1
|
Ding Y, Li G, Ryu K, Guan J, Wang S, Xiong Y, Guo S, Long Y. Multi-functional smart bulk hydrogel panels with strong near-infrared shielding and active local control. MATERIALS HORIZONS 2025; 12:3144-3151. [PMID: 39911101 DOI: 10.1039/d4mh01648c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Thermochromic hydrogel is a versatile smart material that can be used in various applications. In this paper, we present a new concept of smart windows to passively regulate light transmittance and reduce energy consumption while functioning as an information display. By incorporating passive solar regulation and active local control, this window is devised through the multilayer assembly of tailored poly(N-isopropylacrylamide) (PNIPAM) hydrogels and surface-modified photonic crystal films. The modified surface tension of solvent tunes the scattering center size of the hydrogel, and the addition of the photothermal films (PT films) imparts a high near-infrared (NIR) shielding and light-to-heat conversion, which is needed for low-latitude smart window application. Together with high writing speed, clarity, and repeatability for local writing. This new smart hydrogel engineering can have broad applications, allowing more functionalities in designing building façades.
Collapse
Affiliation(s)
- Yitong Ding
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Gang Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Keunhyuk Ryu
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China.
| | - JianGuo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Shancheng Wang
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China.
| | - Ying Xiong
- State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Shaoyun Guo
- State Key Laboratory of Polymer Materials Engineering, Sichuan Provincial Engineering Laboratory of Plastic/Rubber Complex Processing Technology, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Yi Long
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China.
| |
Collapse
|
2
|
Julius D, Lee JY, Hong L. Microgel with a Core-Shell Particulate Structure Formed via Spinodal Decomposition of a Diblock Ionomer Containing a Doped Hydrophobic Moiety. Gels 2025; 11:231. [PMID: 40277667 PMCID: PMC12027152 DOI: 10.3390/gels11040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
This study explored the formation of soft colloidal particles from a diblock ionomer (DI) with the monomeric composition (acrylonitrile)x-co-(glycidyl methacrylate)y-b-(3-sulfopropyl methacrylate potassium)z-abbreviated as (AxGy)Sz, where x >> z > y. A colloidal dispersion was generated by introducing water into the pre-prepared DMSO solutions of DI, which led to micelle formation and subsequent coagulation. The assembly of the hydrophobic (AxGy) blocks was influenced by water content and chain conformational flexibility (the ability to adopt various forms of conformation). The resulting microgel structure (in particle form) consists of coagulated micelles characterized by discrete internal hydrophobic gel domains and continuous external hydrophilic gel layers. Characterization methods included light scattering, zeta potential analysis, and particle size distribution measurements. In contrast, the copolymer (AxGy) chains form random coil aggregates in DMSO-H2O mixtures, displaying a chain packing state distinct from the hydrophobic gel domains as aforementioned. Additionally, the amphiphilic glycidyl methacrylate (G) units within the (AxGy) block were found to modulate the microgel dimensions. Notably, the nanoscale hydrogel corona exhibits high accessibility to reactive species in aqueous media. The typical microgel has a spherical shape with a diameter ranging from 50 to 120 nm. It exhibits a zeta potential of -65 mV in a neutral aqueous medium; however, it may precipitate if the metastable colloidal dispersion state cannot be maintained. Its properties could be tailored through adjusting the internal chain conformation, highlighting its potential for diverse applications.
Collapse
Affiliation(s)
| | | | - Liang Hong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore; (D.J.); (J.Y.L.)
| |
Collapse
|
3
|
Reich M, Colla T, Likos CN. Structural transitions of ionic microgel solutions driven by circularly polarized electric fields. SOFT MATTER 2025; 21:1516-1528. [PMID: 39879073 DOI: 10.1039/d4sm01414f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
In this work, a theoretical approach is developed to investigate the structural properties of ionic microgels induced by a circularly polarized (CP) electric field. Following a similar study on chain formation in the presence of linearly polarized fields [T. Colla et al., ACS Nano, 2018, 12, 4321-4337], we propose an effective potential between microgels which incorporates the field-induced interactions via a static, time averaged polarizing charge at the particle surface. In such a coarse-graining framework, the induced dipole interactions are controlled by external parameters such as the field strength and frequency, ionic strength, as well as microgel charge and concentration, thus providing a convenient route to induce different self-assembly scenarios through experimentally adjustable quantities. In contrast to the case of linearly polarized fields, dipole interactions in the case of CP light are purely repulsive in the direction perpendicular to the polarization plane, while featuring an in-plane attractive well. As a result, the CP field induces layering of planar sheets arranged perpendicularly to the field direction, in strong contrast to the chain formation observed in the case of linear polarizations. Depending on the field strength and particle concentration, in-plane crystallization can also take place. Combining molecular dynamics (MD) simulations and the liquid-state hypernetted-chain (HNC) formalism, we herein investigate the emergence of layering formation and in-plane crystal ordering as the dipole strength and microgel concentration are changed over a wide region of parameter space.
Collapse
Affiliation(s)
- Markus Reich
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Thiago Colla
- Instituto de Física, Universidade Federal de Ouro Preto, Ouro Preto, 35400-000, Brazil.
| | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
4
|
Walkowiak JJ, Litzen I, Michalska-Walkowiak J, Förster B, Stouten J, Bernaerts KV, Demco DE, Pich A. Microgels with controlled network topologies by photocrosslinking-assisted continuous precipitation polymerization. J Colloid Interface Sci 2024; 675:614-619. [PMID: 38991275 DOI: 10.1016/j.jcis.2024.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
In this study, we present a new synthesis methodology based on photo-crosslinking-assisted continuous precipitation polymerization which allows controlling the distribution of crosslinks in microgels. In our approach we substituted conventional crosslinking agent by a comonomer carrying photo-crosslinkable 4-oxocyclopent-2-en-1-yl group. Microgel size, morphology, distribution of crosslinks and packing density of the polymer chains are studied as a function of retention time (Rt) in the flow reactor. Dynamic and static light scattering (DLS and SLS) as well as small angle X-ray scattering (SAXS) proved an excellent level of control over the distribution of crosslinks in microgels during the polymerization process. These results were confirmed by atomic force microscopy (AFM), indicating a difference in microgel stiffness and arrangement of the polymer network as resulting from increased Rt.
Collapse
Affiliation(s)
- Jacek J Walkowiak
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany; DWI - Leibniz-Institute for Interactive Materials e.V, Forckenbeckstraße 50, 52074 Aachen, Germany; Sustainable Polymer Synthesis Group, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, the Netherlands
| | - Inga Litzen
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany; DWI - Leibniz-Institute for Interactive Materials e.V, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Joanna Michalska-Walkowiak
- CNRS, UMR 8232 - IPCM - Institut Parisien de Chimie Moléculaire - Polymer Chemistry Team, Sorbonne Université, 4 Pl. Jussieu, 75005 Paris, France
| | - Beate Förster
- Ernst Ruska Centre (ER-C 1) Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jules Stouten
- Sustainable Polymer Synthesis Group, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, the Netherlands
| | - Katrien V Bernaerts
- Sustainable Polymer Synthesis Group, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, the Netherlands
| | - Dan E Demco
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany; DWI - Leibniz-Institute for Interactive Materials e.V, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Andrij Pich
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany; DWI - Leibniz-Institute for Interactive Materials e.V, Forckenbeckstraße 50, 52074 Aachen, Germany; Sustainable Polymer Synthesis Group, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, the Netherlands.
| |
Collapse
|
5
|
Migliozzi S, He Y, Parhizkar M, Lan Y, Angeli P. Pickering emulsions for stimuli-responsive transdermal drug delivery: effect of rheology and microstructure on performance. SOFT MATTER 2024; 20:8621-8637. [PMID: 39431994 DOI: 10.1039/d4sm00993b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
This work investigates the design of stimuli-responsive Pickering emulsions (PEs) for transdermal drug delivery applications, by exploring the impact of stabilising microgels size and interactions on their rheological and release properties. Temperature-responsive poly(N-isopropylacrylamide) microgels modified with 1-benzyl-3-vinylimidazolium bromide (pNIPAM-co-BVI) are synthesized in varying sizes and used to stabilise jojoba oil-in-water concentrated emulsions. The results reveals two distinct behaviours: for small microgels (∼300 nm), the PEs exhibit a smooth, uniform structure characterised by a mild yield stress, characteristic of soft glassy systems. Conversely, larger microgels (∼800 nm) induce droplet clustering, resulting in increased elasticity and a more complex yielding process. Interestingly, transdermal delivery tests demonstrate that microstructure, rather than bulk rheology, governs sustained drug release. The release process can be modelled as diffusion-controlled transport through a porous medium with random traps. At room temperature, the trap size corresponds to the droplet size, and the release time scales with the total dispersed phases volume fraction. However, at physiological temperature (37 °C), above the volume-phase transition temperature of the microgels, the release time increases significantly. The trap size approaches the microgel size, suggesting that microgel porosity becomes the dominant factor controlling drug release. Overall, the results highlight the critical role of microstructure design in optimising stimuli-responsive PEs for controlled transdermal drug delivery.
Collapse
Affiliation(s)
- Simona Migliozzi
- Department of Chemical Engineering, University College London, London, UK.
| | - Yiting He
- Department of Chemical Engineering, University College London, London, UK.
- Centre for Nature Inspired Engineering, University College London, London, UK
| | | | - Yang Lan
- Department of Chemical Engineering, University College London, London, UK.
