1
|
He Q, Ning J, Chen H, Jiang Z, Wang J, Chen D, Zhao C, Liu Z, Perepichka IF, Meng H, Huang W. Achievements, challenges, and perspectives in the design of polymer binders for advanced lithium-ion batteries. Chem Soc Rev 2024; 53:7091-7157. [PMID: 38845536 DOI: 10.1039/d4cs00366g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Energy storage devices with high power and energy density are in demand owing to the rapidly growing population, and lithium-ion batteries (LIBs) are promising rechargeable energy storage devices. However, there are many issues associated with the development of electrode materials with a high theoretical capacity, which need to be addressed before their commercialization. Extensive research has focused on the modification and structural design of electrode materials, which are usually expensive and sophisticated. Besides, polymer binders are pivotal components for maintaining the structural integrity and stability of electrodes in LIBs. Polyvinylidene difluoride (PVDF) is a commercial binder with superior electrochemical stability, but its poor adhesion, insufficient mechanical properties, and low electronic and ionic conductivity hinder its wide application as a high-capacity electrode material. In this review, we highlight the recent progress in developing different polymeric materials (based on natural polymers and synthetic non-conductive and electronically conductive polymers) as binders for the anodes and cathodes in LIBs. The influence of the mechanical, adhesion, and self-healing properties as well as electronic and ionic conductivity of polymers on the capacity, capacity retention, rate performance and cycling life of batteries is discussed. Firstly, we analyze the failure mechanisms of binders based on the operation principle of lithium-ion batteries, introducing two models of "interface failure" and "degradation failure". More importantly, we propose several binder parameters applicable to most lithium-ion batteries and systematically consider and summarize the relationships between the chemical structure and properties of the binder at the molecular level. Subsequently, we select silicon and sulfur active electrode materials as examples to discuss the design principles of the binder from a molecular structure point of view. Finally, we present our perspectives on the development directions of binders for next-generation high-energy-density lithium-ion batteries. We hope that this review will guide researchers in the further design of novel efficient binders for lithium-ion batteries at the molecular level, especially for high energy density electrode materials.
Collapse
Affiliation(s)
- Qiang He
- School of Advanced Materials, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan district, Shenzhen 518055, China.
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Jiaoyi Ning
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Hongming Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zhixiang Jiang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Jianing Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Dinghui Chen
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Changbin Zhao
- School of Advanced Materials, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan district, Shenzhen 518055, China.
| | - Zhenguo Liu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Igor F Perepichka
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody Street 9, Gliwice 44-100, Poland
- Centre for Organic and Nanohybrid Electronics (CONE), Silesian University of Technology, S. Konarskiego Street 22b, Gliwice 44-100, Poland
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan district, Shenzhen 518055, China.
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
2
|
Dominguez-Alfaro A, Casado N, Fernandez M, Garcia-Esnaola A, Calvo J, Mantione D, Calvo MR, Cortajarena AL. Engineering Proteins for PEDOT Dispersions: A New Horizon for Highly Mixed Ionic-Electronic Biocompatible Conducting Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307536. [PMID: 38126666 DOI: 10.1002/smll.202307536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Poly (3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrene sulfonate (PSS) is the most used conducting polymer from energy to biomedical applications. Despite its exceptional properties, there is a need for developing new materials that can improve some of its inherent limitations, e.g., biocompatibility. In this context, doping PEDOT is propose with a robust recombinant protein with tunable properties, the consensus tetratricopeptide repeated protein (CTPR). The doping consists of an oxidative polymerization, where the PEDOT chains are stabilized by the negative charges of the CTPR protein. CTPR proteins are evaluated with three different lengths (3, 10, and 20 identical CTPR units) and optimized varied synthetic conditions. These findings revealed higher doping rate and oxidized state of the PEDOT chains when doped with the smallest scaffold (CTPR3). These PEDOT:CTPR hybrids possess ionic and electronic conductivity. Notably, PEDOT:CTPR3 displayed an electronic conductivity of 0.016 S cm-1, higher than any other reported protein-doped PEDOT. This result places PEDOT:CTPR3 at the level of PEDOT-biopolymer hybrids, and brings it closer in performance to PEDOT:PSS gold standard. Furthermore, PEDOT:CTPR3 dispersion is successfully optimized for inkjet printing, preserving its electroactivity properties after printing. This approach opens the door to the use of these novel hybrids for bioelectronics.
Collapse
Affiliation(s)
- Antonio Dominguez-Alfaro
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Nerea Casado
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Maxence Fernandez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Andrea Garcia-Esnaola
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Javier Calvo
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Daniele Mantione
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Maria Reyes Calvo
- Departamento de Física Aplicada, Universidad de Alicante, Alicante, 03690, Spain
- Instituto Universitario de Materiales de Alicante (IUMA), Universidad de Alicante, Alicante, 03690, Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
3
|
Del Olmo R, Dominguez-Alfaro A, Olmedo-Martínez JL, Sanz O, Pozo-Gonzalo C, Forsyth M, Casado N. Innovative Strategy for Developing PEDOT Composite Scaffold for Reversible Oxygen Reduction Reaction. J Phys Chem Lett 2024; 15:4851-4857. [PMID: 38669215 PMCID: PMC11089567 DOI: 10.1021/acs.jpclett.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Metal-air batteries are an emerging technology with great potential to satisfy the demand for energy in high-consumption applications. However, this technology is still in an early stage, facing significant challenges such as a low cycle life that currently limits its practical use. Poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer has already demonstrated its efficiency as catalyst for oxygen reduction reaction (ORR) discharge as an alternative to traditional expensive and nonsustainable metal catalysts. Apart from that, in most electrochemical processes, three phenomena are needed: redox activity and electronic and ionic conduction. Material morphology is important to maximize the contact area and optimize the 3 mechanisms to obtain high-performance devices. In this work, porous scaffolds of PEDOT-organic ionic plastic crystal (OIPC) are prepared through vapor phase polymerization to be used as porous self-standing cathodes. The scaffolds, based on abundant elements, showed good thermal stability (200 °C), with potential ORR reversible electrocatalytic activity: 60% of Coulombic efficiency in aqueous medium after 200 cycles.
