1
|
Bostancı F, Şengelen A, Aksüt Y, Yıldırım E, Öğütcü İ, Yücel O, Emik S, Gürdağ G, Pekmez M. Indomethacin-encapsulated PLGA nanoparticles improve therapeutic efficacy by increasing apoptosis and reducing motility in glioblastoma cells. Pharm Dev Technol 2025; 30:25-36. [PMID: 39750021 DOI: 10.1080/10837450.2024.2448333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/02/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Glioblastoma, with a low survival rate, is an aggressive and difficult-to-treat lethal type of brain cancer. Indomethacin (IND), a non-steroidal anti-inflammatory drug, has antitumoral activity in many cancers, including gliomas. However, its poor aqueous solubility is a critical issue. Nanomaterials are crucial tools for overcoming solubility problems and facilitating drug delivery. Herein, a polymeric nanoparticle system, poly(lactic-co-glycolic acid) (PLGA) was used to encapsulate IND. Although PLGA is an FDA-approved copolymer for drug delivery, no trials with IND-loaded PLGA-NPs have been conducted to treat brain tumors. Encapsulation success was revealed by DLS, zeta potential, TEM, and FTIR analysis; IND/PLGA-NPs had nanoscale particle size (160.6 nm), narrow size distribution (0.230, PDI), and good stability (-23.9 mV). Fluorescence imaging showed that PLGA-NPs can penetrate U-87MG cells. Short-term/one-hour treatment with bound-IND increased the free-IND effect in gliomas by ⁓10 times/48h and 12.39 times/72h. Even against long-term exposure to IND, IND/PLGA-NP treatment revealed a highly marked result; the IC50 value of bound-IND (treatment-time:1h, analysis at 48h) was ∼200µM, IC50 value of free-IND (treatment-time:48h) was ∼390µM. Furthermore, IND/PLGA-NPs' anticancer activity (100 µM of IND/1h, analysis at 48h) was also supported by induced apoptosis and reduced migration/colony formation in glioma cells. All evidence suggests that IND/PLGA-NPs may be a potentially promising agent for treating gliomas.
Collapse
Affiliation(s)
- Ferhat Bostancı
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkiye
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkiye
| | - Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye
| | - Yunus Aksüt
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye
- Department of Molecular Biology and Genetics, Basic Medical Sciences, School of Medicine, Koç University, Istanbul, Turkiye
| | - Eren Yıldırım
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
| | - İrem Öğütcü
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkiye
| | - Oğuz Yücel
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
| | - Serkan Emik
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
| | - Gülten Gürdağ
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
| | - Murat Pekmez
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye
| |
Collapse
|
2
|
Erebor JO, Agboluaje EO, Perkins AM, Krishnakumar M, Ngwuluka N. Targeted Hybrid Nanocarriers as Co-Delivery Systems for Enhanced Cancer Therapy. Adv Pharm Bull 2024; 14:558-573. [PMID: 39494247 PMCID: PMC11530881 DOI: 10.34172/apb.2024.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 11/05/2024] Open
Abstract
Hybrid nanocarriers have realized a growing interest in drug delivery research because of the potential of being able to treat, manage or cure diseases that previously had limited therapy or cure. Cancer is currently considered the second leading cause of death globally. This makes cancer therapy a major focus in terms of the need for efficacious and safe drug formulations that can be used to reduce the rate of morbidity and mortality globally. The major challenge encountered over the years with cancer chemotherapy is the non-selectivity of anticancer drugs, leading to severe adverse effects in patients. Multidrug resistance has also resulted in treatment failure in cancer chemotherapy over the years. Hybrid nanocarriers can be targeted to the site and offer co-delivery of two or more chemotherapeutics, thus leading to synergistic or additive results. This makes hybrid nanocarriers an extremely attractive type of drug delivery system for cancer therapy. Hybrid nanocarrier systems are also attracting attention as possible non-viral gene vectors that could have a higher level of transfection, and be efficacious, with the added advantage of being safer than viral vectors in clinical settings. An extensive review of various aspects of hybrid nanocarriers was discussed in this paper. It is envisaged that in the future, metastatic cancers, multi-drug resistant cancers, and low prognosis cancers like pancreatic cancers, will have a lasting solution via hybrid nanocarrier formulations with targeted co-delivery of therapeutics.
