1
|
Sharma S, Negi S, Kumar P, Irfan M. Cellular strategies for surviving the alpine extremes: methylerythritol phosphate pathway-driven isoprenoid biosynthesis and stress resilience. PROTOPLASMA 2025:10.1007/s00709-025-02062-0. [PMID: 40180685 DOI: 10.1007/s00709-025-02062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
High altitude conditions pose a significant challenge to all earth's inhabitants including flora. Low atmospheric pressure (thin air), intense ultraviolet (UV) light, and ultra-low temperatures combine to cause oxidative stress in plants. In these abiotic stress conditions, plants exhibit various ecophysiological, morphological, and biochemical adaptations to cope with stress. Morphologically, plants may develop smaller, thicker leaves with protective trichomes or waxy cuticles against intense UV radiation, and minimize water loss in the thin, dry air. However biochemically, plants increase the production of UV-absorbing compounds like flavonoids and phenolic acids along with antioxidant enzymes for neutralizing reactive oxygen species (ROS). To protect against these stress conditions plants start producing specialized metabolites, i.e., isoprenoids, phenolic acids, flavonoids, sterols, carotenoids, etc. The production of these specialized metabolites occurs through MEP (methylerythritol phosphate) and MVA (mevalonic acid) pathways. Although, this article aims to review the scientific complexities of high-altitude plants by providing an in-depth explanation of the MEP pathway, including its regulation, sources and causes of oxidative stress in plants, functions and roles of isoprenoids in stress tolerance, and the adaptation strategies that support alpine plant survival and acclimation. The MEP pathway's products, several carotenoids, viz., phytoene, lycopene, β-carotene, etc., and terpenoids, viz., geraniol, citral, phytol, etc., act as potent scavengers of ROS, providing defense against oxidative damage. Also, phytohormones, viz., abscisic acid, salicylic acid, and jasmonic acid play crucial roles in modulating plant responses to oxidative stress. To date, little scientific literature is available specifically on high-altitude plants with respect to MEP pathway and oxidative stress management. Understanding the interaction between the MEP pathway and oxidative stress in high-altitude plants can provide insight into the implications for improving crop resilience and producing bioactive chemicals with potential human health benefits.
Collapse
Affiliation(s)
- Shagun Sharma
- Department of Biotechnology, Dr. Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Shivanti Negi
- Department of Biotechnology, Dr. Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Pankaj Kumar
- Department of Biotechnology, Dr. Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
2
|
Ali V, Vyas D. A transplantation study in the high-altitude ecosystem of Ladakh suggests site-specific microenvironment is key for physiological adaptation than altitude. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109532. [PMID: 39874665 DOI: 10.1016/j.plaphy.2025.109532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
Transplantation experiments conducted in high altitude ecosystems are rising as key strategy to examine the response of individual plant transplanted across distinct elevations. However, plant physiological and biochemical performance in response to changes in abiotic factors across different species and mountain ranges is still lacking. So in the present study, we have made an attempt to link the physiological performance with that of altitudinal gradient in Ladakh by transplanting Lepidium latifolium at four different altitudinal sites. The plant was found to maintain photosynthesis even at high altitudes by modulating photochemical efficiency of photosystem II. Various physiological processes including performance index (PIABS), increase in energy fluxes, closing of the reaction centres and decrease in chlorophyll content play a crucial role in the adaptation of this plant. The efficient and dynamic non-photochemical quenching (NPQ) involving carotenoids particularly zeaxanthin mediated dissipation of excess light energy at high altitudinal sites of Ladakh led the plant to withstand with extremely strong light radiation. As a photoprotective mechanism, decreases in chlorophyll content and increase in carotenoids could lead to a reduction in the absorption of high light energy and avoid photo damage to the chloroplasts. Higher content of redox metabolites such as GSH, ASC, GSH/GSSG ratio and ASC/DHA ratio in plants transplanted at high altitudinal sites further suggests the resilience ability of Lepidium latifolium against harsh environmental stresses. Furthermore, increase in glucosinolate content in plants transplanted at high altitudes suggests the involvement of GLS in the establishment of Lepidium latifolium in Ladakh. Overall, no specific altitudinal trend was observed in the present study indicating the adaptation strategy of Lepidium latifolium to different altitudinal sites can be attributed to the combined effects of multiple environmental factors/microenvironment.
Collapse
Affiliation(s)
- Villayat Ali
- Plant Sciences and Agrotechnology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, J & K, 180001, India
| | - Dhiraj Vyas
- Plant Sciences and Agrotechnology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, J & K, 180001, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
3
|
Tsombou FM, Al Dhanhani ASS, Alhmoudi AMSA, Al Hmoudi MASM, Ridouane FL, Alabdouli MFA, Alhammadi HJ, Alsamahi MEAA, Mirza SB. Altitudinal influence on survival mechanisms, nutritional composition, and antimicrobial activity of Moringa Peregrina in the summer climate of Fujairah, UAE. Sci Rep 2025; 15:5635. [PMID: 39955360 PMCID: PMC11829955 DOI: 10.1038/s41598-025-90223-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025] Open
Abstract
Extreme environments significantly impact the metabolic profiles of plants, leading to variations in chemical composition and bioactivity. This study investigates the effects of altitude, plant part age, and light exposure on the chemical composition and antimicrobial properties of Moringa peregrina. Based on our results, mineral contents were plant location dependent; while dry matter, ash, total digestible nutrients (TDN), fibre, protein, and tannins, were greater in the samples from the mountain. Vitamin E was more concentrated in the wadi. Vitamin A, selenium, phenols, and heavy metals were undetectable in both environments. Antimicrobial assays revealed stronger activity in mountain samples than the other locations. Age-dependent analyses showed that nitrogen, protein, ash, and electrolyte leakage were higher in young plant parts, whereas chlorophyll a and b levels were elevated in mature leaves and younger branches, particularly in lower elevations. Interestingly, young leaves from mountain regions had higher chlorophyll concentrations compared to mature leaves, contrasting with trends at other elevations. Photosynthetic photon flux density (PPFD) measurements were also highest in the mountain region. These findings suggest that M. peregrina employs diverse metabolic adaptations for survival in challenging environments, potentially offering socioeconomic value to indigenous communities through its bioactive properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Maitha Fahad Ahmed Alabdouli
- Fujairah Research Centre, Sakamkam Road, Fujairah, United Arab Emirates
- University of Sharjah, Sharjah, United Arab Emirates
| | - Hessa Jassim Alhammadi
- Fujairah Research Centre, Sakamkam Road, Fujairah, United Arab Emirates
- University of Sharjah, Sharjah, United Arab Emirates
| | - Mozah Ebraheim Abdulla Ali Alsamahi
- Fujairah Research Centre, Sakamkam Road, Fujairah, United Arab Emirates
- American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Shaher Bano Mirza
- Fujairah Research Centre, Sakamkam Road, Fujairah, United Arab Emirates.
| |
Collapse
|
4
|
Lee J, Kwak MJ, Woo SY. Biogenic volatile organic compounds (BVOCs) emissions and physiological changes in Pinus densiflora and Quercus acutissima seedlings under elevated particulate matter (PM). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177744. [PMID: 39637539 DOI: 10.1016/j.scitotenv.2024.177744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/29/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
Urban trees effectively reduce air pollution, including particulate matter (PM), which is a major concern in East Asia. While acting as biofilters, urban trees can be affected by PM exposure, which hinders their growth and physiological functions, thereby reducing their pollution mitigation ability. Trees absorb pollutants but also emit biogenic volatile organic compounds (BVOCs), which can act as precursors to other forms of air pollution. To better understand the effects of PM on urban trees, this study examined how two tree species, Pinus densiflora and Quercus acutissima, respond to elevated PM levels under controlled conditions at a concentration of 300 μg m-3. The aim was to investigate how increased PM levels affect BVOCs emissions and physiological responses in seedlings, and how these physiological changes influence BVOCs emission pattern. The results revealed species-specific responses in BVOCs emissions under PM stress with being especially oxygenated monoterpenes more than non‑oxygenated monoterpenes. Increased PM adsorption was found to reduce photosynthetic abilities, including photosynthesis (Anet), carboxylation capacity (Vcmax), and electron transport rate (J). This reduction in photosynthetic efficiency was further evidenced by decreased chlorophyll content and light absorption, which were assessed through chlorophyll fluorescence measurements. Additionally, the study evaluated oxidative stress indicators, such as lipid peroxidation and the accumulation of reactive oxygen species (ROS), to provide a comprehensive understanding of the species' responses to elevated PM conditions. The study found that elevated PM conditions were closely linked to an increase in oxygenated monoterpenes, which was associated with both oxidative stress and impaired physiological function. These observations emphasize the need for strategic urban tree selection to enhance air quality and suggest that understanding species-specific BVOCs emissions in response to PM is crucial for optimizing urban green spaces for health and environmental benefits.
Collapse
Affiliation(s)
- Jongkyu Lee
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea
| | - Myeong Ja Kwak
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea
| | - Su Young Woo
- Department of Environmental Horticulture, University of Seoul, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Dong X, Shi L, Bao S, Ren Y, Fu H, You Y, Li Q, Chen Z. Comprehensive evaluation of freezing tolerance in prickly ash and its correlation with ecological and geographical origin factors. Sci Rep 2024; 14:26301. [PMID: 39487305 PMCID: PMC11530428 DOI: 10.1038/s41598-024-77397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
Low temperatures are a key factor affecting the growth, development, and geographical distribution of prickly ash. This study investigated the impact of ecological and geographical factors on the freezing tolerance of prickly ash germplasm. Thirty-seven germplasm samples from 18 different origins were collected, and their freezing tolerance was comprehensively evaluated. The correlation between freezing tolerance and the ecological and geographical factors of their origins was also analyzed. Significant differences in freezing tolerance were observed among germplasm from different origins. The semi-lethal temperature of the germplasm ranged from - 12.37 to 1.08 °C. As temperatures decreased, the relative conductivity (REC) and catalase (CAT) activity of the germplasm gradually increased, while soluble sugar (SS), soluble protein (SP), free proline (Pro), and Peroxidase (POD) activities decreased and then increased. Superoxide dismutase (SOD) activity initially increased and then decreased. A comprehensive evaluation of freezing tolerance was conducted using a logistic equation, membership function, and cluster analysis. Germplasm from Tongchuan and Hancheng (Shaanxi Province, China), Asakura (Japan), and Yuncheng (Shanxi Province, China) exhibited the highest freezing tolerance, whereas those from Rongchang (Chongqing Municipality, China), Qujing (Yunnan Province, China), and Honghe (Yunnan Province, China) had the lowest. The correlation analysis revealed a significant positive correlation between freezing tolerance and latitude, and a significant negative correlation with the temperature of origin. Germplasm from higher latitudes showed higher SS content, SOD and CAT activities, stronger antioxidant enzyme activity, and better freezing tolerance compared to those from lower latitudes. REC was lower in germplasm originating from low-temperature areas than in those from high-temperature areas. Additionally, SP, Pro content, SOD, and POD activities were higher, indicating effective scavenging of active oxygen free radicals. No significant correlation was found between altitude and longitude of origin and freezing tolerance. However, at similar latitudes, prickly ash from higher altitudes displayed higher antioxidant enzyme activity and stronger freezing tolerance compared to those from lower altitudes. These findings provide a scientific basis for breeding prickly ash cultivars suited to different ecological regions.
