1
|
Günaydın BN, Çetinkaya AO, Torabfam M, Tütüncüoğlu A, Kayalan CI, Bayazıt MK, Yüce M, Kurt H. Plasmonic group IVB transition metal nitrides: Fabrication methods and applications in biosensing, photovoltaics and photocatalysis. Adv Colloid Interface Sci 2024; 333:103298. [PMID: 39243484 DOI: 10.1016/j.cis.2024.103298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
This review paper focuses on group IVB transition metal nitrides (TMNs) such as titanium nitride (TiN), zirconium nitride (ZrN), and hafnium nitride (HfN) and as alternative plasmonic materials to noble metals like gold and silver. It delves into the fabrication methods of these TMNs, particularly emphasizing thin film fabrication techniques like magnetron sputtering and atomic layer deposition, as well as nanostructure fabrication processes applied to these thin films. Overcoming the current fabrication and application-related challenges requires a deep understanding of the material properties, deposition techniques, and application requirements. Here, we discuss the impact of fabrication parameters on the properties of resulting films, highlighting the importance of aligning fabrication methods with practical application requirements for optimal performance. Additionally, we summarize and tabulate the most recent plasmonic applications of these TMNs in fields like biosensing, photovoltaic energy, and photocatalysis, contributing significantly to the current literature by consolidating knowledge on TMNs.
Collapse
Affiliation(s)
- Beyza Nur Günaydın
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Türkiye; SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Türkiye
| | - Ali Osman Çetinkaya
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Türkiye
| | - Milad Torabfam
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Türkiye
| | - Atacan Tütüncüoğlu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Türkiye
| | - Cemre Irmak Kayalan
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Türkiye
| | - Mustafa Kemal Bayazıt
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Türkiye
| | - Meral Yüce
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Türkiye; Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK.
| | - Hasan Kurt
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
2
|
Loiko NA, Miskevich AA, Loiko VA. Light absorption by a planar array of spherical particles and a matrix in which they are embedded: statistical approach. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2024; 41:1-10. [PMID: 38175124 DOI: 10.1364/josaa.500728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/31/2023] [Indexed: 01/05/2024]
Abstract
The fractions of light energy absorbed by a 2D array of spherical particles and the matrix in which they are embedded are determined. The solution is based on a volume integral equation and a statistical approach. The absorption coefficient of the array is found via the internal fields of the particles. The absorption coefficient of a matrix is found as the difference between the absorption coefficients of the composite structure and the particles. Numerical results are presented for arrays of metal, semiconductor, and dielectric nano- and microparticles of short-range order and imperfect long-range order in the absorbing media at normal and oblique incidence of a plane wave.
Collapse
|
3
|
Demishkevich E, Zyubin A, Seteikin A, Samusev I, Park I, Hwangbo CK, Choi EH, Lee GJ. Synthesis Methods and Optical Sensing Applications of Plasmonic Metal Nanoparticles Made from Rhodium, Platinum, Gold, or Silver. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3342. [PMID: 37176223 PMCID: PMC10180225 DOI: 10.3390/ma16093342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
The purpose of this paper is to provide an in-depth review of plasmonic metal nanoparticles made from rhodium, platinum, gold, or silver. We describe fundamental concepts, synthesis methods, and optical sensing applications of these nanoparticles. Plasmonic metal nanoparticles have received a lot of interest due to various applications, such as optical sensors, single-molecule detection, single-cell detection, pathogen detection, environmental contaminant monitoring, cancer diagnostics, biomedicine, and food and health safety monitoring. They provide a promising platform for highly sensitive detection of various analytes. Due to strongly localized optical fields in the hot-spot region near metal nanoparticles, they have the potential for plasmon-enhanced optical sensing applications, including metal-enhanced fluorescence (MEF), surface-enhanced Raman scattering (SERS), and biomedical imaging. We explain the plasmonic enhancement through electromagnetic theory and confirm it with finite-difference time-domain numerical simulations. Moreover, we examine how the localized surface plasmon resonance effects of gold and silver nanoparticles have been utilized for the detection and biosensing of various analytes. Specifically, we discuss the syntheses and applications of rhodium and platinum nanoparticles for the UV plasmonics such as UV-MEF and UV-SERS. Finally, we provide an overview of chemical, physical, and green methods for synthesizing these nanoparticles. We hope that this paper will promote further interest in the optical sensing applications of plasmonic metal nanoparticles in the UV and visible ranges.
Collapse
Affiliation(s)
- Elizaveta Demishkevich
- Research and Educational Center, Fundamental and Applied Photonics, Nanophotonics, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Andrey Zyubin
- Research and Educational Center, Fundamental and Applied Photonics, Nanophotonics, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Alexey Seteikin
- Research and Educational Center, Fundamental and Applied Photonics, Nanophotonics, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
- Department of Physics, Amur State University, 675021 Blagoveshchensk, Russia
| | - Ilia Samusev
- Research and Educational Center, Fundamental and Applied Photonics, Nanophotonics, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Inkyu Park
- Department of Physics, University of Seoul, Seoul 02504, Republic of Korea
| | - Chang Kwon Hwangbo
- Department of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Geon Joon Lee
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
4
|
Sun L, Chen Y, Sun M, Zheng Y. Organic Solar Cells: Physical Principle and Recent Advances. Chem Asian J 2023; 18:e202300006. [PMID: 36594570 DOI: 10.1002/asia.202300006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Organic solar cells (OSC) based on organic semiconductor materials that convert solar energy into electric energy have been constantly developing at present, and also an effective way to solve the energy crisis and reduce carbon emissions. In the past several decades, efforts have been made to improve the power conversion efficiency (PCE) of OSCs. During this period, a variety of structural and material forms of OSCs have evolved. Commercializing OSCs, extending their service life and exploring their future development are promising but challenging. In this review, we first briefly introduce the development of OSCs and then summarize and analyze the working principle, performance parameters, and structural features of OSCs. Finally, we highlight some breakthrough related to OSCs in detail.
