1
|
Miksanek JR, Adarkwah C, Tuda M. Low concentrations of selenium nanoparticles enhance the performance of a generalist parasitoid and its host, with no net effect on host suppression. PEST MANAGEMENT SCIENCE 2024; 80:1812-1820. [PMID: 38032005 DOI: 10.1002/ps.7907] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/02/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND The environmental and economic costs of conventional insecticides have stirred an interest in alternative management tactics, including the use of nanotechnologies. Selenium nanoparticles (SeNPs) have many applications in agriculture but may not be compatible with biological control; however, low concentrations of SeNPs may benefit natural enemies via hormesis. This study investigates the concentration-dependent effects of SeNPs (0-1000 mg L-1 ) on Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae), a generalist parasitoid of stored product pests. RESULTS The LC50 of SeNPs was 1540 mg L-1 for female parasitoids and 1164 mg L-1 for males. SeNPs had a significant hormetic effect; average lifespan increased by 10% at a concentration of 4.03 mg L-1 for females and by 35% at 13.83 mg L-1 for males. In a bioassay including hosts [the azuki bean beetle, Callosobruchus chinensis (L.) (Coleoptera: Chrysomelidae: Bruchinae)], a low concentration of SeNPs (25 mg L-1 ) enhanced the performance of female parasitoids; lifespan increased by 23% and the number of offspring increased by 88%. However, the number of emerging hosts did not significantly decrease; in the absence of parasitism, SeNPs actually improved host emergence by 17%. CONCLUSION Because higher concentrations of SeNPs reduced parasitoid lifespan, whereas low concentrations enhanced not only parasitoid performance but also host emergence, practitioners should exercise caution when considering SeNPs for use in integrated pest management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- James Rudolph Miksanek
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Charles Adarkwah
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Department of Horticulture and Crop Production, School of Agriculture and Technology, Dormaa-Ahenkro Campus, University of Energy and Natural Resources, Sunyani, Ghana
- Division Urban Plant Ecophysiology, Faculty Life Sciences, Humboldt-University of Berlin, Berlin, Germany
| | - Midori Tuda
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Gao S, Tuda M. Silica and Selenium Nanoparticles Attract or Repel Scale Insects by Altering Physicochemical Leaf Traits. PLANTS (BASEL, SWITZERLAND) 2024; 13:952. [PMID: 38611481 PMCID: PMC11013412 DOI: 10.3390/plants13070952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024]
Abstract
Although nanoparticles have gained attention as efficient alternatives to conventional agricultural chemicals, there is limited knowledge regarding their effects on herbivorous insect behavior and plant physicochemistry. Here, we investigated the effects of foliar applications of nano-silica (SiO2NPs) and nano-selenium (SeNPs), and bulk-size silica (SiO2) on the choice behavior of the arrowhead scale insect on mandarin orange plants. One leaf of a bifoliate pair was treated with one of the three chemicals, while the other was treated with water (control). The respective SiO2, SeO2, calcium (Ca), and carbon (C) content levels in the leaf epidermis and mesophyll were quantified using SEM-EDX (or SEM-EDS); leaf toughness and the arrowhead scale density and body size were measured. First-instar nymphs preferred silica-treated leaves and avoided SeNP-treated leaves. SiO2 content did not differ between control and SiO2NP-treated leaves, but was higher in bulk-size SiO2-treated leaves. The SiO2 level in the control leaves was higher in the SiO2NP treatment compared with that in the control leaves in the bulk-size SiO2 treatment. Silica-treated leaves increased in toughness, but SeNP-treated leaves did not; leaf toughness increased with mesophyllic SiO2 content. The insect density per leaf increased with leaf toughness, SiO2 content and, in the SiO2NP treatment, with epidermal C content. There was no correlation between SeO2 content and insect density. This study highlights the potential uses of SeNPs as an insect deterrent and of silica for enhancing leaf toughness and attracting scale insects.
