1
|
Hayati D, Mazaya M, Han SH, Hong J. Density functional theory analysis of fluorene-based donor-π-acceptor dyes: Absorption spectral typing and performance under indoor lighting conditions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 332:125798. [PMID: 39914288 DOI: 10.1016/j.saa.2025.125798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025]
Abstract
We engineered fluorene-based dyes with various π-bridge motifs for indoor photovoltaic applications. Density functional theory (DFT) calculations with B3LYP/6-31G(d,p), validated through benchmark studies, revealed comprehensive structure-property relationships governing optical and electronic characteristics. Quantitative analysis identified four absorption spectral types (A-D), characterized by distinct intramolecular charge transfer (ICT) patterns and chemical reactivity parameters. Type A dyes exhibited optimal characteristics for indoor applications with balanced light harvesting and transparency, while Type B dyes demonstrated superior performance under AM 1.5G and LED 3200 K conditions. Types C and D showed higher transparency but varying performance under different indoor light sources. These findings provide experimentally verifiable molecular design principles for optimizing indoor dye-sensitized solar cells (DSSCs), emphasizing spectral matching while maintaining aesthetic integration.
Collapse
Affiliation(s)
- Dini Hayati
- Research Center for Computing, Research Organization for Electronics and Informatics, Cibinong Science Center, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911 West Java, Indonesia
| | - Maulida Mazaya
- Research Center for Computing, Research Organization for Electronics and Informatics, Cibinong Science Center, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911 West Java, Indonesia
| | - Seung-Hoon Han
- School of Architecture, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Jongin Hong
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
2
|
Salerno G, Franchi D, Dessì A, Bartolini M, Manfredi N, Abbotto A, Bettucci O. Optimizing DSSCs Performance for Indoor Lighting: Matching Organic Dyes Absorption and Indoor Lamps Emission Profiles to Maximize Efficiency. ChemistryOpen 2025:e202400464. [PMID: 39876654 DOI: 10.1002/open.202400464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/14/2024] [Indexed: 01/30/2025] Open
Abstract
The rapid proliferation of internet-connected devices has transformed our daily habits prompting a shift towards greater sustainability in renewable energy for indoor applications. Among the various technologies available for obtaining energy in indoor conditions, Dye-Sensitized Solar Cells (DSSCs) stand out as the most promising due to their ability to efficiently convert ambient light into usable electricity. This study explores how the optimal matching of the UV-Vis absorption spectra of dyes commonly used in DSSCs with the emission profiles of indoor lamps allows for the enhanced efficiency of DSSC under indoor lighting. By testing four organic dyes with different UV-Vis absorption spectra (L1, Y123, S1, and TP1) under two different common indoor light sources (OSRAM 930 and OSRAM 765 lamp), a significant dye-lamp correlation was demonstrated. Notably, low-priced dyes like S1 and TP1, characterized by easier synthetic routes and with an optimal overlap with the dye-lamp spectrum, exhibited competitive efficiencies, narrowing the performance gap with high-performing dyes like Y123, which require more demanding preparation approaches. The study highlights the critical importance of tailoring dye selection to specific indoor lighting environments, addressing a significant gap and paving the way for more sustainable and cost-effective energy solutions for indoor applications.