Collapse
Affiliation(s)
| | - Elizabeth Oladoyin Agboluaje
- Department of Pharmaceutical and Biomedical Sciences University of Georgia, 250 W. Green Street Athens, Georgia 30602- 5036 USA
| | - Ava M. Perkins
- Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo 3000 Arlington Ave, Toledo, OH 43614-2595 USA
| | - Megha Krishnakumar
- Catalent Pharma Solutions, 7330 Carroll Road, San Diego, California 92121-2363 USA
| | - Ndidi Ngwuluka
- Department of Pharmaceutics, Faculty of Pharmacy, University of Jos, Pharmaceutical Sciences Gate, Bauchi Rd, 930001, Jos, Plateau State, Nigeria
| |
Collapse
|
3
|
Qaiser R, Pervaiz F, Noreen S, Hanan H, Shoukat H, Mahmood H, Ashraf MA. Optimizing lornoxicam-loaded poly(lactic-co-glycolic acid) and (polyethylene glycol) nanoparticles for transdermal delivery: ex vivo/ in vivo inflammation evaluation. Nanomedicine (Lond) 2024; 19:1471-1485. [PMID: 38953843 PMCID: PMC11318691 DOI: 10.1080/17435889.2024.2359356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/21/2024] [Indexed: 07/04/2024] Open
Abstract
Aim: This study focused on developing a topical gel incorporating lornoxicam-loaded poly(lactic-co-glycolic acid) and polyethylene glycol (PLGA-PEG) blend nanoparticles to mitigate gastrointestinal (GIT) side effects and enhance therapeutic efficacy. Materials & methods: Synthesized nanoparticles were subjected to in vitro characterization, ex vivo permeation studies, and acute oral toxicity analysis post-incorporation into the gel using a S/O/W double emulsion solvent. Results & conclusion: The nanoparticles displayed a smooth, spherical morphology (170-321 nm) with increased entrapment efficiency (96.2%). LOX exhibited a permeation rate of 70-94% from the nanoparticle-infused gel, demonstrating favorable biocompatibility at the cellular level. The formulated gel, enriched with nanoparticles, holds promising prospects for drug-delivery systems and promising improved therapeutic outcomes for LOX.
Collapse
Affiliation(s)
- Rubina Qaiser
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur63100, Punjab, Pakistan
| | - Fahad Pervaiz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur63100, Punjab, Pakistan
| | - Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur63100, Punjab, Pakistan
- Centre for Chemistry & Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020, Austria
| | - Hanasul Hanan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur63100, Punjab, Pakistan
| | - Hina Shoukat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur63100, Punjab, Pakistan
| | - Hassan Mahmood
- Linguistics & Literature Department, COMSATS University Islamabad, Lahore Campus54000, Punjab, Pakistan
| | | |
Collapse
|
4
|
Sarraf M, Beigbabaei A, Naji‐Tabasi S. Edible oleogels for oral delivery of berberine in dairy food: In-vitro digestion study. Food Sci Nutr 2024; 12:3273-3281. [PMID: 38726417 PMCID: PMC11077212 DOI: 10.1002/fsn3.3994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 05/12/2024] Open
Abstract
Oleogel is a viscoelastic, spreadable and semi-solid structure, which is used as a fat substitute and a controller the release of bioactive compounds. The aim of this study was to develop low fat dairy dessert enriched with berberine with applying oleogel system as delivery system and fat replacer. The oleogel prepared with an emulsion-templated methods based on soluble interaction of whey protein concentrate (WPC), WPC-basil seed gum (BSG), and WPC-xanthan gum (XG). In the first step, berberine release kinetic in in-vitro gastrointestinal environment was studied. The results showed that the mouth environment had the highest release rate of berberine. Cooperation of hydrocolloids in oleogel increase stability of structure in stomach condition in compared with WPC oleogel. The suitable model to fit the oleogels contain beberine was the Korsmeyer-Papas that was the highest R 2 (.98). According to release results of berberine from oleogel network, the oleogel 0.6BSG:WPC was chosen and applied in formulation of dairy dessert at different levels (0%, 25%, 50%, 75% and 100% of oleogel) instead of cream. The dessert contained uncoated berberine had the unacceptable bitterness in comparison with samples containing coated berberine with oleogel. The overall acceptance decreased with increment of oleogel due to increasing of bitter taste. Appling berberine (therapeutic compound) and oleogel (fat-substitute) to achieve marketable consumer products showed positive effects on trend of the study, especially at low level of substitution.