Collapse
Affiliation(s)
- Siyi Gao
- Laboratory of Insect Natural Enemies, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 8190395, Japan
| | - Midori Tuda
- Laboratory of Insect Natural Enemies, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 8190395, Japan
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka 8190395, Japan
| |
Collapse
|
3
|
So J, Choe DH, Rust MK, Trumble JT, Lee CY. The impact of selenium on insects. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1041-1062. [PMID: 37289432 DOI: 10.1093/jee/toad084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 06/09/2023]
Abstract
Selenium, a naturally occurring metalloid, is an essential trace element for many higher organisms, including humans. Humans primarily become exposed to selenium by ingesting food products containing trace amounts of selenium compounds. Although essential in these small amounts, selenium exhibits toxic effects at higher doses. Previous studies investigating the effects on insects of order Blattodea, Coleoptera, Diptera, Ephemeroptera, Hemiptera, Hymenoptera, Lepidoptera, Odonata, and Orthoptera revealed impacts on mortality, growth, development, and behavior. Nearly every study examining selenium toxicity has shown that insects are negatively affected by exposure to selenium in their food. However, there were no clear patterns of toxicity between insect orders or similarities between insect species within families. At this time, the potential for control will need to be determined on a species-by-species basis. We suspect that the multiple modes of action, including mutation-inducing modification of important amino acids as well as impacts on microbiome composition, influence this variability. There are relatively few studies that have examined the potential effects of selenium on beneficial insects, and the results have ranged from increased predation (a strong positive effect) to toxicity resulting in reduced population growth or even the effective elimination of the natural enemies (more common negative effects). As a result, in those pest systems where selenium use is contemplated, additional research may be necessary to ascertain if selenium use is compatible with key biological control agents. This review explores selenium as a potential insecticide and possible future directions for research.
Collapse
Affiliation(s)
- John So
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Dong-Hwan Choe
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Michael K Rust
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - John T Trumble
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Chow-Yang Lee
- Department of Entomology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
4
|
Helmy EAM, San PP, Zhang YZ, Adarkwah C, Tuda M. Entomotoxic efficacy of fungus-synthesized nanoparticles against immature stages of stored bean pests. Sci Rep 2023; 13:8508. [PMID: 37231118 DOI: 10.1038/s41598-023-35697-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
Nanopesticides, particularly biosynthesized ones using organic reductants, hold great promise as a cost-effective and eco-friendly alternative to chemical pesticides. However, their efficacy on stored product pests, which can cause damage to dried grains, has not been extensively tested, especially on immature stages. Here, we biosynthesized six types of nanoparticles (NPs) using extracts from the fungus Fusarium solani: silver (AgNPs), selenium (SeNPs), silicon dioxide (SiO2NPs), copper oxide (CuONPs), titanium dioxide (TiO2NPs) and zinc oxide (ZnONPs) ranging in size from 8 to 33 nm. To test their efficacy on stored bean pests, they were applied to the eggs and larvae of pest beetles Callosobruchus chinensis and Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae), which burrow into seeds as larvae. Susceptibility to the NPs was species-dependent and differed between developmental stages; eggs were more susceptible than larvae inhabiting in seeds. SeNPs and TiO2NPs reduced the hatchability of C. chinensis eggs by 23% and 18% compared to the control, respectively, leading to an 18% reduction in egg-to-adult survival by SeNPs. In C. maculatus, TiO2NPs applied to eggs reduced larva-to-adult survivorship by 11%, resulting in a 15% reduction in egg-to-adult survival. The egg mass of C. chinensis was 23% smaller than that of C. maculatus: the higher surface-area-to-volume ratio of the C. chinensis eggs could explain their higher acute mortality caused by the NPs compared to C. maculatus eggs. The biosynthesized SeNPs and TiO2NPs have potential for controlling major stored bean pests when applied to their eggs. This is the first to show the efficacy of biosynthesized SeNPs and TiO2NPs on stored product pests and the efficacy of Fusarium-synthesized NPs on insects.
