1
|
da Costa WG, Bandeira e Souza M, Azevedo CF, Nascimento M, Morgante CV, Borel JC, de Oliveira EJ. Optimizing drought tolerance in cassava through genomic selection. FRONTIERS IN PLANT SCIENCE 2024; 15:1483340. [PMID: 39737377 PMCID: PMC11683140 DOI: 10.3389/fpls.2024.1483340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025]
Abstract
The complexity of selecting for drought tolerance in cassava, influenced by multiple factors, demands innovative approaches to plant selection. This study aimed to identify cassava clones with tolerance to water stress by employing truncated selection and selection based on genomic values for population improvement and genotype evaluation per se. The Best Linear Unbiased Predictions (BLUPs), Genomic Estimated Breeding Values (GEBVs), and Genomic Estimated Genotypic Values (GETGVs) were obtained based on different prediction models via genomic selection. The selection intensity ranged from 10 to 30%. A wide range of BLUPs for agronomic traits indicate desirable genetic variability for initiating genomic selection cycles to improve cassava's drought tolerance. SNP-based heritability (h 2) and broad-sense heritabilities (H 2) under water deficit were low magnitude (<0.40) for 8 to 12 agronomic traits evaluated. Genomic predictive abilities were below the levels of phenotypic heritability, varying by trait and prediction model, with the lowest and highest predictive abilities observed for starch content (0.15 - 0.22) and root length (0.34 - 0.36). Some agronomic traits of greater importance, such as fresh root yield (0.29 - 0.31) and shoot yield (0.31 - 0.32), showed good predictive ability, while dry matter content had lower predictive ability (0.16 - 0.22). The G-BLUP and RKHS methods presented higher predictive abilities, suggesting that incorporating kinship effects can be beneficial, especially in challenging environments. The selection differential based on a 15% selection intensity (62 genotypes) was higher for economically significant traits, such as starch content, shoot yield, and fresh root yield, both for population improvement (GEBVs) and for evaluating genotype's performance per (GETGVs). The lower costs of genotyping offer advantages over conventional phenotyping, making genomic selection a promising approach to increasing genetic gains for drought tolerance in cassava and reducing the breeding cycle to at least half the conventional time.
Collapse
Affiliation(s)
- Weverton Gomes da Costa
- Laboratório de Inteligência Computacional e Aprendizado Estatístico - LICAE, Departamento de Estatística, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Camila Ferreira Azevedo
- Laboratório de Inteligência Computacional e Aprendizado Estatístico - LICAE, Departamento de Estatística, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Moyses Nascimento
- Laboratório de Inteligência Computacional e Aprendizado Estatístico - LICAE, Departamento de Estatística, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
2
|
Zaman QU, Rehman M, Feng Y, Liu Z, Murtaza G, Sultan K, Ashraf K, Elshikh MS, Al Farraj DA, Rizwan M, Iqbal R, Deng G. Combined application of biochar and peatmoss for mitigation of drought stress in tobacco. BMC PLANT BIOLOGY 2024; 24:862. [PMID: 39271987 PMCID: PMC11401334 DOI: 10.1186/s12870-024-05576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Drought poses a significant ecological threat that limits the production of crops worldwide. The objective of this study to examine the impact of soil applied biochar (BC) and peatmoss (PM) on the morpho-biochemical and quality traits of tobacco plants under drought conditions. In the present experiment work, a pot trial was conducted with two levels of drought severity (~ well-watered 75 ± 5% field capacity) and severe drought stress (~ 35 ± 5% field capacity), two levels of peatmoss (PM) @ 5% [PM+ (with peatmoss) and PM- (without peatmoss)] and three levels of rice straw biochar (BC0 = no biochar; BC1 = 150 mg kg- 1; and BC2 = 300 mg kg- 1 of soil) in tobacco plants. The results indicate that drought conditions significantly impacted the performance of tobacco plants. However, the combined approach of BC and PM significantly improved the growth, biomass, and total chlorophyll content (27.94%) and carotenoids (32.00%) of tobacco. This study further revealed that the drought conditions decreased the production of lipid peroxidation and proline accumulation. But the synergistic approach of BC and PM application increased soluble sugars (17.63 and 12.20%), soluble protein (31.16 and 15.88%), decreased the proline accumulation (13.92 and 9.03%), and MDA content (16.40 and 8.62%) under control and drought stressed conditions, respectively. Furthermore, the combined approach of BC and PM also improved the leaf potassium content (19.02%) by limiting the chloride ions (33.33%) under drought stressed conditions. Altogether, the balanced application of PM and BC has significant potential as an effective approach and sustainable method to increase the tolerance of tobacco plants subjected to drought conditions. This research uniquely highlights the combined potential of PM and BC as an eco-friendly strategy to enhance plant resilience under drought conditions, offering new insights into sustainable agricultural practices.
Collapse
Affiliation(s)
- Qamar Uz Zaman
- School of Agriculture, Yunnan University, Kunming, Yunnan, 650504, China
- Department of Environmental Sciences, The University of Lahore, Lahore, 54590, Pakistan
| | - Muzammal Rehman
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric- Products Safety, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Youhong Feng
- School of Agriculture, Yunnan University, Kunming, Yunnan, 650504, China
| | - Zhiyuan Liu
- School of Agriculture, Yunnan University, Kunming, Yunnan, 650504, China
| | - Ghulam Murtaza
- School of Agriculture, Yunnan University, Kunming, Yunnan, 650504, China.
| | - Khawar Sultan
- Department of Environmental Sciences, The University of Lahore, Lahore, 54590, Pakistan
| | - Kamran Ashraf
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Rizwan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan.
| | - Gang Deng
- School of Agriculture, Yunnan University, Kunming, Yunnan, 650504, China.
| |
Collapse
|
3
|
Yadav V, Pal D, Poonia AK. A Study on Genetically Engineered Foods: Need, Benefits, Risk, and Current Knowledge. Cell Biochem Biophys 2024; 82:1931-1946. [PMID: 39020085 DOI: 10.1007/s12013-024-01390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
Food requirements have always been a top priority, and with the exponential growth of the human population, there is an increasing need for large quantities of food. Traditional cultivation methods are not able to meet the current demand for food products. One significant challenge is the shortened shelf-life of naturally occurring food items, which directly contributes to food scarcity. Contaminating substances such as weeds and pests play a crucial role in this issue. In response, researchers have introduced genetically engineered (GE) food as a potential solution. These food products are typically created by adding or replacing genes in the DNA of naturally occurring foods. GE foods offer various advantages, including increased quality and quantity of food production, adaptability to various climatic conditions, modification of vitamin and mineral levels, and prolonged shelf life. They address the major concerns of global food scarcity and food security. However, the techniques used in the production of GE foods may not be universally acceptable due to the genetic alteration of animal genes into plants or vice versa. Additionally, their unique nature necessitates further long-term studies. This study delves into the procedures and growth stages of DNA sequencing, covering the benefits, risks, industrial relevance, current knowledge, and future challenges of GE foods. GE foods have the potential to extend the shelf life of food items, alleviate food shortages, and fulfill the current nutritional food demand.