Collapse
Affiliation(s)
- Lichun Sun
- School of Physics and Electronic Engineering, Mudanjiang Normal University, Mudanjiang, 157011, P. R. China
| | - Yichuan Chen
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R China
| | - Youjin Zheng
- School of Physics and Electronic Engineering, Mudanjiang Normal University, Mudanjiang, 157011, P. R. China
| |
Collapse
|
5
|
Terrés-Haro JM, Monreal-Trigo J, Hernández-Montoto A, Ibáñez-Civera FJ, Masot-Peris R, Martínez-Máñez R. Finite Element Models of Gold Nanoparticles and Their Suspensions for Photothermal Effect Calculation. Bioengineering (Basel) 2023; 10:bioengineering10020232. [PMID: 36829726 PMCID: PMC9952663 DOI: 10.3390/bioengineering10020232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
(1) Background: The ability of metal nanoparticles to carry other molecules and their electromagnetic interactions can be used for localized drug release or to heat malignant tissue, as in the case of photothermal treatments. Plasmonics can be used to calculate their absorption and electric field enhancement, which can be further used to predict the outcome of photothermal experiments. In this study, we model the nanoparticle geometry in a Finite Element Model calculus environment to calculate the effects that occur as a response to placing it in an optical, electromagnetic field, and also a model of the experimental procedure to measure the temperature rise while irradiating a suspension of nanoparticles. (2) Methods: Finite Element Method numerical models using the COMSOL interface for geometry and mesh generation and iterative solving discretized Maxwell's equations; (3) Results: Absorption and scattering cross-section spectrums were obtained for NanoRods and NanoStars, also varying their geometry as a parameter, along with electric field enhancement in their surroundings; temperature curves were calculated and measured as an outcome of the irradiation of different concentration suspensions; (4) Conclusions: The results obtained are comparable with the bibliography and experimental measurements.
Collapse
Affiliation(s)
- José Manuel Terrés-Haro
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Departamento de Electrónica, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Group of Electronic Development and Printed Sensors (ged+ps), Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, AN34 Space, 7E Building, 46022 Valencia, Spain
- Correspondence: (J.M.T.-H.); (R.M.-P.)
| | - Javier Monreal-Trigo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Departamento de Electrónica, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Group of Electronic Development and Printed Sensors (ged+ps), Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, AN34 Space, 7E Building, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andy Hernández-Montoto
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, 46026 Valencia, Spain
| | - Francisco Javier Ibáñez-Civera
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Departamento de Electrónica, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Group of Electronic Development and Printed Sensors (ged+ps), Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, AN34 Space, 7E Building, 46022 Valencia, Spain
| | - Rafael Masot-Peris
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Departamento de Electrónica, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Group of Electronic Development and Printed Sensors (ged+ps), Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, AN34 Space, 7E Building, 46022 Valencia, Spain
- Correspondence: (J.M.T.-H.); (R.M.-P.)
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, 46026 Valencia, Spain
| |
Collapse
|
6
|
Sandzhieva M, Khmelevskaia D, Tatarinov D, Logunov L, Samusev K, Kuchmizhak A, Makarov SV. Organic Solar Cells Improved by Optically Resonant Silicon Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3916. [PMID: 36364692 PMCID: PMC9656450 DOI: 10.3390/nano12213916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Silicon nanophotonics has become a versatile platform for optics and optoelectronics. For example, strong light localization at the nanoscale and lack of parasitic losses in infrared and visible spectral ranges make resonant silicon nanoparticles a prospect for improvement in such rapidly developing fields as photovoltaics. Here, we employed optically resonant silicon nanoparticles produced by laser ablation for boosting the power conversion efficiency of organic solar cells. Namely, we created colloidal solutions of spherical nanoparticles with a range of diameters (80-240 nm) in different solvents. We tested how the nanoparticles' position in the device, their concentration, silicon doping, and method of deposition affected the final device efficiency. The best conditions optimization resulted in an efficiency improvement from 6% up to 7.5%, which correlated with numerical simulations of nanoparticles' optical properties. The developed low-cost approach paves the way toward highly efficient and stable solution-processable solar cells.
Collapse
Affiliation(s)
- Maria Sandzhieva
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Darya Khmelevskaia
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Dmitry Tatarinov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Lev Logunov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Kirill Samusev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Ioffe Institute, Russian Academy of Sciences, St. Petersburg 194021, Russia
| | - Alexander Kuchmizhak
- Far Eastern Federal University, Vladivostok 690091, Russia
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok 690041, Russia
| | - Sergey V. Makarov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
| |
Collapse
|
7
|
Moradbeigi M, Razaghi M. Investigation of optical and electrical properties of novel 4T all perovskite tandem solar cell. Sci Rep 2022; 12:6733. [PMID: 35468911 PMCID: PMC9038785 DOI: 10.1038/s41598-022-10513-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/02/2022] [Indexed: 01/30/2023] Open
Abstract
In this paper, a combined three-dimensional (3D) optical-electrical simulation of non-pb and flexible four-terminal (4T) all perovskite tandem solar cell (APTSC) is presented. In this structure, polyethylene terephthalate (PET) is used as substrates, while the top sub cell has a [Formula: see text] absorber layer and the bottom sub cell has a [Formula: see text] absorber layer. This structure is used as a reference in this paper and the optical and electrical properties of it are investigated using the finite element method (FEM). It is shown that this structure has a total power conversion efficiency (PCE) of [Formula: see text]. Then, the elimination of the buffer layer and the addition of antireflection layer (ARL) strategies, as well as the use of periodic nano-texture patterns, are used to increase the reference structure's total PCE. A free-buffer layer tandem device is presented to minimize the parasitic absorption. While the total PCE is improved by [Formula: see text] in this case, one of the fabrication steps is also eliminated. A plasma-polymer-fluorocarbon (PPFC) coating layer is suggested as ARL on the substrates of both sub cells to reduce reflection loss. With optimized these layers thickness, total PCE is increased by [Formula: see text]. Because the PPFC layer is hydrophobic, the top surface of two sub cells in this structure has self-cleaning characteristic. As a result, this device offers long-term moisture resistance. Finally, the best structure in terms of the maximum total PCE is presented by increasing optical path-length utilizing nano-photonic and nano-plasmonic structures. The final structure is offered as a 4T tandem solar cell (TSC) that is environmentally friendly, extremely flexible, and has self-cleaning capability, with a total PCE of [Formula: see text], which is greater than the total PCE of the reference structure by [Formula: see text].