Collapse
Affiliation(s)
- Eman Ahmed Mohamed Helmy
- The Regional Centre for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo, Egypt.
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Phyu Phyu San
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
- Department of Entomology and Zoology, Yezin Agricultural University, Naypyitaw, Myanmar
| | - Yao Zhuo Zhang
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Charles Adarkwah
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
- Department of Horticulture and Crop Production, School of Agriculture and Technology, Dormaa-Ahenkro Campus, University of Energy and Natural Resources, PO Box 214, Sunyani, Ghana.
- Division Urban Plant Ecophysiology, Faculty Life Sciences, Humboldt-University of Berlin, Lentzeallee 55/57, 14195, Berlin, Germany.
| | - Midori Tuda
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
5
|
Skrypnik L, Feduraev P, Golovin A, Maslennikov P, Styran T, Antipina M, Riabova A, Katserov D. The Integral Boosting Effect of Selenium on the Secondary Metabolism of Higher Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3432. [PMID: 36559543 PMCID: PMC9788459 DOI: 10.3390/plants11243432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Selenium is a micronutrient with a wide range of functions in animals, including humans, and in microorganisms such as microalgae. However, its role in plant metabolism remains ambiguous. Recent studies of Se supplementation showed that not only does it increase the content of the element itself, but also affects the accumulation of secondary metabolites in plants. The purpose of this review is to analyze and summarize the available data on the place of selenium in the secondary metabolism of plants and its effect on the accumulation of some plant metabolites (S- and N-containing secondary metabolites, terpenes, and phenolic compounds). In addition, possible molecular mechanisms and metabolic pathways underlying these effects are discussed. It should be noted that available data on the effect of Se on the accumulation of secondary metabolites are inconsistent and contradictory. According to some studies, selenium has a positive effect on the accumulation of certain metabolites, while other similar studies show a negative effect or no effect at all. The following aspects were identified as possible ways of regulating plant secondary metabolism by Se-supplementation: changes occurring in primary S/N metabolism, hormonal regulation, redox metabolism, as well as at the transcriptomic level of secondary metabolite biosynthesis. In all likelihood, the confusion in the results can be explained by other, more complex regulatory mechanisms in which selenium is involved and which affect the production of metabolites. Further study on the involvement of various forms of selenium in metabolic and signaling pathways is crucial for a deeper understanding of its role in growth, development, and health of plants, as well as the regulatory mechanisms behind them.
Collapse
|
6
|
Zhou C, Li D, Shi X, Zhang J, An Q, Wu Y, Kang L, Li JQ, Pan C. Nanoselenium Enhanced Wheat Resistance to Aphids by Regulating Biosynthesis of DIMBOA and Volatile Components. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14103-14114. [PMID: 34784717 DOI: 10.1021/acs.jafc.1c05617] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The mechanism of nanoselenium (nano-Se) improving the resistance induced by plant components to aphids is unclear. In this study, foliar sprayed nano-Se (5.0 mg/L) could significantly reduce the Sitobion avenae number (36%) compared with that in the control. Foliar application of nano-Se enhanced the antioxidant capacity by reducing malondialdehyde (MDA) and increasing GSH-Px, CAT, GSH, Pro, and VE concentrations in wheat seedlings. The phenylpropane pathway was activated by nano-Se biofortification, which increased apigenin and caffeic acid concentrations. The high-level expression of the related genes (TaBx1A, TaBx3A, TaBx4A, TaASMT2, and TaCOMT) induced the promotion of melatonin (88.6%) and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) (64.3%). Different ratios of the secondary metabolites to nano-Se were taken to examine the effects on resistance of wheat to S. avenae. The results revealed that the combination of nano-Se and melatonin could achieve the best overall performance by reducing the S. avenae number by 52.2%. The study suggests that the coordinated applications of nano-Se and melatonin could more effectively improve the wheat resistance to aphids via the promotion of volatile organic compound synthesis and modulation in phenylpropane and indole metabolism pathways.