Collapse
Affiliation(s)
- Xixi Dong
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Lin Shi
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Shuqin Bao
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Yun Ren
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Hao Fu
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
- Geological Team 607, Chongqing Geological and Mineral Exploration and Development Bureau, Chongqing, 401300, China
| | - Yuming You
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Qiang Li
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Zexiong Chen
- College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
6
|
Terletskaya NV, Erbay M, Mamirova A, Ashimuly K, Korbozova NK, Zorbekova AN, Kudrina NO, Hoffmann MH. Altitude-Dependent Morphophysiological, Anatomical, and Metabolomic Adaptations in Rhodiola linearifolia Boriss. PLANTS (BASEL, SWITZERLAND) 2024; 13:2698. [PMID: 39409568 PMCID: PMC11479101 DOI: 10.3390/plants13192698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Rhodiola linearifolia Boriss., a perennial alpine plant from the Crassulaceae family, is renowned for its unique medicinal properties. However, existing research on this species is limited, particularly regarding the impact of altitude on its physiological and medicinal compounds. The current study employed morphophysiological and anatomical methods to explore the adaptive mechanisms of R. linearifolia across different altitudinal gradients, while also examining photosynthetic pigments and metabolomic changes. Our results indicate that despite the simultaneous effects of various mountain abiotic factors, significant correlations can be identified between altitude and trait variation. An optimal growth altitude of 2687 m above sea level was identified, which is pivotal for sustainable ecosystem management and potential species introduction strategies. It is noted that increasing altitude stress enhances the synthesis of secondary antioxidant metabolites in R. linearifolia, enhancing its pharmaceutical potential.
Collapse
Affiliation(s)
- Nina V. Terletskaya
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (M.E.); (K.A.); (N.K.K.); (A.N.Z.); (N.O.K.)
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Malika Erbay
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (M.E.); (K.A.); (N.K.K.); (A.N.Z.); (N.O.K.)
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Aigerim Mamirova
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Kazhybek Ashimuly
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (M.E.); (K.A.); (N.K.K.); (A.N.Z.); (N.O.K.)
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Nazym K. Korbozova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (M.E.); (K.A.); (N.K.K.); (A.N.Z.); (N.O.K.)
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Aigerim N. Zorbekova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (M.E.); (K.A.); (N.K.K.); (A.N.Z.); (N.O.K.)
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Nataliya O. Kudrina
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan; (M.E.); (K.A.); (N.K.K.); (A.N.Z.); (N.O.K.)
- Institute of Genetic and Physiology, Al-Farabi 93, Almaty 050040, Kazakhstan
| | - Matthias H. Hoffmann
- Wittenberg Institut für Geobotanik und Botanischer Garten, Martin-Luther-Universität Halle, Am Kirchtor 3, D-06108 Halle, Germany;
| |
Collapse
|
7
|
Ashraf MV, Khan S, Misri S, Gaira KS, Rawat S, Rawat B, Khan MAH, Shah AA, Asgher M, Ahmad S. High-Altitude Medicinal Plants as Promising Source of Phytochemical Antioxidants to Combat Lifestyle-Associated Oxidative Stress-Induced Disorders. Pharmaceuticals (Basel) 2024; 17:975. [PMID: 39204080 PMCID: PMC11357401 DOI: 10.3390/ph17080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Oxidative stress, driven by reactive oxygen, nitrogen, and sulphur species (ROS, RNS, RSS), poses a significant threat to cellular integrity and human health. Generated during mitochondrial respiration, inflammation, UV exposure and pollution, these species damage cells and contribute to pathologies like cardiovascular issues, neurodegeneration, cancer, and metabolic syndromes. Lifestyle factors exert a substantial influence on oxidative stress levels, with mitochondria emerging as pivotal players in ROS generation and cellular equilibrium. Phytochemicals, abundant in plants, such as carotenoids, ascorbic acid, tocopherols and polyphenols, offer diverse antioxidant mechanisms. They scavenge free radicals, chelate metal ions, and modulate cellular signalling pathways to mitigate oxidative damage. Furthermore, plants thriving in high-altitude regions are adapted to extreme conditions, and synthesize secondary metabolites, like flavonoids and phenolic compounds in bulk quantities, which act to form a robust antioxidant defence against oxidative stress, including UV radiation and temperature fluctuations. These plants are promising sources for drug development, offering innovative strategies by which to manage oxidative stress-related ailments and enhance human health. Understanding and harnessing the antioxidant potential of phytochemicals from high-altitude plants represent crucial steps in combating oxidative stress-induced disorders and promoting overall wellbeing. This study offers a comprehensive summary of the production and physio-pathological aspects of lifestyle-induced oxidative stress disorders and explores the potential of phytochemicals as promising antioxidants. Additionally, it presents an appraisal of high-altitude medicinal plants as significant sources of antioxidants, highlighting their potential for drug development and the creation of innovative antioxidant therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Vikas Ashraf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Sajid Khan
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Surya Misri
- Section of Microbiology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Kailash S. Gaira
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Sandeep Rawat
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Balwant Rawat
- School of Agriculture, Graphic Era University, Dehradun 24800, Utarakhand, India;
| | - M. A. Hannan Khan
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Ali Asghar Shah
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Mohd Asgher
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Shoeb Ahmad
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| |
Collapse
|
8
|
El-Nagar D, Salem SH, El-Zamik FI, El-Basit HMIA, Galal YGM, Soliman SM, Aziz HAA, Rizk MA, El-Sayed ESR. Bioprospecting endophytic fungi for bioactive metabolites with seed germination promoting potentials. BMC Microbiol 2024; 24:200. [PMID: 38851702 PMCID: PMC11162052 DOI: 10.1186/s12866-024-03337-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/16/2024] [Indexed: 06/10/2024] Open
Abstract
There is an urgent need for new bioactive molecules with unique mechanisms of action and chemistry to address the issue of incorrect use of chemical fertilizers and pesticides, which hurts both the environment and the health of humans. In light of this, research was done for this work to isolate, identify, and evaluate the germination-promoting potential of various plant species' fungal endophytes. Zea mays L. (maize) seed germination was examined using spore suspension of 75 different endophytic strains that were identified. Three promising strains were identified through screening to possess the ability mentioned above. These strains Alternaria alternate, Aspergilus flavus, and Aspergillus terreus were isolated from the stem of Tecoma stans, Delonix regia, and Ricinus communis, respectively. The ability of the three endophytic fungal strains to produce siderophore and indole acetic acid (IAA) was also examined. Compared to both Aspergillus flavus as well as Aspergillus terreus, Alternaria alternata recorded the greatest rates of IAA, according to the data that was gathered. On CAS agar versus blue media, all three strains failed to produce siderophores. Moreover, the antioxidant and antifungal potentials of extracts from these fungi were tested against different plant pathogens. The obtained results indicated the antioxidant and antifungal activities of the three fungal strains. GC-Mass studies were carried out to determine the principal components in extracts of all three strains of fungi. The three strains' fungus extracts included both well-known and previously unidentified bioactive compounds. These results may aid in the development of novel plant growth promoters by suggesting three different fungal strains as sources of compounds that may improve seed germination. According to the study that has been given, as unexplored sources of bioactive compounds, fungal endophytes have great potential.
Collapse
Affiliation(s)
- Dina El-Nagar
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - S H Salem
- Department of Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Fatma I El-Zamik
- Department of Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Y G M Galal
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - S M Soliman
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - H A Abdel Aziz
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - M A Rizk
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
9
|
Hnamte L, Vanlallawmzuali, Kumar A, Yadav MK, Zothanpuia, Singh PK. An updated view of bacterial endophytes as antimicrobial agents against plant and human pathogens. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100241. [PMID: 39091295 PMCID: PMC11292266 DOI: 10.1016/j.crmicr.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Bacterial endophytes are a crucial component of the phytomicrobiome, playing an essential role in agriculture and industries. Endophytes are a rich source of bioactive compounds, serving as natural antibiotics that can be effective in combating antibiotic resistance in pathogens. These bacteria interact with host plants through various processes such as quorum sensing, chemotaxis, antibiosis, and enzymatic activity. The current paper focuses on how plants benefit extensively from endophytic bacteria and their symbiotic relationship in which the microbes enhance plant growth, nitrogen fixation, increase nutrient uptake, improve defense mechanisms, and act as antimicrobial agents against pathogens. Moreover, it highlights some of the bioactive compounds produced by endophytes.
Collapse
Affiliation(s)
- Lalhmangaihmawia Hnamte
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Vanlallawmzuali
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Ajay Kumar
- Amity institute of Biotechnology, Amity University, Noida-201313, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Zothanpuia
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Prashant Kumar Singh
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| |
Collapse
|
10
|
Nurzhanova AA, Mamirova A, Mursaliyeva V, Nurmagambetova AS, Zhumasheva Z, Turdiyev T, Kushnarenko S, Ismailova E. In Vitro Approbation of Microbial Preparations to Shield Fruit Crops from Fire Blight: Physio-Biochemical Parameters. PLANTS (BASEL, SWITZERLAND) 2024; 13:1431. [PMID: 38891242 PMCID: PMC11174909 DOI: 10.3390/plants13111431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
The need for the increasing geographical spread of fire blight (FB) affecting fruit crops to be addressed led to large-scale chemicalization of the environmental matrices and reduction of plant productivity. The current study aimed to assess the effects of novel biopreparations at different exposure durations on photosynthetic pigment content and antioxidant enzyme activity in leaves of apple and pear varieties with varying levels of resistance to FB. Biopreparations were formulated from a cultural broth containing Lacticaseibacillus paracasei M12 or Bacillus amyloliquefaciens MB40 isolated from apple trees' phyllosphere. Aseptic leaves from blight-resistant (endemic Malus sieversii cv. KG10), moderately resistant (Pyrus pyraster cv. Wild), and susceptible (endangered Malus domestica cv. Aport and Pyrus communis cv. Shygys) varieties were employed. The impact of biopreparations on fruit crop antioxidant systems and photosynthetic apparatuses was investigated in vitro. Study results indicated that FB-resistant varieties exhibit enhanced adaptability and oxidative stress resistance compared to susceptible ones. Plant response to biopreparations varied based on the plant's initial FB sensitivity and exposure duration. Indeed, biopreparations improved the adaptive response of the assimilation apparatus, protein synthesis, and catalase and superoxide dismutase activity in susceptible varieties, suggesting that biopreparations have the potential for future commercialization to manage FB in fruit crops.
Collapse
Affiliation(s)
- Asil A. Nurzhanova
- Institute of Plant Biology and Biotechnology, Timiryazev 45, Almaty 050040, Kazakhstan; (A.A.N.); (V.M.); (A.S.N.); (Z.Z.); (T.T.); (S.K.)
| | - Aigerim Mamirova
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan
| | - Valentina Mursaliyeva
- Institute of Plant Biology and Biotechnology, Timiryazev 45, Almaty 050040, Kazakhstan; (A.A.N.); (V.M.); (A.S.N.); (Z.Z.); (T.T.); (S.K.)
| | - Asiya S. Nurmagambetova
- Institute of Plant Biology and Biotechnology, Timiryazev 45, Almaty 050040, Kazakhstan; (A.A.N.); (V.M.); (A.S.N.); (Z.Z.); (T.T.); (S.K.)
| | - Zhadyra Zhumasheva
- Institute of Plant Biology and Biotechnology, Timiryazev 45, Almaty 050040, Kazakhstan; (A.A.N.); (V.M.); (A.S.N.); (Z.Z.); (T.T.); (S.K.)
| | - Timur Turdiyev
- Institute of Plant Biology and Biotechnology, Timiryazev 45, Almaty 050040, Kazakhstan; (A.A.N.); (V.M.); (A.S.N.); (Z.Z.); (T.T.); (S.K.)
| | - Svetlana Kushnarenko
- Institute of Plant Biology and Biotechnology, Timiryazev 45, Almaty 050040, Kazakhstan; (A.A.N.); (V.M.); (A.S.N.); (Z.Z.); (T.T.); (S.K.)
| | - Elvira Ismailova
- Scientific Production Centre of Microbiology and Virology, Bogenbai Batyr 105, Almaty 050010, Kazakhstan;
| |
Collapse
|
11
|
Mehta N, Chawla A. Eco-physiological trait variation in widely occurring species of Western Himalaya along elevational gradients reveals their high adaptive potential in stressful conditions. PHOTOSYNTHESIS RESEARCH 2024; 159:29-59. [PMID: 38270813 DOI: 10.1007/s11120-023-01071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
Species distributed across a wide elevation range have broad environmental tolerance and adopt specific adaptation strategies to cope with varying climatic conditions. The aim of this study is to understand the patterns of variation in leaf eco-physiological traits that are related to the adaptation of species with a wide distribution in different climatic conditions. We studied the variability in eco-physiological traits of two co-occurring species of Western Himalaya (Rumex nepalensis and Taraxacum officinale), along elevational gradients. We conducted our study in elevations ranging from 1000 to 4000 m a.s.l. in three transects separated in an eco-region spanning 2.5° latitudes and 2.3° longitudes in the Western Himalaya. We hypothesized substantial variation in eco-physiological traits, especially increased net rate of photosynthesis (PN), Rubisco specific activity (RSA), and biochemicals at higher elevations, enabling species to adapt to varying environmental conditions. Therefore, the photosynthetic measurements along with leaf sampling were carried out during the months of June-August and the variations in photosynthetic performance and other leaf traits were assessed. Data was analyzed using a linear mixed effect model with 'species,' 'elevation' as fixed and 'transect' as random factor. Elevation had a significant effect on majority of traits. It was found that PN and maximum carboxylation rate of Rubisco (Vcmax) have unimodal or declining trend along increasing elevations. High RSA was observed at higher elevations in all the three transects. Trends for biochemical traits such as total soluble sugars, total soluble proteins, proline, and total phenolics content suggested an increase in these traits for the survival of plants in harsh environments of higher elevations. Our study reveals that although there is considerable variation in the eco-physiological traits of the two species across elevational gradients of different transects, there are certain similarities in the patterns that depict their high adaptive potential in varying climatic conditions.