Collapse
Affiliation(s)
- Mahsa Moradbeigi
- Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Mohammad Razaghi
- Department of Electronics and Communication Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran.
| |
Collapse
|
8
|
Zhang CC, Yuan S, Lou YH, Okada H, Wang ZK. Physical Fields Manipulation for High-Performance Perovskite Photovoltaics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107556. [PMID: 35043565 DOI: 10.1002/smll.202107556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 06/14/2023]
Abstract
With the efforts of researchers from all over the world, metal halide perovskite solar cells (PSCs) have been booming rapidly in recent years. Generally, perovskite films are sensitive to surrounding conditions and will be changed under the action of physical fields, resulting in lattice distortion, degradation, ion migration, and so on. In this review, the progress of physical fields manipulation in PSCs, including the electric field, magnetic field, light field, stress field, and thermal field are reviewed. On this basis, the influences of these fields on PSCs are summarized and prospected. Finally, challenges and prospective research directions on how to make better use of external-fields while minimizing the unnecessary and disruptive impacts on commercial PSCs with high-efficiency and steady output are proposed.
Collapse
Affiliation(s)
- Cong-Cong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
- Graduate School of Science & Engineering, University of Toyama, Toyama, 930-8555, Japan
| | - Shuai Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yan-Hui Lou
- School of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Hiroyuki Okada
- Graduate School of Science & Engineering, University of Toyama, Toyama, 930-8555, Japan
| | - Zhao-Kui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
9
|
Haidari G. Towards realistic modeling of plasmonic nanostructures: a comparative study to determine the impact of optical effects on solar cell improvement. JOURNAL OF COMPUTATIONAL ELECTRONICS 2022; 21:137-152. [PMID: 35075354 PMCID: PMC8769782 DOI: 10.1007/s10825-021-01829-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/29/2021] [Indexed: 05/16/2023]
Abstract
Plasmonic structures may improve cell performance in a variety of ways. More accurate determining of the optical influence, unlike ideal simulations, requires modeling closer to experimental cases. In this modeling and simulation, irregular nanostructures were chosen and divided into three groups and some modes. For each mode, different sizes of nanoparticles were randomly selected, which could result in pre-determined average particle size and standard deviation. By 3D finite-difference time-domain (3D-FDTD), the optical plasmonic properties of that mode in a solar cell structure were investigated when the nanostructure was added to the buffer/active layer of the organic solar cell. The far- and near-field results were used to compare the plasmonic behavior, relying on the material and geometry. By detailed simulations, Al and Ag nanostructure at the interface of the ZnO/active layer can improve organic solar cell performance optically, especially by the near-field effect. Unlike Au and relative Ag, the Al nanostructured sample showed less parasitic absorption loss. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10825-021-01829-x.
Collapse
Affiliation(s)
- Gholamhosain Haidari
- Department of Physics, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
- Nanotechnology Research Institute, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
10
|
Spiky Durian-Shaped Au@Ag Nanoparticles in PEDOT:PSS for Improved Efficiency of Organic Solar Cells. MATERIALS 2021; 14:ma14195591. [PMID: 34639989 PMCID: PMC8509674 DOI: 10.3390/ma14195591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022]
Abstract
The localized surface plasmon resonance (LSPR) effects of nanoparticles (NPs) are effective for enhancing the power conversion efficiency (PCE) of organic solar cells (OSCs). In this study, spiky durian-shaped Au@Ag core-shell NPs were synthesized and embedded in the hole transport layer (HTL) (poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)) of PTB7:PC71BM bulk-heterojunction OSCs. Different volume ratios of PEDOT:PSS-to-Au@Ag NPs (8%, 10%, 12%, 14%, and 16%) were prepared to optimize synthesis conditions for increased efficiency. The size properties and surface morphology of the NPs and HTL were analyzed using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). UV–Vis spectroscopy and current density–voltage (J-V) analysis were used to investigate the electrical performance of the fabricated OSCs. From the results, we observed that the OSC with a volume ratio of 14% (PEDOT:PSS–to–Au@Ag NPs) performed better than others, where the PCE was improved from 2.50% to 4.15%, which is a 66% increase compared to the device without NPs.
