1
|
Pacheco A, Evangelista-Osorio A, Muchaypiña-Flores KG, Marzano-Barreda LA, Paredes-Concepción P, Palacin-Baldeón H, Dos Santos MSN, Tres MV, Zabot GL, Olivera-Montenegro L. Polymeric Materials Obtained by Extrusion and Injection Molding from Lignocellulosic Agroindustrial Biomass. Polymers (Basel) 2023; 15:4046. [PMID: 37896290 PMCID: PMC10610583 DOI: 10.3390/polym15204046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
This review presents the advances in polymeric materials achieved by extrusion and injection molding from lignocellulosic agroindustrial biomass. Biomass, which is derived from agricultural and industrial waste, is a renewable and abundant feedstock that contains mainly cellulose, hemicellulose, and lignin. To improve the properties and functions of polymeric materials, cellulose is subjected to a variety of modifications. The most common modifications are surface modification, grafting, chemical procedures, and molecule chemical grafting. Injection molding and extrusion technologies are crucial in shaping and manufacturing polymer composites, with precise control over the process and material selection. Furthermore, injection molding involves four phases: plasticization, injection, cooling, and ejection, with a focus on energy efficiency. Fundamental aspects of an injection molding machine, such as the motor, hopper, heating units, nozzle, and clamping unit, are discussed. Extrusion technology, commonly used as a preliminary step to injection molding, presents challenges regarding fiber reinforcement and stress accumulation, while lignin-based polymeric materials are challenging due to their hydrophobicity. The diverse applications of these biodegradable materials include automotive industries, construction, food packaging, and various consumer goods. Polymeric materials are positioned to offer even bigger contributions to sustainable and eco-friendly solutions in the future, as research and development continues.
Collapse
Affiliation(s)
- Ada Pacheco
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
| | - Arian Evangelista-Osorio
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
| | - Katherine Gabriela Muchaypiña-Flores
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
| | - Luis Alejandro Marzano-Barreda
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
| | - Perla Paredes-Concepción
- Grupo de Ciencia, Tecnología e Innovación en Alimentos, Universidad San Ignacio de Loyola, La Molina 15024, Peru;
| | - Heidy Palacin-Baldeón
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
| | - Maicon Sérgio Nascimento Dos Santos
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040 Sete de Setembro St., Center DC, Cachoeira do Sul, Santa Maria 96508-010, RS, Brazil; (M.S.N.D.S.); (M.V.T.); (G.L.Z.)
| | - Marcus Vinícius Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040 Sete de Setembro St., Center DC, Cachoeira do Sul, Santa Maria 96508-010, RS, Brazil; (M.S.N.D.S.); (M.V.T.); (G.L.Z.)
| | - Giovani Leone Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040 Sete de Setembro St., Center DC, Cachoeira do Sul, Santa Maria 96508-010, RS, Brazil; (M.S.N.D.S.); (M.V.T.); (G.L.Z.)
| | - Luis Olivera-Montenegro
- Bioprocesses and Biomass Conversion Research Group, Universidad San Ignacio de Loyola, La Molina 15024, Peru; (A.P.); (A.E.-O.); (K.G.M.-F.); (L.A.M.-B.); (H.P.-B.)
- Grupo de Ciencia, Tecnología e Innovación en Alimentos, Universidad San Ignacio de Loyola, La Molina 15024, Peru;
| |
Collapse
|
2
|
Cichosz S, Masek A, Dems-Rudnicka K. Analysis of classical techniques precision on the measurement of cellulose moisture gain/loss. Front Chem 2023; 11:1254941. [PMID: 37744057 PMCID: PMC10516550 DOI: 10.3389/fchem.2023.1254941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
The precision of the four classical techniques (Karl-Fischer titration, (thermo)gravimetric method, Fourier-transform infrared (FT-IR) and near infrared (NIR) spectroscopies) commonly used in the analysis of cellulose moisture absorption/desorption has been deeply investigated regarding the reproducibility of these processes. Based on multiple repeated experiments, cellulose water content values obtained with Karl-Fischer titration and (thermo)gravimetric method were plotted as a function of time. Then, the cautious peak-by-peak analysis of the absorbance and wavenumber shifts visible in IR spectra has been carried out. The collected data was described using boxplots that provided valuable information on the experimental points spread. It has been successfully proven that gravimetric methods allow for precise drawing of moisture absorption and desorption curves, while Karl-Fischer titration, ATR FT-IR and NIR techniques provide the possibility of the moisture absorption/desorption processes description by linear mathematical models (R2 >90%). Therefore, this study provides a systematic comparison between various analytical methods.