Collapse
Affiliation(s)
- Venkteshwar Yadav
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India
| | - Dharm Pal
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India.
| | - Anil Kumar Poonia
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India
| |
Collapse
|
4
|
Haider S, Bibi K, Munyaneza V, Zhang H, Zhang W, Ali A, Ahmad IA, Mehran M, Xu F, Yang C, Yang J, Ding G. Drought-induced adaptive and ameliorative strategies in plants. CHEMOSPHERE 2024; 364:143134. [PMID: 39168385 DOI: 10.1016/j.chemosphere.2024.143134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/01/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Sharjeel Haider
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Khadija Bibi
- Department of Botany, Faculty of Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Venuste Munyaneza
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Hao Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Wen Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ayaz Ali
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Iftikhar Ali Ahmad
- Key Laboratory of Soil Health Diagnostic and Green Remediation, Ministry of Ecology and Environment, College of Resource and Environment, Huazhong Agricultural University, China
| | - Muhammad Mehran
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Fangsen Xu
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Chunlei Yang
- Hubei Academy of Tobacco Science, Wuhan, 430030, China.
| | - Jinpeng Yang
- Hubei Academy of Tobacco Science, Wuhan, 430030, China
| | - Guangda Ding
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
5
|
Winstead DJ, Jacobson MG. Storable, neglected, and underutilized species of Southern Africa for greater agricultural resilience. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e70004. [PMID: 39183979 PMCID: PMC11343724 DOI: 10.1002/pei3.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
The Southern African region suffers from drought and food system uncertainty with increased risks due to climate change, natural disasters, and global catastrophes. Increasing crop diversity with more appropriate and resilient crops is an effective way of increasing food system resilience. We focus on crop species that are native or naturalized to an area because of their increased resilience than those that are not naturally occurring. Additionally, crops that are easily stored are more useful in times of drought and disaster. In this systematic review, we use scientific interest in neglected and underutilized species (NUS) from Southern Africa to help define next steps toward their cultivation and development as a marketable crop. We found that although scientific interest is minimal for storable Southern African NUS, these crops are worth scaling up due to their economic and nutritional value. We outline next actionable steps and specific NUS for production in a more agrobiodiverse and resilient agriculture system.
Collapse
Affiliation(s)
- Daniel J. Winstead
- Department of Ecosystem Science and ManagementThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Michael G. Jacobson
- Department of Ecosystem Science and ManagementThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
6
|
Ashraf F, Siddiqi EH. Mitigation of drought-induced stress in sunflower (Helianthus annuus L.) via foliar application of Jasmonic acid through the augmentation of growth, physiological, and biochemical attributes. BMC PLANT BIOLOGY 2024; 24:592. [PMID: 38907232 PMCID: PMC11193306 DOI: 10.1186/s12870-024-05273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
Drought stress poses a significant threat to agricultural productivity, especially in areas susceptible to water scarcity. Sunflower (Helianthus annuus L.) is a widely cultivated oilseed crop with considerable potential globally. Jasmonic acid, a plant growth regulator, plays a crucial role in alleviating the adverse impacts of drought stress on the morphological, biochemical, and physiological characteristics of crops. Experimental detail includes sunflower varieties (Armani Gold, KQS-HSF-1, Parsun, and ESFH-3391), four drought stress levels (0, 25%, 50%, and 75% drought stress), and three levels (0, 40ppm, 80ppm) of jasmonic acid. The 0% drought stress and 0ppm jasmonic acid were considered as control treatments. The experimental design was a completely randomized design with three replicates. Drought stress significantly reduced the growth in all varieties. However, the exogenous application of jasmonic acid at concentrations of 40ppm and 80ppm enhanced growth parameters, shoot and root length (1.93%, 19%), shoot and root fresh weight (18.5%, 25%), chlorophyll content (36%), photosynthetic rate (22%), transpiration rate (40%), WUE (20%), MDA (6.5%), Phenolics (19%), hydrogen peroxide (7%) proline (28%) and glycine betaine (15-30%) under water-stressed conditions, which was closely linked to the increase in stomatal activity stimulated by jasmonic acid. Furthermore, JA 80 ppm was found to be the most appropriate dose to reduce the effect of water stress in all sunflower varieties. It was concluded that the foliar application of JA has the potential to enhance drought tolerance by improving the morphological, biochemical, and physiological of sunflower.
Collapse
Affiliation(s)
- Farkhanda Ashraf
- Department of Botany, University of Gujrat, Gujrat, 50700, Pakistan
| | | |
Collapse
|
7
|
Şimşek Ö, Isak MA, Dönmez D, Dalda Şekerci A, İzgü T, Kaçar YA. Advanced Biotechnological Interventions in Mitigating Drought Stress in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:717. [PMID: 38475564 DOI: 10.3390/plants13050717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
This comprehensive article critically analyzes the advanced biotechnological strategies to mitigate plant drought stress. It encompasses an in-depth exploration of the latest developments in plant genomics, proteomics, and metabolomics, shedding light on the complex molecular mechanisms that plants employ to combat drought stress. The study also emphasizes the significant advancements in genetic engineering techniques, particularly CRISPR-Cas9 genome editing, which have revolutionized the creation of drought-resistant crop varieties. Furthermore, the article explores microbial biotechnology's pivotal role, such as plant growth-promoting rhizobacteria (PGPR) and mycorrhizae, in enhancing plant resilience against drought conditions. The integration of these cutting-edge biotechnological interventions with traditional breeding methods is presented as a holistic approach for fortifying crops against drought stress. This integration addresses immediate agricultural needs and contributes significantly to sustainable agriculture, ensuring food security in the face of escalating climate change challenges.