Collapse
Affiliation(s)
- Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Dong Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Xinlei Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Jingbang Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Quanshun An
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Lu Kang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Jia-Qi Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, P. R. China
| |
Collapse
|
7
|
Xu Z, Qi C, Zhang M, Zhu J, Hu J, Feng K, Sun J, Wei P, Shen G, Zhang P, He L. Selenium mediated host plant-mite conflict: defense and adaptation. PEST MANAGEMENT SCIENCE 2021; 77:2981-2989. [PMID: 33624403 DOI: 10.1002/ps.6337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Selenium has shown effectiveness in protecting plants from herbivores. However, some insects have evolved adaptability to selenium. RESULTS Selenium accumulation in host plants protected them against spider mite feeding. Selenium showed toxic effects on spider mites by reducing growth and interfering with reproduction. After 40 generations on selenium-rich plants, a Tetranychus cinnabarinus strain (Tc-Se) developed adaptability to selenium, with an increased rate of population growth and enhanced ability for selenium metabolism. The high expression of two genes (GSTd07 and SPS1) in the selenium metabolism pathway might be involved in selenium metabolism in spider mites. After GSTd07 and SPS1 were silenced, the selenium adaptability decreased. Recombinant GSTd07 protein promoted the reaction between sodium selenite and glutathione (GSH) and increased the production of sodium selenite metabolites. The results indicated that GSTd07 was involved in the first step of selenium metabolism. CONCLUSION Plants can resist spider mite feeding by accumulating selenium. Spider mites subjected to long-term selenium exposure can adapt to selenium by increasing the expression of key genes involved in selenium metabolism. These results elucidate the mechanism of the interaction between mites and host plants mediated by selenium. This study of the interaction between selenium-mediated host plants and spider mites may lead to the development of new and less toxic methods for the prevention and control of spider mites. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhifeng Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - CuiCui Qi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Mengyu Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Jiayan Zhu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Jia Hu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Kaiyang Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Jingyu Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Peng Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Guangmao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Ping Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Selenium Biofortification: Roles, Mechanisms, Responses and Prospects. Molecules 2021; 26:molecules26040881. [PMID: 33562416 PMCID: PMC7914768 DOI: 10.3390/molecules26040881] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
The trace element selenium (Se) is a crucial element for many living organisms, including soil microorganisms, plants and animals, including humans. Generally, in Nature Se is taken up in the living cells of microorganisms, plants, animals and humans in several inorganic forms such as selenate, selenite, elemental Se and selenide. These forms are converted to organic forms by biological process, mostly as the two selenoamino acids selenocysteine (SeCys) and selenomethionine (SeMet). The biological systems of plants, animals and humans can fix these amino acids into Se-containing proteins by a modest replacement of methionine with SeMet. While the form SeCys is usually present in the active site of enzymes, which is essential for catalytic activity. Within human cells, organic forms of Se are significant for the accurate functioning of the immune and reproductive systems, the thyroid and the brain, and to enzyme activity within cells. Humans ingest Se through plant and animal foods rich in the element. The concentration of Se in foodstuffs depends on the presence of available forms of Se in soils and its uptake and accumulation by plants and herbivorous animals. Therefore, improving the availability of Se to plants is, therefore, a potential pathway to overcoming human Se deficiencies. Among these prospective pathways, the Se-biofortification of plants has already been established as a pioneering approach for producing Se-enriched agricultural products. To achieve this desirable aim of Se-biofortification, molecular breeding and genetic engineering in combination with novel agronomic and edaphic management approaches should be combined. This current review summarizes the roles, responses, prospects and mechanisms of Se in human nutrition. It also elaborates how biofortification is a plausible approach to resolving Se-deficiency in humans and other animals.