Collapse
Affiliation(s)
- Stefan Cichosz
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland
| | - Anna Masek
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland
| | | |
Collapse
|
3
|
Panda SBC, Sen K, Mukhopadhyay S. Sustainable Photocatalytic Desizing Process for the Starch-Based Size. ACS OMEGA 2023; 8:18726-18734. [PMID: 37273639 PMCID: PMC10233833 DOI: 10.1021/acsomega.3c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/07/2023] [Indexed: 06/06/2023]
Abstract
Textile wet processing highly impacts the environment due to its massive water and energy consumption. High consumption of water also results in the generation of a considerable volume of effluents. In this regard, an ultraviolet C (UVC)-assisted desizing method of starch-sized cotton fabric has been developed to lower the utility consumption in textile pretreatment. A UVC cabinet is designed to control exposing temperature and energy of exposure on the starch-sized cotton fabric. The UVC exposure time is optimized concerning the desizing efficiency. The UVC-exposed-sized fabric is washed with different washing times and washing temperatures to optimize the process. The alkali consumption in washing is reduced by 75% and desizing efficiency is improved to 95%. The application of oxidizing agents like NaNO2, K2S2O8, and NaBO3·4H2O during sizing further reduced the washing temperature and washing time for desizing to obtain 100% desizing efficiency. The UVC-assisted desized fabric is characterized by the whiteness index, water absorbency, tensile strength, Fourier transform infrared (FTIR), and wide-angle X-ray diffraction and compared with the control. The UVC-assisted desizing process has the potential to save approximately 60% water, 90% energy, and more than 70% of the time. Life cycle analysis has also been done. The photocatalytic desizing process can reduce the impact on human health by more than 85% and save approximately 69% of mineral resources than the conventional technique. The textile industry can quickly adopt a novel approach for sustainable desizing.
Collapse
|
4
|
Characterization and In vitro biocompatibility analysis of nanocellulose scaffold for tissue engineering application. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
Busiak R, Masek A, Węgier A, Rylski A. Accelerated Aging of Epoxy Biocomposites Filled with Cellulose. MATERIALS 2022; 15:ma15093256. [PMID: 35591590 PMCID: PMC9104355 DOI: 10.3390/ma15093256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/09/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022]
Abstract
The presented research concerns the mechanochemical modification of a snap-cure type of epoxy resin, A.S. SET 1010, with the addition of different amounts of cellulose (0, 2, 5, 10, 15 and 20 per 100 resin), for a novel, controlled-degradation material with possible application in the production of passenger seats in rail transport. Composite samples were prepared on a hydraulic press in ac-cordance with the resin manufacturer’s recommendations, in the form of tiles with dimensions of 80 × 80 × 1 mm. The prepared samples were subjected to thermo-oxidative aging and weathering for a period of 336 h. Changes in the color and surface defects in the investigated composites were evaluated using UV-Vis spectrophotometry (Cie-Lab). The degree of degradation by changes in the chemical structure of the samples was analyzed using FTIR/ATR spectroscopy. Differential scan-ning calorimetry (DSC) and thermogravimetric analysis (TGA) tests were performed, and the sur-face energy of the samples was determined by measuring the contact angle of droplets. Tests were performed to determine changes in cellulose-filled epoxy resin composites after thermo-oxidative aging and weathering. It was found out that the addition of cellulose did not inflict sufficient changes to the properties within tested parameters. In the tested case, cellulose acted as a natural active biofiller. Our research is in line with the widespread pursuit of pro-ecological solutions in industry and the creation of materials with a positive impact on the natural environment.
Collapse
Affiliation(s)
- Radosław Busiak
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland; (R.B.); (A.W.)
| | - Anna Masek
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland; (R.B.); (A.W.)
- Correspondence:
| | - Aleksandra Węgier
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland; (R.B.); (A.W.)