Collapse
|
11
|
Socol M, Preda N. Hybrid Nanocomposite Thin Films for Photovoltaic Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1117. [PMID: 33925952 PMCID: PMC8145415 DOI: 10.3390/nano11051117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Continuing growth in global energy consumption and the growing concerns regarding climate change and environmental pollution are the strongest drivers of renewable energy deployment. Solar energy is the most abundant and cleanest renewable energy source available. Nowadays, photovoltaic technologies can be regarded as viable pathways to provide sustainable energy generation, the achievement attained in designing nanomaterials with tunable properties and the progress made in the production processes having a major impact in their development. Solar cells involving hybrid nanocomposite layers have, lately, received extensive research attention due to the possibility to combine the advantages derived from the properties of both components: flexibility and processability from the organic part and stability and optoelectronics features from the inorganic part. Thus, this review provides a synopsis on hybrid solar cells developed in the last decade which involve composite layers deposited by spin-coating, the most used deposition method, and matrix-assisted pulsed laser evaporation, a relatively new deposition technique. The overview is focused on the hybrid nanocomposite films that can use conducting polymers and metal phthalocyanines as p-type materials, fullerene derivatives and non-fullerene compounds as n-type materials, and semiconductor nanostructures based on metal oxide, chalcogenides, and silicon. A survey regarding the influence of various factors on the hybrid solar cell efficiency is given in order to identify new strategies for enhancing the device performance in the upcoming years.
Collapse
|
12
|
Sundararaju U, Mohammad Haniff MAS, Ker PJ, Menon PS. MoS 2/h-BN/Graphene Heterostructure and Plasmonic Effect for Self-Powering Photodetector: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1672. [PMID: 33805402 PMCID: PMC8037851 DOI: 10.3390/ma14071672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022]
Abstract
A photodetector converts optical signals to detectable electrical signals. Lately, self-powered photodetectors have been widely studied because of their advantages in device miniaturization and low power consumption, which make them preferable in various applications, especially those related to green technology and flexible electronics. Since self-powered photodetectors do not have an external power supply at zero bias, it is important to ensure that the built-in potential in the device produces a sufficiently thick depletion region that efficiently sweeps the carriers across the junction, resulting in detectable electrical signals even at very low-optical power signals. Therefore, two-dimensional (2D) materials are explored as an alternative to silicon-based active regions in the photodetector. In addition, plasmonic effects coupled with self-powered photodetectors will further enhance light absorption and scattering, which contribute to the improvement of the device's photocurrent generation. Hence, this review focuses on the employment of 2D materials such as graphene and molybdenum disulfide (MoS2) with the insertion of hexagonal boron nitride (h-BN) and plasmonic nanoparticles. All these approaches have shown performance improvement of photodetectors for self-powering applications. A comprehensive analysis encompassing 2D material characterization, theoretical and numerical modelling, device physics, fabrication and characterization of photodetectors with graphene/MoS2 and graphene/h-BN/MoS2 heterostructures with plasmonic effect is presented with potential leads to new research opportunities.
Collapse
Affiliation(s)
- Umahwathy Sundararaju
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (U.S.); (M.A.S.M.H.)
| | | | - Pin Jern Ker
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional (UNITEN), Kajang 43000, Malaysia;
| | - P. Susthitha Menon
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (U.S.); (M.A.S.M.H.)
| |
Collapse
|
13
|
Wang T, Niu MS, Wen ZC, Jiang ZN, Qin CC, Wang XY, Liu HY, Li XY, Yin H, Liu JQ, Hao XT. High-Efficiency Thickness-Insensitive Organic Solar Cells with an Insulating Polymer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11134-11143. [PMID: 33625840 DOI: 10.1021/acsami.0c22452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Achieving high-efficiency thick-film bulk heterojunction (BHJ) organic solar cells (OSCs) with thickness-independent power conversion efficiencies (PCEs) in a wide thickness range is still a challenge for the roll-to-roll printing techniques. The concept of diluting the transport sites within BHJ films with insulating polymers can effectively eliminate charge trapping states and optimize the charge transport. Herein, we first adopted the concept with insulating polypropylene (PP) in the efficient non-fullerene system (PM6:Y6) and demonstrated its potential to fabricate thick-film OSCs. The PP can form an insulating matrix prior to PM6 and Y6 within the BHJ film, resulting in an enhanced molecular interaction and isolated charge transport by expelling Y6 molecules. We thus observed reduced trap state density and improved charge transport properties in the PP-blended device. At around 300 nm, the PM6:Y6:PP device enjoys a high PCE of 15.5% and achieves over 100% of the efficiency of the optimal thin-film device, which is significantly improved compared to the binary PM6:Y6 counterpart. This research promotes an effective strategy with insulating polymers and provides knowledge of commercial production with response to the roll-to-roll technique demands.
Collapse
Affiliation(s)
- Tong Wang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Meng-Si Niu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Zhen-Chuan Wen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Zhi-Nan Jiang
- School of Physics, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Chao-Chao Qin
- School of Physics, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xiang-Yang Wang
- School of Materials Science and Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| | - He-Yuan Liu
- School of Materials Science and Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| | - Xi-You Li
- School of Materials Science and Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China
| | - Hang Yin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Jian-Qiang Liu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Xiao-Tao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, P. R. China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
14
|
Steiner AM, Lissel F, Fery A, Lauth J, Scheele M. Perspektiven gekoppelter organisch‐anorganischer Nanostrukturen für Ladungs‐ und Energietransferanwendungen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201916402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anja Maria Steiner
- Institut Physikalische Chemie und Physik der Polymere Leibniz-Institut für Polymerforschung Hohe Str. 6 01069 Dresden Deutschland
| | - Franziska Lissel
- Institut Makromolekulare Chemie Leibniz-Institut für Polymerforschung Hohe Str. 6 01069 Dresden Deutschland
- Technische Universität Dresden Mommsenstr. 4 01064 Dresden Deutschland
| | - Andreas Fery
- Institut Physikalische Chemie und Physik der Polymere Leibniz-Institut für Polymerforschung Hohe Str. 6 01069 Dresden Deutschland
- Technische Universität Dresden Mommsenstr. 4 01064 Dresden Deutschland
| | - Jannika Lauth
- Leibniz-Universität Hannover Institut für Physikalische Chemie und Elektrochemie Callinstr. 3A 30167 Hannover Deutschland
| | - Marcus Scheele
- Eberhard-Karls-Universität Tübingen Institut für Physikalische und Theoretische Chemie Auf der Morgenstelle 18 72076 Tübingen Deutschland
| |
Collapse
|
15
|
Steiner AM, Lissel F, Fery A, Lauth J, Scheele M. Prospects of Coupled Organic-Inorganic Nanostructures for Charge and Energy Transfer Applications. Angew Chem Int Ed Engl 2021; 60:1152-1175. [PMID: 32173981 PMCID: PMC7821299 DOI: 10.1002/anie.201916402] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/20/2022]
Abstract
We review the field of organic-inorganic nanocomposites with a focus on materials that exhibit a significant degree of electronic coupling across the hybrid interface. These nanocomposites undergo a variety of charge and energy transfer processes, enabling optoelectronic applications in devices which exploit singlet fission, triplet energy harvesting, photon upconversion or hot charge carrier transfer. We discuss the physical chemistry of the most common organic and inorganic components. Based on those we derive synthesis and assembly strategies and design criteria on material and device level with a focus on photovoltaics, spin memories or optical upconverters. We conclude that future research in the field should be directed towards an improved understanding of the binding motif and molecular orientation at the hybrid interface.