Collapse
Affiliation(s)
- Özhan Şimşek
- Horticulture Department, Agriculture Faculty, Erciyes University, Kayseri 38030, Türkiye
| | - Musab A Isak
- Agricultural Sciences and Technology Department, Graduate School of Natural and Applied Sciences, Erciyes University, Kayseri 38030, Türkiye
| | - Dicle Dönmez
- Biotechnology Research and Application Center, Çukurova University, Adana 01330, Türkiye
| | - Akife Dalda Şekerci
- Horticulture Department, Agriculture Faculty, Erciyes University, Kayseri 38030, Türkiye
| | - Tolga İzgü
- National Research Council of Italy (CNR), Institute of BioEconomy, 50019 Florence, Italy
| | - Yıldız Aka Kaçar
- Horticulture Department, Agriculture Faculty, Çukurova University, Adana 01330, Türkiye
| |
Collapse
|
8
|
Benitez-Alfonso Y, Soanes BK, Zimba S, Sinanaj B, German L, Sharma V, Bohra A, Kolesnikova A, Dunn JA, Martin AC, Khashi U Rahman M, Saati-Santamaría Z, García-Fraile P, Ferreira EA, Frazão LA, Cowling WA, Siddique KHM, Pandey MK, Farooq M, Varshney RK, Chapman MA, Boesch C, Daszkowska-Golec A, Foyer CH. Enhancing climate change resilience in agricultural crops. Curr Biol 2023; 33:R1246-R1261. [PMID: 38052178 DOI: 10.1016/j.cub.2023.10.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Climate change threatens global food and nutritional security through negative effects on crop growth and agricultural productivity. Many countries have adopted ambitious climate change mitigation and adaptation targets that will exacerbate the problem, as they require significant changes in current agri-food systems. In this review, we provide a roadmap for improved crop production that encompasses the effective transfer of current knowledge into plant breeding and crop management strategies that will underpin sustainable agriculture intensification and climate resilience. We identify the main problem areas and highlight outstanding questions and potential solutions that can be applied to mitigate the impacts of climate change on crop growth and productivity. Although translation of scientific advances into crop production lags far behind current scientific knowledge and technology, we consider that a holistic approach, combining disciplines in collaborative efforts, can drive better connections between research, policy, and the needs of society.
Collapse
Affiliation(s)
| | - Beth K Soanes
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sibongile Zimba
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK; Horticulture Department, Lilongwe University of Agriculture and Natural Resources, P.O. Box 219, Lilongwe, Malawi
| | - Besiana Sinanaj
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Liam German
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Anastasia Kolesnikova
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton SO17 1BJ, UK
| | - Jessica A Dunn
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; Institute for Sustainable Food, University of Sheffield, Sheffield S10 2TN, UK
| | - Azahara C Martin
- Institute for Sustainable Agriculture (IAS-CSIC), Córdoba 14004, Spain
| | - Muhammad Khashi U Rahman
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca 37007, Spain; Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor de la Armuña 37185, Spain
| | - Zaki Saati-Santamaría
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca 37007, Spain; Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor de la Armuña 37185, Spain; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Prague, Czech Republic
| | - Paula García-Fraile
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca 37007, Spain; Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor de la Armuña 37185, Spain
| | - Evander A Ferreira
- Institute of Agrarian Sciences, Federal University of Minas Gerais, Avenida Universitária 1000, 39404547, Montes Claros, Minas Gerais, Brazil
| | - Leidivan A Frazão
- Institute of Agrarian Sciences, Federal University of Minas Gerais, Avenida Universitária 1000, 39404547, Montes Claros, Minas Gerais, Brazil
| | - Wallace A Cowling
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Muhammad Farooq
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia; Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton SO17 1BJ, UK
| | - Christine Boesch
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
9
|
Matías J, Rodríguez MJ, Cruz V, Calvo P, Granado-Rodríguez S, Poza-Viejo L, Fernández-García N, Olmos E, Reguera M. Assessment of the changes in seed yield and nutritional quality of quinoa grown under rainfed Mediterranean environments. FRONTIERS IN PLANT SCIENCE 2023; 14:1268014. [PMID: 38023922 PMCID: PMC10662129 DOI: 10.3389/fpls.2023.1268014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
Climate change is considered a serious threat to agriculture and food security. It is linked to rising temperatures and water shortages, conditions that are expected to worsen in the coming decades. Consequently, the introduction of more drought-tolerant crops is required. Quinoa (Chenopodium quinoa Willd.) has received great attention worldwide due to the nutritional properties of its seeds and its tolerance to abiotic stress. In this work, the agronomic performance and seed nutritional quality of three quinoa varieties were studied during two consecutive years (2019-2020) under three water environmental conditions of Southwestern Europe (irrigated conditions, fresh rainfed, and hard rainfed) with the goal of determining the impact of rainfed conditions on this crop performance. High precipitations were recorded during the 2020 growing season resulting in similar grain yield under irrigation and fresh rainfed conditions. However, in 2019, significant yield differences with penalties under water-limiting conditions were found among the evaluated environmental conditions. Furthermore, nutritional and metabolomic differences were observed among seeds harvested from different water environments including the progressive accumulation of glycine betaine accompanied by an increase in saponin and a decrease in iron with water limitation. Generally, water-limiting environments were associated with increased protein contents and decreased yields preserving a high nutritional quality despite particular changes. Overall, this work contributes to gaining further knowledge about how water availability affects quinoa field performance, as it might impact both seed yield and quality. It also can help reevaluate rainfed agriculture, as water deficit can positively impact the nutritional quality of seeds.