Collapse
Affiliation(s)
- Nandita Mehta
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, H.P, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amit Chawla
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, H.P, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Pan L, Yang N, Sui Y, Li Y, Zhao W, Zhang L, Mu L, Tang Z. Altitudinal Variation on Metabolites, Elements, and Antioxidant Activities of Medicinal Plant Asarum. Metabolites 2023; 13:1193. [PMID: 38132875 PMCID: PMC10745449 DOI: 10.3390/metabo13121193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Asarum (Asarum sieboldii Miq. f. seoulense (Nakai) C. Y. Cheng et C. S. Yang) is a medicinal plant that contains asarinin and sesamin, which possess extensive medicinal value. The adaptation and distribution of Asarum's plant growth are significantly affected by altitude. Although most studies on Asarum have concentrated on its pharmacological activities, little is known about its growth and metabolites with respect to altitude. In this study, the physiology, ionomics, and metabolomics were investigated and conducted on the leaves and roots of Asarum along an altitude gradient, and the content of its medicinal components was determined. The results showed that soil pH and temperature both decreased along the altitude, which restricts the growth of Asarum. The accumulation of TOC, Cu, Mg, and other mineral elements enhanced the photosynthetic capacity and leaf plasticity of Asarum in high-altitude areas. A metabolomics analysis revealed that, at high altitude, nitrogen metabolism in leaves was enhanced, while carbon metabolism in roots was enhanced. Furthermore, the metabolic pathways of some phenolic substances, including syringic acid, vanillic acid, and ferulic acid, were altered to enhance the metabolism of organic acids. The study uncovered the growth and metabolic responses of Asarum to varying altitudes, providing a theoretical foundation for the utilization and cultivation of Asarum.
Collapse
Affiliation(s)
- Liben Pan
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China;
| | - Nan Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China;
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China;
| | - Yushu Sui
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China;
| | - Yi Li
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
| | - Wen Zhao
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
| | - Liqiu Zhang
- School of Medicine and Pharmacy, Tonghua Normal University, Tonghua 134002, China;
| | - Liqiang Mu
- School of Forestry, Northeast Forestry University, Harbin 150040, China; (L.P.); (Y.L.); (W.Z.)
| | - Zhonghua Tang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China;
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China;
| |
Collapse
|
13
|
Muzenda T, Shoko R, Chimwanda P, Ndlovu J. Elemental analysis of Fadogia ancylantha leaves used as a nutraceutical in Mashonaland West Province, Zimbabwe. Open Life Sci 2023; 18:20220695. [PMID: 37791061 PMCID: PMC10543704 DOI: 10.1515/biol-2022-0695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 10/05/2023] Open
Abstract
In this study, the concentrations of the essential elements to the human body N, K, Mg, P, Ca, Fe, Mn, and Zn of the fermented and non-fermented Fadogia ancylantha leaf samples were analysed to assess their nutritional value in two different areas in Zimbabwe: Mhangura (Mashonaland West, Province) and Alaska (Mashonaland West Province). Atomic absorption spectroscopy and ultraviolet spectrophotometry techniques were used to measure the concentrations of the minerals. The concentrations of manganese were significantly high (p < 0.05) in non-fermented treatments, with Mhangura samples having 0.447 mg/g and Alaska samples having 0.453 mg/g. Iron was high in fermented samples with Mhangura samples having 0.245 mg/g and Alaska samples having 0.270 mg/g. The concentrations of manganese and iron in Fadogia ancylantha can be used to supplement the recommended daily doses in pregnant, menstruating, and lactating women. The study, therefore, recommends that Fadogia ancylantha be used as a nutraceutical for the supplementation of iron and manganese.
Collapse
Affiliation(s)
- Tom Muzenda
- Department of Biology, School of Natural Sciences and Mathematics, Chinhoyi University of Technology, P. Bag 7724Chinhoyi, Zimbabwe
| | - Ryman Shoko
- Department of Biology, School of Natural Sciences and Mathematics, Chinhoyi University of Technology, P. Bag 7724Chinhoyi, Zimbabwe
| | - Peter Chimwanda
- Department of Mathematics, School of Natural Sciences and Mathematics, Chinhoyi University of Technology, P. Bag 7724, Chinhoyi, Zimbabwe
| | - Joice Ndlovu
- Department of Biology, School of Natural Sciences and Mathematics, Chinhoyi University of Technology, P. Bag 7724Chinhoyi, Zimbabwe
| |
Collapse
|
14
|
Choudhary N, Dhingra N, Gacem A, Yadav VK, Verma RK, Choudhary M, Bhardwaj U, Chundawat RS, Alqahtani MS, Gaur RK, Eltayeb LB, Al Abdulmonem W, Jeon BH. Towards further understanding the applications of endophytes: enriched source of bioactive compounds and bio factories for nanoparticles. FRONTIERS IN PLANT SCIENCE 2023; 14:1193573. [PMID: 37492778 PMCID: PMC10364642 DOI: 10.3389/fpls.2023.1193573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/31/2023] [Indexed: 07/27/2023]
Abstract
The most significant issues that humans face today include a growing population, an altering climate, an growing reliance on pesticides, the appearance of novel infectious agents, and an accumulation of industrial waste. The production of agricultural goods has also been subject to a great number of significant shifts, often known as agricultural revolutions, which have been influenced by the progression of civilization, technology, and general human advancement. Sustainable measures that can be applied in agriculture, the environment, medicine, and industry are needed to lessen the harmful effects of the aforementioned problems. Endophytes, which might be bacterial or fungal, could be a successful solution. They protect plants and promote growth by producing phytohormones and by providing biotic and abiotic stress tolerance. Endophytes produce the diverse type of bioactive compounds such as alkaloids, saponins, flavonoids, tannins, terpenoids, quinones, chinones, phenolic acids etc. and are known for various therapeutic advantages such as anticancer, antitumor, antidiabetic, antifungal, antiviral, antimicrobial, antimalarial, antioxidant activity. Proteases, pectinases, amylases, cellulases, xylanases, laccases, lipases, and other types of enzymes that are vital for many different industries can also be produced by endophytes. Due to the presence of all these bioactive compounds in endophytes, they have preferred sources for the green synthesis of nanoparticles. This review aims to comprehend the contributions and uses of endophytes in agriculture, medicinal, industrial sectors and bio-nanotechnology with their mechanism of action.
Collapse
Affiliation(s)
- Nisha Choudhary
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Naveen Dhingra
- Department of Agriculture, Medi-Caps University, Pigdamber Road, Rau, Indore, Madhya Pradesh, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Virendra Kumar Yadav
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Rakesh Kumar Verma
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Mahima Choudhary
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Uma Bhardwaj
- Department of Biotechnology, Noida International University, Noida, U.P., India
| | - Rajendra Singh Chundawat
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Leicester, United Kingdom
| | - Rajarshi Kumar Gaur
- Department of Biotechnology, Deen Dayal Upadhyaya (D.D.U.) Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin AbdulAziz University- Al-Kharj, Riyadh, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Gulyás Z, Székely A, Kulman K, Kocsy G. Light-Dependent Regulatory Interactions between the Redox System and miRNAs and Their Biochemical and Physiological Effects in Plants. Int J Mol Sci 2023; 24:8323. [PMID: 37176028 PMCID: PMC10179207 DOI: 10.3390/ijms24098323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Light intensity and spectrum play a major role in the regulation of the growth, development, and stress response of plants. Changes in the light conditions affect the formation of reactive oxygen species, the activity of the antioxidants, and, consequently, the redox environment in the plant tissues. Many metabolic processes, thus the biogenesis and function of miRNAs, are redox-responsive. The miRNAs, in turn, can modulate various components of the redox system, and this process is also associated with the alteration in the intensity and spectrum of the light. In this review, we would like to summarise the possible regulatory mechanisms by which the alterations in the light conditions can influence miRNAs in a redox-dependent manner. Daily and seasonal fluctuations in the intensity and spectral composition of the light can affect the expression of miRNAs, which can fine-tune the various physiological and biochemical processes due to their effect on their target genes. The interactions between the redox system and miRNAs may be modulated by light conditions, and the proposed function of this regulatory network and its effect on the various biochemical and physiological processes will be introduced in plants.
Collapse
Affiliation(s)
- Zsolt Gulyás
- Agricultural Institute, Centre for Agricultural Research ELKH, Department of Biological Resources, 2462 Martonvásár, Hungary
| | - András Székely
- Agricultural Institute, Centre for Agricultural Research ELKH, Department of Biological Resources, 2462 Martonvásár, Hungary
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Kitti Kulman
- Agricultural Institute, Centre for Agricultural Research ELKH, Department of Biological Resources, 2462 Martonvásár, Hungary
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research ELKH, Department of Biological Resources, 2462 Martonvásár, Hungary
| |
Collapse
|
16
|
Martínez Chamás J, Isla MI, Zampini IC. Antibacterial and Antibiofilm Activity of Different Species of Fabiana sp. Extract Obtained via Maceration and Ultrasound-Assisted Extraction against Staphylococcus epidermidis. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091830. [PMID: 37176887 PMCID: PMC10180551 DOI: 10.3390/plants12091830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Staphylococcus epidermidis is an opportunistic pathogen that, under certain conditions, can induce aggravated infectious processes, mainly in immunosuppressed patients. Moreover, S. epidermidis is one of the leading causes of medical device- and implant-associated infections and is also recognized as a canonical biofilm producer. Fabiana punensis, F. densa and F. patagonica are three medicinal plants that grow in arid environments in Argentina (Altoandina, Puna, Prepuna and Monte regions). In this work, we studied the antimicrobial activity of alcoholic extracts of these plant species obtained via maceration (M) and ultrasound-assisted extraction (UAE) against S. epidermidis. In addition, the antibiofilm activity of the F. densa extract was also evaluated. It was found that the extracts obtained via M did not present differences with those obtained via UAE regarding the chemical profile. F. densa showed the lowest minimum inhibitory concentration (MIC) value (75 µg GAE/mL). At concentrations higher than the MIC, the extract induced the release of cellular constituents. At the concentration of 1/8× MIC, the extract inhibited biofilm formation by 78%, reducing metabolic activity by 67%. On the other hand, it presented a low percentage of preformed biofilm removal. In all assays, gallic acid (GA) has been used as a reference antimicrobial compound. Finally, it was shown via microscopy visualization that the extract reduces adhesion to hydrophobic and hydrophilic surfaces. Thus, F. densa extracts could potentially be used for the antibiotic treatment of infections produced by S. epidermidis or as an inhibitor agent of production biofilm, avoiding infections caused by medical devices.
