansari N, Agrawal M, Agrawal SB. An assessment of growth, floral morphology, and metabolites of a medicinal plant Sida cordifolia L. under the influence of elevated ozone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:832-845. [PMID: 32820442 DOI: 10.1007/s11356-020-10340-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Tropospheric ozone (O3) is a major secondary air pollutant and greenhouse gas, and its impact on growth, yield, and its quality is well established in the case of crop plants. However, the effects of tropospheric O3 have not been comprehensively studied on medicinal plants. Therefore, a field study was planned on a medicinally important Sida cordifolia L. plant (commonly known as country mallow or Bala) to assess the expected changes on the morphology, growth, and leaf injury under elevated O3 (ambient + 20 ppb) by using open-top chambers (OTCs) at 30, 60, and 90 days after treatment (DAT), while leaf and root metabolites were observed at 60 DAT. At all the growth stages, significant leaf damage was recorded as foliar injury symptoms. Most of the growth parameters also showed significant reductions at all the growth stages. Plants under elevated O3 showed a significant negative impact on most of the reproductive parts of the plant. Leaf weight ratio (LWR) showed significant increment at early stages while reduced at 90 DAT; however, root shoot ratio (RSR) showed a significant reduction at 60 DAT. The majority of the steroid metabolites showed an increase in root and leaves under elevated O3, while terpenes showed variable response. Due to O3 stress, most of the major metabolites showed an increase possibly due to their role in defense and other metabolic activities. Based on the outcomes, it is concluded that the future increase in the levels of tropospheric O3 will impact a significant effect on important metabolites of medicinal plants growing in tropical countries like India.
Collapse
Affiliation(s)
- Naushad Ansari
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
14
|
Sharps K, Hayes F, Harmens H, Mills G. Ozone-induced effects on leaves in African crop species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115789. [PMID: 33120352 DOI: 10.1016/j.envpol.2020.115789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/22/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Tropospheric (ground-level) ozone is a harmful phytotoxic pollutant, and can have a negative impact on crop yield and quality in sensitive species. Ozone can also induce visible symptoms on leaves, appearing as tiny spots (stipples) between the veins on the upper leaf surface. There is little measured data on ozone concentrations in Africa and it can be labour-intensive and expensive to determine the direct impact of ozone on crop yield in the field. The identification of visible ozone symptoms is an easier, low cost method of determining if a crop species is being negatively affected by ozone pollution, potentially resulting in yield loss. In this study, thirteen staple African food crops (including wheat (Triticum aestivum), common bean (Phaseolus vulgaris), sorghum (Sorghum bicolor), pearl millet (Pennisetum glaucum) and finger millet (Eleusine coracana)) were exposed to an episodic ozone regime in a solardome system to monitor visible ozone symptoms. A more detailed examination of the progression of ozone symptoms with time was carried out for cultivars of P. vulgaris and T. aestivum, which showed early leaf loss (P. vulgaris) and an increased rate of senescence (T. aestivum) in response to ozone exposure. All of the crops tested showed visible ozone symptoms on their leaves in at least one cultivar, and ozone sensitivity varied between cultivars of the same crop. A guide to assist with identification of visible ozone symptoms (including photographs and a description of symptoms for each species) is presented.
Collapse
Affiliation(s)
- Katrina Sharps
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK.
| | - Felicity Hayes
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Harry Harmens
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Gina Mills
- UK Centre for Ecology & Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
15
|
Agathokleous E, Kitao M, Wang X, Mao Q, Harayama H, Manning WJ, Koike T. Ethylenediurea (EDU) effects on Japanese larch: an one growing season experiment with simulated regenerating communities and a four growing season application to individual saplings. JOURNAL OF FORESTRY RESEARCH 2021; 32:2047-2057. [PMID: 33013142 PMCID: PMC7525765 DOI: 10.1007/s11676-020-01223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/07/2020] [Indexed: 05/06/2023]
Abstract
Japanese larch (Larix kaempferi (Lamb.) Carr.) and its hybrid are economically important coniferous trees widely grown in the Northern Hemisphere. Ground-level ozone (O3) concentrations have increased since the pre-industrial era, and research projects showed that Japanese larch is susceptible to elevated O3 exposures. Therefore, methodologies are needed to (1) protect Japanese larch against O3 damage and (2) conduct biomonitoring of O3 in Japanese larch forests and, thus, monitor O3 risks to Japanese larch. For the first time, this study evaluates whether the synthetic chemical ethylenediurea (EDU) can protect Japanese larch against O3 damage, in two independent experiments. In the first experiment, seedling communities, simulating natural regeneration, were treated with EDU (0, 100, 200, and 400 mg L-1) and exposed to either ambient or elevated O3 in a growing season. In the second experiment, individually-grown saplings were