Collapse
Affiliation(s)
- Mozhdeh Sarraf
- Department of Food ChemistryResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - Adel Beigbabaei
- Department of Food ChemistryResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - Sara Naji‐Tabasi
- Department of Food NanotechnologyResearch Institute of Food Science and Technology (RIFST)MashhadIran
| |
Collapse
|
5
|
Islam F, Zeng Q. Advances in Organosulfur-Based Polymers for Drug Delivery Systems. Polymers (Basel) 2024; 16:1207. [PMID: 38732676 PMCID: PMC11085353 DOI: 10.3390/polym16091207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/07/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024] Open
Abstract
Organosulfur-based polymers have unique properties that make them useful for targeted and managed drug delivery, which can improve therapy while reducing side effects. This work aims to provide a brief review of the synthesis strategies, characterization techniques, and packages of organosulfur-based polymers in drug delivery. More importantly, this work discusses the characterization, biocompatibility, controlled release, nanotechnology, and targeted therapeutic aspects of these important structural units. This review provides not only a good comprehension of organosulfur-based polymers but also an insightful discussion of potential future prospectives in research. The discovery of novel organosulfur polymers and innovations is highly expected to be stimulated in order to synthesize polymer prototypes with increased functional accuracy, efficiency, and low cost for many industrial applications.
Collapse
Affiliation(s)
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
6
|
Cojocaru E, Ghitman J, Pircalabioru GG, Zaharia A, Iovu H, Sarbu A. Electrospun/3D-Printed Bicomponent Scaffold Co-Loaded with a Prodrug and a Drug with Antibacterial and Immunomodulatory Properties. Polymers (Basel) 2023; 15:2854. [PMID: 37447499 DOI: 10.3390/polym15132854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
This work reports the construction of a bicomponent scaffold co-loaded with both a prodrug and a drug (BiFp@Ht) as an efficient platform for wound dressing, by combining the electrospinning and 3D-printing technologies. The outer component consisted of a chitosan/polyethylene oxide-electrospun membrane loaded with the indomethacin-polyethylene glycol-indomethacin prodrug (Fp) and served as a support for printing the inner component, a gelatin methacryloyl/sodium alginate hydrogel loaded with tetracycline hydrochloride (Ht). The different architectural characteristics of the electrospun and 3D-printed layers were very well highlighted in a morphological analysis performed by Scanning Electron Microscopy (SEM). In vitro release profile studies demonstrated that both Fp and Ht layers were capable to release the loaded therapeutics in a controlled and sustained manner. According to a quantitative in vitro biological assessment, the bicomponent BiFp@Ht scaffold showed a good biocompatibility and no cytotoxic effect on HeLa cell cultures, while the highest proliferation level was noted in the case of HeLa cells seeded onto an Fp nanofibrous membrane. Furthermore, the BiFp@Ht scaffold presented an excellent antimicrobial activity against the E. coli and S. aureus bacterial strains, along with promising anti-inflammatory and proangiogenic activities, proving its potential to be used for wound dressing.
Collapse
Affiliation(s)
- Elena Cojocaru
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Jana Ghitman
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- eBio-Hub Research Center, University Politehnica of Bucharest-CAMPUS, 6 Iuliu Maniu Boulevard, 061344 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- eBio-Hub Research Center, University Politehnica of Bucharest-CAMPUS, 6 Iuliu Maniu Boulevard, 061344 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Anamaria Zaharia
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- eBio-Hub Research Center, University Politehnica of Bucharest-CAMPUS, 6 Iuliu Maniu Boulevard, 061344 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Andrei Sarbu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| |
Collapse
|
7
|
de Jesús Martín-Camacho U, Rodríguez-Barajas N, Alberto Sánchez-Burgos J, Pérez-Larios A. Weibull β value for the discernment of drug release mechanism of PLGA particles. Int J Pharm 2023; 640:123017. [PMID: 37149112 DOI: 10.1016/j.ijpharm.2023.123017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Mathematical models are used to characterize and optimize drug release in drug delivery systems (DDS). One of the most widely used DDS is the poly(lactic-co-glycolic acid) (PLGA)-based polymeric matrix owing to its biodegradability, biocompatibility, and easy manipulation of its properties through the manipulation of synthesis processes. Over the years, the Korsmeyer-Peppas model has been the most widely used model for characterizing the release profiles of PLGA DDS. However, owing to the limitations of the Korsmeyer-Peppas model, the Weibull model has emerged as an alternative for the characterization of the release profiles of PLGA polymeric matrices. The purpose of this study was to establish a correlation between the n and β parameters of the Korsmeyer-Peppas and Weibull models and to use the Weibull model to discern the drug release mechanism. A total of 451 datasets describing the overtime drug release of PLGA-based formulations from 173 scientific articles were fitted to both models. The Korsmeyer-Peppas model had a mean Akaike Information Criteria (AIC) value of 54.52 and an n value of 0.42, while the Weibull model had a mean AIC of 51.99 and a β value of 0.55, and by using reduced major axis regression values, a high correlation was found between the n and β values. These results demonstrate the ability of the Weibull model to characterize the release profiles of PLGA-based matrices and the usefulness of the β parameter for determining the drug release mechanism.