Collapse
Affiliation(s)
- José Martínez Chamás
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET-UNT), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469, San Miguel de Tucumán PC:4000, Tucumán, Argentina
| | - María Inés Isla
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET-UNT), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469, San Miguel de Tucumán PC:4000, Tucumán, Argentina
| | - Iris Catiana Zampini
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET-UNT), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469, San Miguel de Tucumán PC:4000, Tucumán, Argentina
| |
Collapse
|
17
|
Sommer S, Salie M, Garcia E, Reyes A, Ebersole SC, Naegele RP, Van Zyl S. A New Method for Fractionation and Characterization of Polyphenols and Tannins from Grapevine Leaf Tissue. PLANTS (BASEL, SWITZERLAND) 2023; 12:1706. [PMID: 37111929 PMCID: PMC10144354 DOI: 10.3390/plants12081706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
Plants accumulate different types of phenolic material in their tissue as a response to biotic as well as abiotic stress. Monomeric polyphenols and smaller oligomers can serve as protection against ultraviolet radiation or prevent oxidative tissue damage, while larger molecules such as tannins can be the plant's reaction to an infection or physical damage. Therefore, characterization, profiling, and quantification of diverse phenolics can provide valuable information about the plant and the stress status at any given time. A method was developed that allows the extraction of polyphenols and tannins from leaf tissue, followed by fractionation and quantification. Extraction was performed with liquid nitrogen and 30% acetate-buffered ethanol. The method was tested with four cultivars under varying extraction conditions (solvent strength and temperature) and showed great improvements of the chromatography that would otherwise be impacted by tannins. The separation of tannins from smaller polyphenols was achieved by bovine serum albumin precipitation and resuspension in a urea-triethanolamine buffer. Tannins were reacted with ferric chloride and analyzed spectrophotometrically. Monomeric non-protein-precipitable polyphenols were then analyzed via HPLC-DAD from the supernatant of the precipitation sample. This way, a more complete spectrum of compounds can be analyzed from the same plant tissue extract. With the fractionation suggested here, hydroxycinnamic acids and flavan-3-ols can be separated and quantified with good accuracy and precision. Possible applications include the assessment of plant stress and response monitoring using the total concentrations of polyphenols and tannins, as well as the ratios between those compound classes.
Collapse
Affiliation(s)
- Stephan Sommer
- Grape and Wine Institute, University of Missouri, 223 Eckles Hall, Columbia, MO 65211, USA
| | - Marnelle Salie
- Viticulture and Enology Research Center, California State University, 2360 E. Barstow Ave, Fresno, CA 93740, USA
| | - Esteban Garcia
- Viticulture and Enology Research Center, California State University, 2360 E. Barstow Ave, Fresno, CA 93740, USA
| | - Anthony Reyes
- Viticulture and Enology Research Center, California State University, 2360 E. Barstow Ave, Fresno, CA 93740, USA
| | - Steven C. Ebersole
- Viticulture and Enology Research Center, California State University, 2360 E. Barstow Ave, Fresno, CA 93740, USA
| | - Rachel P. Naegele
- Sugarbeet and Bean Research Unit (SBRU), USDA ARS, 1066 Bogue St. #384, East Lansing, MI 48824, USA
| | - Sonet Van Zyl
- Viticulture and Enology Research Center, California State University, 2360 E. Barstow Ave, Fresno, CA 93740, USA
| |
Collapse
|
18
|
Paravar A, Maleki Farahani S, Rezazadeh A. Morphological, physiological and biochemical response of L allemantia species to elevated temperature and light duration during seed development. Heliyon 2023; 9:e15149. [PMID: 37123928 PMCID: PMC10133671 DOI: 10.1016/j.heliyon.2023.e15149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Seed weight, storability, and germinability can depend on maternal plant's environment. However, there is slight information about the effect of light and temperature on seed quality of Lallemantia species. The purpose of this research was to determine the properties of physio-biochemical of maternal plant, seed quality, and seed chemical composition of Lallemantia species (Lallemantia iberica and Lallemantia royleana) under temperature (15 °C, 25 °C, and 35 °C) and photoperiod (8 hd-1, 16 hd-1, and 24 hd-1) maternal plants environment. Increasing temperature and photoperiod caused a reduction in leaf chlorophyll, stomatal movement, total soluble sugar, superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) enzymes activities, and an increment in malondialdehyde (MDA) and hydrogen peroxide (H2O2) content of seeds. However, the highest weight, germination, vigor index, and longevity, seed chemical compositions were obtained in offspring which matured under 25 °C for 16 hd-1. The highest germination, oil, and relative percentage of fatty acids (oleic acid (OA), linoleic acid (LA), and linolenic acid (LNA)) were obtained in L. iberica seeds. On the contrary, longevity, mucilage, and sucrose were more abundant in L. royleana seeds. Overall, this research has clearly shown that temperature and light quality and quantity of maternal plant's environment have an immensely effect on producing of seeds with high-quality. However, it is necessary to investigate the impact of the epigenetic mechanisms of the maternal plant on the offspring in future studies.
Collapse
Affiliation(s)
- Arezoo Paravar
- Department of Crop Production and Plant Breeding, College of Agriculture, Shahed University, Tehran, Iran
| | - Saeideh Maleki Farahani
- Department of Crop Production and Plant Breeding, College of Agriculture, Shahed University, Tehran, Iran
- Corresponding author.
| | - Alireza Rezazadeh
- Department of Plant Protection, College of Agriculture, Shahed University, Tehran, Iran
| |
Collapse
|
19
|
Mohammed HA, Emwas AH, Khan RA. Salt-Tolerant Plants, Halophytes, as Renewable Natural Resources for Cancer Prevention and Treatment: Roles of Phenolics and Flavonoids in Immunomodulation and Suppression of Oxidative Stress towards Cancer Management. Int J Mol Sci 2023; 24:ijms24065171. [PMID: 36982245 PMCID: PMC10048981 DOI: 10.3390/ijms24065171] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Halophytes and xerophytes, plants with adequate tolerance to high salinity with strong ability to survive in drought ecosystem, have been recognized for their nutritional and medicinal values owing to their comparatively higher productions of secondary metabolites, primarily the phenolics, and the flavonoids, as compared to the normal vegetation in other climatic regions. Given the consistent increases in desertification around the world, which are associated with increasing salinity, high temperature, and water scarcity, the survival of halophytes due to their secondary metabolic contents has prioritized these plant species, which have now become increasingly important for environmental protection, land reclamation, and food and animal-feed security, with their primary utility in traditional societies as sources of drugs. On the medicinal herbs front, because the fight against cancer is still ongoing, there is an urgent need for development of more efficient, safe, and novel chemotherapeutic agents, than those currently available. The current review describes these plants and their secondary-metabolite-based chemical products as promising candidates for developing newer cancer therapeutics. It further discusses the prophylactic roles of these plants, and their constituents in prevention and management of cancers, through an exploration of their phytochemical and pharmacological properties, with a view on immunomodulation. The important roles of various phenolics and structurally diverse flavonoids as major constituents of the halophytes in suppressing oxidative stress, immunomodulation, and anti-cancer effects are the subject matter of this review and these aspects are outlined in details.
Collapse
Affiliation(s)
- Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
20
|
Lydia N, Basamba TA, Nyakoojo C, Mustafa AS, Saidi N, Mutumba GM, Ssenku JE. Ecological distribution and genetic diversity of Azolla in Uganda. BMC PLANT BIOLOGY 2023; 23:131. [PMID: 36882684 PMCID: PMC9993591 DOI: 10.1186/s12870-023-04146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Azolla is an important aquatic fern whose agronomic potential has not been fully exploited in Uganda. This study aimed at determining the genetic variation in the Azolla species existing in Uganda and the factors influencing their distribution in the different agro-ecological zones of Uganda. Molecular characterization was preferred in this study because of its efficiency in detecting variations among closely related species. RESULTS Four species of Azolla were identified in Uganda with 100, 93.36, 99.22 and 99.39% sequence identities to the reference database sequences of; Azolla mexicana, Azolla microphylla, Azolla filiculoides and Azolla cristata, respectively. These different species were distributed in four out of the ten agro-ecological zones of Uganda which are situated in close vicinity to large water masses. The principal component analysis (PCA) results revealed that maximum rainfall and altitude significantly accounted for the variations in the distribution of Azolla with factor loadings of 0.921 and 0.922, respectively. CONCLUSION Massive destruction coupled with prolonged disturbance of Azolla's habitat negatively affected its growth, survival and distribution in the country. Therefore, there is a need to develop standard methods that can preserve the various species of Azolla, so as to salvage them for future use, research and reference.
Collapse
Affiliation(s)
- Nabyonga Lydia
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, P. O BOX 7062, Kampala, Uganda.
| | - Twaha A Basamba
- Department of Agricultural Production, College of Agriculture and Environmental Studies, Makerere University, P. O BOX 7062, Kampala, Uganda
| | - Clement Nyakoojo
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, P. O BOX 7062, Kampala, Uganda
| | - Abubakar Sadik Mustafa
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, P. O BOX 7062, Kampala, Uganda
| | - Ntambi Saidi
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, P. O BOX 7062, Kampala, Uganda
| | - Gerald M Mutumba
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, P. O BOX 7062, Kampala, Uganda
| | - Jamilu E Ssenku
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, P. O BOX 7062, Kampala, Uganda
| |
Collapse
|
21
|
Asghar MA, Kulman K, Szalai G, Gondor OK, Mednyánszky Z, Simon-Sarkadi L, Gaudinova A, Dobrev PI, Vanková R, Kocsy G. Effect of ascorbate and hydrogen peroxide on hormone and metabolite levels during post-germination growth in wheat. PHYSIOLOGIA PLANTARUM 2023; 175:e13887. [PMID: 36894826 DOI: 10.1111/ppl.13887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The modulation of hormone and metabolite levels by ascorbate (ASA) and hydrogen peroxide (H2 O2 ) was compared during post-germination growth in shoots of wheat. Treatment with ASA resulted in a greater reduction of growth than the addition of H2 O2 . ASA also had a larger effect on the redox state of the shoot tissues as shown by the higher ASA and glutathione (GSH) levels, lower glutathione disulfide (GSSG) content and GSSG/GSH ratio compared to the H2 O2 treatment. Apart from common responses (i.e., increase of cis-zeatin and its O-glucosides), the contents of several compounds related to cytokinin (CK) and abscisic acid (ABA) metabolism were greater after ASA application. These differences in the redox state and hormone metabolism following the two treatments may be responsible for their distinct influence on various metabolic pathways. Namely, the glycolysis and citrate cycle were inhibited by ASA and they were not affected by H2 O2 , while the amino acid metabolism was induced by ASA and repressed by H2 O2 based on the changes in the level of the related carbohydrates, organic and amino acids. The first two pathways produce reducing power, while the last one needs it; therefore ASA, as a reductant may suppress and induce them, respectively. H2 O2 as an oxidant had different effect, namely it did not alter glycolysis and citrate cycle, and inhibited the formation of amino acids.