Collapse
Affiliation(s)
- Giorgia Salerno
- Department of Materials Science, Solar Energy Research Center MIB-SOLAR and INSTM Milano-Bicocca Research Unit University of Milano-Bicocca,Via Cozzi 55, Milano, I-20125, Italy
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, Invariante 12/B, Via Giovanni Paolo II, 132, Fisciano (SA), I-84084, Italy
| | - Daniele Franchi
- National Council of Research - Institute of Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, Sesto Fiorentino, 50019, Italy
| | - Alessio Dessì
- National Council of Research - Institute of Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, Sesto Fiorentino, 50019, Italy
| | - Matteo Bartolini
- National Council of Research - Institute of Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, Sesto Fiorentino, 50019, Italy
| | - Norberto Manfredi
- Department of Materials Science, Solar Energy Research Center MIB-SOLAR and INSTM Milano-Bicocca Research Unit University of Milano-Bicocca,Via Cozzi 55, Milano, I-20125, Italy
| | - Alessandro Abbotto
- Department of Materials Science, Solar Energy Research Center MIB-SOLAR and INSTM Milano-Bicocca Research Unit University of Milano-Bicocca,Via Cozzi 55, Milano, I-20125, Italy
| | - Ottavia Bettucci
- Department of Materials Science, Solar Energy Research Center MIB-SOLAR and INSTM Milano-Bicocca Research Unit University of Milano-Bicocca,Via Cozzi 55, Milano, I-20125, Italy
| |
Collapse
|
3
|
Yadagiri B, Kumar Kaliamurthy A, Yoo K, Cheol Kang H, Ryu J, Kwaku Asiam F, Lee J. Molecular Engineering of Photosensitizers for Solid-State Dye-Sensitized Solar Cells: Recent Developments and Perspectives. ChemistryOpen 2023; 12:e202300170. [PMID: 37874016 PMCID: PMC10695739 DOI: 10.1002/open.202300170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Indexed: 10/25/2023] Open
Abstract
Dye-sensitized solar cells (DSSCs) are a feasible alternative to traditional silicon-based solar cells because of their low cost, eco-friendliness, flexibility, and acceptable device efficiency. In recent years, solid-state DSSCs (ss-DSSCs) have garnered much interest as they can overcome the leakage and evaporation issues of liquid electrolyte systems. However, the poor morphology of solid electrolytes and their interface with photoanodes can minimize the device performance. The photosensitizer/dye is a critical component of ss-DSSCs and plays a vital role in the device's overall performance. In this review, we summarize recent developments and performance of photosensitizers, including mono- and co-sensitization of ruthenium, porphyrin, and metal-free organic dyes under 1 sun and ambient/artificial light conditions. We also discuss the various requirements that efficient photosensitizers should satisfy and provide an overview of their historical development over the years.
Collapse
Affiliation(s)
- Bommaramoni Yadagiri
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Ashok Kumar Kaliamurthy
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Kicheon Yoo
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Hyeong Cheol Kang
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Junyeong Ryu
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Francis Kwaku Asiam
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Jae‐Joon Lee
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| |
Collapse
|
4
|
Kumar R, Bag M, Jain SM. Dual-edged sword of ion migration in perovskite materials for simultaneous energy harvesting and storage application. iScience 2023; 26:108172. [PMID: 37927552 PMCID: PMC10622710 DOI: 10.1016/j.isci.2023.108172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Portable electronic devices and Internet of Things (IoT) require an uninterrupted power supply for their optimum performance and are key ingredients of the futuristic smart buildings - cities. The off-grid photovoltaic cells and photo-rechargeable energy storage devices meet the requirements for continuous data processing and transmission. In addition, these off-grid devices can solve the energy mismanagement problem famously called as "duck curve". The conventional approach is the external integration of a photovoltaic cell and an energy storage device through a complex multi-layered structure. However, this approach causes ohmic transport losses and requires additional complex device packaging leading to increased weight and high cost. Toward this narrative, in this viewpoint, we shed light on application of disruptive organic-inorganic hybrid halide perovskite bifunctional materials employed as smart photo-rechargeable energy devices. We also present hybrid halide lead-free perovskite materials for off-grid energy storage systems for indoor lighting applications.
Collapse
Affiliation(s)
- Ramesh Kumar
- Center for Renewable and Low Carbon Energy, School of Water, Energy and Environment (SWEE), Cranfield University, Cranfield MK430AL, UK
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, SE, Sweden
- Advanced Research in Electrochemical Impedance Spectroscopy (AREIS) Laboratory, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Monojit Bag
- Advanced Research in Electrochemical Impedance Spectroscopy (AREIS) Laboratory, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Sagar M. Jain
- Center for Renewable and Low Carbon Energy, School of Water, Energy and Environment (SWEE), Cranfield University, Cranfield MK430AL, UK
| |
Collapse
|
5
|
Alsharif SA. Nanograss-Assembled NiCo 2S 4 as an Efficient Platinum-Free Counter Electrode for Dye-Sensitized Solar Cell. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2896. [PMID: 37947740 PMCID: PMC10650019 DOI: 10.3390/nano13212896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Dye-sensitized solar cells (DSSCs) are often viewed as the potential future of photovoltaic systems and have garnered significant attention in solar energy research. In this groundbreaking research, we introduced a novel solvothermal method to fabricate a unique "grass-like" pattern on fluorine-doped tin oxide glass (FTO), specifically designed for use as a counter electrode in dye-sensitized solar cell (DSSC) assemblies. Through rigorous structural and morphological evaluations, we ascertained the successful deposition of nickel cobalt sulfide (NCS) on the FTO surface, exhibiting the desired grass-like morphology. Electrocatalytic performance assessment of the developed NCS-1 showed results that intriguingly rivaled those of the acclaimed platinum catalyst, especially during the conversion of I3 to I- as observed through cyclic voltammetry. Remarkably, when integrated into a solar cell assembly, both NCS-1 and NCS-2 electrodes exhibited encouraging power conversion efficiencies of 6.60% and 6.29%, respectively. These results become particularly noteworthy when compared to the 7.19% efficiency of a conventional Pt-based electrode under similar testing conditions. Central to the performance of the NCS-1 and NCS-2 electrodes is their unique thin and sharp grass-like morphology. This structure, vividly showcased through scanning electron microscopy, provides a vast surface area and an abundance of catalytic sites, pivotal for the catalytic reactions involving the electrolytes in DSSCs. In summation, given their innovative synthesis approach, affordability, and remarkable electrocatalytic attributes, the newly developed NCS counter electrodes stand out as potent contenders in future dye-sensitized solar cell applications.