Collapse
Affiliation(s)
- Ubaldo de Jesús Martín-Camacho
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600
| | - Noé Rodríguez-Barajas
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600
| | | | - Alejandro Pérez-Larios
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600.
| |
Collapse
|
8
|
Rhyaf A, Naji H, Al-Karagoly H, Albukhaty S, Sulaiman GM, Alshammari AAA, Mohammed HA, Jabir M, Khan RA. In Vitro and In Vivo Functional Viability, and Biocompatibility Evaluation of Bovine Serum Albumin-Ingrained Microemulsion: A Model Based on Sesame Oil as the Payload for Developing an Efficient Drug Delivery Platform. Pharmaceuticals (Basel) 2023; 16:ph16040582. [PMID: 37111339 PMCID: PMC10141236 DOI: 10.3390/ph16040582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Combination of bovine serum albumin with microemulsions as constituting ingredient biopolymer has long been regarded an innovative method to address the surface functionalization and stability issues in the targeted payload deliveries, thereupon producing effectively modified microemulsions, which are superior in loading capacity, transitional and shelf-stability, as well as site-directed/site-preferred delivery, has become a favored option. The current study aimed to develop an efficient, suitable and functional microemulsion system encapsulating sesame oil (SO) as a model payload towards developing an efficient delivery platform. UV-VIS, FT-IR, and FE-SEM were used to characterize, and analyze the developed carrier. Physicochemical properties assessments of the microemulsion by dynamic light scattering size distributions, zeta-potential, and electron micrographic analyses were performed. The mechanical properties for rheological behavior were also studied. The HFF-2 cell line and hemolysis assays were conducted to ascertain the cell viability, and in vitro biocompatibility. The in vivo toxicity was determined based on a predicted median lethal dose (LD50) model, wherein the liver enzymes' functions were also tested to assess and confirm the predicted toxicity.
Collapse
Affiliation(s)
- Atiaf Rhyaf
- Department of Pathology, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah 58002, Iraq
| | - Hala Naji
- Department of Pathology, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah 58002, Iraq
| | - Hassan Al-Karagoly
- Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah 58002, Iraq
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan 62001, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Ghassan M Sulaiman
- Division of Biotechnology, Department of Applied Science, University of Technology, Baghdad 10066, Iraq
| | - Abdulaziz Arif A Alshammari
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al Azhar University, Cairo 11371, Egypt
| | - Majid Jabir
- Division of Biotechnology, Department of Applied Science, University of Technology, Baghdad 10066, Iraq
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
9
|
Controlled drug delivery mediated by cyclodextrin-based supramolecular self-assembled carriers: From design to clinical performances. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
10
|
Wang L, Yang S, Li L, Huang Y, Li R, Fang S, Jing J, Yang C. A low-intensity repetitive transcranial magnetic stimulation coupled to magnetic nanoparticles loaded with scutellarin enhances brain protection against cerebral ischemia reperfusion injury. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Veloso SRS, Tiryaki E, Spuch C, Hilliou L, Amorim CO, Amaral VS, Coutinho PJG, Ferreira PMT, Salgueiriño V, Correa-Duarte MA, Castanheira EMS. Tuning the drug multimodal release through a co-assembly strategy based on magnetic gels. NANOSCALE 2022; 14:5488-5500. [PMID: 35332904 DOI: 10.1039/d1nr08158f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-assembled short peptide-based gels are highly promising drug delivery systems. However, implementing a stimulus often requires screening different structures to obtain gels with suitable properties, and drugs might not be well encapsulated and/or cause undesirable effects on the gel's properties. To overcome this challenge, a new design approach is presented to modulate the release of doxorubicin as a model chemotherapeutic drug through the interplay of (di)phenylalanine-coated magnetic nanoparticles, PEGylated liposomes and doxorubicin co-assembly in dehydropeptide-based gels. The composites enable an enhancement of the gelation kinetics in a concentration-dependent manner, mainly through the use of PEGylated liposomes. The effect of the co-assembly of phenylalanine-coated nanoparticles with the hydrogel displays a concentration and size dependence. Finally, the integration of liposomes as doxorubicin storage units and of nanoparticles as composites that co-assemble with the gel matrix enables the tuneability of both passive and active doxorubicin release through a thermal, and a low-frequency alternating magnetic field-based trigger. In addition to the modulation of the gel properties, the functionalization with (di)phenylalanine improves the cytocompatibility of the nanoparticles. Hereby, this work paves a way for the development of peptide-based supramolecular systems for on-demand and controlled release of drugs.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET (Laboratory of Physics for Materials and Emergent Technologies), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Ecem Tiryaki
- Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain
| | - Carlos Spuch
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain
| | - Loic Hilliou
- Institute for Polymers and Composites, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - C O Amorim
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - V S Amaral
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Paulo J G Coutinho
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET (Laboratory of Physics for Materials and Emergent Technologies), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Paula M T Ferreira
- Centro de Química (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Verónica Salgueiriño
- Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain
- CINBIO, Universidad de Vigo, 36310 Vigo, Spain.