Collapse
Affiliation(s)
- Muhammad Ahsan Asghar
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| | - Kitti Kulman
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| | - Gabriella Szalai
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| | - Orsolya Kinga Gondor
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| | - Zsuzsa Mednyánszky
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Livia Simon-Sarkadi
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Alena Gaudinova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, 165 02, Czech Republic
| | - Petre I Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, 165 02, Czech Republic
| | - Radomíra Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, 165 02, Czech Republic
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| |
Collapse
|
22
|
Mohammed N, El-Hendawy S, Alsamin B, Mubushar M, Dewir YH. Integrating Application Methods and Concentrations of Salicylic Acid as an Avenue to Enhance Growth, Production, and Water Use Efficiency of Wheat under Full and Deficit Irrigation in Arid Countries. PLANTS (BASEL, SWITZERLAND) 2023; 12:1019. [PMID: 36903881 PMCID: PMC10005395 DOI: 10.3390/plants12051019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
As water deficit in arid countries has already become the norm rather than the exception, water conservation in crop production processes has become very critical. Therefore, it is urgent to develop feasible strategies to achieve this goal. Exogenous application of salicylic acid (SA) has been proposed as one of the effective and economical strategies for mitigating water deficit in plants. However, the recommendations concerning the proper application methods (AMs) and the optimal concentrations (Cons) of SA under field conditions seem contradictory. Here, a two-year field study was conducted to compare the effects of twelve combinations of AMs and Cons on the vegetative growth, physiological parameters, yield, and irrigation water use efficiency (IWUE) of wheat under full (FL) and limited (LM) irrigation regimes. These combinations included seed soaking in purified water (S0), 0.5 mM SA (S1), and 1.0 mM SA (S2); foliar spray of SA at concentrations of 1.0 mM (F1), 2.0 mM (F2), and 3.0 mM (F3); and combinations of S1 and S2 with F1 (S1F1 and S2F1), F2 (S1F2 and S2F2), and F3 (S1F3 and S2F3). The results showed that the LM regime caused a significant reduction in all vegetative growth, physiological, and yield parameters, while it led to an increase in IWUE. The application of SA through seed soaking, foliar application, and a combination of both methods increased all of the studied parameters in all the evaluated times, resulting in higher values for all parameters than the treatment without SA (S0). The multivariate analyses, including principal component analysis and heatmapping, identified the foliar application method with 1-3 mM SA alone or in combination with seed soaking with 0.5 mM SA as the best treatments for the optimal performance of wheat under both irrigation regimes. Overall, our results indicated that exogenous application of SA has the potential to greatly improve growth, yield, and IWUE under limited water application, while optimal coupling combinations of AMs and Cons were required for positive effects in field conditions.
Collapse
Affiliation(s)
- Nabil Mohammed
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Agricultural, Faculty of Agriculture and Veterinary Medicine, Thamar University, Thamar 87246, Yemen
| | - Salah El-Hendawy
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Agronomy, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Bazel Alsamin
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Mubushar
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yaser Hassan Dewir
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| |
Collapse
|
23
|
Khalil M, Abdallah H, Razuka-Ebela D, Calasso M, De Angelis M, Portincasa P. The Impact of Za'atar Antioxidant Compounds on the Gut Microbiota and Gastrointestinal Disorders: Insights for Future Clinical Applications. Antioxidants (Basel) 2023; 12:426. [PMID: 36829984 PMCID: PMC9952350 DOI: 10.3390/antiox12020426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Since the gut microbiota plays a pivotal role in host homeostasis and energy balance, changes in its composition can be associated with disease states through the promotion of immune-mediated inflammatory disorders and increasing intestinal permeability, ultimately leading to the impairment of intestinal barrier function. Za'atar is one of the most popular plant-based foods in the Eastern Mediterranean region. Za'atar is a mixture of different plant leaves, fruits, and seeds and contains hundreds of antioxidant compounds, especially polyphenols, and fiber, with pre-clinical and clinical evidence suggesting health-promoting effects in cardiovascular and metabolic disease. Za'atar compounds have also been studied from a gastrointestinal perspective, concerning both gut microbiota and gastrointestinal diseases. Antioxidants such as Za'atar polyphenols may provide beneficial effects in the complex interplay between the diet, gut microbiota, and intestinal permeability. To our knowledge, no studies have reported the effects of the whole Za'atar mixture, however, based on the pre-clinical studies published on components and single compounds found in Za'atar, we provide a clinical overview of the possible effects on the gastrointestinal tract, focusing mainly on carvacrol, rosmarinic acid, gallic acid, and other polyphenols. We also cover the potential clinical applications of Za'atar mixture as a possible nutraceutical in disorders involving the gastrointestinal tract.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Aldo Moro, 70121 Bari, Italy
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Danute Razuka-Ebela
- Institute of Clinical and Preventive Medicine, University of Latvia, 1586 Riga, Latvia
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Aldo Moro, 70121 Bari, Italy
| |
Collapse
|
24
|
Sharma E, Lal MK, Gulati A. Targeted UHPLC-QTOF-IMS based metabolite profiling for bioactive compounds in Rosa webbiana wallich ex royle: An unexploited native from western himalayas. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:58-66. [PMID: 36603449 DOI: 10.1016/j.plaphy.2022.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
The current study focused on the tissues of wild Rosa webbiana from different altitudes of Indian Western Himalayas for vitamin C content, total phenolics, flavonoids, total sugars, and antioxidant potential. To date, there are very few studies on underutilized tissues viz. fruits, leaves and stem of Rosa webbiana growing in the higher altitudes. The targeted UHPLC-QTOF-IMS illustrated the phenolics fingerprinting of tissue extracts. Twelve bioactive compounds were detected with quercetin, kaempferol, and their derivatives dominantly in stem and leaves. The results have revealed that fruits possessed the highest vitamin C, and sugar contents (960, and 191.6 mg/100 g, respectively). Compared to other tissues, leaves showed the highest total phenolics as well as best results in vitro assays employed to assess antioxidant potential. The antioxidant activity showed a positive correlation with total phenolics. A significant variation in total phenolics, total flavonoids, and antioxidant potential was mainly attributed to oxidative stress on plants due to altitude difference, and secondary metabolite production. Taken together, the underutilized tissues of Rosa webbiana could be exploited as a promising, low-cost resource of phenolic compounds in food, cosmetic, and pharmaceutical industries. Our study will pave the way to developing food products from Rosa webbiana, a natural source for health-conscious people.
Collapse
Affiliation(s)
- Eshita Sharma
- Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry & Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, 171001, India
| | - Ashu Gulati
- Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India.
| |
Collapse
|
25
|
Hussien RAA, Gnedy MMA, Sayed AAS, Bondok A, Alkhalifah DHM, Elkelish A, Tawfik MM. Evaluation of the Fungicidal Effect of Some Commercial Disinfectant and Sterilizer Agents Formulated as Soluble Liquid against Sclerotium rolfsii Infected Tomato Plant. PLANTS (BASEL, SWITZERLAND) 2022; 11:3542. [PMID: 36559653 PMCID: PMC9784547 DOI: 10.3390/plants11243542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Globally, root rot disease of tomato plants caused by Sclerotium rolfsii is a severe disease leading to the death of infected plants. The effect of some commercial antiseptics and disinfectant agents, such as chloroxylenol (10%), phenic (10%) and formulated phenol (7%) on the control of root rot pathogen and its impact on growth and chemical constituents of tomato seedlings cv. Castle Rock were investigated in vitro and in vivo. The antifungal activity was measured in vitro following the poisoned food technique at different concentrations of 1000, 2000, 3000 and 4000 µL/L. Disinfectant agents and atrio (80%) were tested in vivo by soaking 20-day-old tomato seedlings in four concentrations of 125, 250, 500 and 1000 µL/100 mL water for 5 min and thereafter planting in soil infested by S. rolfsii. Fresh and dry weight, shoot and root length, and chemical constituents of tomato seedlings infected by S. rolfsii were investigated at 35 days after planting (DAP). Experimental results indicated that chloroxylenol (10%) was the most effective on fungus in vitro, recorded an effective concentration (EC50 = 1347.74 µL/L) followed by phenic (10%) (EC50 = 1370.52 µL/L) and formulated phenol (7%) (EC50 = 1553.59 µL/L). In vivo, atrio (80%) and disinfectant agents at different concentrations significantly (p ≤ 0.05) reduced disease incidence, increased shoot and root lengths and increased dry and fresh weight. Additionally, it significantly increased chlorophyll a, chlorophyll b, total carotenoids, total carbohydrates, total proteins, and total phenols. The highest reduction of root rot incidence and increase tomato growth parameters, as well as chemical compositions, were recorded on tomato seedlings treated with atrio (80%) as well as formulated phenol (7%) at different concentrations, followed by chloroxylenol (10%) at 125 and 250 µL/100 mL, whereas phenic (10%) was found to be the least effective treatment. Therefore, the application of formulated phenol (7%) could be commercially used to control tomato root rot diseases and increase the quality and quantity of tomato plants since it is promising against the pathogen, safe, and less expensive than fungicides.
Collapse
Affiliation(s)
- Rania A. A. Hussien
- Fungicide, Bactericide and Nematicide Department, Central Agricultural Pesticides Lab (CAPL), Agriculture Research Center (ARC), Giza 11835, Egypt
| | - Mai M. A. Gnedy
- Pesticide Formulation Research Department, Central Agricultural Pesticides Lab (CAPL), Agriculture Research Center (ARC), Giza 11835, Egypt
| | - Ali A. S. Sayed
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Ahmed Bondok
- Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Moataz M. Tawfik
- Botany Department, Faculty of Science, Port Said University, Port Said 42526, Egypt
| |
Collapse
|
26
|
Mudalal S, Kanan D, Anabtawi O, Irshaid A, Sabbah M, Shtaya M, Shraim F, Mauriello G. Application of the Hurdle Technology Concept to the Fresh Za'atar ( Origanum syriacum) Preservation. Foods 2022; 11:foods11193002. [PMID: 36230077 PMCID: PMC9563453 DOI: 10.3390/foods11193002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/03/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
Oregano (Origanum syriacum) is popularly called za’atar in the Middle East region. It is widely used in the Mediterranean diet as an aromatic herb. This study aimed to evaluate the preservation effect of natural additives, vacuum packaging, and refrigeration on the quality traits of fresh oregano. In total, 132 fresh oregano samples were formulated and split into 4 groups (n = 33) labeled group A (100% fresh oregano leaves, Control), group B (fresh oregano 63.2%, 15% fresh onion, 20% oil, 1.8% salt), group C (fresh oregano 61.91%, 15% fresh Allium cepa, 20% oil, 1.8% salt, 1.29% sumac), and group D (fresh oregano 59.2%, 15% fresh Allium cepa, 20% corn oil, 1.8% salt, 4% lactic acid, ultimate pH 4.4). Different quality traits such as color index (L*a*b*), microbiological analysis (total aerobic, anaerobic, and psychrotrophic bacteria and yeasts and molds), and sensory features (taste, flavor, appearance, saltiness, and overall acceptance) were assessed during the storage period (42 days) for all groups. Our study showed that the addition of lactic acid (group D) exhibited a strong preservation effect against aerobic and anaerobic bacteria. In this context, group D had significantly lower aerobic and anaerobic bacterial counts (5.12 vs. 6.7, 6, and 6.7 log (cfu/g); p < 0.05) and (4.75 vs. 6.6, 6.1, 6.77 (cfu/g); p < 0.05) than group A, B, and C; respectively. Group D exhibited significantly (p < 0.05) lower psychrotrophic bacterial count (3.6 log (cfu/g)) during the whole period of storage compared with control. Group B had a lower redness index (a*) (−3.3 vs. −1.8, −1.65, −1.23; p < 0.05) than groups A, C, and D; respectively. In conclusion, our study showed that there is a possibility of improving the preservation of oregano (Origanum syriacum) by using lactic acid and sumac combined with vacuum packaging under refrigeration conditions.