Collapse
Affiliation(s)
- Javier Matías
- Agrarian Research Institute “La Orden-Valdesequera” of Extremadura (CICYTEX), Badajoz, Spain
| | - María José Rodríguez
- Technological Institute of Food and Agriculture of Extremadura (CICYTEX), Badajoz, Spain
| | - Verónica Cruz
- Agrarian Research Institute “La Orden-Valdesequera” of Extremadura (CICYTEX), Badajoz, Spain
| | - Patricia Calvo
- Technological Institute of Food and Agriculture of Extremadura (CICYTEX), Badajoz, Spain
| | | | - Laura Poza-Viejo
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nieves Fernández-García
- Department of Abiotic Stress and Plant Pathology, CEBAS-Consejo Superior de Investigaciones Científicas, Murcia, Spain
| | - Enrique Olmos
- Department of Abiotic Stress and Plant Pathology, CEBAS-Consejo Superior de Investigaciones Científicas, Murcia, Spain
| | - María Reguera
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Ren J, Feng L, Guo L, Gou H, Lu S, Mao J. Genome-wide identification and expression analysis of the BURP domain-containing genes in Malus domestica. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1717-1731. [PMID: 38162916 PMCID: PMC10754798 DOI: 10.1007/s12298-023-01393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024]
Abstract
The conserved BURP-containing proteins are specific to plants and play a crucial role in plant growth, development, and response to abiotic stresses. However, less is known about the systematic characterization of BURP-containing proteins in apple. This study aimed to identify and analyze all BURP-containing genes in the apple genome, as well as to examine their expression patterns through various bioinformatics methods. Eighteen members of BURP-containing genes were identified in apple, six members lacked signal peptides, and the secondary structure was mainly a Random coil of BURP-containing genes. Gene structure and Motif analysis showed that proteins have similar structures and are conserved at the C-terminal. Cis-acting element analysis revealed that the proteins contain phytohormone and stress response elements, and chromosomal localization revealed that the family is unevenly distributed across eight chromosomes, with duplication of fragments leading to the expansion of family proteins. Tissue expression showed that MdPG3 and MdPG4 were expressed in different tissues and different varieties, MdRD2 and MdRD7 were highly expressed in 'M74' fruits and MdRD7 in 'M49' leaves, while MdUSP1 was highly expressed in 'GD' roots. The quantitative real-time PCR analysis showed that the expressions of six and seven genes were significantly up-regulated under NaCl and PEG treatments, respectively, whereas MdRD7 was significantly up-regulated under NaCl and PEG treatment over time. This study offers a comprehensive identification and expression analysis of BURP-containing proteins in apple. The findings provide a theoretical foundation for further exploration of the functions of this protein family. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01393-7.
Collapse
Affiliation(s)
- Jiaxuan Ren
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Li Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Lili Guo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| |
Collapse
|
11
|
Oksana S, Marek K, Marian B, Marek Z. Cultivar-dependent and drought-induced modulation of secondary metabolites, adaptative defense in Fagopyrum esculentum L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1605-1618. [PMID: 38076767 PMCID: PMC10709279 DOI: 10.1007/s12298-023-01376-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/08/2023] [Accepted: 10/16/2023] [Indexed: 03/04/2025]
Abstract
The present study investigates the biochemical responses of buckwheat to drought stress, particularly focusing on phenolic acids and flavonoids, abundant in this crop. We hypothesize that distinct genotypic responses to drought stress will lead to variations in phenolic acid accumulation. Two common buckwheat cultivars, Panda (East European origin) and PI 482597 (originating from Zimbabwe), were subjected to drought treatment, with biochemical traits, relative water content, and photosynthetic pigments regularly assessed. While chlorophyll content remained unaffected by dehydration, total carotenoid content decreased. The unique increase in the chlorophyll to carotenoid ratio suggests a specific role of carotenoids in buckwheat's metabolic stress response. While most phenolic acids and flavonoids exhibited increasing trends during progressive dehydration, their dynamics differed. Notably, rutin content increased early in drought stress, while chlorogenic acid and kaempferol showed enhanced levels only under severe dehydration. Genotypic differences were observed in chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, 4-hydroxybenzoic acid, and quercetin. Conversely, trans-p-coumaric acid, trans-ferulic acid, vanillic acid, rutin, and kaempferol showed similar trends in both cultivars. By aligning observed drought-induced changes in phenolic compound contents with biosynthesis pathways, trade-offs between individual compounds were identified, contributing to the mechanistic understanding of varied stress responses.
Collapse
Affiliation(s)
- Sytar Oksana
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 94976 Slovakia
| | - Kovar Marek
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 94976 Slovakia
| | - Brestic Marian
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 94976 Slovakia
| | - Zivcak Marek
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 94976 Slovakia
| |
Collapse
|
12
|
Saadaoui W, Tarchoun N, Msetra I, Pavli O, Falleh H, Ayed C, Amami R, Ksouri R, Petropoulos SA. Effects of drought stress induced by D-Mannitol on the germination and early seedling growth traits, physiological parameters and phytochemicals content of Tunisian squash ( Cucurbita maximaDuch.) landraces. FRONTIERS IN PLANT SCIENCE 2023; 14:1215394. [PMID: 37600166 PMCID: PMC10432687 DOI: 10.3389/fpls.2023.1215394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023]
Abstract
Introduction Drought stress is one of the most devastating environmental stressors, especially in the arid and semi-arid regions of the world. Considering the major constraints that drought stress poses to crop production and the consequent yield losses in food crops, breeding for climate-resilient crops is an efficient means to mitigate stress conditions. Materials and methods This study aimed at evaluating the response of four squash (Cucurbita maxima Duchesne) landraces to drought stress at germination and at plant stage. Drought stress was induced by different concentrations of D-mannitol (-0.24, -0.47 and -0.73 MPa). The tested parameters at germination stage included germination percentage, seedling vigor index, seed water absorbance and seedling growth potential. At the plant stage, leaf chlorophyll and carotenoids content, chlorophyll fluorescence, evapotranspiration, photosynthesis activity and several biomarkers, namely malondialdehyde, proline, total phenols content, total flavonoids content and DPPH radical scavenging activity were evaluated in both roots and leaves. Results and discussion Our results indicate a magnitude of drought stress effects reflected via repression of germination and seedling growth as well as adjustments in physiological functions at later growth stages, in a genotype depended manner. Among landraces, "751" and "746" showed better performance, as evidenced by higher seed germination and seedling growth potential even at high stress levels (-0.47 and - 0.73 MPa), whereas "747" was the most sensitive landrace to drought stress at both tested stages. In conclusion, our findings highlight the importance of squash landraces selection for the identification of elite genotypes with increased tolerance to drought stress.