| | | | - Elisabete M S Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET (Laboratory of Physics for Materials and Emergent Technologies), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
12
|
Cen J, Li L, Huang L, Jiang G. Construction of a photothermal controlled-release microcapsule pesticide delivery system. RSC Adv 2022; 12:23387-23395. [PMID: 36090399 PMCID: PMC9382649 DOI: 10.1039/d2ra04672e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
This study aimed to achieve the controlled-release of bioactive ingredients in microcapsule pesticide delivery systems. A photothermal controlled-release microcapsule pesticide delivery system was constructed using chitosan and polydopamine (PDA) as the wall materials to encapsulate avermectin. All the prepared microcapsules were characterized by the methods of optical microscopy, scanning electron microscopy, transmission electron microscopy, and Fourier-transform infrared spectroscopy. The slow-release, UV-shielding, photothermal performance, and the nematicidal activity of the prepared microcapsules were also systematically investigated. The results indicated that the prepared microcapsules had excellent slow-release and UV-shielding performance when further encapsulated with the PDA layer relative to those of the non-PDA-encapsulated products. The photothermal sensitivity of the AVM@CS/CMA/PDA composite microcapsule under the irradiation of near-infrared light (NIR) was dramatically enhanced with the photothermal conversion efficiency (η) of 14.93%. Furthermore, the nematicidal activity of the AVM@CS/CMA/PDA composite microcapsule system was effectively improved on exposure to the irradiation of a light-emitting diode (LED) full-spectrum light. The strategies used in this study for developing the photothermal controlled-release pesticide delivery system might play an important role on improving utilization of pesticides. A photothermal controlled-release microcapsule pesticide delivery system was constructed using chitosan and polydopamine as the wall materials to encapsulate avermectin, the utilization rate of avermectin was improved.![]()
Collapse
Affiliation(s)
- Jun Cen
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
| | - Linhuai Li
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
| | - Lingling Huang
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
| | - Guangqi Jiang
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
13
|
Veloso SRS, Jervis PJ, Silva JFG, Hilliou L, Moura C, Pereira DM, Coutinho PJG, Martins JA, Castanheira EMS, Ferreira PMT. Supramolecular ultra-short carboxybenzyl-protected dehydropeptide-based hydrogels for drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111869. [PMID: 33641890 DOI: 10.1016/j.msec.2021.111869] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 01/29/2023]
Abstract
Self-assembled peptide-based hydrogels are promising materials for biomedical research owing to biocompatibility and similarity to the extracellular matrix, amenable synthesis and functionalization and structural tailoring of the rheological properties. Wider developments of self-assembled peptide-based hydrogels in biomedical research and clinical translation are hampered by limited commercial availability allied to prohibitive costs. In this work a focused library of Cbz-protected dehydrodipeptides Cbz-L-Xaa-Z-ΔPhe-OH (Xaa= Met, Phe, Tyr, Ala, Gly) was synthesised and evaluated as minimalist hydrogels. The Cbz-L-Met-Z-ΔPhe-OH and Cbz-L-Phe-Z-ΔPhe-OH hydrogelators were comprehensively evaluated regarding molecular aggregation and self-assembly, gelation, biocompatibility and as drug carriers for delivery of the natural compound curcumin and the clinically important antitumor drug doxorubicin. Drug release profiles and FRET studies of drug transport into small unilamellar vesicles (as biomembrane models) demonstrated that the Cbz-protected dehydropeptide hydrogels are effective nanocarriers for drug delivery. The expedite and scalable synthesis (in 3 steps), using commercially available reagents and amenable reaction conditions, makes Cbz-protected dehydrodipeptide hydrogels, widely available at affordable cost to the research community.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Peter J Jervis
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; REQUIMTE/LAQV, Lab. of Pharmacognosy, Dep. of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Joana F G Silva
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Loic Hilliou
- Institute for Polymers and Composites/I3N, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - C Moura
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Lab. of Pharmacognosy, Dep. of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo J G Coutinho
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - J A Martins
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | - Paula M T Ferreira
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
14
|