- Centre for Nature Inspired Engineering, University College London, London, UK
| | - Panagiota Angeli
- Department of Chemical Engineering, University College London, London, UK.
| |
Collapse
|
6
|
Feng Z, Li C, Yi X, Xue C, Gao X, Liao L, Xiang Q, Shen X, Pei Z. Raman spectroscopy and molecular dynamics simulations of protein microgels at the oil-water interface. Int J Biol Macromol 2024; 279:135398. [PMID: 39245112 DOI: 10.1016/j.ijbiomac.2024.135398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The real-time structural changes of the molecular space conformation of myofibrillar protein microgels (MPM) after heat treatment (90 °C, 30 min) were analyzed by molecular dynamics simulation, and the structural properties and changes of MPM at the oil-water interface were analyzed by the combination of Raman spectroscopy and molecular dynamics simulation. The shift in the oil ratio had a major impact on the transformation of disulfide bonds within the protein molecule. Simultaneously, it caused tryptophan and tyrosine residues (I850 cm-1/ I850 cm-1 > 1) to become exposed, increasing the locations of amino acid residues in the protein that interact with the oil phase. HIPE with different oil phases influenced the change in spatial structural conformation of MPM, and there was a flexible structural change in the molecular space. The HIPE system, which was stabilized by 3.0 wt% MPM and 0.75 oil phase, exhibited a thixotropic recovery of >70 % and the highest elastic modulus G' (822.14 Pa) based on the rheological behavior. It is expected to provide a theoretical basis for the development and utilization of high internal phase emulsion stabilized by microgel protein in food industry.
Collapse
Affiliation(s)
- Zilan Feng
- Hainan Provincial Academician Team Innovation Center, Marine Food Engineering Technology Research Center and Collaborative Innovation Center of Marine Food Deep Processing, Hainan Tropical Ocean University, Sanya 572022, China; School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chuan Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiangzhou Yi
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Changfeng Xue
- Hainan Provincial Academician Team Innovation Center, Marine Food Engineering Technology Research Center and Collaborative Innovation Center of Marine Food Deep Processing, Hainan Tropical Ocean University, Sanya 572022, China
| | - Xia Gao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lin Liao
- Hainan Provincial Academician Team Innovation Center, Marine Food Engineering Technology Research Center and Collaborative Innovation Center of Marine Food Deep Processing, Hainan Tropical Ocean University, Sanya 572022, China
| | - Qiongyao Xiang
- Hainan Provincial Academician Team Innovation Center, Marine Food Engineering Technology Research Center and Collaborative Innovation Center of Marine Food Deep Processing, Hainan Tropical Ocean University, Sanya 572022, China
| | - Xuanri Shen
- Hainan Provincial Academician Team Innovation Center, Marine Food Engineering Technology Research Center and Collaborative Innovation Center of Marine Food Deep Processing, Hainan Tropical Ocean University, Sanya 572022, China.
| | - Zhisheng Pei
- Hainan Provincial Academician Team Innovation Center, Marine Food Engineering Technology Research Center and Collaborative Innovation Center of Marine Food Deep Processing, Hainan Tropical Ocean University, Sanya 572022, China.
| |
Collapse
|
7
|
Al-Shaeli M, Benkhaya S, Al-Juboori RA, Koyuncu I, Vatanpour V. pH-responsive membranes: Mechanisms, fabrications, and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173865. [PMID: 38880142 DOI: 10.1016/j.scitotenv.2024.173865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Understanding the mechanisms of pH-responsiveness allows researchers to design and fabricate membranes with specific functionalities for various applications. The pH-responsive membranes (PRMs) are particular categories of membranes that have an amazing aptitude to change their properties such as permeability, selectivity and surface charge in response to changes in pH levels. This review provides a brief introduction to mechanisms of pH-responsiveness in polymers and categorizes the applied polymers and functional groups. After that, different techniques for fabricating pH-responsive membranes such as grafting, the blending of pH-responsive polymers/microgels/nanomaterials, novel polymers and graphene-layered PRMs are discussed. The application of PRMs in different processes such as filtration membranes, reverse osmosis, drug delivery, gas separation, pervaporation and self-cleaning/antifouling properties with perspective to the challenges and future progress are reviewed. Lastly, the development and limitations of PRM fabrications and applications are compared to provide inclusive information for the advancement of next-generation PRMs with improved separation and filtration performance.
Collapse
Affiliation(s)
- Muayad Al-Shaeli
- Paul Wurth Chair, Faculty of Science, Technology and Medicine, University of Luxembourg, Avenue de l'Universit'e, L-4365 Esch-sur-Alzette, Luxembourg
| | - Said Benkhaya
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Vahid Vatanpour
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran.
| |
Collapse
|
8
|
Mathews HF, Çeper T, Speen T, Bastard C, Bulut S, Pieper MI, Schacher FH, De Laporte L, Pich A. Engineering poly(dehydroalanine)-based gels via droplet-based microfluidics: from bulk to microspheres. SOFT MATTER 2024; 20:6231-6246. [PMID: 39051502 DOI: 10.1039/d4sm00676c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Biomedical applications such as drug delivery, tissue engineering, and functional surface coating rely on switchable adsorption and desorption of specialized guest molecules. Poly(dehydroalanine), a polyzwitterion containing pH-dependent positive and negative charges, shows promise for such reversible loading, especially when integrated into a gel network. Herein, we present the fabrication of poly(dehydroalanine)-derived gels of different size scales and evaluate them with respect to their practical use in biomedicine. Already existing protocols for bulk gelation were remodeled to derive suitable reaction conditions for droplet-based microfluidic synthesis. Depending on the layout of the microfluidic chip, microgels with a size of approximately 30 μm or 200 μm were obtained, whose crosslinking density can be increased by implementing a multi-arm crosslinker. We analyzed the effects of the crosslinker species on composition, permeability, and softness and show that the microgels exhibit advantageous properties inherent to zwitterionic polymer systems, including high hydrophilicity as well as pH- and ionic strength-sensitivity. We demonstrate pH-regulated uptake and release of fluorescent model dyes before testing the adsorption of a small antimicrobial peptide, LL-37. Quantification of the peptide accommodated within the microgels reveals the impact of size and crosslinking density of the microgels. Biocompatibility of the microgels was validated by cell tests.
Collapse
Affiliation(s)
- Hannah F Mathews
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Tolga Çeper
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Tobias Speen
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Céline Bastard
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Selin Bulut
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Maria I Pieper
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7a, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Grüne Aue, 07754 Jena, Germany
| | - Laura De Laporte
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
- Institute of Applied Medical Engineering (AME), Department of Advanced Materials for Biomedicine (AMB), University Hospital RWTH Aachen, Center for Biohybrid Medical Systems (CMBS), Forckenbeckstr. 55, 52074 Aachen, Germany
| | - Andrij Pich
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Brightland Chemelot Campus, Maastricht University, 6167 RD Geleen, The Netherlands
| |
Collapse
|
9
|
Tie S. Microgel delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:147-171. [PMID: 39218501 DOI: 10.1016/bs.afnr.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microgels delivery system have great potential in functional substances encapsulation, protection, release, precise delivery and nutritional intervention. Microgel is a three-dimensional network structure formed by physical or chemical crosslinking of biopolymers, whose characteristics include dispersion and swelling, stable structure, small volume and high specific surface area, and is a special kind of colloid. In this chapter, the common wall materials for preparing food grade microgels, and the main preparation principles, methods, advantages and disadvantages of microgels loaded with functional substances were firstly reviewed. Then the main characteristics of microgel as delivery system, such as deformability, high encapsulation, stimulus-responsive release and targeted delivery, and its potential benefits in intervening chronic diseases were summarized. Finally, the applications of microgel delivery system for functional substance in the field of precision nutrition were discussed. This chapter will help to design of next-generation advanced targeting microgel delivery system, and realize precision nutrition intervention of food functional substances on body health.
Collapse
Affiliation(s)
- Shanshan Tie
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, P.R. China.
| |
Collapse
|
10
|
Arif M, Rauf A, Akhter T. A review on Ag nanoparticles fabricated in microgels. RSC Adv 2024; 14:19381-19399. [PMID: 38887640 PMCID: PMC11182451 DOI: 10.1039/d4ra02467b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
In recent years, there has been growing interest in the composites of multi-responsive microgels and silver nanoparticles. This innovative hybrid system harnesses the responsive qualities of microgels while capitalizing on the optical and electronic attributes of silver nanoparticles. This combined system demonstrates a rapid response to minor changes in pH, temperature, ionic strength of the medium, and the concentration of specific biological substances. This review article presents an overview of the recent advancements in the synthesis, classification, characterization methods, and properties of microgels loaded with silver nanoparticles. Furthermore, it explores the diverse applications of these responsive microgels containing silver nanoparticles in catalysis, the biomedical field, nanotechnology, and the mitigation of harmful environmental pollutants.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Abdul Rauf
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Toheed Akhter
- Department of Chemical and Biological Engineering, Gachon University Seongnam-13120 Republic of Korea
| |
Collapse
|
11
|
Hu C, Severin K. Nanogels with Metal-Organic Cages as Functional Crosslinks. Angew Chem Int Ed Engl 2024; 63:e202403834. [PMID: 38579118 DOI: 10.1002/anie.202403834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
A dinuclear metal-organic cage with four acrylate side chains was prepared by self-assembly. Precipitation polymerization of the cage with N-isopropylacrylamide yielded a thermoresponsive nanogel. The host properties of the cage were retained within the gel matrix, endowing the nanogel with the capability to serve as a sorbent for chloride ions in water. Moreover, a heteroleptic cage with the drug abiraterone as co-ligand was integrated into a nanogel. The addition of chloride ions induced a structural rearrangement of the metal-ligand assembly, resulting in the gradual release of abiraterone.