Collapse
Affiliation(s)
- Anja Maria Steiner
- Institute for Physical Chemistry and Polymer PhysicsLeibniz Institute of Polymer ResearchHohe Str. 601069DresdenGermany
| | - Franziska Lissel
- Institute of Macromolecular ChemistryLeibniz Institute of Polymer ResearchHohe Str. 601069DresdenGermany
- Technische Universität DresdenMommsenstr. 401064DresdenGermany
| | - Andreas Fery
- Institute for Physical Chemistry and Polymer PhysicsLeibniz Institute of Polymer ResearchHohe Str. 601069DresdenGermany
- Technische Universität DresdenMommsenstr. 401064DresdenGermany
| | - Jannika Lauth
- Leibniz Universität HannoverInstitute of Physical Chemistry and ElectrochemistryCallinstr. 3A30167HannoverGermany
| | - Marcus Scheele
- Eberhard Karls-Universität TübingenInstitute of Physical and Theoretical ChemistryAuf der Morgenstelle 1872076TübingenGermany
| |
Collapse
|
16
|
Prasetio A, Kim S, Jahandar M, Lim DC. Single particle dual plasmonic effect for efficient organic solar cells. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-020-01641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractIncorporating localized surface plasmon resonance (LSPR) into organic solar cells (OSCs) is a popular method for improving the power conversion efficiency (PCE) by introducing better light absorption. In this work, we designed a one-pot synthesis of Ag@SiO2@AuNPs dual plasmons and observed an immense increase in light absorption over a wide range of wavelengths. Ag@SiO2 plays the main role in enhancing light absorption near the ultraviolet band. The silica shell can also further enhance the LSP resonance effect and prevent recombination on the surface of AgNPs. The AuNPs on the Ag@SiO2 shell exhibited strong broad visible-light absorption due to LSP resonance and decreased light reflectance. By utilizing Ag@SiO2@AuNPs, we could enhance the light absorption and photoinduced charge generation, thereby increasing the device PCE to 8.57% and Jsc to 17.67 mA cm−2, which can be attributed to the enhanced optical properties. Meanwhile, devices without LSPR nanoparticles and Ag@SiO2 LSPR only showed PCEs of 7.36% and 8.18%, respectively.
Collapse
|
17
|
Chowdhury R, Tegg L, Keast VJ, Holmes NP, Cooling NA, Vaughan B, Nicolaidis NC, Belcher WJ, Dastoor PC, Zhou X. Plasmonic enhancement of aqueous processed organic photovoltaics. RSC Adv 2021; 11:19000-19011. [PMID: 35478661 PMCID: PMC9033506 DOI: 10.1039/d1ra02328d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
Sodium tungsten bronze (NaxWO3) is a promising alternative plasmonic material to nanoparticulate gold due to its strong plasmonic resonances in both the visible and near-infrared (NIR) regions. Additional benefits include its simple production either as a bulk or a nanoparticle material at a relatively low cost. In this work, plasmonic NaxWO3 nanoparticles were introduced and mixed into the nanoparticulate zinc oxide electron transport layer of a water processed poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PC61BM) nanoparticle (NP) based organic photovoltaic device (NP-OPV). The power conversion efficiency of NP-OPV devices with NaxWO3 NPs added was found to improve by around 35% compared to the control devices, attributed to improved light absorption, resulting in an enhanced short circuit current and fill factor. Plasmonic NaxWO3 nanoparticles were introduced to aqueous processed organic photovoltaics with 35% device enhancement.![]()
Collapse
|
18
|
Popov A, Brasiunas B, Damaskaite A, Plikusiene I, Ramanavicius A, Ramanaviciene A. Electrodeposited Gold Nanostructures for the Enhancement of Electrochromic Properties of PANI-PEDOT Film Deposited on Transparent Electrode. Polymers (Basel) 2020; 12:E2778. [PMID: 33255495 PMCID: PMC7761354 DOI: 10.3390/polym12122778] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 11/16/2022] Open
Abstract
Conjugated polymers (CPs) are attractive materials for use in different areas; nevertheless, the enhancement of electrochromic stability and switching time is still necessary to expand the commercialization of electrochromic devices. To our best knowledge, this is the first study demonstrating the employment of electrodeposited gold nanostructures (AuNS) for the enhancement of CPs' electrochromic properties when a transparent electrode is used as a substrate. Polyaniline-poly(3,4-ethylenedioxythiophene) (PANI-PEDOT) films were electrodeposited on a transparent indium tin oxide glass electrode, which was pre-modified by two different methods. AuNS were electrodeposited at -0.2 V constant potential for 60 s using both the 1st method (synthesis solution consisted of 3 mM HAuCl4 and 0.1 M H2SO4) and 2nd method (15 mM HAuCl4 and 1 M KNO3) resulting in an improvement of optical contrast by 3% and 22%, respectively. Additionally, when using the 1st method, the coloration efficiency was improved by 50% while the switching time was reduced by 17%. Furthermore, in both cases, the employment of AuNS resulted in an enhancement of the electrochromic stability of the CPs layer. A further selection of AuNS pre-modification conditions with the aim to control their morphology and size can be a possible stepping stone for the further improvement of CPs electrochromic properties.