Veloso SRS, Silva JFG, Hilliou L, Moura C, Coutinho PJG, Martins JA, Testa-Anta M, Salgueiriño V, Correa-Duarte MA, Ferreira PMT, Castanheira EMS. Impact of Citrate and Lipid-Functionalized Magnetic Nanoparticles in Dehydropeptide Supramolecular Magnetogels: Properties, Design and Drug Release. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E16. [PMID: 33374786 PMCID: PMC7824179 DOI: 10.3390/nano11010016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Currently, the nanoparticle functionalization effect on supramolecular peptide-based hydrogels remains undescribed, but is expected to affect the hydrogels' self-assembly and final magnetic gel properties. Herein, two different functionalized nanoparticles: citrate-stabilized (14.4 ± 2.6 nm) and lipid-coated (8.9 ± 2.1 nm) magnetic nanoparticles, were used for the formation of dehydropeptide-based supramolecular magnetogels consisting of the ultra-short hydrogelator Cbz-L-Met-Z-ΔPhe-OH, with an assessment of their effect over gel properties. The lipid-coated nanoparticles were distributed along the hydrogel fibers, while citrate-stabilized nanoparticles were aggregated upon gelation, which resulted into a heating efficiency improvement and decrease, respectively. Further, the lipid-coated nanoparticles did not affect drug encapsulation and displayed improved drug release reproducibility compared to citrate-stabilized nanoparticles, despite the latter attaining a stronger AMF-trigger. This report points out that adsorption of nanoparticles to hydrogel fibers, which display domains that improve or do not affect drug encapsulation, can be explored as a means to optimize the development of supramolecular magnetogels to advance theranostic applications.
Collapse
Affiliation(s)
- Sérgio R. S. Veloso
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| | - Joana F. G. Silva
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| | - Loic Hilliou
- Institute for Polymers and Composites, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal;
| | - Cacilda Moura
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| | - Paulo J. G. Coutinho
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| | - José A. Martins
- Centro de Química (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.A.M.); (P.M.T.F.)
| | - Martín Testa-Anta
- Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain; (M.T.-A.); (V.S.)
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain;
| | - Verónica Salgueiriño
- Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain; (M.T.-A.); (V.S.)
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain;
| | | | - Paula M. T. Ferreira
- Centro de Química (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.A.M.); (P.M.T.F.)
| | - Elisabete M. S. Castanheira
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| |
Collapse
|
15
|
Razaghi M, Ramazani A, Khoobi M, Mortezazadeh T, Aksoy EA, Küçükkılınç TT. Highly fluorinated graphene oxide nanosheets for anticancer linoleic-curcumin conjugate delivery and T2-Weighted magnetic resonance imaging: In vitro and in vivo studies. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Onaș AM, Bîru IE, Gârea SA, Iovu H. Novel Bovine Serum Albumin Protein Backbone Reassembly Study: Strongly Twisted β-Sheet Structure Promotion upon Interaction with GO-PAMAM. Polymers (Basel) 2020; 12:polym12112603. [PMID: 33167588 PMCID: PMC7694545 DOI: 10.3390/polym12112603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
This study investigates the formation of a graphene oxide-polyamidoamine dendrimer complex (GO-PAMAM) and its association and interaction with bovine serum albumin (BSA). Fourier-transform infrared spectrometry and X-ray photoelectron spectrometry indicated the formation of covalent linkage between the GO surface and PAMAM with 7.22% nitrogen content in the GO-PAMAM sample, and various interactions between BSA and GO-PAMAM, including π-π* interactions at 291.5 eV for the binding energy value. Thermogravimetric analysis highlighted the increasing thermal stability throughout the modification process, from 151 to 192 °C for the 10% weight loss temperature. Raman spectrometry and X-ray diffraction analysis were used in order to examine the complexes’ assembly, showing a prominent (0 0 2) lattice in GO-PAMAM. Dynamic light scattering tests proved the formation of stable graphenic and graphenic-protein aggregates. The secondary structure rearrangement of BSA after interaction with GO-PAMAM was investigated using circular dichroism spectroscopy. We have observed a shift from 10.9% β-sheet composition in native BSA to 64.9% β-sheet composition after the interaction with GO-PAMAM. This interaction promoted the rearrangement of the protein backbone, leading to strongly twisted β-sheet secondary structure architecture.
Collapse
Affiliation(s)
- Andra Mihaela Onaș
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.M.O.); (I.E.B.); (S.A.G.)
| | - Iuliana Elena Bîru
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.M.O.); (I.E.B.); (S.A.G.)
| | - Sorina Alexandra Gârea
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.M.O.); (I.E.B.); (S.A.G.)