Collapse
Affiliation(s)
- Chaolei Hu
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
12
|
Üclü S, Marschelke C, Drees F, Giesler M, Wilms D, Köhler T, Schmidt S, Synytska A, Hartmann L. Sweet Janus Particles: Multifunctional Inhibitors of Carbohydrate-Based Bacterial Adhesion. Biomacromolecules 2024; 25:2399-2407. [PMID: 38454747 DOI: 10.1021/acs.biomac.3c01333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Escherichia coli and other bacteria use adhesion receptors, such as FimH, to attach to carbohydrates on the cell surface as the first step of colonization and infection. Efficient inhibitors that block these interactions for infection treatment are multivalent carbohydrate-functionalized scaffolds. However, these multivalent systems often lead to the formation of large clusters of bacteria, which may pose problems for clearing bacteria from the infected site. Here, we present Man-containing Janus particles (JPs) decorated on one side with glycomacromolecules to target Man-specific adhesion receptors of E. coli. On the other side, poly(N-isopropylacrylamide) is attached to the particle hemisphere, providing temperature-dependent sterical shielding against binding and cluster formation. While homogeneously functionalized particles cluster with multiple bacteria to form large aggregates, glycofunctionalized JPs are able to form aggregates only with individual bacteria. The formation of large aggregates from the JP-decorated single bacteria can still be induced in a second step by increasing the temperature and making use of the collapse of the PNIPAM hemisphere. This is the first time that carbohydrate-functionalized JPs have been derived and used as inhibitors of bacterial adhesion. Furthermore, the developed JPs offer well-controlled single bacterial inhibition in combination with cluster formation upon an external stimulus, which is not achievable with conventional carbohydrate-functionalized particles.
Collapse
Affiliation(s)
- Serap Üclü
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Claudia Marschelke
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, Dresden 01069, Germany
| | - Felictas Drees
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
- Institute for Macromolecular Chemistry, University Freiburg, Stefan-Meier-Str. 31, Freiburg Im Breisgau 79104, Germany
| | - Markus Giesler
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Dimitri Wilms
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Thorben Köhler
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Stephan Schmidt
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
- Institute for Macromolecular Chemistry, University Freiburg, Stefan-Meier-Str. 31, Freiburg Im Breisgau 79104, Germany
| | - Alla Synytska
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, Dresden 01069, Germany
- Bavarian Polymer Institute, Research Group Functional Polymer Interfaces, University of Bayreuth, Ludwig-Thoma Str. 36a, Bayreuth 95447, Germany
| | - Laura Hartmann
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
- Institute for Macromolecular Chemistry, University Freiburg, Stefan-Meier-Str. 31, Freiburg Im Breisgau 79104, Germany
| |
Collapse
|
13
|
Gupta A, Sood A, Bhardwaj D, Shrimali N, Singhmar R, Chaturvedi S, Guchhait P, Agrawal G. Functionalized Chitosan Decorated Hafnium Oxide@Gold Core–Shell Nanoparticles for Multimodal Cancer Therapy. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 01/06/2025]
Abstract
AbstractHerein, the fabrication of chitosan stabilized multifunctional hafnium oxide@gold core–shell nanoparticles (HAT NPs) (≈12 nm) is described. The developed nanoparticulate system offers multimodal action by providing stimuli responsive anticancer drug delivery along with imparting radiosensitization to cancer cells, thereby protecting surrounding normal tissues from damage. HAT NPs exhibit good capability of loading doxorubicin (DOX), an anticancer drug with ≈87% encapsulation efficiency. DOX loaded HAT NPs are able to release ≈91% DOX under GSH reducing conditions, that is a representative of the cancer cell microenvironment. The cytotoxicity of the developed DOX loaded HAT NPs is tested against breast cancer cells (MDA‐MB‐231) showing higher cytotoxicity as compared to free DOX. In addition, the ability of HAT NPs to generate ROS activity upon irradiation by gamma radiations (0.5 & 5 Gy) is also analyzed in cancer cells to demonstrate the ability of synthesized system as a potent candidate to present radio sensitization. Further, in vivo biodistribution studies are executed to understand the tissue specific retention of HAT NPs for their future utility in targeted cancer treatment applications.
Collapse
Affiliation(s)
- Aastha Gupta
- School of Chemical Sciences and Advanced Materials Research Centre Indian Institute of Technology Mandi Mandi Himachal Pradesh 175075 India
| | - Ankur Sood
- School of Chemical Sciences and Advanced Materials Research Centre Indian Institute of Technology Mandi Mandi Himachal Pradesh 175075 India
| | - Dimpy Bhardwaj
- School of Chemical Sciences and Advanced Materials Research Centre Indian Institute of Technology Mandi Mandi Himachal Pradesh 175075 India
| | - Nishith Shrimali
- Disease Biology Laboratory Regional Centre for Biotechnology National Capital Region Biotech Science Cluster Faridabad Haryana 121001 India
| | - Ritu Singhmar
- School of Chemical Sciences and Advanced Materials Research Centre Indian Institute of Technology Mandi Mandi Himachal Pradesh 175075 India
| | - Shubhra Chaturvedi
- Institute of Nuclear Medicine and Allied Sciences (INMAS) Defence Research and Development Organization (DRDO) Lucknow Road, Timarpur New Delhi 110054 India
| | - Prasenjit Guchhait
- Disease Biology Laboratory Regional Centre for Biotechnology National Capital Region Biotech Science Cluster Faridabad Haryana 121001 India
| | - Garima Agrawal
- School of Chemical Sciences and Advanced Materials Research Centre Indian Institute of Technology Mandi Mandi Himachal Pradesh 175075 India
| |
Collapse
|
14
|
Stock S, Mirau L, Rutsch M, Wismath S, Kupnik M, von Klitzing R, Rahimzadeh A. Ultrasound-Induced Adsorption of Acousto-Responsive Microgels at Water-Oil Interface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305395. [PMID: 38093508 PMCID: PMC10837341 DOI: 10.1002/advs.202305395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Indexed: 02/04/2024]
Abstract
Ultrasonic mixing is a well-established method to disperse and mix substances. However, the effects of ultrasound on dispersed soft particles as well as on their adsorption kinetics at interfaces remain unexplored. Ultrasound not only accelerates the movement of particles via acoustic streaming, but recent research indicates that it can also manipulate the interaction of soft particles with the surrounding liquid. In this study, it evaluates the adsorption kinetics of microgel at the water-oil interface under the influence of ultrasound. It quantifies how acoustic streaming accelerates the reduction of interfacial tension. It uses high-frequency and low-amplitude ultrasound, which has no destructive effects. Furthermore, it discusses the ultrasound-induced shrinking and thus interfacial rearrangement of the microgels, which plays a secondary but non-negligible role on interfacial tension reduction. It shows that the decrease in interfacial tension due to the acoustic streaming is stronger for microgels with higher cross-linker density. Moreover, it shows that ultrasound can induce a reversible decrease in interfacial tension due to the shrinkage of microgels at the interface. The presented results may lead to a better understanding in any field where ultrasonic waves meet soft particles, e.g., controlled destabilization in foams and emulsions or systems for drug release.
Collapse
Affiliation(s)
- Sebastian Stock
- Soft Matter at Interfaces, Department of Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289, Darmstadt, Germany
| | - Luca Mirau
- Soft Matter at Interfaces, Department of Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289, Darmstadt, Germany
| | - Matthias Rutsch
- Measurement and Sensor Technology, Technische Universität Darmstadt, Merckstraße 25, 64283, Darmstadt, Germany
| | - Sonja Wismath
- Measurement and Sensor Technology, Technische Universität Darmstadt, Merckstraße 25, 64283, Darmstadt, Germany
| | - Mario Kupnik
- Measurement and Sensor Technology, Technische Universität Darmstadt, Merckstraße 25, 64283, Darmstadt, Germany
| | - Regine von Klitzing
- Soft Matter at Interfaces, Department of Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289, Darmstadt, Germany
| | - Amin Rahimzadeh
- Soft Matter at Interfaces, Department of Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289, Darmstadt, Germany
| |
Collapse
|
15
|
Nguyen DT, Liu R, Ogando-Rivas E, Pepe A, Pedro D, Qdaisat S, Nguyen NTY, Lavrador JM, Golde GR, Smolchek RA, Ligon J, Jin L, Tao H, Webber A, Phillpot S, Mitchell DA, Sayour EJ, Huang J, Castillo P, Gregory Sawyer W. Bioconjugated liquid-like solid enhances characterization of solid tumor - chimeric antigen receptor T cell interactions. Acta Biomater 2023; 172:466-479. [PMID: 37788737 DOI: 10.1016/j.actbio.2023.09.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable success as an immunotherapy for hematological malignancies, and its potential for treating solid tumors is an active area of research. However, limited trafficking and mobility of T cells within the tumor microenvironment (TME) present challenges for CAR T cell therapy in solid tumors. To gain a better understanding of CAR T cell function in solid tumors, we subjected CD70-specific CAR T cells to a challenge by evaluating their immune trafficking and infiltration through a confined 3D microchannel network in a bio-conjugated liquid-like solid (LLS) medium. Our results demonstrated successful CAR T cell migration and anti-tumor activity against CD70-expressing glioblastoma and osteosarcoma tumors. Through comprehensive analysis of cytokines and chemokines, combined with in situ imaging, we elucidated that immune recruitment occurred via chemotaxis, and the effector-to-target ratio plays an important role in overall antitumor function. Furthermore, through single-cell collection and transcriptomic profiling, we identified differential gene expression among the immune subpopulations. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach. STATEMENT OF SIGNIFICANCE: The use of specialized immune cells named CAR T cells to combat cancers has demonstrated remarkable success against blood cancers. However, this success is not replicated in solid tumors, such as brain or bone cancers, mainly due to the physical barriers of these solid tumors. Currently, preclinical technologies do not allow for reliable evaluation of tumor-immune cell interactions. To better study these specialized CAR T cells, we have developed an innovative in vitro three-dimensional model that promises to dissect the interactions between tumors and CAR T cells at the single-cell level. Our findings provide valuable insights into the complex dynamics of CAR T cell function in solid tumors, informing future research and development in this promising cancer treatment approach.