Collapse
Affiliation(s)
- Anton Popov
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania; (A.P.); (B.B.); (A.D.); (I.P.); (A.R.)
| | - Benediktas Brasiunas
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania; (A.P.); (B.B.); (A.D.); (I.P.); (A.R.)
| | - Anzelika Damaskaite
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania; (A.P.); (B.B.); (A.D.); (I.P.); (A.R.)
| | - Ieva Plikusiene
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania; (A.P.); (B.B.); (A.D.); (I.P.); (A.R.)
| | - Arunas Ramanavicius
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania; (A.P.); (B.B.); (A.D.); (I.P.); (A.R.)
- Division of Materials Science and Electronics, State Scientific Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania; (A.P.); (B.B.); (A.D.); (I.P.); (A.R.)
| |
Collapse
|
19
|
Tooghi A, Fathi D, Eskandari M. Numerical study of a highly efficient light trapping nanostructure of perovskite solar cell on a textured silicon substrate. Sci Rep 2020; 10:18699. [PMID: 33122757 PMCID: PMC7596715 DOI: 10.1038/s41598-020-75630-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/14/2020] [Indexed: 11/10/2022] Open
Abstract
In this paper, a nanostructured perovskite solar cell (PSC) on a textured silicon substrate is examined, and its performance is analyzed. First, its configuration and the simulated unit cell are discussed, and its fabrication method is explained. In this proposed structure, poly-dimethylsiloxane (PDMS) is used instead of glass. It is shown that the use of PDMS dramatically reduces the reflection from the cell surface. Furthermore, the light absorption is found to be greatly increased due to the light trapping and plasmonic enhancement of the electric field in the active layer. Then, three different structures, are compared with the main proposed structure in terms of absorption, considering the imperfect fabrication conditions and the characteristics of the built PSC. The findings show that in the worst fabrication conditions considered structure (FCCS), short-circuit current density (Jsc) is 22.28 mA/cm2, which is 27% higher than that of the planar structure with a value of 17.51 mA/cm2. As a result, the efficiencies of these FCCSs are significant as well. In the main proposed structure, the power conversion efficiency (PCE) is observed to be improved by 32%, from 13.86% for the planar structure to 18.29%.
Collapse
Affiliation(s)
- Alireza Tooghi
- Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran
| | - Davood Fathi
- Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran.
| | - Mehdi Eskandari
- Nanomaterial Research Group, Academic Center for Education, Culture and Research (ACECR) on TMU, Tehran, Iran
| |
Collapse
|
20
|
Tooghi A, Fathi D, Eskandari M. High-performance perovskite solar cell using photonic-plasmonic nanostructure. Sci Rep 2020; 10:11248. [PMID: 32647193 PMCID: PMC7347543 DOI: 10.1038/s41598-020-67741-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/10/2020] [Indexed: 11/09/2022] Open
Abstract
In this paper, a coupled optical-electrical modeling method is applied to simulate perovskite solar cells (PSCs) to find ways to improve light absorption by the active layer and ensure that the generated carriers are collected effectively. Initially, a planar structure of the PSC is investigated and its optical losses are determined. To reduce the losses and enhance collection efficiency, a convex light-trapping configuration of PSC is used and the impacts of these nanostructures on all parts of the cell are investigated. In this convex nanostructured PSC, the power conversion efficiency (PCE) is found to be increased when the thickness of the absorbing layer remained unchanged. Then, a plasmonic reflector is applied to trap light inside the perovskite. In this structure, by scattering light through the surface plasmon resonance (SPR) effect of the Au back-contact, the electromagnetic field is found to concentrate in the active layer. This results in increased perovskite absorption and, consequently, a high current density of the cell. In the final structure, which is the integration of these two structures, optical losses are found to be greatly diminished and the short-circuit current density (Jsc) is increased from 18.63 mA/cm2 for the planar structure to 23.5 mA/cm2 for the proposed structure. Due to the increased Jsc and open-circuit voltage (Voc) caused by the improved carrier collection, the PCE increases from 14.62 to 19.54%.
Collapse
Affiliation(s)
- Alireza Tooghi
- Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran
| | - Davood Fathi
- Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran.
| | - Mehdi Eskandari
- Nanomaterial Research Group, Academic Center for Education, Culture & Research (ACECR) on TMU, Tehran, Iran
| |
Collapse
|
21
|
Lenyk B, Schöps V, Boneberg J, Kabdulov M, Huhn T, Scheer E, Offenhäusser A, Mayer D. Surface Plasmon-Enhanced Switching Kinetics of Molecular Photochromic Films on Gold Nanohole Arrays. NANO LETTERS 2020; 20:5243-5250. [PMID: 32520573 DOI: 10.1021/acs.nanolett.0c01569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diarylethene molecules are discussed as possible optical switches, which can reversibly transition between completely conjugated (closed) and nonconjugated (open) forms with different electrical conductance and optical absorbance, by exposure to UV and visible light. However, in general the opening reaction exhibits much lower quantum yield than the closing process, hindering their usage in optoelectronic devices. To enhance the opening process, which is supported by visible light, we employ the plasmonic field enhancement of gold films perforated with nanoholes. We show that gold nanohole arrays reveal strong optical transmission in the visible range (∼60%) and pronounced enhancement of field intensities, resulting in around 50% faster switching kinetics of the molecular species in comparison with quartz substrates. The experimental UV-vis measurements are verified with finite-difference time-domain simulation that confirm the obtained results. Thus, we propose gold nanohole arrays as transparent and conductive plasmonic material that accelerates visible-light-triggered chemical reactions including molecular switching.