Collapse
Affiliation(s)
- Shada A Alsharif
- University College of Umlij, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
6
|
Biswas S, Lee Y, Choi H, Lee HW, Kim H. Progress in organic photovoltaics for indoor application. RSC Adv 2023; 13:32000-32022. [PMID: 37915443 PMCID: PMC10616817 DOI: 10.1039/d3ra02599c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023] Open
Abstract
Organic photovoltaics (OPVs) have recently emerged as feasible alternatives for indoor light harvesting because of their variable optical absorption, high absorption coefficients, and low leakage currents under low lighting circumstances. Extensive research has been performed over the last decade in the quest for highly efficient, ecologically stable, and economically feasible indoor organic photovoltaics (IOPVs). This research covers a wide range of topics, including the development of new donor-acceptor materials, interlayers (such as electron and hole transport layers), energy loss reduction, open-circuit voltage enhancement via material and device engineering, and device architecture optimization. The maximum power conversion efficiency (PCE) of IOPVs has already topped 35% as a consequence of these collaborative efforts. However, further research is needed to improve numerous elements, such as manufacturing costs and device longevity. IOPVs must preserve at least 80% of their initial PCE for more than a decade in order to compete with traditional batteries used in internet of things devices. A thorough examination of this issue is urgently required. We intend to present an overview of recent developments in the evolution of IOPVs.
Collapse
Affiliation(s)
- Swarup Biswas
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul 163 Seoulsiripdaero, Dongdaemun-gu Seoul 02504 Republic of Korea +82-2-6490-2314 +82-2-6490-2354
| | - Yongju Lee
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul 163 Seoulsiripdaero, Dongdaemun-gu Seoul 02504 Republic of Korea +82-2-6490-2314 +82-2-6490-2354
| | - Hyojeong Choi
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul 163 Seoulsiripdaero, Dongdaemun-gu Seoul 02504 Republic of Korea +82-2-6490-2314 +82-2-6490-2354
| | - Hyeong Won Lee
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul 163 Seoulsiripdaero, Dongdaemun-gu Seoul 02504 Republic of Korea +82-2-6490-2314 +82-2-6490-2354
| | - Hyeok Kim
- School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul 163 Seoulsiripdaero, Dongdaemun-gu Seoul 02504 Republic of Korea +82-2-6490-2314 +82-2-6490-2354
- Central Business, SENSOMEDI 45, Yangcheong 4-gil, Ochang-eup, Cheongwon-gu Cheongju-si 28116 Republic of Korea
- Institute of Sensor System, SENSOMEDI, Seoul Biohub 117-3, Hoegi-ro, Dongdaemun-gu Seoul 02455 Republic of Korea
- Energy Flex Sagajeong-ro 65, Dongdaemun-gu Seoul 02553 Republic of Korea
| |
Collapse
|
7
|
Alanazi TI. TCAD Device Simulation of All-Polymer Solar Cells for Indoor Applications: Potential for Tandem vs. Single Junction Cells. Polymers (Basel) 2023; 15:polym15092217. [PMID: 37177362 PMCID: PMC10180871 DOI: 10.3390/polym15092217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
The utilization of indoor photovoltaics makes it feasible to harvest energy from artificial light sources. Although single-junction indoor photovoltaics have demonstrated exceptional efficacy when using LED lighting, there is still a need for more comprehensive testing of tandem structures. Herein, the first systematic TCAD simulation study on the potential for tandem all-polymer solar cells (all-PSCs) for indoor applications is provided. The presented all-PSCs are based on experimental work in which the top wide bandgap subcell comprises a polymer blend PM7:PIDT, while the bottom narrow bandgap subcell has a polymer blend PM6:PY-IT. Standalone and tandem cells are simulated under AM1.5G solar radiation, and the simulation results are compared with measurements to calibrate the physical models and material parameters revealing PCE values of 10.11%, 16.50%, and 17.58% for the front, rear, and tandem cells, respectively. Next, we assessed the performance characteristics of the three cells under a white LED environment for