Collapse
Affiliation(s)
- Duy T Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Ruixuan Liu
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Elizabeth Ogando-Rivas
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Alfonso Pepe
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Diego Pedro
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Sadeem Qdaisat
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States; University of Florida Genetics Institute, Gainesville, FL 32610, United States
| | - Nhi Tran Yen Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Julia M Lavrador
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Griffin R Golde
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Ryan A Smolchek
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States
| | - John Ligon
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, United States
| | - Linchun Jin
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Haipeng Tao
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Alex Webber
- Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Simon Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32610, United States
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Elias J Sayour
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States
| | - Jianping Huang
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, McKnight Brain Institute, University of Florida, University of Florida Brain Tumor Immunotherapy Program, Gainesville, FL 32611, United States.
| | - Paul Castillo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, United States.
| | - W Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
16
|
Dhiman A, Bhardwaj D, Goswami K, Agrawal G. Biodegradable redox sensitive chitosan based microgels for potential agriculture application. Carbohydr Polym 2023; 313:120893. [PMID: 37182935 DOI: 10.1016/j.carbpol.2023.120893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
In this work, we report redox sensitive, 2,3-dihydroxybenzoic acid (DH) functionalized chitosan/stearic acid microgels (DH-ChSt MGs) for controlled delivery of insecticide and capturing of heavy metal ions. DH-ChSt MGs (≈146 nm) are prepared by disulfide crosslinking of SH functionalized chitosan and stearic acid rendering them biodegradable. DH-ChSt MGs exhibit high loading (≈8 %) and encapsulation (≈85 %) efficiency for imidacloprid insecticide, and offer its prolonged release (≈75 % after 133 h) under reducing conditions. Functionalization with DH provides enhanced foliar adhesion on pea leaves. DH-ChSt MGs also bind Fe3+ very efficiently due to the strong chelation of Fe3+ by DH, offering the opportunity of supplying Fe3+ nutrient for plant care. MTT assay results using different cells confirm that DH-ChSt MGs are nontoxic up to the experimental concentration of 120 μg/mL. Additionally, reduced DH-ChSt MGs having free thiol groups are also capable of binding heavy metal ions, thus presenting the reported formulation as a promising platform for agriculture application.
Collapse
Affiliation(s)
- Ankita Dhiman
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Himachal Pradesh 175075, India
| | - Dimpy Bhardwaj
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Himachal Pradesh 175075, India
| | - Kajal Goswami
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Himachal Pradesh 175075, India
| | - Garima Agrawal
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Himachal Pradesh 175075, India.
| |
Collapse
|
17
|
Walkowiak JJ, van Duijnhoven C, Boeschen P, Wolter NA, Michalska-Walkowiak J, Dulle M, Pich A. Multicompartment polymeric colloids from functional precursor Microgel: Synthesis in continuous process. J Colloid Interface Sci 2023; 634:243-254. [PMID: 36535162 DOI: 10.1016/j.jcis.2022.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Raspberry-like poly(oligoethylene methacrylate-b-N-vinylcaprolactam)/polystyrene (POEGMA-b-PVCL/PS) patchy particles (PPs) and complex colloidal particle clusters (CCPCs) were fabricated in two-, and one-step (cascade) flow process. Surfactant-free, photo-initiated reversible addition-fragmentation transfer (RAFT) precipitation polymerization (Photo-RPP) was used to develop internally cross-linked POEGMA-b-PVCL microgels with narrow size distribution. Resulting microgel particles were then used to stabilize styrene seed droplets in water, producing raspberry-like PPs. In the cascade process, different hydrophobicity between microgel and PS induced the self-assembly of the first formed raspberry particles that then polymerized continuously in a Pickering emulsion to form the CCPCs. The internal structure as well as the surface morphology of PPs and CCPCs were studied as a function of polymerization conditions such as flow rate/retention time (Rt), temperature and the amount of used cross-linker. By performing Photo-RPP in tubular flow reactor we were able to gained advantages over heat dissipation and homogeneous light distribution in relation to thermally-, and photo-initiated bulk polymerizations. Tubular reactor also enabled detailed studies over morphological evolution of formed particles as a function of flow rate/Rt.
Collapse
Affiliation(s)
- Jacek J Walkowiak
- DWI - Leibniz-Institute for Interactive Materials e.V, Forckenbeckstraße 50, 52074 Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany; Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| | - Casper van Duijnhoven
- Zuyd University of Applied Sciences, Nieuw Eyckholt 300, 6419 DJ Heerlen, The Netherlands.
| | - Pia Boeschen
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| | - Nadja A Wolter
- DWI - Leibniz-Institute for Interactive Materials e.V, Forckenbeckstraße 50, 52074 Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.
| | - Joanna Michalska-Walkowiak
- Jülich Centre for Neutron Science (JCNS-1), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straβe, 52428 Jülich, Germany; CNRS, UMR 8232 - IPCM - Institut Parisien de Chimie Moléculaire - Polymer Chemistry Team, Sorbonne Université, 4 Pl. Jussieu, 75005 Paris, France.
| | - Martin Dulle
- Jülich Centre for Neutron Science (JCNS-1), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straβe, 52428 Jülich, Germany.
| | - Andrij Pich
- DWI - Leibniz-Institute for Interactive Materials e.V, Forckenbeckstraße 50, 52074 Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany; Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| |
Collapse
|
18
|
Gupta A, Dhiman A, Sood A, Bharadwaj R, Silverman N, Agrawal G. Dextran/eudragit S-100 based redox sensitive nanoparticles for colorectal cancer therapy. NANOSCALE 2023; 15:3273-3283. [PMID: 36723053 PMCID: PMC10061532 DOI: 10.1039/d3nr00248a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Herein, we present disulfide crosslinked dextran/eudragit S-100 nanoparticles (DEEU NPs) (≈55 nm) for colorectal cancer treatment. These redox environment sensitive DEEU NPs are synthesized by simple oxidation of thiolated polymers in air. This approach allows avoiding the use of any additional chemical crosslinker. These DEEU NPs have high encapsulation efficiency for the doxorubicin (DOX) model drug (≈95%). The prepared DEEU NPs are redox sensitive owing to disulfide units and exhibit ≈80% DOX release in the reducing environment of GSH. Additionally, DOX-DEEU NPs display enhanced cytotoxicity for HCT116 cancer cells as compared to free DOX. Annexin V staining results also support the higher anticancer efficiency of DOX-DEEU NPs via induction of apoptosis. In vivo biodistribution results demonstrate that DEEU NPs can remain in the colon region for up to 24 hours. These results indicate that DEEU NPs can act as a promising platform for colorectal cancer treatment.
Collapse
Affiliation(s)
- Aastha Gupta
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P.-175075, India.
| | - Ankita Dhiman
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P.-175075, India.
| | - Ankur Sood
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P.-175075, India.
| | - Ravi Bharadwaj
- Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Neal Silverman
- Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Garima Agrawal
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P.-175075, India.
| |
Collapse
|
19
|
Shaulli X, Rivas-Barbosa R, Bergman MJ, Zhang C, Gnan N, Scheffold F, Zaccarelli E. Probing Temperature Responsivity of Microgels and Its Interplay with a Solid Surface by Super-Resolution Microscopy and Numerical Simulations. ACS NANO 2023; 17:2067-2078. [PMID: 36656959 PMCID: PMC9933603 DOI: 10.1021/acsnano.2c07569] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Super-resolution microscopy has become a powerful tool to investigate the internal structure of complex colloidal and polymeric systems, such as microgels, at the nanometer scale. An interesting feature of this method is the possibility of monitoring microgel response to temperature changes in situ. However, when performing advanced microscopy experiments, interactions between the particle and the environment can be important. Often microgels are deposited on a substrate, since they have to remain still for several minutes during the experiment. This study uses direct stochastic optical reconstruction microscopy (dSTORM) and advanced coarse-grained molecular dynamics simulations to investigate how individual microgels anchored on hydrophilic and hydrophobic surfaces undergo their volume phase transition with temperature. We find that, in the presence of a hydrophilic substrate, the structure of the microgel is unperturbed and the resulting density profiles quantitatively agree with simulations performed under bulk conditions. Instead, when a hydrophobic surface is used, the microgel spreads at the interface and an interesting competition between the two hydrophobic strengths,monomer-monomer vs monomer-surface,comes into play at high temperatures. The robust agreement between experiments and simulations makes the present study a fundamental step to establish this high-resolution monitoring technique as a platform for investigating more complex systems, these being either macromolecules with peculiar internal structure or nanocomplexes where molecules of interest can be encapsulated in the microgel network and controllably released with temperature.