Collapse
Affiliation(s)
- Bohdan Lenyk
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany
- Department of Physics, University of Konstanz, 78457 Konstanz, Germany
| | - Volker Schöps
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany
- Department of Physics, University of Konstanz, 78457 Konstanz, Germany
| | - Johannes Boneberg
- Department of Physics, University of Konstanz, 78457 Konstanz, Germany
| | - Mikhail Kabdulov
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Thomas Huhn
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Elke Scheer
- Department of Physics, University of Konstanz, 78457 Konstanz, Germany
| | - Andreas Offenhäusser
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Dirk Mayer
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
22
|
Löhrer FC, Körstgens V, Semino G, Schwartzkopf M, Hinz A, Polonskyi O, Strunskus T, Faupel F, Roth SV, Müller-Buschbaum P. Following in Situ the Deposition of Gold Electrodes on Low Band Gap Polymer Films. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1132-1141. [PMID: 31829550 DOI: 10.1021/acsami.9b17590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Metal top electrodes such as gold are widely used in organic solar cells. The active layer can be optimized by modifications of the polymer band gap via side-chain engineering, and low band gap polymers based on benzodithiophene units such as PTB7 and PTB7-Th are successfully used. The growth of gold contacts on PTB7 and PTB7-Th films is investigated with in situ grazing incidence small-angle X-ray scattering (GISAXS) and grazing incidence wide-angle X-ray scattering (GIWAXS) during the sputter deposition of gold. From GIWAXS, the crystal structure of the gold film is determined. Independent of the type of side chain, gold crystals form in the very early stages and improve in quality during the sputter deposition until the late stages. From GISAXS, the nanoscale structure is determined. Differences in terms of gold cluster size and growth phase limits for the two polymers are caused by the side-chain modification and result in a different surface coverage in the early phases. The changes in the diffusion and coalescence behavior of the forming gold nanoparticles cause differences in the morphology of the gold contact in the fully percolated regime, which is attributed to the different amount of thiophene rings of the side chains acting as nucleation sites.
Collapse
Affiliation(s)
- Franziska C Löhrer
- Physik-Department, Lehrstuhl für Funktionelle Materialien , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Volker Körstgens
- Physik-Department, Lehrstuhl für Funktionelle Materialien , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Gabriele Semino
- Physik-Department, Lehrstuhl für Funktionelle Materialien , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| | | | - Alexander Hinz
- Institut für Materialwissenschaft, Lehrstuhl für Materialverbunde , Christian-Albrechts-Universität zu Kiel , Kaiserstraße 2 , 24143 Kiel , Germany
| | - Oleksandr Polonskyi
- Institut für Materialwissenschaft, Lehrstuhl für Materialverbunde , Christian-Albrechts-Universität zu Kiel , Kaiserstraße 2 , 24143 Kiel , Germany
| | - Thomas Strunskus
- Institut für Materialwissenschaft, Lehrstuhl für Materialverbunde , Christian-Albrechts-Universität zu Kiel , Kaiserstraße 2 , 24143 Kiel , Germany
| | - Franz Faupel
- Institut für Materialwissenschaft, Lehrstuhl für Materialverbunde , Christian-Albrechts-Universität zu Kiel , Kaiserstraße 2 , 24143 Kiel , Germany
| | - Stephan V Roth
- Deutsches Elektronen-Synchrotron (DESY) , Notkestrasse 85 , 22607 Hamburg , Germany
- Department of Fiber and Polymer Technology , KTH Royal Institute of Technology , Teknikringen 56-58 , 10044 Stockholm , Sweden
| | - Peter Müller-Buschbaum
- Physik-Department, Lehrstuhl für Funktionelle Materialien , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
- Heinz Maier-Leibnitz-Zentrum , Lichtenbergstr. 1 , 85748 Garching , Germany
| |
Collapse
|
23
|
Mohan M, Sekar R, Namboothiry MAG. Understanding the effects of shape, material and location of incorporation of metal nanoparticles on the performance of plasmonic organic solar cells. RSC Adv 2020; 10:26126-26132. [PMID: 35519780 PMCID: PMC9055317 DOI: 10.1039/d0ra04076b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/04/2020] [Indexed: 11/21/2022] Open
Abstract
Enhanced performance in organic solar cells by incorporating non-spherical metal nanoparticles.
Collapse
Affiliation(s)
- Minu Mohan
- School of Physics
- Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)
- Thiruvananthapuram
- India
| | - Ramkumar Sekar
- School of Physics
- Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)
- Thiruvananthapuram
- India
| | - Manoj A. G. Namboothiry
- School of Physics
- Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)
- Thiruvananthapuram
- India
| |
Collapse
|
24
|
Tadeson G, Sabat RG. Enhancement of the Power Conversion Efficiency of Organic Solar Cells by Surface Patterning of Azobenzene Thin Films. ACS OMEGA 2019; 4:21862-21872. [PMID: 31891064 PMCID: PMC6933583 DOI: 10.1021/acsomega.9b02844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/03/2019] [Indexed: 05/28/2023]
Abstract
Nanoscale-patterned azobenzene thin films were incorporated in organic solar cells to scatter incident light, thus increasing the optical path length of photons inside the active area. This ultimately led to significant power conversion efficiency (PCE) enhancements in the active layer. Specifically, the azobenzene thin films were patterned with two-dimensional crossed surface relief gratings inscribed via laser interference lithography. The patterned films were then bleached and thermally stabilized by exposure to strong ultraviolet light before being incorporated in P3HT:PC61BM and PTB7:PC61BM solar cells. The fabricated solar cells exhibited a PCE enhancement of 133%, from 1.37 to 3.19%, for P3HT:PC61BM solar cells, and a PCE enhancement of 302%, from 0.53 to 2.13%, for PTB7:PC61BM solar cells.