Collapse
Affiliation(s)
- Wassim Saadaoui
- Research Laboratory LR21AGR05, High Agronomic Institute of ChottMariem, University of Sousse, Sousse, Tunisia
| | - Neji Tarchoun
- Research Laboratory LR21AGR05, High Agronomic Institute of ChottMariem, University of Sousse, Sousse, Tunisia
| | - Insaf Msetra
- Research Laboratory LR21AGR05, High Agronomic Institute of ChottMariem, University of Sousse, Sousse, Tunisia
| | - Ourania Pavli
- Laboratory of Genetics and Plant Breeding, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Hanen Falleh
- Laboratory of Aromatic and Medicinal Plant, Centre of Biotechnology of Borj Cedria, Tunis, Tunisia
| | - Chadha Ayed
- Research Laboratory LR21AGR05, High Agronomic Institute of ChottMariem, University of Sousse, Sousse, Tunisia
| | - Roua Amami
- Research Laboratory LR21AGR05, High Agronomic Institute of ChottMariem, University of Sousse, Sousse, Tunisia
| | - Riadh Ksouri
- Laboratory of Aromatic and Medicinal Plant, Centre of Biotechnology of Borj Cedria, Tunis, Tunisia
| | - Spyridon A. Petropoulos
- Laboratory of Vegetable Production, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| |
Collapse
|
13
|
Kalamartzis I, Papakaloudis P, Dordas C. Basil ( Ocimum basilicum) Landraces Can Be Used in a Water-Limited Environment. PLANTS (BASEL, SWITZERLAND) 2023; 12:2425. [PMID: 37446986 DOI: 10.3390/plants12132425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
Basil (Ocimum basilicum L.) is a member of the Labiatae family and is one of the most widely consumed aromatic and medicinal plants in many countries due to its numerous properties and uses. The objective of the study was to determine whether landraces are better adapted to water-limited environments compared to commercial cultivars. Irrigation levels and genotypes affected plant height and leaf area index, with 25% and 33% higher values observed under complete irrigation, respectively. Additionally, limited water availability resulted in a 20% reduction in dry matter yield and a 21% reduction in essential oil yield over the three years in all of the genotypes tested, specifically in the lower irrigation treatment (d40), compared to the control treatment (d100). The landraces that performed the best under limited water supply were Athos white spike (AWS) and Gigas white spike (GWS), indicating their suitability for environments with limited water resources. The results demonstrate that there are landraces that can be utilized in dryland climates with appropriate water management, enabling water conservation and utilization of fields in water-scarce areas for irrigation purposes.
Collapse
Affiliation(s)
- Iakovos Kalamartzis
- Laboratory of Agronomy, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Papakaloudis
- Laboratory of Agronomy, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christos Dordas
- Laboratory of Agronomy, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
14
|
Ren J, Zhang P, Dai Y, Liu X, Lu S, Guo L, Gou H, Mao J. Evolution of the 14-3-3 gene family in monocotyledons and dicotyledons and validation of MdGRF13 function in transgenic Arabidopsis thaliana. PLANT CELL REPORTS 2023:10.1007/s00299-023-03035-4. [PMID: 37253815 DOI: 10.1007/s00299-023-03035-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2023]
Abstract
KEY MESSAGE The 14-3-3 family is more highly conserved among monocotyledons, and overexpression of MdGRF13 improved drought and salt tolerance in transgenic Arabidopsis thaliana. The 14-3-3 are highly conserved regulatory proteins found in eukaryotes and play an essential role in plant growth, development and stress response. However, the 14-3-3 gene family evolution in monocotyledons and dicotyledons and the biological functions of the MdGRF13 under abiotic stress remain unknown. In our study, 195 members of the 14-3-3 family were identified from 12 species and divided into ε group and the Non-ε group. Synteny analysis within the 14-3-3 family indicated that segmental duplication events contributed to the expansion of the family. Selective pressure analysis indicated that purifying selection was a vital force in the 14-3-3 genes evolution, and monocotyledons had a lower million years ago (Mya) mean values than dicotyledons. Meanwhile, the codon adaptation index (CAI) and frequency of optical codons (FOP) are higher and the effective number of codons (Nc) is lower in monocotyledons 14-3-3 genes compared to dicotyledons. Moreover, the yeast two-hybrid (Y2H) demonstrated that MdGRF13 interacts with MdRD22, MdLHP1a and MdMORF1. Significantly, the malondialdehyde (MDA) content and relative conductivity were decreased, while the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities were increased in transgenic Arabidopsis compared to the wild type (WT) under drought and salt stress. These results suggest that overexpression of MdGRF13 significantly improved the tolerance to drought and salt stress in transgenic Arabidopsis. Thus, our results provide a theoretical basis for exploring the evolution and function of the 14-3-3 gene family in monocotyledons and dicotyledons.
Collapse
Affiliation(s)
- Jiaxuan Ren
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Pan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yingbao Dai
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaohuan Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lili Guo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
15
|
Malambane G, Madumane K, Sewelo LT, Batlang U. Drought stress tolerance mechanisms and their potential common indicators to salinity, insights from the wild watermelon (Citrullus lanatus): A review. FRONTIERS IN PLANT SCIENCE 2023; 13:1074395. [PMID: 36815012 PMCID: PMC9939662 DOI: 10.3389/fpls.2022.1074395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Climate change has escalated the effect of drought on crop production as it has negatively altered the environmental condition. Wild watermelon grows abundantly in the Kgalagadi desert even though the environment is characterized by minimal rainfall, high temperatures and intense sunshine during growing season. This area is also characterized by sandy soils with low water holding capacity, thus bringing about drought stress. Drought stress affects crop productivity through its effects on development and physiological functions as dictated by molecular responses. Not only one or two physiological process or genes are responsible for drought tolerance, but a combination of various factors do work together to aid crop tolerance mechanism. Various studies have shown that wild watermelon possess superior qualities that aid its survival in unfavorable conditions. These mechanisms include resilient root growth, timely stomatal closure, chlorophyll fluorescence quenching under water deficit as key physiological responses. At biochemical and molecular level, the crop responds through citrulline accumulation and expression of genes associated with drought tolerance in this species and other plants. Previous salinity stress studies involving other plants have identified citrulline accumulation and expression of some of these genes (chloroplast APX, Type-2 metallothionein), to be associated with tolerance. Emerging evidence indicates that the upstream of functional genes are the transcription factor that regulates drought and salinity stress responses as well as adaptation. In this review we discuss the drought tolerance mechanisms in watermelons and some of its common indicators to salinity at physiological, biochemical and molecular level.