Collapse
Affiliation(s)
- Xhorxhina Shaulli
- Department
of Physics, University of Fribourg, Chemin du Musée 3, 1700Fribourg, Switzerland
| | - Rodrigo Rivas-Barbosa
- Department
of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185Roma, Italy
| | - Maxime J. Bergman
- Department
of Physics, University of Fribourg, Chemin du Musée 3, 1700Fribourg, Switzerland
| | - Chi Zhang
- Department
of Physics, University of Fribourg, Chemin du Musée 3, 1700Fribourg, Switzerland
| | - Nicoletta Gnan
- Department
of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185Roma, Italy
- CNR
Institute of Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185Roma, Italy
| | - Frank Scheffold
- Department
of Physics, University of Fribourg, Chemin du Musée 3, 1700Fribourg, Switzerland
| | - Emanuela Zaccarelli
- Department
of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185Roma, Italy
- CNR
Institute of Complex Systems, Uos Sapienza, Piazzale Aldo Moro 2, 00185Roma, Italy
| |
Collapse
|
20
|
Papadopoulou-Fermeli N, Lagopati N, Pippa N, Sakellis E, Boukos N, Gorgoulis VG, Gazouli M, Pavlatou EA. Composite Nanoarchitectonics of Photoactivated Titania-Based Materials with Anticancer Properties. Pharmaceutics 2022; 15:135. [PMID: 36678763 PMCID: PMC9864881 DOI: 10.3390/pharmaceutics15010135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023] Open
Abstract
The synthesis of titania-based composite materials with anticancer potential under visible-light irradiation is the aim of this study. In specific, titanium dioxide (TiO2) nanoparticles (NPs) chemically modified with silver were embedded in a stimuli-responsive microgel (a crosslinked interpenetrating network (IP) network that was synthesized by poly (N-Isopropylacrylamide) and linear chains of polyacrylic acid sodium salt, forming composite particles. The ultimate goal of this research, and for our future plans, is to develop a drug-delivery system that uses optical fibers that could efficiently photoactivate NPs, targeting cancer cells. The produced Ag-TiO2 NPs, the microgel and the composite materials were characterized through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), micro-Raman spectroscopy, ultraviolet-visible spectroscopy (UV-Vis), dynamic light scattering (DLS) and transmission electron microscopy (TEM). Our results indicated that Ag-TiO2 NPs were successfully embedded within the thermoresponsive microgel. Either Ag-TiO2 NPs or the composite materials exhibited high photocatalytic degradation efficiency on the pollutant rhodamine B and significant anticancer potential under visible-light irradiation.
Collapse
Affiliation(s)
- Nefeli Papadopoulou-Fermeli
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15789 Zografou, Greece
| | - Nefeli Lagopati
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15789 Zografou, Greece
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Elias Sakellis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, 15310 Agia Paraskevi, Greece
| | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, 15310 Agia Paraskevi, Greece
| | - Vassilis G. Gorgoulis
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Clinical Molecular Pathology, Medical School, University of Dundee, Dundee DD1 9SY, UK
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7YH, UK
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15789 Zografou, Greece
| |
Collapse
|
21
|
Komarova GA, Kozhunova EY, Potemkin II. Behavior of PNIPAM Microgels in Different Organic Solvents. Molecules 2022; 27:8549. [PMID: 36500646 PMCID: PMC9737493 DOI: 10.3390/molecules27238549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
In this research, we studied, in detail, the behavior of common PNIPAM microgels, obtained through surfactant-free precipitation polymerization, in a number of organic solvents. We showed that many of the selected solvents serve as good solvents for the PNIPAM microgels and that the size and architecture of the microgels depend on the solvent chosen. Expanding the range of solvents used for PNIPAM microgel incubation greatly enhances the possible routes for microparticle functionalization and modification, as well as the encapsulation of water-insoluble species. In this demonstration, we successfully encapsulated water-insoluble Sudan III dye in PNIPAM microgels and prepared the aqueous dispersions of such composite-colored microparticles.
Collapse
Affiliation(s)
- Galina A. Komarova
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| | - Elena Yu. Kozhunova
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russia
| | - Igor I. Potemkin
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russia
| |
Collapse
|
22
|
Gupta A, Sood A, Dhiman A, Shrimali N, Singhmar R, Guchhait P, Agrawal G. Redox responsive poly(allylamine)/eudragit S-100 nanoparticles for dual drug delivery in colorectal cancer. BIOMATERIALS ADVANCES 2022; 143:213184. [PMID: 36371969 DOI: 10.1016/j.bioadv.2022.213184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Herein, we report redox responsive, colon cancer targeting poly(allylamine) (PA)/eudragit S-100 (EU) nanoparticles (PAEU NPs) (≈59 nm). These disulfide crosslinked PAEU NPs are developed via air oxidation of thiolated PA and thiolated EU, eliminating the need of any external crosslinking agent for dual drug delivery. PAEU NPs can effectively encapsulate both hydrophilic doxorubicin (DOX) and hydrophobic curcumin (Cur) drug with ≈85 % and ≈97 % encapsulation efficiency respectively. Here, the combination of drugs having different anticancer mechanism offers the possibility of developing nanosystem with enhanced anticancer efficacy. The developed PAEU NPs show good colloidal stability and low drug release under physiological conditions, while high DOX (≈98 %) and Cur (≈93 %) release is observed in reducing environment (10 mM GSH). Further, DOX and Cur loaded PAEU NPs exhibit higher cancer cell killing efficiency as compared to individual free drugs. In vivo biodistribution studies with Balb/C mice display the retention of PAEU NPs in the colon region up to 24 h presenting the developed approach as an efficient way for colorectal cancer therapy.
Collapse
Affiliation(s)
- Aastha Gupta
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Ankur Sood
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Ankita Dhiman
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Nishith Shrimali
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Ritu Singhmar
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Prasenjit Guchhait
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Garima Agrawal
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India.
| |
Collapse
|
23
|
Kumar N, Ghosh B, Kumar A, Koley R, Dhara S, Chattopadhyay S. Multilayered “SMART” hydrogel systems for on-site drug delivery applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Kharandiuk T, Tan KH, Xu W, Weitenhagen F, Braun S, Göstl R, Pich A. Mechanoresponsive diselenide-crosslinked microgels with programmed ultrasound-triggered degradation and radical scavenging ability for protein protection. Chem Sci 2022; 13:11304-11311. [PMID: 36320583 PMCID: PMC9533411 DOI: 10.1039/d2sc03153a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
In the context of controlled delivery and release, proteins constitute a delicate class of cargo requiring advanced delivery platforms and protection. We here show that mechanoresponsive diselenide-crosslinked microgels undergo controlled ultrasound-triggered degradation in aqueous solution for the release of proteins. Simultaneously, the proteins are protected from chemical and conformational damage by the microgels, which disintegrate to water-soluble polymer chains upon sonication. The degradation process is controlled by the amount of diselenide crosslinks, the temperature, and the sonication amplitude. We demonstrate that the ultrasound-mediated cleavage of diselenide bonds in these microgels facilitates the release and activates latent functionality preventing the oxidation and denaturation of the encapsulated proteins (cytochrome C and myoglobin) opening new application possibilities in the targeted delivery of biomacromolecules.
Collapse
Affiliation(s)
- Tetiana Kharandiuk
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Kok Hui Tan
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Wenjing Xu
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Fabian Weitenhagen
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Susanne Braun
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Robert Göstl
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Andrij Pich
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus Urmonderbaan 22, 6167 RD Geleen The Netherlands
| |
Collapse
|
25
|
Nguyen DT, Ogando-Rivas E, Liu R, Wang T, Rubin J, Jin L, Tao H, Sawyer WW, Mendez-Gomez HR, Cascio M, Mitchell DA, Huang J, Sawyer WG, Sayour EJ, Castillo P. CAR T Cell Locomotion in Solid Tumor Microenvironment. Cells 2022; 11:1974. [PMID: 35741103 PMCID: PMC9221866 DOI: 10.3390/cells11121974] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023] Open
Abstract
The promising outcomes of chimeric antigen receptor (CAR) T cell therapy in hematologic malignancies potentiates its capability in the fight against many cancers. Nevertheless, this immunotherapy modality needs significant improvements for the treatment of solid tumors. Researchers have incrementally identified limitations and constantly pursued better CAR designs. However, even if CAR T cells are armed with optimal killer functions, they must overcome and survive suppressive barriers imposed by the tumor microenvironment (TME). In this review, we will discuss in detail the important role of TME in CAR T cell trafficking and how the intrinsic barriers contribute to an immunosuppressive phenotype and cancer progression. It is of critical importance that preclinical models can closely recapitulate the in vivo TME to better predict CAR T activity. Animal models have contributed immensely to our understanding of human diseases, but the intensive care for the animals and unreliable representation of human biology suggest in vivo models cannot be the sole approach to CAR T cell therapy. On the other hand, in vitro models for CAR T cytotoxic assessment offer valuable insights to mechanistic studies at the single cell level, but they often lack in vivo complexities, inter-individual heterogeneity, or physiologically relevant spatial dimension. Understanding the advantages and limitations of preclinical models and their applications would enable more reliable prediction of better clinical outcomes.