Collapse
Affiliation(s)
- Samer Mudalal
- Department of Nutrition and Food Technology, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus P.O. Box 707, Palestine
- Correspondence:
| | - Doaa Kanan
- Department of Nutrition and Food Technology, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus P.O. Box 707, Palestine
| | - Ola Anabtawi
- Department of Nutrition and Food Technology, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus P.O. Box 707, Palestine
| | - Alma Irshaid
- Department of Nutrition and Food Technology, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus P.O. Box 707, Palestine
| | - Mohammed Sabbah
- Department of Nutrition and Food Technology, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus P.O. Box 707, Palestine
| | - Munqez Shtaya
- Department of Plant Production and Protection, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus P.O. Box 707, Palestine
| | - Faisal Shraim
- Department of Plant Production and Protection, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus P.O. Box 707, Palestine
| | - Gianluigi Mauriello
- Department of Agricultural Science, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
27
|
Factors Affecting the Natural Regeneration of the Larix principis-rupprechtii Mayr Plantations: Evidence from the Composition and Co-Occurrence Network Structure of Soil Bacterial Communities. Processes (Basel) 2022. [DOI: 10.3390/pr10091771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bacterial communities living in the soil can affect forests natural regeneration, but the effects of their composition and network inference on regeneration of Larix principis-rupprechtii Mayr plantations remain largely elusive. Therefore, the redundancy analysis and structure equations modeling of affecting elements for the regeneration of L. principis-rupprechtii plots including the diversity, composition and network structure of soil bacteria, topographic factors, light factors, and soil physicochemical properties have been conducted. It was found that the increased modularity of the soil bacterial community co-occurrence network and the enrichment of metabolic pathway bacteria had a significant positive effect on the successful regeneration (total effect of 0.84). The complexity of the soil bacterial community gradually decreased with the increase of stand regeneration, and the composition and structure of the flora became simpler (with standard path coefficients: −0.70). In addition, altitude also had a positive effect on regeneration with a total effect of 0.39. Soil nutrients had significantly negative effects on regeneration with total effects of −0.87. Soil bacterial communities may mediate the effects of soil nutrients, altitude, litter thickness, and herbaceous diversity on regeneration in L. principis-rupprechtii plantations. The results provide a great contribution to our understanding of regeneration-soil bacterial community interactions and the basis and important data for sustainable management of L. principis-rupprechtii plantations in the Lvliang Mountains located in northern China.
Collapse
|
28
|
EL-Bauome HA, Abdeldaym EA, Abd El-Hady MAM, Darwish DBE, Alsubeie MS, El-Mogy MM, Basahi MA, Al-Qahtani SM, Al-Harbi NA, Alzuaibr FM, Alasmari A, Ismail IA, Dessoky ES, Doklega SMA. Exogenous Proline, Methionine, and Melatonin Stimulate Growth, Quality, and Drought Tolerance in Cauliflower Plants. AGRICULTURE 2022; 12:1301. [DOI: 10.3390/agriculture12091301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The impact of proline, methionine, and melatonin on cauliflower plants under drought stress is still unclear in the available publications. So, this research aims to study these biochemical compounds’ effects on cauliflower plants grown under well-irrigated and drought-stressed conditions. The obtained results showed that under drought-stressed conditions, foliar application of proline, methionine, and melatonin significantly (p ≤ 0.05) enhanced leaf area, leaf chlorophyll content, leaf relative water content (RWC), vitamin C, proline, total soluble sugar, reducing sugar, and non-reducing sugar compared to the untreated plants. These treatments also significantly increased curd height, curd diameter, curd freshness, and dry matter compared to untreated plants. Conversely, the phenolic-related enzymes including polyphenol oxidase (PPO), peroxidase (POD), and phenylalanine ammonia-lyase (PAL) were significantly reduced compared to the untreated plants. A similar trend was observed in glucosinolates, abscisic acid (ABA), malondialdehyde (MDA), and total phenols. Eventually, it can be concluded that the foliar application of proline, methionine, and melatonin can be considered a proper strategy for enhancing the growth performance and productivity of cauliflower grown under drought-stressed conditions.
Collapse
|
29
|
Dussarrat T, Prigent S, Latorre C, Bernillon S, Flandin A, Díaz FP, Cassan C, Van Delft P, Jacob D, Varala K, Joubes J, Gibon Y, Rolin D, Gutiérrez RA, Pétriacq P. Predictive metabolomics of multiple Atacama plant species unveils a core set of generic metabolites for extreme climate resilience. THE NEW PHYTOLOGIST 2022; 234:1614-1628. [PMID: 35288949 PMCID: PMC9324839 DOI: 10.1111/nph.18095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Current crop yield of the best ideotypes is stagnating and threatened by climate change. In this scenario, understanding wild plant adaptations in extreme ecosystems offers an opportunity to learn about new mechanisms for resilience. Previous studies have shown species specificity for metabolites involved in plant adaptation to harsh environments. Here, we combined multispecies ecological metabolomics and machine learning-based generalized linear model predictions to link the metabolome to the plant environment in a set of 24 species belonging to 14 families growing along an altitudinal gradient in the Atacama Desert. Thirty-nine common compounds predicted the plant environment with 79% accuracy, thus establishing the plant metabolome as an excellent integrative predictor of environmental fluctuations. These metabolites were independent of the species and validated both statistically and biologically using an independent dataset from a different sampling year. Thereafter, using multiblock predictive regressions, metabolites were linked to climatic and edaphic stressors such as freezing temperature, water deficit and high solar irradiance. These findings indicate that plants from different evolutionary trajectories use a generic metabolic toolkit to face extreme environments. These core metabolites, also present in agronomic species, provide a unique metabolic goldmine for improving crop performances under abiotic pressure.
Collapse
Affiliation(s)
- Thomas Dussarrat
- Departamento de Genética Molecular y MicrobiologíaPontificia Universidad Católica de ChileFONDAP Center for Genome Regulation and Millenium Institute for Integrative Biology (iBio)Av Libertador Bernardo O'Higgins 340SantiagoChile
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
| | - Sylvain Prigent
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Claudio Latorre
- Departamento de EcologíaPontificia Universidad Católica de ChileAv Libertador Bernardo O'Higgins 340SantiagoChile
- Institute of Ecology and Biodiversity (IEB)Las Palmeras3425ÑuñoaSantiagoChile
| | - Stéphane Bernillon
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Amélie Flandin
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Francisca P. Díaz
- Departamento de Genética Molecular y MicrobiologíaPontificia Universidad Católica de ChileFONDAP Center for Genome Regulation and Millenium Institute for Integrative Biology (iBio)Av Libertador Bernardo O'Higgins 340SantiagoChile
| | - Cédric Cassan
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Pierre Van Delft
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
- Laboratoire de Biogenèse Membranaire, CNRSUniv. Bordeaux, UMR 5200Villenave d'OrnonFrance
| | - Daniel Jacob
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Kranthi Varala
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIN47907USA
- Center for Plant BiologyPurdue UniversityWest LafayetteIN47907USA
| | - Jérôme Joubes
- Laboratoire de Biogenèse Membranaire, CNRSUniv. Bordeaux, UMR 5200Villenave d'OrnonFrance
| | - Yves Gibon
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Dominique Rolin
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Rodrigo A. Gutiérrez
- Departamento de Genética Molecular y MicrobiologíaPontificia Universidad Católica de ChileFONDAP Center for Genome Regulation and Millenium Institute for Integrative Biology (iBio)Av Libertador Bernardo O'Higgins 340SantiagoChile
| | - Pierre Pétriacq
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| |
Collapse
|
30
|
Hasanuzzaman M, Fujita M. Plant Oxidative Stress: Biology, Physiology and Mitigation. PLANTS (BASEL, SWITZERLAND) 2022; 11:1185. [PMID: 35567186 PMCID: PMC9104056 DOI: 10.3390/plants11091185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 05/06/2023]
Abstract
Due to climate change plants are frequently exposed to abiotic and biotic stresses, and these stresses pose serious threats to plant growth and productivity [...].
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho 761-0795, Kita-gun, Kagawa, Japan
| |
Collapse
|
31
|
Anti-Herbivore Resistance Changes in Tomato with Elevation. J Chem Ecol 2022; 48:196-206. [DOI: 10.1007/s10886-021-01341-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
|
32
|
Zhou S, Wen Y, Duan Y, Li Q, Gao Y, Yu X. Functional Properties and Composition of New “Nut” Oil Obtained from
Xanthium sibiricum
Seeds. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sheng Zhou
- College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province 22 Xinong Road Yangling Shaanxi 712100 P. R. China
| | - Yuxiu Wen
- College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province 22 Xinong Road Yangling Shaanxi 712100 P. R. China
| | - Yiting Duan
- College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province 22 Xinong Road Yangling Shaanxi 712100 P. R. China
| | - Qi Li
- College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province 22 Xinong Road Yangling Shaanxi 712100 P. R. China
| | - Yuan Gao
- College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province 22 Xinong Road Yangling Shaanxi 712100 P. R. China
| | - Xiuzhu Yu
- College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling Shaanxi 712100 P. R. China
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province 22 Xinong Road Yangling Shaanxi 712100 P. R. China
| |
Collapse
|
33
|
El-Taher AM, Abd El-Raouf HS, Osman NA, Azoz SN, Omar MA, Elkelish A, Abd El-Hady MAM. Effect of Salt Stress and Foliar Application of Salicylic Acid on Morphological, Biochemical, Anatomical, and Productivity Characteristics of Cowpea ( Vigna unguiculata L.) Plants. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010115. [PMID: 35009118 PMCID: PMC8747403 DOI: 10.3390/plants11010115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 05/09/2023]
Abstract
The present study aimed to investigate the impact of salinity on vegetative growth, chemical constituents, and yields of cowpeas (Vigna unguiculata) and the possible benefits of salicylic acid (SA) on these plants after damage from salinity. To achieve these objectives, two pot experiments were carried out at the Faculty of Agriculture, Al-Azhar University, Egypt, during the two growing seasons of 2019 and 2020. The results revealed that salinity significantly decreased, and SA treatment substantially increased the plant height, number of compound leaves, number of internodes per plant, fresh weights of leaves and stems, productivity, photosynthetic pigments content, and concentrations of nitrogen (N), phosphorus (P), and potassium (K) of the cowpea plants compared with the control. The anatomical structure of stems and leaves of the plants were also investigated, and it was found that positive variations in the anatomical structure of the median portion of the main stems and blades of mature foliage leaves were detected in the stressed and SA-treated plants. In conclusion, SA treatment increased the salt stress tolerance of cowpea plants by improving the morphological and physiological attributes of the plants.
Collapse
Affiliation(s)
- Ahmed M. El-Taher
- Department of Agriculture Botany, Agriculture Faculty, Al-Azhar University, Cairo 11651, Egypt; (A.M.E.-T.); (H.S.A.E.-R.); (M.A.O.)
| | - Hany S. Abd El-Raouf
- Department of Agriculture Botany, Agriculture Faculty, Al-Azhar University, Cairo 11651, Egypt; (A.M.E.-T.); (H.S.A.E.-R.); (M.A.O.)