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.M.O.); (I.E.B.); (S.A.G.)
- Academy of Romanian Scientists, 050094 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-402-3922
| |
Collapse
|
17
|
Cardoso BD, Rodrigues ARO, Almeida BG, Amorim CO, Amaral VS, Castanheira EMS, Coutinho PJG. Stealth Magnetoliposomes Based on Calcium-Substituted Magnesium Ferrite Nanoparticles for Curcumin Transport and Release. Int J Mol Sci 2020; 21:ijms21103641. [PMID: 32455630 PMCID: PMC7279386 DOI: 10.3390/ijms21103641] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 11/16/2022] Open
Abstract
Despite the promising pharmacological properties of curcumin, the transport and effective release of curcumin is still a challenge. The advances in functionalized nanocarriers for curcumin have also been motivated by the anticancer activity of this natural compound, aiming at targeted therapies. Here, stealth (aqueous and solid) magnetoliposomes containing calcium-substituted magnesium ferrite nanoparticles, CaxMg1−xFe2O4 (with x = 0.25, 0.50, 0.75) were developed as nanocarriers for curcumin. The magnetic nanoparticles exhibit superparamagnetic properties and crystalline structure, with sizes below 10 nm. The magnetoliposomes based on these nanoparticles have hydrodynamic diameters around or below 150 nm and a low polydispersity. The influence of an alternating magnetic field (AMF) on drug release over time was evaluated and compared with curcumin release by diffusion. The results suggest the potential of drug-loaded magnetoliposomes as nanocarriers that can be magnetically guided to the tumor sites and act as agents for a synergistic effect combining magnetic hyperthermia and controlled drug release.
Collapse
Affiliation(s)
- Beatriz D. Cardoso
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.D.C.); (A.R.O.R.); (B.G.A.); (E.M.S.C.)
| | - Ana Rita O. Rodrigues
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.D.C.); (A.R.O.R.); (B.G.A.); (E.M.S.C.)
| | - Bernardo G. Almeida
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.D.C.); (A.R.O.R.); (B.G.A.); (E.M.S.C.)
| | - Carlos O. Amorim
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (C.O.A.); (V.S.A.)
| | - Vítor S. Amaral
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (C.O.A.); (V.S.A.)
| | - Elisabete M. S. Castanheira
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.D.C.); (A.R.O.R.); (B.G.A.); (E.M.S.C.)
| | - Paulo J. G. Coutinho
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (B.D.C.); (A.R.O.R.); (B.G.A.); (E.M.S.C.)
- Correspondence:
| |
Collapse
|
18
|
Aman RM, Abu Hashim II, Meshali MM. Novel Clove Essential Oil Nanoemulgel Tailored by Taguchi's Model and Scaffold-Based Nanofibers: Phytopharmaceuticals with Promising Potential as Cyclooxygenase-2 Inhibitors in External Inflammation. Int J Nanomedicine 2020; 15:2171-2195. [PMID: 32280213 PMCID: PMC7125334 DOI: 10.2147/ijn.s246601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/07/2020] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Clove essential oil is a phytochemical possessing a vast array of biological activities. Nevertheless, fabricating nano topical delivery systems targeted to augment the anti-inflammatory activity of the oil has not been investigated so far. Accordingly, in this study, controlled release nanoparticulate systems, namely nanoemulgel and nanofibers (NFs), of the oil were developed to achieve such goal. METHODS The nanoemulsion was incorporated in the hydrogel matrix of mixed biopolymers - chitosan, guar gum and gum acacia - to formulate nanoemulsion-based nanoemulgel. Taguchi's model was adopted to evaluate the effect of independently controlled parameters, namely, the concentration of chitosan (X1), guar gum (X2), and gum acacia (X3) on different dependently measured parameters. Additionally, the nanoemulsion-based NFs were prepared by the electrospinning technique using polyvinyl alcohol (PVA) polymer. Extensive in vitro, ex vivo and in vivo evaluations of the aforementioned formulae were conducted. RESULTS Both Fourier transform-infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) established the complete dispersion of the nanoemulsion in the polymeric matrices of the prepared nanoemulgel and NFs. The ex vivo skin permeation data of clove essential oil from the prepared formulations showed that NFs can sustain its penetration through the skin comparably with nanoemulgel. Topical treatment with NFs (once application) and nanoemulgel (twice application) evoked a marvelous in vivo anti-inflammatory activity against croton oil-induced mouse skin inflammation model when compared with pure clove essential oil along with relatively higher efficacy of medicated NFs than that of medicated nanoemulgel. Such prominent anti-inflammatory activity was affirmed by histopathological and immunohistochemical examinations. CONCLUSION These results indicated that nanoemulsion-based nanoemulgel and nanoemulsion-based NFs could be introduced to the phytomedicine field as promising topical delivery systems for effective treatment of inflammatory diseases instead of nonsteroidal anti-inflammatory drugs that possess adverse effects.