Collapse
Affiliation(s)
- Duy T. Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
| | - Elizabeth Ogando-Rivas
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Ruixuan Liu
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Theodore Wang
- College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Jacob Rubin
- Warrington College of Business, University of Florida, Gainesville, FL 32610, USA;
| | - Linchun Jin
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Haipeng Tao
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - William W. Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Hector R. Mendez-Gomez
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Matthew Cascio
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Duane A. Mitchell
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Jianping Huang
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - W. Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
| | - Elias J. Sayour
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Paul Castillo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
26
|
Shao R, Wang Y, Li L, Dong Y, Zhao J, Liang W. Bone tumors effective therapy through functionalized hydrogels: current developments and future expectations. Drug Deliv 2022; 29:1631-1647. [PMID: 35612368 PMCID: PMC9154780 DOI: 10.1080/10717544.2022.2075983] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Primary bone tumors especially, sarcomas affect adolescents the most because it originates from osteoblasts cells responsible for bone growth. Chemotherapy, surgery, and radiation therapy are the most often used clinical treatments. Regrettably, surgical resection frequently fails to entirely eradicate the tumor, which is the primary cause of metastasis and postoperative recurrence, leading to a high death rate. Additionally, bone tumors frequently penetrate significant regions of bone, rendering them incapable of self-repair, and impairing patients' quality of life. As a result, treating bone tumors and regenerating bone in the clinic is difficult. In recent decades, numerous sorts of alternative therapy approaches have been investigated due to a lack of approved treatments. Among the novel therapeutic approaches, hydrogel-based anticancer therapy has cleared the way for the development of new targeted techniques for treating bone cancer and bone regeneration. They include strategies such as co-delivery of several drug payloads, enhancing their biodistribution and transport capabilities, normalizing accumulation, and optimizing drug release profiles to decrease the limitations of current therapy. This review discusses current advances in functionalized hydrogels to develop a new technique for treating bone tumors by reducing postoperative tumor recurrence and promoting tissue repair.
Collapse
Affiliation(s)
- Ruyi Shao
- Department of Orthopedics, Zhuji People's Hospital, Shaoxing, Zhejiang, China
| | - Yeben Wang
- Department of Traumatic Orthopedics, Affiliated Jinan Third Hospital of Jining Medical University, Jinan, Shandong, China
| | - Laifeng Li
- Department of Traumatic Orthopedics, Affiliated Jinan Third Hospital of Jining Medical University, Jinan, Shandong, China
| | - Yongqiang Dong
- Department of Orthopaedics, Xinchang People's Hospital, Shaoxing, Zhejiang, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| |
Collapse
|
27
|
Two-dimensional colloidal crystal of soft microgel spheres: Development, preparation and applications. Colloids Surf B Biointerfaces 2022; 212:112358. [PMID: 35101822 DOI: 10.1016/j.colsurfb.2022.112358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
Two-dimensional (2D) colloidal crystals are ordered monolayer arrays of colloidal sphere particles assembled on the substrates or at phase interfaces. Owing to their unique periodic structure and fascinating properties, 2D colloidal crystals have aroused considerable interest because of their potential applications. Among them, 2D colloidal crystals self-assembled from soft microgel spheres stand out particularly. The 2D colloidal crystals of soft microgel spheres combine the advantages of monolayer colloidal crystals and sensitive microgels, which have a good application prospect in biomedical area. In this article, we provide a systematic overview of 2D colloidal crystals of soft microgel spheres related to their development, preparation and applications. First, various preparation methods of 2D colloidal crystal of microgels are introduced, including dip-coating, drop-coating, spin-coating, interface assembly, surface reaction-assisted assembly, and so forth. Second, representative biomedical applications consisting of optical sensor, drug delivery, antibacterial coating, cell culture, and colloidal template are also exemplified to show the high performance of 2D colloidal crystals of soft microgel spheres. In addition, we also present prospects of future developments of 2D microgel colloidal crystals.
Collapse
|
28
|
Guzmán E, Maestro A. Soft Colloidal Particles at Fluid Interfaces. Polymers (Basel) 2022; 14:polym14061133. [PMID: 35335463 PMCID: PMC8956102 DOI: 10.3390/polym14061133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
The assembly of soft colloidal particles at fluid interfaces is reviewed in the present paper, with emphasis on the particular case of microgels formed by cross-linked polymer networks. The dual polymer/colloid character as well as the stimulus responsiveness of microgel particles pose a challenge in their experimental characterization and theoretical description when adsorbed to fluid interfaces. This has led to a controversial and, in some cases, contradictory picture that cannot be rationalized by considering microgels as simple colloids. Therefore, it is necessary to take into consideration the microgel polymer/colloid duality for a physically reliable description of the behavior of the microgel-laden interface. In fact, different aspects related to the above-mentioned duality control the organization of microgels at the fluid interface, and the properties and responsiveness of the obtained microgel-laden interfaces. This works present a critical revision of different physicochemical aspects involving the behavior of individual microgels confined at fluid interfaces, as well as the collective behaviors emerging in dense microgel assemblies.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo de Juan XXIII, 28040 Madrid, Spain
- Correspondence: (E.G.); (A.M.)
| | - Armando Maestro
- Centro de Física de Materiales (CSIC, UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 San Sebastian, Spain
- IKERBASQUE—Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
- Correspondence: (E.G.); (A.M.)
| |
Collapse
|
29
|
Santi M, Saha P, Walkowiak JJ, Rubner J, Wessling M, Pich A. In-Line Characterization of the Temperature-Responsive Behavior of Surface-Bound Microgel Coatings by QCM-D: A Novel Strategy for Protein Repellence Evaluation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10907-10916. [PMID: 35179345 DOI: 10.1021/acsami.1c21814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, quartz crystal microbalance with dissipation monitoring (QCM-D) was used to develop a new method to evaluate the protein repellency of microgel coatings. Compared to traditional protocols for surface analysis, QCM has the advantage of a real-time quantitative approach with high sensitivity, allowing us to describe variations of the adsorbed mass with unprecedented accuracy. To enable the detectability of the film throughout the whole operational temperature interval, a poly(N-isopropylacrylamide-co-glycidyl methacrylate) p(NIPAm-co-GMA) microgel monolayer with defined thickness and rigidity was designed. Covalent adhesion of the film to the silica surface was achieved by epoxy-thiol click chemistry and tested for repeated temperature cycles, showing substantial reproducibility. Further functionalization of microgel surfaces by grafting polyzwitterionic chains remarkably improved the protein repellence leaving the strong surface adhesion unaltered. Before and after exposure to fluorescein-tagged bovine serum albumin (FITC-BSA), the coatings showed identical responsive behavior, proving the absence of protein deposition. In nonrepellent coatings, QCM monitoring instead displayed a characteristic shift in the volume phase transition (VPT), pointing out the effect of adsorbed proteins on the swelling behavior of pNIPAm. The combination of QCM-D and UV-visible (UV-vis) was used to evaluate the effect of increasing surface coverage, enabling to distinguish between the protein deposition occurring over the coated and the uncoated portion of the sensor.
Collapse
Affiliation(s)
- Marta Santi
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
| | - Pabitra Saha
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
| | - Jacek Janusz Walkowiak
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen 6167 RD, the Netherlands
| | - Jens Rubner
- Chemical Process Engineering AVT.CVT, RWTH Aachen University, Aachen 52074, Germany
| | - Matthias Wessling
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
- Chemical Process Engineering AVT.CVT, RWTH Aachen University, Aachen 52074, Germany
| | - Andrij Pich
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen 6167 RD, the Netherlands
| |
Collapse
|
30
|
Xu X, Bizmark N, Christie KSS, Datta SS, Ren ZJ, Priestley RD. Thermoresponsive Polymers for Water Treatment and Collection. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
|
32
|
Sood A, Gupta A, Agrawal G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100067] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
33
|
Metal Sulfide Semiconductor Nanomaterials and Polymer Microgels for Biomedical Applications. Int J Mol Sci 2021; 22:ijms222212294. [PMID: 34830175 PMCID: PMC8623293 DOI: 10.3390/ijms222212294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
The development of nanomaterials with therapeutic and/or diagnostic properties has been an active area of research in biomedical sciences over the past decade. Nanomaterials have been identified as significant medical tools with potential therapeutic and diagnostic capabilities that are practically impossible to accomplish using larger molecules or bulk materials. Fabrication of nanomaterials is the most effective platform to engineer therapeutic agents and delivery systems for the treatment of cancer. This is mostly due to the high selectivity of nanomaterials for cancerous cells, which is attributable to the porous morphology of tumour cells which allows nanomaterials to accumulate more in tumour cells more than in normal cells. Nanomaterials can be used as potential drug delivery systems since they exist in similar scale as proteins. The unique properties of nanomaterials have drawn a lot of interest from researchers in search of new chemotherapeutic treatment for cancer. Metal sulfide nanomaterials have emerged as the most used frameworks in the past decade, but they tend to aggregate because of their high surface energy which triggers the thermodynamically favoured interaction. Stabilizing agents such as polymer and microgels have been utilized to inhibit the particles from any aggregations. In this review, we explore the development of metal sulfide polymer/microgel nanocomposites as therapeutic agents against cancerous cells.
Collapse
|
34
|
Dulong V, Morel M, Labat B, Picton L, Le Cerf D. Microgels Based on Carboxymethylpullulan Grafted with Ferulic Acid Obtained by Enzymatic Crosslinking in Emulsion for Drug Delivery Systems. Macromol Biosci 2021; 21:e2100165. [PMID: 34174176 DOI: 10.1002/mabi.202100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 11/12/2022]
Abstract
Carboxymethylpullulan (CMP) grafted with ferulic acid (FA) is crosslinked with laccase by the reverse water-in-oil emulsion technique (with sunflower oil) to obtain microgels with size from 40 to 200 µm. It is demonstrated that laccase activity and dispersion time have an impact on microgels' size. Fluorescence spectroscopy of different probes (e.g., pyrene, Nile red, and curcumin) shows the nonpolar characteristics of hydrophobic microdomains formed by the FA moieties and its dimers forming the crosslinking nodes. Encapsulation and release of curcumin or lidocaine used as drug models are studied in different buffers. Curcumin is well encapsulated but retained in microgels, while lidocaine is released at 65-70% in 2 h and 30 min in buffer simulating the gastrointestinal tract and at 75-85% in 1 h in acetate buffer pH 5.6 or phosphate-buffered saline (PBS) pH 6.9.