Collapse
|
16
|
De novo transcriptome assembly and analysis of genes involved in desiccation tolerance in Grimmia pilifera. Gene 2022; 847:146841. [PMID: 36075326 DOI: 10.1016/j.gene.2022.146841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/13/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022]
Abstract
The anatomically simple plants that transition from the aquatic to the terrestrial have a certain mechanism to deal with the damage caused by the changing living environment. Grimmia pilifera is a type of resurrection plants that can survive a long period of desiccation. To understand the molecular mechanisms of desiccation tolerance, nine cDNA libraries were constructed in triplicate from mRNA obtained from G. pilifera for the 0 h, 6 h and 18 h desiccation treatment. RNA-Seq generated ∼ 666 million reads which were assembled into 135,850 unigenes. The differentially expressed genes (DEGs) were identified between different period of time of desiccation. Gene ontology analysis showed that a significant number of genes involved in water deprivation, chloroplast organization, xyloglucan metabolic process, regulation of signaling pathway. In addition, genes involved in osmotic stress, oxidative stress, accumulation of soluble matter, such as gene encoding antioxidant enzymes, trehalose synthase and channel protein, were up-regulated in response to drought stress. These results will be helpful for further studying on the molecular mechanisms of desiccation responses in G. pilifera.
Collapse
|
17
|
Barquero M, Poveda J, Laureano-Marín AM, Ortiz-Liébana N, Brañas J, González-Andrés F. Mechanisms involved in drought stress tolerance triggered by rhizobia strains in wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1036973. [PMID: 36438093 PMCID: PMC9686006 DOI: 10.3389/fpls.2022.1036973] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/06/2022] [Indexed: 05/29/2023]
Abstract
Rhizobium spp. is a well-known microbial plant biostimulant in non-legume crops, but little is known about the mechanisms by which rhizobia enhance crop productivity under drought stress. This work analyzed the mechanisms involved in drought stress alleviation exerted by Rhizobium leguminosarum strains in wheat plants under water shortage conditions. Two (LBM1210 and LET4910) of the four R. leguminosarum strains significantly improved the growth parameters (fresh and dry aerial weight, FW and DW, respectively), chlorophyll content, and relative water content (RWC) compared to a non-inoculated control under water stress, providing values similar to or even higher for FW (+4%) and RWC (+2.3%) than the non-inoculated and non-stressed control. Some other biochemical parameters and gene expression explain the observed drought stress alleviation, namely the reduction of MDA, H2O2 (stronger when inoculating with LET4910), and ABA content (stronger when inoculating with LBM1210). In agreement with these results, inoculation with LET4910 downregulated DREB2 and CAT1 genes in plants under water deficiency and upregulated the CYP707A1 gene, while inoculation with LBM1210 strongly upregulated the CYP707A1 gene, which encodes an ABA catabolic enzyme. Conversely, from our results, ethylene metabolism did not seem to be involved in the alleviation of drought stress exerted by the two strains, as the expression of the CTR1 gene was very similar in all treatments and controls. The obtained results regarding the effect of the analyzed strains in alleviating drought stress are very relevant in the present situation of climate change, which negatively influences agricultural production.
Collapse
Affiliation(s)
- Marcia Barquero
- Institute of Environment, Natural Resources and Biodiversity, University of León, León, Spain
| | - Jorge Poveda
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Pamplona, Spain
| | - Ana M. Laureano-Marín
- Centro de Tecnologías Agroambientales (CTA) Fertiberia - Edificio CITIUS (Centro de Investigación, Tecnología e Innovación) 1, Sevilla, Spain
| | - Noemí Ortiz-Liébana
- Institute of Environment, Natural Resources and Biodiversity, University of León, León, Spain
| | - Javier Brañas
- Centro de Tecnologías Agroambientales (CTA) Fertiberia - Edificio CITIUS (Centro de Investigación, Tecnología e Innovación) 1, Sevilla, Spain
| | | |
Collapse
|
18
|
Productivity and Feed Quality Performance of Napier Grass (Cenchrus purpureus) Genotypes Growing under Different Soil Moisture Levels. PLANTS 2022; 11:plants11192549. [PMID: 36235418 PMCID: PMC9572638 DOI: 10.3390/plants11192549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
In the semi-arid and arid environments of Sub-Sharan Africa, forage availability throughout the year is insufficient and highly limited during the dry seasons due to limited precipitation. Thus, the identification of drought stress-tolerant forage cultivars is one of the main activities in forage development programs. In this study, Napier grass (Cenchrus purpureus), an important forage crop in Eastern and Central Africa that is broadly adapted to produce across tropical environments, was evaluated for its water use efficiency and production performance under field drought stress conditions. Eighty-four Napier grass genotypes were evaluated for their drought stress tolerance from 2018 to 2020 using agro-morphological and feed quality traits under two soil moisture stress regimes during the dry season, i.e., moderate (MWS) and severe (SWS) water stress conditions, and under rainfed conditions in the wet season (wet). Overall, the results indicated the existence of genotype variation for the traits studied. In general, the growth and productivity of the genotypes declined under SWS compared to MWS conditions. High biomass-yielding genotypes with enhanced WUE were consistently observed across harvests in each soil moisture stress regime. In addition, the top biomass-yielding genotypes produced the highest annual crude protein yield, indicating the possibility of developing high-feed-quality Napier grass genotypes for drought stress environments.
Collapse
|
19
|
Comparative Analysis of Tolerance to Salt Stress and Water Deficit in Two Invasive Weeds of the Genus Erigeron (Asteraceae). PLANTS 2022; 11:plants11152059. [PMID: 35956537 PMCID: PMC9370665 DOI: 10.3390/plants11152059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Erigeron bonariensis and E. sumatrensis are two noxious weeds present in many parts of the world. Their tolerance to salinity and water deficit was analysed at the seed germination stage and during vegetative development. Seed germination was tested in solutions with different concentrations of NaCl and polyethylene glycol (PEG). Growth parameters, photosynthetic pigments, ion accumulation, and antioxidant mechanisms were analysed in plants that were subjected to increasing NaCl solutions, or severe water deficit by completely restricting irrigation. Seed germination was mostly affected by NaCl, but less by PEG in both species. E. bonariensis had a faster germination in all treatments and maintained a higher percentage of germination under the highest concentration of salt applied. Growth responses were similar in the two species, both being more affected by higher salt concentrations than by water deficit. The main differences in the responses of the two species to stress regard K+ and proline concentration. K+ in roots decreased under salt stress in E. sumatrensis, but remained constant in leaves, whereas in E. bonariensis increased in roots and leaves in salt-stressed plants. Proline concentration increased in all E. bonariensis plants under salt stress, but only in those under the highest salt concentration in E. sumatrensis. The results obtained indicate that the two species are relatively tolerant to water deficit and medium salinity but are susceptible to high NaCl concentrations.