- S.Z.T.K. “TAPS”—Maciej Kowalski, ul. Borowa 4, 94-247 Lodz, Poland
| | - Adam Rylski
- Institute of Materials Science and Engineering, Lodz University of Technology, 90-924 Lodz, Poland;
| |
Collapse
|
6
|
Wang Y, Cui K, Fang B, Wang F. Cost-Effective Fabrication of Modified Palygorskite-Reinforced Rigid Polyurethane Foam Nanocomposites. NANOMATERIALS 2022; 12:nano12040609. [PMID: 35214940 PMCID: PMC8876664 DOI: 10.3390/nano12040609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 01/19/2023]
Abstract
Integration of nanoclay minerals into rigid polyurethane foams (RPUFs) is a cost-effective solution to enhance foam’s performance via environmental protection technology. In this work, palygorskite/RPUFs nanocomposites (Pal/RPUFNs) with excellent mechanical properties and thermal stability were prepared via a one-step method, using 4,4’-diphenylmethane diisocyanate and polyether polyol as the starting materials, coupled with Pal modified by silane coupling agent KH570. The effects of the modified Pal on the mechanics, morphology, and thermal properties of the nanocomposites were studied systematically. When the content of the modified Pal was 8 wt% of polyether polyol, the elastic modulus and compressive strength of the Pal/RPUFNs were increased by ca. 131% and 97%, respectively. The scanning electron microscopy images indicated that the addition of the modified Pal significantly decreased the cell diameter of the Pal/RPUFNs. The results of thermogravimetric and derivative thermogravimetry analyses revealed that the addition of the modified Pal increased the thermal weight loss central temperature of the Pal/RPUFNs, showing better thermal stability in comparison with the pure RPUFs. A self-made evaluation device was used to estimate the thermal insulation ability of the Pal/RPUFNs. It was found that the small cell size and uniform cellular structure were keys to improving the thermal insulation performance of the RPUFs. The prepared Pal/RPUFNs are expected to have great potential in the field of building insulation.
Collapse
Affiliation(s)
- Yulei Wang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; (Y.W.); (K.C.)
| | - Kaibin Cui
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; (Y.W.); (K.C.)
| | - Baizeng Fang
- Department of Chemical & Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
- Correspondence: (B.F.); (F.W.)
| | - Fei Wang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China; (Y.W.); (K.C.)
- Correspondence: (B.F.); (F.W.)
| |
Collapse
|
7
|
Biobased Polyurethane Composite Foams Reinforced with Plum Stones and Silanized Plum Stones. Int J Mol Sci 2021; 22:ijms22094757. [PMID: 33946213 PMCID: PMC8124782 DOI: 10.3390/ijms22094757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022] Open
Abstract
In the following study, ground plum stones and silanized ground plum stones were used as natural fillers for novel polyurethane (PUR) composite foams. The impact of 1, 2, and 5 wt.% of fillers on the cellular structure, foaming parameters, and mechanical, thermomechanical, and thermal properties of produced foams were assessed. The results showed that the silanization process leads to acquiring fillers with a smoother surface compared to unmodified filler. The results also showed that the morphology of the obtained materials is affected by the type and content of filler. Moreover, the modified PUR foams showed improved properties. For example, compared with the reference foam (PUR_REF), the foam with the addition of 1 wt.% of unmodified plum filler showed better mechanical properties, such as higher compressive strength (~8% improvement) and better flexural strength (~6% improvement). The addition of silanized plum filler improved the thermal stability and hydrophobic character of PUR foams. This work shows the relationship between the mechanical, thermal, and application properties of the obtained PUR composites depending on the modification of the filler used during synthesis.
Collapse
|
8
|
Kuranchie C, Yaya A, Bensah YD. The effect of natural fibre reinforcement on polyurethane composite foams – A review. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
9
|
Cellulose Modification for Improved Compatibility with the Polymer Matrix: Mechanical Characterization of the Composite Material. MATERIALS 2020; 13:ma13235519. [PMID: 33287258 PMCID: PMC7729504 DOI: 10.3390/ma13235519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/13/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
The following article is the presentation attempt of cellulose hybrid chemical modification approach as a useful tool in improving the mechanical properties of plant fiber-filled polymer materials. The treatment process is a prolonged method of the cellulose maleinization and consists of two steps: 1. solvent exchange (altering fiber structure); 2. maleic anhydride (MA) chemical grafting (surface modification). Thanks to the incorporated treatment method, the created ethylene-norbornene copolymer composite specimen exhibited an improved performance, tensile strength at the level of (38.8 ± 0.8) MPa and (510 ± 20)% elongation at break, which is higher than for neat polymer matrix and could not be achieved in the case of regular MA treatment. Moreover, both the Payne effect and filler efficiency factor indicate a possibility of the fiber reinforcing nature that is not a common result. Additionally, the polymer matrix employed in this research is widely known for its excellent resistance to aqueous and polar organic media, good biocompatibility, and the ability to reproduce fine structures which makes it an interesting material regarding healthcare applications. Therefore, plant fiber-based polymer materials described in this research might be potentially applied in this area, e.g., medical devices, drug delivery, wearables, pharmaceutical blisters, and trays.