Collapse
Affiliation(s)
- Virginie Dulong
- UNIROUEN, INSA Rouen, Normandie Univ., CNRS, PBS, Rouen, 76000, France
| | - Morgane Morel
- UNIROUEN, INSA Rouen, Normandie Univ., CNRS, PBS, Rouen, 76000, France
| | - Béatrice Labat
- UNIROUEN, INSA Rouen, Normandie Univ., CNRS, PBS, Rouen, 76000, France
| | - Luc Picton
- UNIROUEN, INSA Rouen, Normandie Univ., CNRS, PBS, Rouen, 76000, France
| | - Didier Le Cerf
- UNIROUEN, INSA Rouen, Normandie Univ., CNRS, PBS, Rouen, 76000, France
| |
Collapse
|
35
|
Xue X, Hu Y, Deng Y, Su J. Recent Advances in Design of Functional Biocompatible Hydrogels for Bone Tissue Engineering. ADVANCED FUNCTIONAL MATERIALS 2021; 31. [DOI: 10.1002/adfm.202009432] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Indexed: 01/06/2025]
Abstract
AbstractBone related diseases have caused serious threats to human health owing to their complexity and specificity. Fortunately, owing to the unique 3D network structure with high aqueous content and functional properties, emerging hydrogels are regarded as one of the most promising candidates for bone tissue engineering, such as repairing cartilage injury, skull defect, and arthritis. Herein, various design strategies and synthesis methods (e.g., 3D‐printing technology and nanoparticle composite strategy) are introduced to prepare implanted hydrogel scaffolds with tunable mechanical strength, favorable biocompatibility, and excellent bioactivity for applying in bone regeneration. Injectable hydrogels based on biocompatible materials (e.g., collagen, hyaluronic acid, chitosan, polyethylene glycol, etc.) possess many advantages in minimally invasive surgery, including adjustable physicochemical properties, filling irregular shapes of defect sites, and on‐demand release drugs or growth factors in response to different stimuli (e.g., pH, temperature, redox, enzyme, light, magnetic, etc.). In addition, drug delivery systems based on micro/nanogels are discussed, and its numerous promising designs used in the application of bone diseases (e.g., rheumatoid arthritis, osteoarthritis, cartilage defect) are also briefed in this review. Particularly, several key factors of hydrogel scaffolds (e.g., mechanical property, pore size, and release behavior of active factors) that can induce bone tissue regeneration are also summarized in this review. It is anticipated that advanced approaches and innovative ideas of bioactive hydrogels will be exploited in the clinical field and increase the life quality of patients with the bone injury.
Collapse
Affiliation(s)
- Xu Xue
- Institute of Translational Medicine Shanghai University Shanghai 200444 China
| | - Yan Hu
- Department of Orthopaedics Trauma Changhai Hospital Second Military Medical University Shanghai 200433 China
| | - Yonghui Deng
- Department of Chemistry Institute of Biomedical Sciences Fudan University Shanghai 200433 China
- State Key Lab of Transducer Technology Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
| | - Jiacan Su
- Institute of Translational Medicine Shanghai University Shanghai 200444 China
| |
Collapse
|
36
|
Eppink MHM, Ventura SPM, Coutinho JAP, Wijffels RH. Multiproduct Microalgae Biorefineries Mediated by Ionic Liquids. Trends Biotechnol 2021; 39:1131-1143. [PMID: 33726917 DOI: 10.1016/j.tibtech.2021.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/30/2022]
Abstract
Ionic liquids (ILs) are salts with low melting points that can be used as solvents for mild extraction and selective fractionation of biomolecules (e.g., proteins, carbohydrates, lipids, and pigments), enabling the valorisation of microalgal biomass in a multiproduct biorefinery concept, while maintaining the biomolecules' structural integrity and activity. Aqueous biphasic systems and emulsions stabilised by core-shell particles have been used to fractionate disrupted microalgal biomass into hydrophobic (lipids and pigments) and hydrophilic (proteins and carbohydrates) components. From nondisrupted biomass, the hydrophobic components can be directly extracted using ILs from intact cells, while the most fragile hydrophilic components can be obtained upon further mechanical cell disruption. These multiproduct biorefinery concepts will be discussed in an outlook on future separations using IL-based systems.
Collapse
Affiliation(s)
- Michel H M Eppink
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16 6700, AA, Wageningen, The Netherlands.
| | - Sónia P M Ventura
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Portugal
| | - João A P Coutinho
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Portugal
| | - Rene H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16 6700, AA, Wageningen, The Netherlands; Nord University, Faculty of Biosciences and Aquaculture, N-8049, Bodø, Norway
| |
Collapse
|
37
|
Importance of pH in Synthesis of pH-Responsive Cationic Nano- and Microgels. Polymers (Basel) 2021; 13:polym13050827. [PMID: 33800332 PMCID: PMC7962641 DOI: 10.3390/polym13050827] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/12/2023] Open
Abstract
While cationic microgels are potentially useful for the transfection or transformation of cells, their synthesis has certain drawbacks regarding size, polydispersity, yield, and incorporation of the cationic comonomers. In this work, a range of poly(N-isopropylacrylamide) (PNIPAM) microgels with different amounts of the primary amine N-(3-aminopropyl)methacrylamide hydrochloride (APMH) as the cationic comonomer were synthesized. Moreover, the pH-value during reaction was varied for the synthesis of microgels with 10 mol% APMH-feed. The microgels were analyzed by means of their size, thermoresponsive swelling behavior, synthesis yield, polydispersity and APMH-incorporation. The copolymerization of APMH leads to a strong decrease in size and yield of the microgels, while less than one third of the nominal APMH monomer feed is incorporated into the microgels. With an increase of the reaction pH up to 9.5, the negative effects of APMH copolymerization were significantly reduced. Above this pH, synthesis was not feasible due to aggregation. The results show that the reaction pH has a strong influence on the synthesis of pH-responsive cationic microgels and therefore it can be used to tailor the microgel properties.
Collapse
|
38
|
Piras CC, Kay AG, Genever PG, Smith DK. Self-assembled low-molecular-weight gelator injectable microgel beads for delivery of bioactive agents. Chem Sci 2021; 12:3958-3965. [PMID: 34163666 PMCID: PMC8179440 DOI: 10.1039/d0sc06296k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
We report the preparation of hybrid self-assembled microgel beads by combining the low molecular weight gelator (LMWG) DBS-CONHNH2 and the natural polysaccharide calcium alginate polymer gelator (PG). Microgel formulations based on LMWGs are extremely rare due to the fragility of the self-assembled networks and the difficulty of retaining any imposed shape. Our hybrid beads contain interpenetrated LMWG and PG networks, and are obtained by an emulsion method, allowing the preparation of spherical gel particles of controllable sizes with diameters in the mm or μm range. Microgels based on LMWG/alginate can be easily prepared with reproducible diameters <1 μm (ca. 800 nm). They are stable in water at room temperature for many months, and survive injection through a syringe. The rapid assembly of the LMWG on cooling plays an active role in helping control the diameter of the microgel beads. These LMWG microbeads retained the ability of the parent gel to deliver the bioactive molecule heparin, and in cell culture medium this enhanced the growth of human mesenchymal stem cells. Such microgels may therefore have future applications in tissue repair. This approach to fabricating LMWG microgels is a platform technology, which could potentially be applied to a variety of different functional LMWGs, and hence has wide-ranging potential.
Collapse
Affiliation(s)
- Carmen C Piras
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Alasdair G Kay
- Department of Biology, University of York Heslington York YO10 5DD UK
| | - Paul G Genever
- Department of Biology, University of York Heslington York YO10 5DD UK
| | - David K Smith
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
39
|
Fernandez-Rodriguez MA, Martín-Molina A, Maldonado-Valderrama J. Microgels at interfaces, from mickering emulsions to flat interfaces and back. Adv Colloid Interface Sci 2021; 288:102350. [PMID: 33418470 DOI: 10.1016/j.cis.2020.102350] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022]
Abstract
In this review, we cover the topic of p(NIPAM) based microgels at interfaces, revisiting classical studies in light of the newest ones. In particular, we focus on their use as emulsifiers in the so-called mickering emulsions, i.e. Pickering emulsion stabilized by soft particles. Given the complexity of the experimental characterization and simulation of these soft particles at interfaces, the review is structured in progressive complexity levels, until we reach the highly interesting and promising responsiveness to stimuli of mickering emulsions. We start from the lowest level of complexity, the current understanding of the behavior of single microgels confined at a flat interface. Then, we discuss their collective behavior upon crowding, their responsiveness at interfaces, and their macroscopic properties as microgel films. Once we have the necessary characterization tools, we proceed to discuss the complex and convoluted picture of responsive mickering emulsions. The way is rough, with current controversial and contradicting studies, but it holds promising results as well. We state open questions worth of being tackled by the Soft Matter community, and we conclude that it is worth the trouble of continuing after the master theory of microgel interfacial activity, as it will pave the way to widely adopt responsive mickering emulsions as the worthy Pickering emulsion successors.