Collapse
|
20
|
Huang Y, Wang W, Yu H, Peng J, Hu Z, Chen L. The role of 14-3-3 proteins in plant growth and response to abiotic stress. PLANT CELL REPORTS 2022; 41:833-852. [PMID: 34773487 DOI: 10.1007/s00299-021-02803-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The 14-3-3 proteins widely exist in almost all plant species. They specifically recognize and interact with phosphorylated target proteins, including protein kinases, phosphatases, transcription factors and functional proteins, offering an array of opportunities for 14-3-3s to participate in the signal transduction processes. 14-3-3s are multigene families and can form homo- and heterodimers, which confer functional specificity of 14-3-3 proteins. They are widely involved in regulating biochemical and cellular processes and plant growth and development, including cell elongation and division, seed germination, vegetative and reproductive growth, and seed dormancy. They mediate plant response to environmental stresses such as salt, alkaline, osmotic, drought, cold and other abiotic stresses, partially via hormone-related signalling pathways. Although many studies have reviewed the function of 14-3-3 proteins, recent research on plant 14-3-3s has achieved significant advances. Here, we provide a comprehensive overview of the fundamental properties of 14-3-3 proteins and systematically summarize and dissect the emerging advances in understanding the roles of 14-3-3s in plant growth and development and abiotic stress responses. Some ambiguous questions about the roles of 14-3-3s under environmental stresses are reviewed. Interesting questions related to plant 14-3-3 functions that remain to be elucidated are also discussed.
Collapse
Affiliation(s)
- Ye Huang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenshu Wang
- Institute of Crop Science of Wuhan Academy of Agriculture Science, Wuhan, 430345, China
| | - Hua Yu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junhua Peng
- Huazhi Biotech Co., Ltd., Changsha, 410125, China
| | - Zhengrong Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
21
|
Abstract
On the world stage, the increase in temperatures due to global warming is already a reality that has become one of the main challenges faced by the scientific community. Since agriculture is highly dependent on climatic conditions, it may suffer a great impact in the short term if no measures are taken to adapt and mitigate the agricultural system. Plant responses to abiotic stresses have been the subject of research by numerous groups worldwide. Initially, these studies were concentrated on model plants, and, later, they expanded their studies in several economically important crops such as rice, corn, soybeans, coffee, and others. However, agronomic evaluations for the launching of cultivars and the classical genetic improvement process focus, above all, on productivity, historically leaving factors such as tolerance to abiotic stresses in the background. Considering the importance of the impact that abiotic stresses can have on agriculture in the short term, new strategies are currently being sought and adopted in breeding programs to understand the physiological, biochemical, and molecular responses to environmental disturbances in plants of agronomic interest, thus ensuring the world food security. Moreover, integration of these approaches is bringing new insights on breeding. We will discuss how water deficit, high temperatures, and salinity exert effects on plants.
Collapse
|
22
|
Gubišová M, Hudcovicová M, Matušinský P, Ondreičková K, Klčová L, Gubiš J. Superabsorbent Polymer Seed Coating Reduces Leaching of Fungicide but Does Not Alter Their Effectiveness in Suppressing Pathogen Infestation. Polymers (Basel) 2021; 14:76. [PMID: 35012099 PMCID: PMC8747295 DOI: 10.3390/polym14010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/03/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Superabsorbent polymers (SAPs) applied to soil have been recognized as water reservoirs that allow plants to cope with periods of drought. Their application as a seed coat makes water available directly to the seeds during their germination and early growth phase, but on the other hand, it can affect the efficiency of plant protection substances used in seed dressing. In our experiments, we evaluated the effect of seed coating with SAP on fungicide leaching and changes in their effectiveness in suppressing Fusarium culmorum infestation. Leaching of fungicide from wheat seeds coated with SAP after fungicide dressing, as measured by the inhibition test of mycelium growth under in vitro conditions, was reduced by 14.2-15.8% compared to seeds without SAP coating. Germination of maize seeds and growth of juvenile plants in artificially infected soil did not differ significantly between seeds dressed with fungicide alone and seeds treated with SAP and fungicide. In addition, plants from the seeds coated with SAP alone grew significantly better compared to untreated seeds. Real-time PCR also confirmed this trend by measuring the amount of pathogen DNA in plant tissue. Winter wheat was less tolerant to F. culmorum infection and without fungicide dressing, the seeds were unable to germinate under strong pathogen attack. In the case of milder infection, similar results were observed as in the case of maize seeds.
Collapse
Affiliation(s)
- Marcela Gubišová
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piestany, Slovakia; (M.G.); (M.H.); (L.K.); (J.G.)
| | - Martina Hudcovicová
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piestany, Slovakia; (M.G.); (M.H.); (L.K.); (J.G.)
| | - Pavel Matušinský
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; or
- Department of Plant Pathology, Agrotest Fyto, Ltd., Havlíčkova 2787, 767 01 Kromeriz, Czech Republic
| | - Katarína Ondreičková
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piestany, Slovakia; (M.G.); (M.H.); (L.K.); (J.G.)
| | - Lenka Klčová
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piestany, Slovakia; (M.G.); (M.H.); (L.K.); (J.G.)
| | - Jozef Gubiš
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piestany, Slovakia; (M.G.); (M.H.); (L.K.); (J.G.)
| |
Collapse
|
23
|
Cerón-Souza I, Galeano CH, Tehelen K, Jiménez HR, González C. Opportunities and Challenges to Improve a Public Research Program in Plant Breeding and Enhance Underutilized Plant Genetic Resources in the Tropics. Genes (Basel) 2021; 12:genes12101584. [PMID: 34680981 PMCID: PMC8535561 DOI: 10.3390/genes12101584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/15/2023] Open
Abstract
The American tropics are hotspots of wild and domesticated plant biodiversity, which is still underutilized by breeding programs despite being conserved at regional gene banks. The improvement of those programs depends on long-term public funds and the maintenance of specialized staff. Unfortunately, financial ups and downs complicate staff connectivity and their research impact. Between 2000 and 2010, Agrosavia (Corporación Colombiana de Investigación Agropecuaria) dramatically decreased its public financial support. In 2017, we surveyed all 52 researchers from Agrosavia involved in plant breeding and plant genetic resource programs to examine the effect of decimating funds in the last ten years. We hypothesized that the staff dedicated to plant breeding still suffer a strong fragmentation and low connectivity. As we expected, the social network among researchers is weak. The top ten central leaders are predominantly males with an M.Sc. degree but have significant experience in the area. The staff has experience in 31 tropical crops, and 17 are on the list of underutilized species. Moreover, although 26 of these crops are in the national germplasm bank, this has not been the primary source for their breeding programs. We proposed five principles to improve connectivity among teams and research impact: (1) The promotion of internal discussion about gender gaps and generation shifts to design indicators to monitor and decrease this disparity over time. (2) The construction of long-term initiatives and synergies with the Colombian government to support the local production of food security crops independent of market trends. (3) Better collaboration between the National Plant Germplasm Bank and plant breeding researchers. (4) A concerted priority list of species (especially those neglected or underutilized) and external institutions to better focus the collaborative efforts in research using public funds. (5) Better spaces for the design of projects among researchers and training programs in new technologies. These principles could also apply in other tropical countries with public plant breeding research programs facing similar challenges.