Collapse
|
10
|
Strąkowska A, Członka S, Kairytė A. Rigid Polyurethane Foams Reinforced with POSS-Impregnated Sugar Beet Pulp Filler. MATERIALS 2020; 13:ma13235493. [PMID: 33276537 PMCID: PMC7730523 DOI: 10.3390/ma13235493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
Rigid polyurethane (PUR) foams were reinforced with sugar beet pulp (BP) impregnated with Aminopropylisobutyl-polyhedral oligomeric silsesquioxanes (APIB-POSS). BP filler was incorporated into PUR at different percentages—1, 2, and 5 wt.%. The impact of BP filler on morphology features, mechanical performances, and thermal stability of PUR was examined. The results revealed that the greatest improvement in physico-mechanical properties was observed at lower concentrations (1 and 2 wt.%) of BP filler. For example, when compared with neat PUR foams, the addition of 2 wt.% of BP resulted in the formation of PUR composite foams with increased compressive strength (~12%), greater flexural strength (~12%), and better impact strength (~6%). The results of thermogravimetric analysis (TGA) revealed that, due to the good thermal stability of POSS-impregnated BP filler, the reinforced PUR composite foams were characterized by better thermal stability—for example, by increasing the content of BP filler up to 5 wt.%, the mass residue measured at 600 °C increased from 29.0 to 31.9%. Moreover, the addition of each amount of filler resulted in the improvement of fire resistance of PUR composite foams, which was determined by measuring the value of heat peak release (pHRR), total heat release (THR), total smoke release (TSR), limiting oxygen index (LOI), and the amount of carbon monoxide (CO) and carbon dioxide (CO2) released during the combustion. The greatest improvement was observed for PUR composite foams with 2 wt.% of BP filler. The results presented in the current study indicate that the addition of a proper amount of POSS-impregnated BP filler may be an effective approach to the synthesis of PUR composites with improved physico-mechanical properties. Due to the outstanding properties of PUR composite foams reinforced with POSS-impregnated BP, such developed materials may be successfully used as thermal insulation materials in the building and construction industry.
Collapse
Affiliation(s)
- Anna Strąkowska
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Sylwia Członka
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland;
- Correspondence:
| | - Agnė Kairytė
- Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, Linkmenu st. 28, LT-08217 Vilnius, Lithuania;
| |
Collapse
|
11
|
Rigid Polyurethane Foams Based on Bio-Polyol and Additionally Reinforced with Silanized and Acetylated Walnut Shells for the Synthesis of Environmentally Friendly Insulating Materials. MATERIALS 2020; 13:ma13153245. [PMID: 32707810 PMCID: PMC7435791 DOI: 10.3390/ma13153245] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
Abstract
Rigid polyurethane (PUR) foams produced from walnut shells-derived polyol (20 wt.%) were successfully reinforced with 2 wt.% of non-treated, acetylated, and silanized walnut shells (WS). The impact of non-treated and chemically-treated WS on the morphology, mechanical, and thermal characteristics of PUR composites was determined. The morphological analysis confirmed that the addition of WS fillers promoted a reduction in cell size, compared to pure PUR foams. Among all the modified PUR foams, the greatest improvement of mechanical characteristics was observed for PUR foams with the addition of silanized WS-the compressive, flexural, and impact strength were enhanced by 21, 16, and 13%, respectively. The addition of non-treated and chemically-treated WS improved the thermomechanical stability of PUR foams. The results of the dynamic mechanical analysis confirmed an increase in glass transition temperature and storage modulus of PUR foams after the incorporation of chemically-treated WS. The addition of non-treated and chemically-treated WS did not affect the insulating properties of PUR foams, and the thermal conductivity value did not show any significant improvement and deterioration due to the addition of WS fillers.
Collapse
|
12
|
Członka S, Strąkowska A, Kairytė A. Application of Walnut Shells-Derived Biopolyol in the Synthesis of Rigid Polyurethane Foams. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2687. [PMID: 32545580 PMCID: PMC7345166 DOI: 10.3390/ma13122687] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 01/29/2023]
Abstract
This study aimed to examine rigid polyurethane (PUR) foam properties that were synthesized from walnut shells (WS)-based polyol. The Fourier Transform Infrared Spectroscopy (FTIR) results revealed that the liquefaction of walnut shells was successfully performed. The three types of polyurethane (PUR) foams were synthesized by replacement of 10, 20, and 30 wt% of a petrochemical polyol with WS-based polyol. The impact of WS-based polyol on the cellular morphology, mechanical, thermal, and insulating characteristics of PUR foams was examined. The produced PUR foams had apparent densities from 37 to 39 kg m-3, depending on the weight ratio of WS-based polyol. PUR foams that were obtained from WS-based polyol exhibited improved mechanical characteristics when compared with PUR foams that were derived from the petrochemical polyol. PUR foams produced from WS-based polyol showed compressive strength from 255 to 310 kPa, flexural strength from 420 to 458 kPa, and impact strength from 340 to 368 kPa. The foams that were produced from WS-based polyol exhibited less uniform cell structure than foams derived from the petrochemical polyol. The thermal conductivity of the PUR foams ranged between 0.026 and 0.032 W m-1K-1, depending on the concentration of WS-based polyol. The addition of WS-based polyol had no significant influence on the thermal degradation characteristics of PUR foams. The maximum temperature of thermal decomposition was observed for PUR foams with the highest loading of WS-based polyol.