Collapse
Affiliation(s)
| | - Alberto Martín-Molina
- Department of Applied Physics, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain; Institute Carlos I for Theoretical and Computational Physics, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Julia Maldonado-Valderrama
- Department of Applied Physics, University of Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain; Excellence Unit "ModellingNature" (MNat), , University of Granada, Spain.
| |
Collapse
|
40
|
Zhang T, Ngai T. One-Step Formation of Double Emulsions Stabilized by PNIPAM-based Microgels: The Role of Co-monomer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1045-1053. [PMID: 33426887 DOI: 10.1021/acs.langmuir.0c02645] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microgels have been widely used as particulate emulsifiers to stabilize emulsions due to their multiresponsiveness and deformability. Generally, microgels stabilize oil-in-water (o/w) emulsions, whereas occasionally water-in-oil (w/o) emulsions are reported using oils like n-octanol in which microgels can swell. However, the use of microgels to stabilize double emulsions (DEs) remains scarce. In this work, we report a special poly(N-isopropylacrylamide)- (PNIPAM-) based microgel to obtain water-in-oil-in-water (w/o/w) DEs in one step with the introduction of 1-vinylimidazole (VIM) as comonomer and hydroxy silicone oil as the oily phase. By comparison, when methacrylic acid (MAA) is used, an o/w emulsion will be obtained. The same holds true even when we freeze-dry and redisperse the microgels in the oil. Compared with PNIPAM-co-MAA microgel, PNIPAM-co-VIM microgel achieves a lower interfacial tension (IFT) when dispersed in the aqueous phase. This interfacial affinity of PNIPAM-co-VIM is believed to result from acid-base interaction between VIM and hydroxyl groups of the silicone oil, the same interaction used for preparing silica-vinyl polymer composite particles. Increasing the particle concentrations from 0.05% to 0.9% (w/v), we observe the inversion from w/o to o/w/o and w/o/w emulsions. When the oil fraction is changed from 0.1 to 0.9, the emulsion morphology evolves from o/w and w/o/w to w/o emulsions. At last, we examine the emulsifying ability of PNIPAM-co-VIM microgel with other oils and find that w/o/w emulsions are obtained with edible oils as well. Considering the similarity between microgels and biopolymers, the discovery in this work will help in designing food-grade emulsifiers to form edible DEs.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| |
Collapse
|
41
|
Li J, Jia X, Yin L. Hydrogel: Diversity of Structures and Applications in Food Science. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1858313] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinlong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, P.R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China
| | - Xin Jia
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Lijun Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
42
|
Mueller E, Himbert S, Simpson MJ, Bleuel M, Rheinstadter MC, Hoare T. Cationic, Anionic, and Amphoteric Dual pH/Temperature-Responsive Degradable Microgels via Self-Assembly of Functionalized Oligomeric Precursor Polymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Eva Mueller
- Department of Chemical Engineering, McMaster University, 1280 Main St. W, Hamilton, Ontario, Canada L8S 4L7
| | - Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, 1280 Main St. W, Hamilton, Ontario, Canada L8S 4M1
| | - Madeline J. Simpson
- Department of Chemical Engineering, McMaster University, 1280 Main St. W, Hamilton, Ontario, Canada L8S 4L7
| | - Markus Bleuel
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-3460, United States
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742-2115, United States
| | - Maikel C. Rheinstadter
- Department of Physics and Astronomy, McMaster University, 1280 Main St. W, Hamilton, Ontario, Canada L8S 4M1
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main St. W, Hamilton, Ontario, Canada L8S 4L7
| |
Collapse
|
43
|
Centomo P, Zecca M, Biffis A. Cross-Linked Polymers as Scaffolds for the Low-Temperature Preparation of Nanostructured Metal Oxides. Chemistry 2020; 26:9243-9260. [PMID: 32357276 DOI: 10.1002/chem.202000815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Indexed: 12/22/2022]
Abstract
The current state of the art of the use of cross-linked organic polymers, both insoluble (resins or gels) and soluble (micro- and nanogels), as aids for the low-temperature preparation of stable metal oxide nanoparticles or nanostructured metal oxides is reviewed herein. Synthetic strategies for inorganic oxide nanomaterials of this kind can greatly benefit from the use of cross-linked polymers, which may act as scaffolds/exotemplates during inorganic nanoparticle synthesis, or as stabilizers following post-synthetic modification of the nanoparticles. Furthermore, the peculiar properties of the organic cross-linked polymers add to those of the inorganic oxide nanoparticles, producing materials with combined properties. The potential applications of such highly promising composite nanomaterials will be also briefly sketched.
Collapse
Affiliation(s)
- Paolo Centomo
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Marco Zecca
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Andrea Biffis
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
44
|
|
45
|
Ortiz de Solorzano I, Mendoza G, Arruebo M, Sebastian V. Customized hybrid and NIR-light triggered thermoresponsive drug delivery microparticles synthetized by photopolymerization in a one-step flow focusing continuous microreactor. Colloids Surf B Biointerfaces 2020; 190:110904. [DOI: 10.1016/j.colsurfb.2020.110904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 12/28/2022]
|
46
|
Arismendi-Arrieta DJ, Moreno AJ. Deformability and solvent penetration in soft nanoparticles at liquid-liquid interfaces. J Colloid Interface Sci 2020; 570:212-222. [DOI: 10.1016/j.jcis.2020.02.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/29/2022]
|
47
|
Rudyak VY, Kozhunova EY, Chertovich AV. Simulation of interpenetrating networks microgel synthesis. SOFT MATTER 2020; 16:4858-4865. [PMID: 32421134 DOI: 10.1039/d0sm00287a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, we have implemented the sequential template synthesis of interpenetrating network (IPN) microgels in computer simulations and studied the behavior of such particles. We explored the influence of the interaction between the components of primary and secondary networks on the polymerization process and determined the necessary conditions for IPN particle formation. The interconnection between the parameters of synthesis and topological properties of the resulting microgels was investigated. We studied the morphologies of microgels in "good", "poor" and "selective" solvents. For the first time, we demonstrated the possibility of the formation of shell-corona structures in IPN microgels obtained by in silico synthesis from monomers and exposed to a selective solvent. These results allow for the better understanding of the required experimental conditions and data interpretation such as static structure factors.
Collapse
Affiliation(s)
- Vladimir Yu Rudyak
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1-2, Moscow 119991, Russia
| | | | | |
Collapse
|
48
|
Herrera SE, Agazzi ML, Cortez ML, Marmisollé WA, Tagliazucchi M, Azzaroni O. Redox-active polyamine-salt aggregates as multistimuli-responsive soft nanoparticles. Phys Chem Chem Phys 2020; 22:7440-7450. [PMID: 32215420 DOI: 10.1039/d0cp00077a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyamine-salt aggregates have become promising soft materials in nanotechnology due to their easy preparation process and pH-responsiveness. Here, we report the use of hexacyanoferrate(ii) and hexacyanoferrate(iii) as electroactive crosslinking agents for the formation of nanometer-sized redox-active polyamine-redox-salt aggregates (rPSA) in bulk suspension. This nanoplatform can be selectively assembled or disassembled under different stimuli such as redox environment, pH and ionic strength. By changing the charge of the building blocks, external triggers allow switching the system between two phase states: aggregate-free solution or colloidal rPSA dispersion. The stimuli-activated modulation of the assembly/disassembly processes opens a path to exploit rPSA in technologies based on smart nanomaterials.
Collapse
Affiliation(s)
- Santiago E Herrera
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Maximiliano L Agazzi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - M Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Mario Tagliazucchi
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| |
Collapse
|
49
|
Zhu Z, Fu H, Dong S, Ji W, Du B, Nie J. Multiresponsive Microgels with Phase-Separated Nanodomains and Self-Regulating Properties via Incorporation of Anthraquinone Moieties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2427-2438. [PMID: 32053750 DOI: 10.1021/acs.langmuir.0c00030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Of the multitude of stimuli-responsive microgels, it is still a challenge to achieve multiple responsivenesses to one single stimulus, which can even revert to the corresponding original state autonomously after stimulus. In this work, we reported a series of anthraquinone functionalized microgels (PNI-xVAQ) with thermosensitivity and redox-actuated self-regulating color, size, and fluorescent properties, which were easily synthesized via surfactant-free emulsion copolymerization (SFEP) with N-isopropylacrylamide (NIPAm) as the monomer, 2-vinylanthraquinone (VAQ) as the comonomer, and N,N'-methylenebis(acrylamide) (BIS) as the cross-linker in an aqueous solution at 70 °C. The hydrophobic interactions of comonomer VAQ also led to the formation of internal phase-separated hydrophobic nanodomains in the obtained PNI-xVAQ microgels. The self-regulating color, size, and fluorescence changes of the PNI-xVAQ microgels were reliant on the nonequilibrium redox process of anthraquinone moieties by the addition of sodium dithionite as the chemical fuel to activate the positive feedback that was the reduction of anthraquinone to transient anthraquinone radical anions, following the slow oxidation of anthraquinone radical anions by autonomous "breathing" oxygen in air as the delayed negative feedback. These autonomous self-regulating properties of the PNI-xVAQ microgel were recyclable to a certain extent by repeated feeding of sodium dithionite.
Collapse
Affiliation(s)
- Zumei Zhu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Huan Fu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Shunni Dong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weiming Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Binyang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingjing Nie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
50
|
Redox responsive xylan-SS-curcumin prodrug nanoparticles for dual drug delivery in cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110356. [DOI: 10.1016/j.msec.2019.110356] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 02/05/2023]
|