- Department of Biology, University College, Taif University, Taif 21944, Saudi Arabia
| | - Nahid A. Osman
- Department of Science and Technology, Ranya Collage, Taif University, Taif 21944, Saudi Arabia;
| | - Samah N. Azoz
- Agricultural Botany, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Correspondence:
| | - Magdy A. Omar
- Department of Agriculture Botany, Agriculture Faculty, Al-Azhar University, Cairo 11651, Egypt; (A.M.E.-T.); (H.S.A.E.-R.); (M.A.O.)
| | - Amr Elkelish
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Mahmoud A. M. Abd El-Hady
- Vegetables and Floriculture Department, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt;
| |
Collapse
|
34
|
Emre İ. The biochemical content and antioxidant capacities of endemic Tanacetum densum (Lab.) Schultz Bip. subsp. laxum, and Tanacetum densum (Lab.) Schultz Bip. subsp. amani Heywood growing in Turkey. BRAZ J BIOL 2021; 81:1106-1114. [DOI: 10.1590/1519-6984.239020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
Abstract Medicinal plants have a significant role in preventing and curing several diseases, and Tanacetum L. is one of these plants. The aim of the present study is to determine the fatty acid, lipid-soluble vitamin, sterol, phenolic content, and antioxidant capacity of Tanacetum densum subsp. laxum and Tanacetum densum subsp. amani, to compare the effect of altitude on the biochemical content and to compare systematically by using fatty acids and phenolics. This study showed that palmitic acid (C16:0) and stearic acid (C18:0) are major sources of saturated fatty acid and oleic acid (C18:1 n9), and linoleic acid (18:2 n6c) and a-linolenic acid (C18:3 n3) are the principal unsaturated fatty acids in the two endemic Tanacetum densum taxa. Also, this study found that the unsaturated fatty acid content (60.11±1.61%) of Tanacetum densum subsp. laxum was higher than the unsaturated fatty acid content (44.13±1.28%) of Tanacetum densum subsp. amani. And also, the ω6/ω3 ratio of Tanacetum densum subsp. laxum (1.74) and Tanacetum densum subsp. amani (1.60) was found to be similar. However, this study determined that the lipid soluble vitamin and sterol content of two endemic Tanacetum taxa are low except for stigmasterol. Present study showed that catechin is principal phenolic in the Tanacetum densum taxa. This study also found that Tanacetum densum subsp. laxum and Tanacetum densum subsp. amani had the highest levels of catechin, vanillic acid, and caffeic acid content though the phenolic amounts, particularly catechin and quercetin, were dissimilar in the T. densum taxa. This study suggested that ecological conditions such as altitude may affect the biochemical content of two endemic Tanacetum densum taxa. Furthermore, the current study determined that two endemic Tanacetum L. taxa had potent radical scavenging capacities and found a correlation between total phenolics and antioxidant activity.
Collapse
|
35
|
Exogenous Nitric Oxide Reinforces Photosynthetic Efficiency, Osmolyte, Mineral Uptake, Antioxidant, Expression of Stress-Responsive Genes and Ameliorates the Effects of Salinity Stress in Wheat. PLANTS 2021; 10:plants10081693. [PMID: 34451738 PMCID: PMC8400961 DOI: 10.3390/plants10081693] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022]
Abstract
Salinity stress is one of the major environmental constraints responsible for a reduction in agricultural productivity. This study investigated the effect of exogenously applied nitric oxide (NO) (50 μM and 100 μM) in protecting wheat plants from NaCl-induced oxidative damage by modulating protective mechanisms, including osmolyte accumulation and the antioxidant system. Exogenously sourced NO proved effective in ameliorating the deleterious effects of salinity on the growth parameters studied. NO was beneficial in improving the photosynthetic efficiency, stomatal conductance, and chlorophyll content in normal and NaCl-treated wheat plants. Moreover, NO-treated plants maintained a greater accumulation of proline and soluble sugars, leading to higher relative water content maintenance. Exogenous-sourced NO at both concentrations up-regulated the antioxidant system for averting the NaCl-mediated oxidative damage on membranes. The activity of antioxidant enzymes increased the protection of membrane structural and functional integrity and photosynthetic efficiency. NO application imparted a marked effect on uptake of key mineral elements such as nitrogen (N), potassium (K), and calcium (Ca) with a concomitant reduction in the deleterious ions such as Na+. Greater K and reduced Na uptake in NO-treated plants lead to a considerable decline in the Na/K ratio. Enhancing of salt tolerance by NO was concomitant with an obvious down-regulation in the relative expression of SOS1, NHX1, AQP, and OSM-34, while D2-protein was up-regulated.
Collapse
|
36
|
Caicedo-Lopez LH, Guevara-Gonzalez RG, Andrade JE, Esquivel-Delgado A, Perez-Matzumoto AE, Torres-Pacheco I, Contreras-Medina LM. Effect of hydric stress-related acoustic emission on transcriptional and biochemical changes associated with a water deficit in Capsicum annuum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:251-264. [PMID: 34082331 DOI: 10.1016/j.plaphy.2021.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
At specific vibration frequencies like ones generated by insects such as caterpillar chewing and bee's buzz-pollination turn on the plants secondary metabolism and their respective pathways gets activated. Thus, studies report that vibrations and sound waves applied to plants improves their fitness performance. Commonly, acoustic treatments for plants have used arbitrarily random frequencies. In this work, a group of signals obtained from hydric-stressed plants was recorded as vibrational patterns using a laser vibrometer. These vibration-signals were classified as representative of each condition and then externally applied as Acoustic Emission Patterns (AEP). The present research hypothesized that specific vibration frequencies could "emulate" a plant signal through mechanical energy based on tplant's ability to recognize vibration pattern similarity to a hydric status. This investigation aimed to apply the AEP's as characteristic vibrations classified as Low hydric stress (LHS), medium hydric stress (MHS), and high hydric stress (HHS) to evaluate their effect on healthy-well watered plants at two developmental stages. In the vegetative stage, the gene expression related to antioxidant and hydric stress responses was assessed. The LHS, MHS, and HHS acoustic treatments up-regulated the peroxidase (Pod) (~2.8, 1.9, and 3.6-fold change, respectively). The superoxide dismutase (Mn-sod) and phenylalanine ammonia-lyase (Pal) genes were up-regulated by HHS (~0.23 and ~0.55-fold change, respectively) and, the chalcone synthase (Chs) gene was induced by MHS (~0.63-fold-change). At the fructification stage, the MHS treatment induced a significant increase in Capsaicin content (5.88-fold change), probably through the at3and kas gene activation. Findings are correlated for a better understanding of plant responses to different multi frequency-signals tones from vibrations with potential for agricultural applications.
Collapse
Affiliation(s)
- Laura Helena Caicedo-Lopez
- Biosystems Engineering Group, Faculty of Engineering, Autonomous University of Queretaro-Campus Amazcala, El Marques, Queretaro, Mexico; Group of Basic and Applied Bioengineering, Faculty of Engineering, Autonomous University of Queretaro-Campus Amazcala, El Marqués, Querétaro, Mexico
| | - Ramon Gerardo Guevara-Gonzalez
- Biosystems Engineering Group, Faculty of Engineering, Autonomous University of Queretaro-Campus Amazcala, El Marques, Queretaro, Mexico
| | - Juan E Andrade
- Department of Food Science and Human Nutrition, The University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Adolfo Esquivel-Delgado
- Physical Metrology, National Metrology Center (CENAM) km 4.5 Carretera a Los Cues C.P. 76246, El Marqués, Qro, Mexico
| | | | - Irineo Torres-Pacheco
- Biosystems Engineering Group, Faculty of Engineering, Autonomous University of Queretaro-Campus Amazcala, El Marques, Queretaro, Mexico
| | - Luis Miguel Contreras-Medina
- Group of Basic and Applied Bioengineering, Faculty of Engineering, Autonomous University of Queretaro-Campus Amazcala, El Marqués, Querétaro, Mexico.
| |
Collapse
|
37
|
Beneficial Features of Biochar and Arbuscular Mycorrhiza for Improving Spinach Plant Growth, Root Morphological Traits, Physiological Properties, and Soil Enzymatic Activities. J Fungi (Basel) 2021; 7:jof7070571. [PMID: 34356950 PMCID: PMC8307178 DOI: 10.3390/jof7070571] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 02/04/2023] Open
Abstract
Biochar and arbuscular mycorrhizal fungi (AMF) can promote plant growth, improve soil properties, and maintain microbial activity. The effects of biochar and AMF on plant growth, root morphological traits, physiological properties, and soil enzymatic activities were studied in spinach (Spinacia oleracea L.). A pot experiment was conducted to evaluate the effect of biochar and AMF on the growth of spinach. Four treatments, a T1 control (soil without biochar), T2 biochar alone, T3 AMF alone, and T4 biochar and AMF together, were arranged in a randomized complete block design with five replications. The biochar alone had a positive effect on the growth of spinach, root morphological traits, physiological properties, and soil enzymatic activities. It significantly increased the plant growth parameters, such as the shoot length, leaf number, leaf length, leaf width, shoot fresh weight, and shoot dry weight. The root morphological traits, plant physiological attributes, and soil enzymatic activities were significantly enhanced with the biochar alone compared with the control. However, the combination of biochar and AMF had a greater impact on the increase in plant growth, root morphological traits, physiological properties, and soil enzymatic activities compared with the other treatments. The results suggested that the combined biochar and AMF led to the highest levels of spinach plant growth, microbial biomass, and soil enzymatic activity.
Collapse
|
38
|
Isolation and Characterization of Fungal Endophytes Isolated from Medicinal Plant Ephedra pachyclada as Plant Growth-Promoting. Biomolecules 2021; 11:biom11020140. [PMID: 33499067 PMCID: PMC7911138 DOI: 10.3390/biom11020140] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
Endophytic fungi are widely present in internal plant tissues and provide different benefits to their host. Medicinal plants have unexplored diversity of functional fungal association; therefore, this study aimed to isolate endophytic fungi associated with leaves of medicinal plants Ephedra pachyclada and evaluate their plant growth-promoting properties. Fifteen isolated fungal endophytes belonging to Ascomycota, with three different genera, Penicillium, Alternaria, and Aspergillus, were obtained from healthy leaves of E. pachyclada. These fungal endophytes have varied antimicrobial activity against human pathogenic microbes and produce ammonia and indole acetic acid (IAA), in addition to their enzymatic activity. The results showed that Penicillium commune EP-5 had a maximum IAA productivity of 192.1 ± 4.04 µg mL−1 in the presence of 5 µg mL−1 tryptophan. The fungal isolates of Penicillium crustosum EP-2, Penicillium chrysogenum EP-3, and Aspergillus flavus EP-14 exhibited variable efficiency for solubilizing phosphate salts. Five representative fungal endophytes of Penicillium crustosum EP-2, Penicillium commune EP-5, Penicillium caseifulvum EP-11, Alternaria tenuissima EP-13, and Aspergillus flavus EP-14 and their consortium were selected and applied as bioinoculant to maize plants. The results showed that Penicillium commune EP-5 increased root lengths from 15.8 ± 0.8 to 22.1 ± 0.6. Moreover, the vegetative growth features of inoculated maize plants improved more than the uninoculated ones.
Collapse
|
39
|
Untargeted Metabolomics Analysis Using FTIR and UHPLC-Q-Orbitrap HRMS of Two Curculigo Species and Evaluation of their Antioxidant and α-Glucosidase Inhibitory Activities. Metabolites 2021; 11:metabo11010042. [PMID: 33430143 PMCID: PMC7827591 DOI: 10.3390/metabo11010042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/01/2021] [Accepted: 01/06/2021] [Indexed: 12/01/2022] Open
Abstract
Curculigo orchioides and C. latifolia have been used as traditional medicines such as antidiabetic and anticancer. This study measured the total phenolics and flavonoid contents as well as analyzed the functional groups and chemical compounds using Fourier-transform infrared (FTIR) spectra and UHPLC-Q-Orbitrap-HRMS profiling for the discrimination of plant parts, geographical origin, and compounds that presumably have a significant contribution as antioxidant and α-glucosidase inhibitors on both plants. The total phenolics and flavonoids contents in Curculigo species varied from 142.09 to 452.47 mg gallic acid equivalent (GAE/g) and from 0.82 to 5.44 mg quercetin equivalent (QE/g), respectively. The lowest IC50 for antioxidant and α-glucosidase inhibitory activities is presented by C. latifolia from a higher altitude region. Principal component analysis (PCA) from FTIR and UHPLC-Q-Orbitrap-HRMS data could discriminate the plant parts and geographical origin. Partial least squares (PLS) analysis has identified several functional groups, such as O–H, C–H, C=O, C–C, C–O, and chemical compounds, unknown-185 and unknown-85, that are most likely to contribute to the antioxidant and α-glucosidase inhibitory activities.