Collapse
Affiliation(s)
- Reham Mokhtar Aman
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura35516, Egypt
| | | | | |
Collapse
|
19
|
Veloso SRS, Martins JA, Hilliou L, O Amorim C, Amaral VS, Almeida BG, Jervis PJ, Moreira R, Pereira DM, Coutinho PJG, Ferreira PMT, Castanheira EMS. Dehydropeptide-based plasmonic magnetogels: a supramolecular composite nanosystem for multimodal cancer therapy. J Mater Chem B 2019; 8:45-64. [PMID: 31764934 DOI: 10.1039/c9tb01900f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Supramolecular hydrogels are highly promising candidates as biomedical materials owing to their wide array of properties, which can be tailored and modulated. Additionally, their combination with plasmonic/magnetic nanoparticles to form plasmonic magnetogels further improves their potential in biomedical applications through the combination of complementary strategies, such as photothermia, magnetic hyperthermia, photodynamic therapy and magnetic-guided drug delivery. Here, a new dehydropeptide hydrogelator, Npx-l-Met-Z-ΔPhe-OH, was developed and combined with two different plasmonic/magnetic nanoparticle architectures, i.e., core/shell manganese ferrite/gold nanoparticles and gold-decorated manganese ferrite nanoparticles with ca. 55 nm and 45 nm sizes, respectively. The magnetogels were characterized via HR-TEM, FTIR spectroscopy, circular dichroism and rheological assays. The gels were tested as nanocarriers for a model antitumor drug, the natural compound curcumin. The incorporation of the drug in the magnetogel matrices was confirmed through fluorescence-based techniques (FRET, fluorescence anisotropy and quenching). The curcumin release profiles were studied with and without the excitation of the gold plasmon band. The transport of curcumin from the magnetogels towards biomembrane models (small unilamellar vesicles) was assessed via FRET between the fluorescent drug and the lipid probe Nile Red. The developed magnetogels showed promising results for photothermia and photo-triggered drug release. The magnetogels bearing gold-decorated nanoparticles showed the best photothermia properties, while the ones containing core/shell nanoparticles had the best photoinduced curcumin release.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - J A Martins
- Centro de Química (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Loic Hilliou
- Institute for Polymers and Composites/I3N, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - C O Amorim
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - V S Amaral
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - B G Almeida
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Peter J Jervis
- Centro de Química (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal and REQUIMTE/LAQV, Lab of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Rute Moreira
- REQUIMTE/LAQV, Lab of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Lab of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo J G Coutinho
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Paula M T Ferreira
- Centro de Química (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | |
Collapse
|
20
|
Predicting the drug loading efficiency into hybrid nanocarriers based on PLGA-vegetable oil using molecular dynamic simulation approach and Flory-Huggins theory. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Lacatusu I, Badea N, Badea G, Mihaila M, Ott C, Stan R, Meghea A. Advanced bioactive lipid nanocarriers loaded with natural and synthetic anti-inflammatory actives. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.01.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Quiñones JP, Iturmendi A, Henke H, Roschger C, Zierer A, Brüggemann O. Polyphosphazene-based nanocarriers for the release of agrochemicals and potential anticancer drugs. J Mater Chem B 2019; 7:7783-7794. [DOI: 10.1039/c9tb01985e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesised polyphosphazene-based nanocarriers allowed sustained diosgenin and brassinosteroid release over 4 days, with strong to moderate MCF-7 cytotoxicity and good agrochemical activity at medium and low concentrations.
Collapse
Affiliation(s)
| | - Aitziber Iturmendi
- Institute of Polymer Chemistry (ICP)
- Johannes Kepler University Linz
- 4040 Linz
- Austria
| | - Helena Henke
- Institute of Polymer Chemistry (ICP)
- Johannes Kepler University Linz
- 4040 Linz
- Austria
| | - Cornelia Roschger
- Johannes Kepler University Linz
- Kepler University Hospital GmbH
- Department for Cardiac-, Vascular- and Thoracic Surgery
- 4020 Linz
- Austria
| | - Andreas Zierer
- Johannes Kepler University Linz
- Kepler University Hospital GmbH
- Department for Cardiac-, Vascular- and Thoracic Surgery
- 4020 Linz
- Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry (ICP)
- Johannes Kepler University Linz
- 4040 Linz
- Austria
| |
Collapse
|