Collapse
|
25
|
Abstract
This paper describes the characteristics of contributions that were made by researchers worldwide in the field of Solar Coating in the period 1957–2019. Scopus is used as a database and the results are processed while using bibliometric and analytical techniques. All of the documents registered in Scopus, a total of 6440 documents, have been analyzed and distributed according to thematic subcategories. Publications are analyzed from the type of publication, field of use, language, subcategory, type of newspaper, and the frequency of the keyword perspectives. English (96.8%) is the language that is most used for publications, followed by Chinese (2.6%), and the rest of the languages have a less than < 1% representation. Publications are studied by authors, affiliations, countries of origin of the authors, and H-index, which it stands out that the authors of China contribute with 3345 researchers, closely followed by the United States with 2634 and Germany with 1156. The Asian continent contributes the most, with 65% of the top 20 affiliations, and Taiwan having the most authors publishing in this subject, closely followed by Switzerland. It can be stated that research in this area is still evolving with a great international scientific contribution in improving the efficiency of solar cells.
Collapse
|
26
|
Said DA, Ali AM, Khayyat MM, Boustimi M, Loulou M, Seoudi R. A study of the influence of plasmonic resonance of gold nanoparticle doped PEDOT: PSS on the performance of organic solar cells based on CuPc/C6 0. Heliyon 2019; 5:e02675. [PMID: 31840116 PMCID: PMC6893062 DOI: 10.1016/j.heliyon.2019.e02675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/18/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022] Open
Abstract
This work studied the role of gold nanoparticles (AuNPs) with different spherical sizes mixed with poly (3, 4-ethylene dioxythiophene): polystyrene sulfonate (PEDOT: PSS) as a hole transfer layer to enhance the efficiency (ITO/PEDOT:PSS (AuNPs)/CuPc/C60/Al) organic photovoltaic cell (OPV). AuNPs were synthesized using the thermochemical method and the results of the transmission electron microscope (TEM) images showed that the gold nanoparticles mostly dominated by spherical shapes and sizes were calculated in the range (12–23 nm). Measurements of UV-VIS spectra for AuNPs have shown that the surface plasmon resonance shifted to a higher wavelength with decreasing the particle size. Surface morphology and absorption spectra of OPV cells were studied using atomic force microscope and UV-VIS spectrometer techniques. The efficiency of the OPV cell was calculated without and with AuNPs. Efficiency was increased from 0.78% to 1.02% due to the embedded of AuNPs with (12 nm) in PEDOT/PSS. The increase in the light absorption in CuPc is due to the good transparent conducting of PEDOT:PSS and the increase in the electric field around AuNPs embedded in PEDOT:PSS and inbuilt electric field at the interfacial between CuPc and C60 is due to the surface plasmon resonance of AuNPs. The increase in these two factors increase the exciton generation in CuPc, dissociation at the interfacial layer, and charge carrier transfer which increases the collection of electrons and holes at cathode and anode.
Collapse
Affiliation(s)
- D A Said
- Physics Department, Faculty of Women for Art, Sciences and Education, Ain Shams University, Cairo, Egypt
| | - A M Ali
- Department of Physics, College of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Physics, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - M M Khayyat
- King Abdulaziz City for Science and Technology, Riyadh 11442, Kingdom of Saudi Arabia
| | - M Boustimi
- Department of Physics, College of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - M Loulou
- Department of Physics, College of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - R Seoudi
- Department of Physics, College of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia.,Spectroscopy Department, Physics Division, NRC, Dokki, Cairo 12622, Egypt
| |
Collapse
|
27
|
N'Konou K, Chalh M, Lucas B, Vedraine S, Torchio P. Improving the performance of inverted organic solar cells by embedding silica‐coated silver nanoparticles deposited by electron‐beam evaporation. POLYM INT 2019. [DOI: 10.1002/pi.5789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kekeli N'Konou
- Aix‐Marseille UniversityIM2NP, CNRS, Domaine Universitaire de Saint‐Jérôme Marseille Cedex France
| | | | | | | | - Philippe Torchio
- Aix‐Marseille UniversityIM2NP, CNRS, Domaine Universitaire de Saint‐Jérôme Marseille Cedex France
| |
Collapse
|
28
|
Pathak NK, Parthasarathi P, Kumar PS, Sharma RP. Tuning of the surface plasmon resonance of aluminum nanoshell near-infrared regimes. Phys Chem Chem Phys 2019; 21:9441-9449. [DOI: 10.1039/c9cp01115c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The analysis of optical properties of aluminium metal nanoshell using semi-analytical and numerical approach.
Collapse
Affiliation(s)
- Nilesh Kumar Pathak
- Department of Physics & Astrophysics
- University of Delhi
- Delhi-110007
- India
- Department of Physics
| | | | - P. Senthil Kumar
- Department of Physics & Astrophysics
- University of Delhi
- Delhi-110007
- India
| | - R. P. Sharma
- Plasma and Plasmonics Theory and Simulation Laboratory
- Centre for Energy Studies
- Indian Institute of Technology
- Delhi 110016
- India
| |
Collapse
|