treated with EDU (0, 200 and 400 mg L-1) and exposed to ambient O3 in two growing seasons and to elevated O3 in the succeeding two growing seasons. The two experiments revealed that EDU concentrations of 200-400 mg L-1 could protect Japanese larch seedling communities and individual saplings against O3-induced inhibition of growth and productivity. However, EDU concentrations ≤ 200 mg L-1 did offer only partial protection when seedling communities were coping with higher level of O3-induced stress, and only 400 mg EDU L-1 fully protected communities under higher stress. Therefore, we conclude that among the concentrations tested the concentration offering maximum protection to Japanese larch plants under high competition and O3-induced stress is that of 400 mg EDU L-1. The results of this study can provide a valuable resource of information for applied forestry in an O3-polluted world.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Applied Ecology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044 People’s Republic of China
- Division of Environment and Resources Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Sapporo, 062-8516 Japan
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Sapporo, 062-8516 Japan
| | - Xiaona Wang
- Division of Environment and Resources Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
- College of Landscape Architecture and Tourism, Hebei Agricultural University, No. 2596 Lekai South Street, Lianchi District, Baoding, 071000 People’s Republic of China
| | - Qiaozhi Mao
- Division of Environment and Resources Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
- College of Resources and Environment, Southwest University, Chongqing, 400700 People’s Republic of China
| | - Hisanori Harayama
- Ecophysiology Laboratory, Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI), Matsunosato-1, Tsukuba, 305-8687 Japan
| | - William J. Manning
- Department of Plant, Soil and Insect Sciences, University of Massachusetts, 80 Campus Center Way, Amherst, MA 01003 USA
| | - Takayoshi Koike
- Division of Environment and Resources Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
- Shenzhen Graduate School of Environment and Energy, Peking University, Shenzhen, 518055 People’s Republic of China
- Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing, 100085 People’s Republic of China
| |
Collapse
|
16
|
Ozone dose-response relationships for tropical crops reveal potential threat to legume and wheat production, but not to millets. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
17
|
Yadav A, Bhatia A, Yadav S, Kumar V, Singh B. The effects of elevated CO 2 and elevated O 3 exposure on plant growth, yield and quality of grains of two wheat cultivars grown in north India. Heliyon 2019; 5:e02317. [PMID: 31463405 PMCID: PMC6710491 DOI: 10.1016/j.heliyon.2019.e02317] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 12/27/2022] Open
Abstract
Global food security is challenged by increasing levels of CO2, O3 and temperature trough their impacts on production and grain quality of wheat, one of the major C3 crops and staple food across the world. The present study was conducted to assess the effects of elevated levels of CO2 (EC; 550 ppm) and tropospheric O3 (EO; 70 ppb) as well as of combined interactive treatment [EC X EO; ECO] on plant growth, yield and grain quality of two wheat cultivars (HD-2967 and C-306) grown during 2016-17 and 2017-18 using free air ozone and carbon dioxide enrichment (FAOCE) facility under field conditions. Individually, EC, increased leaf area index (LAI; 15.9-28.2%), photosynthetic rate (Pn; 11.4-20.3%) and yield (8.2-20.9%) whereas EO declined LAI (5.1-12.5%), Pn (2.8-11.8%) and yield (2.2-14.2%) over ambient conditions (Amb: 405.2 ppm CO2 and 30.7 ppb O3). Under ECO condition, EC increased LAI (2.2-17.1%), Pn (2.8-17.6%) and grain yield parameters (4.4-24.3%) across the cultivars in both years, but reduced the positive effects of EO on quality as compared to Amb. Dilution effect of increased yield under EC condition have reduced total protein, micro- and macro-nutrient concentrations whereas EO increased them notably compared to Amb. Starch in grains increased under EC but reduced under EO as compared to Amb. AOT40, the sum of averaged difference of O3 h-1 concentration beyond 40 ppb for 7 hours (31233 ppb h-1) in FAOCEs rings during the crop growth period led to reduction in average grain yield of HD-2967 and C-306 by 11.6 and 8.5% or by 1.6 and 1.3% yield loss per ppb increase of O3, respectively. The growth, yield and quality parameters of both wheat cultivars responded similarly but to different extent to all treatments. EC was able to offset the negative effects of EO on yield and yield components only, but not those concerning the quality of grains. To stabilize global food security, precursor gases forming tropospheric ozone must be constrained.
Collapse
Affiliation(s)
- Achchhelal Yadav
- School of Environmental Scienecs, Jawahralal Nehru Univeristy, New Delhi, 110067, India
| | - Arti Bhatia
- Centre for Environmental Science and Climate Resilient Agriculture, Indian Agriculture Research Institute, New Delhi, 110012, India
| | - Sudesh Yadav
- School of Environmental Scienecs, Jawahralal Nehru Univeristy, New Delhi, 110067, India
| | - Vinod Kumar
- Centre for Environmental Science and Climate Resilient Agriculture, Indian Agriculture Research Institute, New Delhi, 110012, India
| | - Bhupinder Singh
- Centre for Environmental Science and Climate Resilient Agriculture, Indian Agriculture Research Institute, New Delhi, 110012, India
| |
Collapse
|