Collapse
Affiliation(s)
- Sylwia Członka
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland;
| | - Anna Strąkowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland;
| | - Agnė Kairytė
- Faculty of Civil Engineering, Institute of Building Materials, Laboratory of Thermal Insulating Materials and Acoustics, Vilnius Gediminas Technical University, Linkmenu st. 28, LT-08217 Vilnius, Lithuania;
| |
Collapse
|
13
|
Cichosz S, Masek A. Superiority of Cellulose Non-Solvent Chemical Modification over Solvent-Involving Treatment: Solution for Green Chemistry (Part I). MATERIALS 2020; 13:ma13112552. [PMID: 32503319 PMCID: PMC7321458 DOI: 10.3390/ma13112552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/23/2022]
Abstract
In the following article, a new approach of cellulose modification, which does not incorporate any solvents (NS), is introduced. It is compared for the first time with the traditional solvent-involving (S) treatment. The analysed non-solvent modification process is carried out in a planetary mill. This provides the opportunity for cellulose mechanical degradation, decreasing its size, simultaneously with ongoing silane coupling agent grafting. Fourier-transform infrared spectroscopy (FT-IR) indicated the possibility of intense cleavage of the glucose rings in the cellulose chains during the mechano-chemical treatment. This effect was proved with dynamic light scattering (DLS) results—the size of the particles decreased. Moreover, according to differential scanning calorimetry (DSC) investigation, modified samples exhibited decreased moisture content and a drop in the adsorbed water evaporation temperature. The performed research proved the superiority of the mechano-chemical treatment over regular chemical modification. The one-pot bio-filler modification approach, as a solution fulfilling green chemistry requirements, as well as compromising the sustainable development rules, was presented. Furthermore, this research may contribute significantly to the elimination of toxic solvents from cellulose modification processes.
Collapse
|
14
|
Członka S, Strąkowska A, Pospiech P, Strzelec K. Effects of Chemically Treated Eucalyptus Fibers on Mechanical, Thermal and Insulating Properties of Polyurethane Composite Foams. MATERIALS 2020; 13:ma13071781. [PMID: 32290106 PMCID: PMC7179037 DOI: 10.3390/ma13071781] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/05/2023]
Abstract
In this work, rigid polyurethane (PUR) foams were prepared by incorporating 2 wt% of eucalyptus fibers. The eucalyptus fibers were surface-modified by maleic anhydride, alkali, and silane (triphenylsilanol) treatment. The impact of the modified eucalyptus fibers on the mechanical, thermal, and fire performances of polyurethane foams was analyzed. It was observed that the addition of eucalyptus fibers showed improved mechanical and thermal properties and the best properties were shown by silane-treated fibers with a compressive strength of 312 kPa and a flexural strength of 432 kPa. Moreover, the thermal stability values showed the lowest decline for polyurethane foams modified with the silane-treated fibers, due to the better thermal stability of such modified fibers. Furthermore, the flame resistance of polyurethane foams modified with the silane-treated fibers was also the best among the studied composites. A cone calorimetry test showed a decrease in the peak of heat release from 245 to 110 kW∙m−2 by the incorporation of silane-treated fibers. Furthermore, total heat release and total smoke release were also found to decrease remarkably upon the incorporation of silane-treated fibers. The value of limiting oxygen index was increased from 20.2% to 22.1%. Char residue was also found to be increased from 24.4% to 28.3%. It can be concluded that the application of chemically modified eucalyptus fibers has great potential as an additive to incorporate good mechanical, thermal, and fire properties in rigid polyurethane foams.
Collapse
Affiliation(s)
- Sylwia Członka
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; (A.S.); (K.S.)
- Correspondence:
| | - Anna Strąkowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; (A.S.); (K.S.)
| | - Piotr Pospiech
- Centre of Papermaking and Printing, Lodz University of Technology, Wolczanska 223, 90-924 Lodz, Poland;
| | - Krzysztof Strzelec
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; (A.S.); (K.S.)
| |
Collapse
|