different color temperatures and light intensities. The results showed a superior performance of the front cell, while a deterioration in the performance was observed for the tandem cell, reflecting in a lower PCE of 16.22% at a color temperature of 2900 K. Thus, an optimized tandem for outdoor applications was not suitable for indoor conditions. In order to alleviate this issue, we propose designing the tandem for indoor lightening by an appropriate choice of thicknesses of the top and bottom absorber layers in order to achieve the current matching point. Reducing the top absorber thickness while slightly increasing the bottom thickness resulted in a higher PCE of 27.80% at 2900 K.
Collapse
Affiliation(s)
- Tarek I Alanazi
- Department of Physics, College of Science, Northern Border University, Arar 73222, Saudi Arabia
| |
Collapse
|
8
|
Zhu X, Xu J, Cen H, Wu Z, Dong H, Xi J. Perspectives for the conversion of perovskite indoor photovoltaics into IoT reality. NANOSCALE 2023; 15:5167-5180. [PMID: 36846869 DOI: 10.1039/d2nr07022g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As a competitive candidate for powering low-power terminals in Internet of Things (IoT) systems, indoor photovoltaic (IPV) technology has attracted much attention due to its effective power output under indoor light illumination. One such emerging photovoltaic technology, perovskite cell, has become a hot topic in the field of IPVs due to its outstanding theoretical performance limits and low manufacturing costs. However, several elusive issues remain limiting their applications. In this review, the challenges for perovskite IPVs are discussed in view of the bandgap tailoring to match indoor light spectra and the defect trapping regulation throughout the devices. Then, we summarize up-to-date perovskite cells, highlighting advanced strategies such as bandgap engineering, film engineering and interface engineering to enhance indoor performance. The investigation of indoor applications of large and flexible perovskite cells and integrated devices powered by perovskite cells is exhibited. Finally, the perspectives for the perovskite IPV field are provided to help facilitate the further improvement of indoor performance.
Collapse
Affiliation(s)
- Xinyi Zhu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 710049, China.
| | - Jie Xu
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hanlin Cen
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 710049, China.
| | - Zhaoxin Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 710049, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Hua Dong
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 710049, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Jun Xi
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 710049, China.
| |
Collapse
|
9
|
Yan B, Liu X, Lu W, Feng M, Yan HJ, Li Z, Liu S, Wang C, Hu JS, Xue DJ. Indoor photovoltaics awaken the world's first solar cells. SCIENCE ADVANCES 2022; 8:eadc9923. [PMID: 36475800 PMCID: PMC9728960 DOI: 10.1126/sciadv.adc9923] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Selenium (Se) solar cells were the world's first solid-state photovoltaics reported in 1883, opening the modern photovoltaics. However, its wide bandgap (~1.9 eV) limits sunlight harvesting. Here, we revisit the world's oldest but long-ignored photovoltaic material with the emergence of indoor photovoltaics (IPVs); the absorption spectrum of Se perfectly matches the emission spectra of commonly used indoor light sources in the 400 to 700 nm range. We find that the widely used Te adhesion layer also passivates defects at the nonbonded Se/TiO2 interface. By optimizing the Te coverage from 6.9 to 70.4%, the resulting Se cells exhibit an efficiency of 15.1% under 1000 lux indoor illumination and show no efficiency loss after 1000 hours of continuous indoor illumination without encapsulation, outperforming the present IPV industry standard of amorphous silicon cells in both efficiency and stability. We further fabricate Se modules (6.75 cm2) that produce 232.6 μW output power under indoor illumination, powering a radio-frequency identification-based localization tag.