Collapse
|
9
|
Łukaszewicz S, Borowiak-Sobkowiak B, Durak R, Dancewicz K, Politycka B. Interaction between Acyrthosiphon pisum and selenium-treated Pisum sativum. THE EUROPEAN ZOOLOGICAL JOURNAL 2021. [DOI: 10.1080/24750263.2020.1853831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- S. Łukaszewicz
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - B. Borowiak-Sobkowiak
- Department of Entomology and Environmental Protection, Poznań University of Life Sciences, Poznań, Poland
| | - R. Durak
- Department of Experimental Biology and Chemistry, University of Rzeszów, Rzeszów, Poland
| | - K. Dancewicz
- Department of Botany and Ecology, University of Zielona Góra, Zielona Góra, Poland
| | - B. Politycka
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
10
|
Xu Z, Qi C, Zhang M, Liu P, Zhang P, He L. Transcription response of Tetranychus cinnabarinus to plant-mediated short-term and long -term selenium treatment. CHEMOSPHERE 2021; 263:128007. [PMID: 33297040 DOI: 10.1016/j.chemosphere.2020.128007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 06/12/2023]
Abstract
Selenium is a trace element necessary for living organisms. It exists mainly in the form of selenite in nature. In plants, selenium can enhance defenses against pests. In this study, transcriptome sequencing technology was used to analyze the response mechanism of Tetranychus cinnabarinus to plant-mediated selenium treatment. We tested four sodium selenite treatments (5, 20, 50, and 200 μM) that were the same for short (2 d) and long (30 d) treatment durations. The results showed that the number of differentially expressed genes (DEGs) in the short-term treatment was greater than in the long-term treatment. This indicated that the gene expression of spider mites gradually stabilized during the selenium treatment. Regardless of the long-term and short-term conditions, spider mites had the largest response to the 20 μM sodium selenite treatment. The functional annotation classification of DEGs showed no significant difference under different concentrations and treatment durations. A total of 25 genes were differentially expressed in all eight treatments, including four down-regulated cytochrome P450 genes and one up-regulated chitinase gene. We speculate that selenium may have the potential to enhance the activity of chemical acaricides. Transcriptome sequencing of sodium selenite treatment at different concentrations and different times revealed the response mechanism of spider mites under plant-mediated selenium treatment. At the same time, it also provides new clues for the development of methods for preventing and controlling spider mites with selenium.
Collapse
Affiliation(s)
- Zhifeng Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - CuiCui Qi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Mengyu Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Peiling Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Ping Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China.
| |
Collapse
|
11
|
Schiavon M, Nardi S, dalla Vecchia F, Ertani A. Selenium biofortification in the 21 st century: status and challenges for healthy human nutrition. PLANT AND SOIL 2020; 453:245-270. [PMID: 32836404 PMCID: PMC7363690 DOI: 10.1007/s11104-020-04635-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Selenium (Se) is an essential element for mammals and its deficiency in the diet is a global problem. Plants accumulate Se and thus represent a major source of Se to consumers. Agronomic biofortification intends to enrich crops with Se in order to secure its adequate supply by people. SCOPE The goal of this review is to report the present knowledge of the distribution and processes of Se in soil and at the plant-soil interface, and of Se behaviour inside the plant in terms of biofortification. It aims to unravel the Se metabolic pathways that affect the nutritional value of edible plant products, various Se biofortification strategies in challenging environments, as well as the impact of Se-enriched food on human health. CONCLUSIONS Agronomic biofortification and breeding are prevalent strategies for battling Se deficiency. Future research addresses nanosized Se biofortification, crop enrichment with multiple micronutrients, microbial-integrated agronomic biofortification, and optimization of Se biofortification in adverse conditions. Biofortified food of superior nutritional quality may be created, enriched with healthy Se-compounds, as well as several other valuable phytochemicals. Whether such a food source might be used as nutritional intervention for recently emerged coronavirus infections is a relevant question that deserves investigation.
Collapse
Affiliation(s)
- Michela Schiavon
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università di Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | - Serenella Nardi
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università di Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | | | - Andrea Ertani
- Dipartimento di Scienze Agrarie, Università di Torino, Via Leonardo da Vinci, 44, 10095 Grugliasco, TO Italy
| |
Collapse
|