Collapse
Affiliation(s)
- Ivania Cerón-Souza
- Corporación Colombiana de Investigación Agropecuaria—Agrosavia, C.I. Tibaitatá, Mosquera 250047, Colombia; (H.R.J.); (C.G.)
- Correspondence: ; Tel.: +57-144-227-300 (ext. 1457)
| | - Carlos H. Galeano
- Corporación Colombiana de Investigación Agropecuaria—Agrosavia, C.I. Palmira, Palmira 763533, Colombia;
| | | | - Hugo R. Jiménez
- Corporación Colombiana de Investigación Agropecuaria—Agrosavia, C.I. Tibaitatá, Mosquera 250047, Colombia; (H.R.J.); (C.G.)
| | - Carolina González
- Corporación Colombiana de Investigación Agropecuaria—Agrosavia, C.I. Tibaitatá, Mosquera 250047, Colombia; (H.R.J.); (C.G.)
| |
Collapse
|
24
|
Jeyasri R, Muthuramalingam P, Satish L, Pandian SK, Chen JT, Ahmar S, Wang X, Mora-Poblete F, Ramesh M. An Overview of Abiotic Stress in Cereal Crops: Negative Impacts, Regulation, Biotechnology and Integrated Omics. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10071472. [PMID: 34371676 PMCID: PMC8309266 DOI: 10.3390/plants10071472] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 05/06/2023]
Abstract
Abiotic stresses (AbS), such as drought, salinity, and thermal stresses, could highly affect the growth and development of plants. For decades, researchers have attempted to unravel the mechanisms of AbS for enhancing the corresponding tolerance of plants, especially for crop production in agriculture. In the present communication, we summarized the significant factors (atmosphere, soil and water) of AbS, their regulations, and integrated omics in the most important cereal crops in the world, especially rice, wheat, sorghum, and maize. It has been suggested that using systems biology and advanced sequencing approaches in genomics could help solve the AbS response in cereals. An emphasis was given to holistic approaches such as, bioinformatics and functional omics, gene mining and agronomic traits, genome-wide association studies (GWAS), and transcription factors (TFs) family with respect to AbS. In addition, the development of omics studies has improved to address the identification of AbS responsive genes and it enables the interaction between signaling pathways, molecular insights, novel traits and their significance in cereal crops. This review compares AbS mechanisms to omics and bioinformatics resources to provide a comprehensive view of the mechanisms. Moreover, further studies are needed to obtain the information from the integrated omics databases to understand the AbS mechanisms for the development of large spectrum AbS-tolerant crop production.
Collapse
Affiliation(s)
- Rajendran Jeyasri
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, India; (R.J.); (P.M.); (L.S.); (S.K.P.)
| | - Pandiyan Muthuramalingam
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, India; (R.J.); (P.M.); (L.S.); (S.K.P.)
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, India
| | - Lakkakula Satish
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, India; (R.J.); (P.M.); (L.S.); (S.K.P.)
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Shunmugiah Karutha Pandian
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, India; (R.J.); (P.M.); (L.S.); (S.K.P.)
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 81148, Taiwan;
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile;
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an 716000, China;
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile;
- Correspondence: (F.M.-P.); (M.R.)
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, India; (R.J.); (P.M.); (L.S.); (S.K.P.)
- Correspondence: (F.M.-P.); (M.R.)
| |
Collapse
|
25
|
Crop Improvement: Now and Beyond. BIOLOGY 2021; 10:biology10050421. [PMID: 34068451 PMCID: PMC8151080 DOI: 10.3390/biology10050421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022]
Abstract
There is an urgent need to increase and improve the production of most agronomic species to meet the current food security challenge [...].
Collapse
|
26
|
Ebert AW, Engels JMM. Plant Biodiversity and Genetic Resources Matter! PLANTS (BASEL, SWITZERLAND) 2020; 9:E1706. [PMID: 33291549 PMCID: PMC7761872 DOI: 10.3390/plants9121706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022]
Abstract
Plant biodiversity is the foundation of our present-day food supply (including functional food and medicine) and offers humankind multiple other benefits in terms of ecosystem functions and resilience to climate change, as well as other perturbations. This Special Issue on 'Plant Biodiversity and Genetic Resources' comprises 32 papers covering a wide array of aspects from the definition and identification of hotspots of wild and domesticated plant biodiversity to the specifics of conservation of genetic resources of crop genepools, including breeding and research materials, landraces and crop wild relatives which collectively are the pillars of modern plant breeding, as well as of localized breeding efforts by farmers and farming communities. The integration of genomics and phenomics into germplasm and genebank management enhances the value of crop germplasm conserved ex situ, and is likely to increase its utilization in plant breeding, but presents major challenges for data management and the sharing of this information with potential users. Furthermore, also a better integration of in situ and ex situ conservation efforts will contribute to a more effective conservation and certainly to a more sustainable and efficient utilization. Other aspects such as policy, access and benefit-sharing that directly impact the use of plant biodiversity and genetic resources, as well as balanced nutrition and enhanced resilience of production systems that depend on their increased use, are also being treated. The editorial concludes with six key messages on plant biodiversity, genetic erosion, genetic resources and plant breeding, agricultural diversification, conservation of agrobiodiversity, and the evolving role and importance of genebanks.
Collapse
Affiliation(s)
- Andreas W. Ebert
- World Vegetable Center, 60 Yi-Min Liao, Shanhua, Tainan 74151, Taiwan
| | | |
Collapse
|