Collapse
Affiliation(s)
- Bin Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Key Lab of Microstructure and Properties of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Xinsheng Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, China
| | - Wenbo Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjie Feng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Hui-Juan Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongbao Li
- School of Material and Chemical Engineering, Institute of Cultural and Technological Industry Innovation of Tongren, Tongren University, Tongren 554300, China
| | - Shunchang Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Cong Wang
- Beijing Key Lab of Microstructure and Properties of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ding-Jiang Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Towards Self-Powered WSN: The Design of Ultra-Low-Power Wireless Sensor Transmission Unit Based on Indoor Solar Energy Harvester. ELECTRONICS 2022. [DOI: 10.3390/electronics11132077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The current revolution in communication and information technology is facilitating the Internet of Things (IoT) infrastructure. Wireless Sensor Networks (WSN) are a broad category of IoT applications. However, power management in WSN poses a significant challenge when the WSN is required to operate for a long duration without the presence of a consistent power source. In this paper, we develop a batteryless, ultra-low-power Wireless Sensor Transmission Unit (WSTx) depending on the solar-energy harvester and LoRa technology. We investigate the feasibility of harvesting ambient indoor light using polycrystalline photovoltaic (PV) cells with a maximum power of 1.4 mW. The study provides comprehensive power management design details and a description of the anticipated challenges. The measured power consumption of the developed WSTx was 0.02109 mW during the sleep mode and 11.1 mW during the operation mode. The harvesting system can harvest energy up to 1.2 mW per second, where the harvested energy can power the WSTx for six hours with a maximum power efficiency of 85.714%.
Collapse
|
11
|
Du Y, Tian Q, Chang X, Fang J, Gu X, He X, Ren X, Zhao K, Liu SF. Ionic Liquid Treatment for Highest-Efficiency Ambient Printed Stable All-Inorganic CsPbI 3 Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106750. [PMID: 34964993 DOI: 10.1002/adma.202106750] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/23/2021] [Indexed: 06/14/2023]
Abstract
All-inorganic cesium lead triiodide (CsPbI3 ) perovskite is well known for its unparalleled stability at high temperatures up to 500 °C and under oxidative chemical stresses. However, upscaling solar cells via ambient printing suffers from imperfect crystal quality and defects caused by uncontrollable crystallization. Here, the incorporation of a low concentration of novel ionic liquid is reported as being promising for managing defects in CsPbI3 films, interfacial energy alignment, and device stability of solar cells fabricated via ambient blade-coating. Both theoretical simulations and experimental measurements reveal that the ionic liquid successfully regulates the perovskite thin-film growth to decrease perovskite grain boundaries, strongly coordinates with the undercoordinated Pb2+ to passivate iodide vacancy defects, aligns the interface to decrease the energy barrier at the electron-transporting layer, and relaxes the lattice strain to promote phase stability. Consequently, ambient printed CsPbI3 solar cells with power conversion efficiency as high as 20.01% under 1 sun illumination (100 mW cm-2 ) and 37.24% under indoor light illumination (1000 lux, 365 µW cm-2 ) are achieved; both are the highest for printed all-inorganic cells for corresponding applications. Furthermore, the bare cells show an impressive long-term ambient stability with only ≈5% PCE degradation after 1000 h aging under ambient conditions.
Collapse
Affiliation(s)
- Yachao Du
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Qingwen Tian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Xiaoming Chang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Junjie Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Xiaojing Gu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Xilai He
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Xiaodong Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Xi'an, 710119, P. R. China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457, Zhongshan Road, Dalian, Liaoning, 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| |
Collapse
|
12
|
Ambient Light Energy Harvesting and Numerical Modeling of Non-Linear Phenomena. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ambient light is an energy-harvesting source that can recharge a battery with less human interaction and can be used to prolong the operational time of the Internet of Things, e.g., mobile phones and wearable devices. Available light energy is insufficient for directly charging mobile phones and wearable devices, but it can supplement batteries to power some low-energy-consuming critical functions of the wearable device, especially in low-power consumption wearables. However, in an emergency scenario when the battery’s operational time is not sufficient or a battery charging source is unavailable, a solution is required to extend the limited battery span for mobile and wearable devices. This work presents the bottlenecks and new advancements in the commercialization of photovoltaics for smartphones and wearable technologies based on ambient light energy harvesting. A new technique, in which a smartphone cover is used as a solar concentrator to enhance light energy harvesting associated with algorithms, is experimentally demonstrated. Our research outcomes show that solar concentrators can improve light intensity by approximately 1.85 and 1.43 times at 90° and 71° angles, respectively, thus harvesting more ambient light energy at 2500 lx light intensity in a typical office environment. Type-1 PV and Type-2 PV cells were able to charge the additional battery in 8 h under 2500 lx lighting intensity in an indoor office environment. A system and logic algorithm technique is presented to efficiently transfer harvested light energy to perform low-energy consumption operations in a device, in order to improve the operational time of the device’s battery.