Collapse
|
40
|
Phylogenetic relationships and DNA barcoding of nine endangered medicinal plant species endemic to Saint Katherine protectorate. Saudi J Biol Sci 2021; 28:1919-1930. [PMID: 33732078 PMCID: PMC7938155 DOI: 10.1016/j.sjbs.2020.12.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022] Open
Abstract
A high degree of endemism has been recorded for several plant groups collectively in Saint Katherine Protectorate (SKP) in the Sinai Peninsula. Nine endangered endemic plant species in SKP were selected to test the variable abilities of three different DNA barcodes; Riboluse-1,5- Biphosphate Carboxylase/Oxygenase Large subunit (rbcL), Internal Transcribed Spacer (ITS), and the two regions of the plastid gene (ycf1) as well as Start Codon Targeted (SCoT) Polymorphism to find the phylogenetic relationships among them. The three barcodes were generally more capable of finding the genetic relationships among the plant species under study, new barcodes were introduced to the National Centre for Biotechnology Information (NCBI) for the first time through our work. The barcode sequences were efficient in finding the genetic relationships between the nine species. However, SCoT polymorphism could only cluster plant species belonging to the same genus together in one group, but it could not cluster plant species belonging to the same families except for some primers solely. RbcL was the most easily amplified and identified barcode in eight out of the nine species at the species level and the ninth barcode to the genus level. ITS identified all the species to the genus level. Finally, ycf1 identified six out of the eight species, but it could not identify two of the eight species to the genus level.
Collapse
|
41
|
Rezaei MR, Es-haghi A, Yaghmaei P, Ghobeh M. Assessment of Antioxidant and Antimicrobial Activities of Silver Nanoparticles Biosynthesized by Haplophyllum Obtusifolium. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2020. [DOI: 10.34172/ajmb.2020.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Plants comprise great antioxidant sources as a result of their redox and biochemical components, which are rich in secondary metabolites such as phenolic acids, flavonoids, and other constituents. Haplophyllum obtusifolium from polygonaceae is widely used for preventing and managing diabetes. This study investigated the antibacterial and antioxidant activities of silver nanoparticles (AgNPs) biosynthesized by H. obtusifolium. Methods: The aerial parts of H. obtusifolium were gathered from the north of Khorasan Razavi province, Iran and desiccated at the chamber temperature. The shoots were powdered by grinding, 5 g of the powder was mixed with 250 mL of deionized water, and the resultant blend was then filtered. Bactericidal properties and antioxidant activity of the nanoparticles were assessed using disk diffusion and DPPH (2, 2-diphenyl-1-picrylhydrazyl) tests, respectively. Results: The results of this study showed that the biosynthesized nanoparticles exhibited antibacterial activity against a gram-negative (Klebsiella pneumoniae) bacterium, but they had no effects on gram-positive Staphylococcus epidermidis. Antioxidant test results showed that these nanoparticles were capable of eliminating DPPH radicals in a concentration-dependent manner so that a more potent antioxidant activity was seen in higher concentrations of the nanoparticles. Conclusion: Our results suggested that H. obtusifolium can be used as a key source of antioxidants/ antimicrobial agents in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Mohammad Reza Rezaei
- Department of Biology, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran
| | - Ali Es-haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran
| | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran
| |
Collapse
|
42
|
Llauradó Maury G, Méndez Rodríguez D, Hendrix S, Escalona Arranz JC, Fung Boix Y, Pacheco AO, García Díaz J, Morris-Quevedo HJ, Ferrer Dubois A, Aleman EI, Beenaerts N, Méndez-Santos IE, Orberá Ratón T, Cos P, Cuypers A. Antioxidants in Plants: A Valorization Potential Emphasizing the Need for the Conservation of Plant Biodiversity in Cuba. Antioxidants (Basel) 2020; 9:E1048. [PMID: 33121046 PMCID: PMC7693031 DOI: 10.3390/antiox9111048] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
Plants are phytochemical hubs containing antioxidants, essential for normal plant functioning and adaptation to environmental cues and delivering beneficial properties for human health. Therefore, knowledge on the antioxidant potential of different plant species and their nutraceutical and pharmaceutical properties is of utmost importance. Exploring this scientific research field provides fundamental clues on (1) plant stress responses and their adaptive evolution to harsh environmental conditions and (2) (new) natural antioxidants with a functional versatility to prevent and treat human pathologies. These natural antioxidants can be valorized via plant-derived foods and products. Cuba contains an enormously rich plant biodiversity harboring a great antioxidant potential. Besides opening new avenues for the implementation of sustainable agroecological practices in crop production, it will also contribute to new strategies to preserve plant biodiversity and simultaneously improve nature management policies in Cuba. This review provides an overview on the beneficial properties of antioxidants for plant protection and human health and is directed to the valorization of these plant antioxidants, emphasizing the need for biodiversity conservation.
Collapse
Affiliation(s)
- Gabriel Llauradó Maury
- Centre of Studies for Industrial Biotechnology (CEBI), University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (G.L.M.); (H.J.M.-Q.); (T.O.R.)
| | - Daniel Méndez Rodríguez
- Faculty of Applied Sciences, University of Camagüey, Carretera Circunvalación Norte, km 5 ½, Camagüey CP 70100, Cuba; (D.M.R.); (I.E.M.-S.)
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, BE-3590 Diepenbeek, Belgium; (S.H.); (N.B.)
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Sophie Hendrix
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, BE-3590 Diepenbeek, Belgium; (S.H.); (N.B.)
| | - Julio César Escalona Arranz
- Pharmacy Department, University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (J.C.E.A.); (A.O.P.); (J.G.D.)
| | - Yilan Fung Boix
- National Center of Applied Electromagnetism, University of Oriente, Avenida Las Américas s/n, P.O. Box 4078, Santiago de Cuba CP 90400, Cuba; (Y.F.B.); (A.F.D.); (E.I.A.)
| | - Ania Ochoa Pacheco
- Pharmacy Department, University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (J.C.E.A.); (A.O.P.); (J.G.D.)
| | - Jesús García Díaz
- Pharmacy Department, University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (J.C.E.A.); (A.O.P.); (J.G.D.)
| | - Humberto J. Morris-Quevedo
- Centre of Studies for Industrial Biotechnology (CEBI), University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (G.L.M.); (H.J.M.-Q.); (T.O.R.)
| | - Albys Ferrer Dubois
- National Center of Applied Electromagnetism, University of Oriente, Avenida Las Américas s/n, P.O. Box 4078, Santiago de Cuba CP 90400, Cuba; (Y.F.B.); (A.F.D.); (E.I.A.)
| | - Elizabeth Isaac Aleman
- National Center of Applied Electromagnetism, University of Oriente, Avenida Las Américas s/n, P.O. Box 4078, Santiago de Cuba CP 90400, Cuba; (Y.F.B.); (A.F.D.); (E.I.A.)
| | - Natalie Beenaerts
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, BE-3590 Diepenbeek, Belgium; (S.H.); (N.B.)
| | - Isidro E. Méndez-Santos
- Faculty of Applied Sciences, University of Camagüey, Carretera Circunvalación Norte, km 5 ½, Camagüey CP 70100, Cuba; (D.M.R.); (I.E.M.-S.)
| | - Teresa Orberá Ratón
- Centre of Studies for Industrial Biotechnology (CEBI), University of Oriente, Avenida Patricio Lumumba s/n, Reparto Jiménez, Santiago de Cuba CP 90500, Cuba; (G.L.M.); (H.J.M.-Q.); (T.O.R.)
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Ann Cuypers
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, BE-3590 Diepenbeek, Belgium; (S.H.); (N.B.)
| |
Collapse
|
43
|
Ibrahim MFM, Elbar OHA, Farag R, Hikal M, El-Kelish A, El-Yazied AA, Alkahtani J, El-Gawad HGA. Melatonin Counteracts Drought Induced Oxidative Damage and Stimulates Growth, Productivity and Fruit Quality Properties of Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1276. [PMID: 32998250 PMCID: PMC7601691 DOI: 10.3390/plants9101276] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/06/2020] [Accepted: 09/21/2020] [Indexed: 01/19/2023]
Abstract
Melatonin "N-Acetyl-5-methoxytryptamine" (MT) has recently been considered as a new plant growth regulator with multiple physiological functions. Although many previous studies have confirmed that exogenous applied-MT can alleviate the deleterious effects of drought stress in many plant species, most of these studies were exclusive on seeds, seedlings, and young plants for a short period of their life cycles. Therefore, the knowledge of using MT as a potential promising agricultural foliar application to improve crop productivity and quality is still insufficient under adverse open field conditions. In this study, we investigated the effect of MT as a foliar application at 0, 20, and 40 ppm on tomato plants that were grown in the open field under the long term of optimal and deficit irrigation conditions. The results indicated that exogenous MT significantly enhanced plant growth, chlorophyll and activities of antioxidant enzymes, including ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POX). This improvement was associated with a marked reduction in proline and soluble sugars. In addition, applied-MT worked as a protective agent against oxidative damage by reducing the cellular content of toxic substances such as H2O2 and malondialdehyde (MDA). Similarly, MT-treated plants showed greater total fruit yield with improving its quality attributes like total soluble solids (TSS), ascorbic acid, and lycopene. Generally, the highest significant fruit yield either under well-watered (13.7%) or water deficit (37.4%) conditions was achieved by the treatment of 20 ppm MT. These results indicate that exogenous MT played an essential role in enhancing tomato tolerance to deficit irrigation and could be recommended as a promising agricultural treatment under such conditions.
Collapse
Affiliation(s)
- Mohamed F. M. Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, 11566 Cairo, Egypt; (O.H.A.E.); (R.F.)
| | - Ola H. Abd Elbar
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, 11566 Cairo, Egypt; (O.H.A.E.); (R.F.)
| | - Reham Farag
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, 11566 Cairo, Egypt; (O.H.A.E.); (R.F.)
| | - Mohamed Hikal
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, 11566 Cairo, Egypt;
| | - Amr El-Kelish
- Botany Department, Faculty of Science, Suez Canal University Ismailia, 41522 Ismailia, Egypt
| | - Ahmed Abou El-Yazied
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, 11566 Cairo, Egypt;
| | - Jawaher Alkahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hany G. Abd El-Gawad
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, 11566 Cairo, Egypt;
| |
Collapse
|
44
|
Ibrahim MFM, Abd El-Samad G, Ashour H, El-Sawy AM, Hikal M, Elkelish A, El-Gawad HA, El-Yazied AA, Hozzein WN, Farag R. Regulation of Agronomic Traits, Nutrient Uptake, Osmolytes and Antioxidants of Maize as Influenced by Exogenous Potassium Silicate under Deficit Irrigation and Semiarid Conditions. AGRONOMY 2020; 10:1212. [DOI: 10.3390/agronomy10081212] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Understanding the link between the protective role of potassium silicate (K2SiO3) against water shortage and the eventual grain yield of maize plants is still limited under semiarid conditions. Therefore, in this study, we provide insights into the underlying metabolic responses, mineral nutrients uptake and some nonenzymatic and enzymatic antioxidants that may differ in maize plants as influenced by the foliar application of K2SiO3 (0, 1 and 2 mM) under three drip irrigation regimes (100, 75 and 50% of water requirements). Our results indicated that, generally, plants were affected by both moderate and severe deficit irrigation levels. Deficit irrigation decreased shoot dry weight, root dry weight, leaf area index (LAI), relative water content (RWC), N, P, K, Ca, Fe, Zn, carotenoids, grain yield and its parameters, while root/shoot ratio, malondialdehyde (MDA), proline, soluble sugars, ascorbic acid, soluble phenols, peroxidase (POD), catalase (CAT), polyphenol oxidase (PPO), and ascorbate peroxidase (APX) were improved. The foliar applications of K2SiO3 relatively alleviated water stress-induced damage. In this respect, the treatment of 2 mM K2SiO3 was more effective than others and could be recommended to mitigate the effect of deficit irrigation on maize plants. Moreover, correlation analysis revealed a close link between yield and the most studied traits.
Collapse
|