Collapse
|
13
|
He X, Chen J, Ren X, Zhang L, Liu Y, Feng J, Fang J, Zhao K, Liu SF. 40.1% Record Low-Light Solar-Cell Efficiency by Holistic Trap-Passivation using Micrometer-Thick Perovskite Film. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100770. [PMID: 34057256 DOI: 10.1002/adma.202100770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/22/2021] [Indexed: 05/23/2023]
Abstract
Perovskite solar cells exhibit not only high efficiency under full AM1.5 sunlight, but also have great potential for applications in low-light environments, such as indoors, cloudy conditions, early morning, late evening, etc. Unfortunately, their performance still suffers from severe trap-induced nonradiative recombination, particularly under low-light conditions. Here, a holistic passivation strategy is developed to reduce traps both on the surface and in the bulk of micrometer-thick perovskite film, leading to a record efficiency of 40.1% under 301.6 µW cm-2 warm light-emitting diode (LED) light for low-light solar-cell applications. The involvement of guanidinium into the perovskite bulk film and 2-(4-methoxyphenyl)ethylamine hydrobromide (CH3 O-PEABr) passivation on the perovskite surface synergistically suppresses the trap states. The charge carrier lifetimes of the perovskite film increase by tenfold and fivefold to 981 ns and 8.02 µs at the crystal surface and in its bulk, respectively. The decreased nonradiative recombination loss translates to a high open-circuit voltage (Voc ) of 1.00 V, a high short-circuit current (Jsc ) of 152.10 µA cm-2 , and a fill factor (FF) of 79.52%. Note that this performance also stands as the highest among all photovoltaics measured under indoor light illumination. This work of trap passivation for micrometer-thick perovskite film paves a way for high-performance, self-powered IoT devices.
Collapse
Affiliation(s)
- Xilai He
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jiangzhao Chen
- College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Xiaodong Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Lu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yucheng Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jiangshan Feng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Junjie Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
14
|
Michaels H, Benesperi I, Freitag M. Challenges and prospects of ambient hybrid solar cell applications. Chem Sci 2021; 12:5002-5015. [PMID: 34168767 PMCID: PMC8179625 DOI: 10.1039/d0sc06477g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/03/2021] [Indexed: 11/21/2022] Open
Abstract
The impending implementation of billions of Internet of Things and wireless sensor network devices has the potential to be the next digital revolution, if energy consumption and sustainability constraints can be overcome. Ambient photovoltaics provide vast universal energy that can be used to realise near-perpetual intelligent IoT devices which can directly transform diffused light energy into computational inferences based on artificial neural networks and machine learning. At the same time, a new architecture and energy model needs to be developed for IoT devices to optimize their ability to sense, interact, and anticipate. We address the state-of-the-art materials for indoor photovoltaics, with a particular focus on dye-sensitized solar cells, and their effect on the architecture of next generation IoT devices and sensor networks.
Collapse
Affiliation(s)
- Hannes Michaels
- Department of Chemistry, Ångström Laboratory, Uppsala University P.O. Box 523 SE-75120 Uppsala Sweden
- School of Natural and Environmental Science, Newcastle University Bedson Building NE1 7RU Newcastle upon Tyne UK
| | - Iacopo Benesperi
- School of Natural and Environmental Science, Newcastle University Bedson Building NE1 7RU Newcastle upon Tyne UK
| | - Marina Freitag
- Department of Chemistry, Ångström Laboratory, Uppsala University P.O. Box 523 SE-75120 Uppsala Sweden
- School of Natural and Environmental Science, Newcastle University Bedson Building NE1 7RU Newcastle upon Tyne UK
| |
Collapse
|