Collapse
Affiliation(s)
- Rafael Del Olmo
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Antonio Dominguez-Alfaro
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Jorge L. Olmedo-Martínez
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Oihane Sanz
- Department
of Applied Chemistry, University of the
Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Cristina Pozo-Gonzalo
- Institute
for Frontier Materials (IFM), Deakin University, Burwood, Victoria 3125, Australia
| | - Maria Forsyth
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Institute
for Frontier Materials (IFM), Deakin University, Burwood, Victoria 3125, Australia
- Ikerbasque,
Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Nerea Casado
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, E-48011 Bilbao, Spain
| |
Collapse
|
4
|
Pitchiya AP, Slenker BE, Sreeram A, Johnson C, Orimolade T, Roy D, Krishnan S. Graphene-Enhanced Ion Transport in Dual-Conducting Composite Films of Polyacetylene and an Imidazolium Iodide Ionic Liquid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6767-6779. [PMID: 37140961 DOI: 10.1021/acs.langmuir.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Dual-conducting polymer films were synthesized by dispersing graphene in an aqueous solution of poly(vinyl alcohol) and 1-propyl-3-methylimidazolium iodide ([C3mim]I) ionic liquid and thermally converting the poly(vinyl alcohol) to polyene in the presence of hydroiodic acid catalyst. The electrical and mechanical properties of the resulting free-standing films of the nanocomposite, containing different concentrations of graphene, were analyzed using electrochemical impedance spectroscopy (EIS) and dynamic mechanical analysis (DMA), respectively. Nyquist plots (imaginary vs real components of the frequency-dependent impedance) showed two characteristic arcs representing the composite's electronic and ionic conduction pathways. The conductivity values corresponding to both charge transport mechanisms increased with temperature and the graphene concentration. The enhancement in electronic conductivity is expected because of graphene's high electron mobility. Interestingly, ionic conductivity also showed a significant increase with graphene concentration, approximately triple the extent of the rise in the electronic conductivity, even though the loss and storage moduli of the films increased. (Generally, a higher modulus results in lower ionic conductivities in ionic gels.) Molecular dynamics simulations of the three-component system provided some insights into this unusual behavior. Mean square displacement data showed that the diffusion of the iodide anions was relatively isotropic. The iodide diffusion coefficient was higher in a blend with 5 vol % graphene than in blends with 3 vol % graphene or no graphene. The improvement is attributed to the interfacial effects of the graphene on the free volume of the blend. Furthermore, an exclusion of the iodide ions from the vicinity of graphene was observed in the radial distribution function analysis. The increase in the effective concentration of iodide due to this exclusion and the increase in its diffusion coefficient because of the excess free volume are the primary reasons for the observed enhancement in ionic conductivity by adding graphene.
Collapse
Affiliation(s)
- Aswin Prathap Pitchiya
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Benjamin Edward Slenker
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Arvind Sreeram
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Cody Johnson
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| | - Temitope Orimolade
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Dipankar Roy
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| | - Sitaraman Krishnan
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
5
|
Quill TJ, LeCroy G, Halat DM, Sheelamanthula R, Marks A, Grundy LS, McCulloch I, Reimer JA, Balsara NP, Giovannitti A, Salleo A, Takacs CJ. An ordered, self-assembled nanocomposite with efficient electronic and ionic transport. NATURE MATERIALS 2023; 22:362-368. [PMID: 36797383 DOI: 10.1038/s41563-023-01476-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Mixed conductors-materials that can efficiently conduct both ionic and electronic species-are an important class of functional solids. Here we demonstrate an organic nanocomposite that spontaneously forms when mixing an organic semiconductor with an ionic liquid and exhibits efficient room-temperature mixed conduction. We use a polymer known to form a semicrystalline microstructure to template ion intercalation into the side-chain domains of the crystallites, which leaves electronic transport pathways intact. Thus, the resulting material is ordered, exhibiting alternating layers of rigid semiconducting sheets and soft ion-conducting layers. This unique dual-network microstructure leads to a dynamic ionic/electronic nanocomposite with liquid-like ionic transport and highly mobile electronic charges. Using a combination of operando X-ray scattering and in situ spectroscopy, we confirm the ordered structure of the nanocomposite and uncover the mechanisms that give rise to efficient electron transport. These results provide fundamental insights into charge transport in organic semiconductors, as well as suggesting a pathway towards future improvements in these nanocomposites.
Collapse
Affiliation(s)
- Tyler J Quill
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Garrett LeCroy
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - David M Halat
- Department of Chemical and Biomolecular Engineering and College of Chemistry, University of California, Berkeley, CA, USA
- Materials Sciences Division and Joint Center for Energy Storage Research, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rajendar Sheelamanthula
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Adam Marks
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Lorena S Grundy
- Department of Chemical and Biomolecular Engineering and College of Chemistry, University of California, Berkeley, CA, USA
- Materials Sciences Division and Joint Center for Energy Storage Research, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Iain McCulloch
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Jeffrey A Reimer
- Department of Chemical and Biomolecular Engineering and College of Chemistry, University of California, Berkeley, CA, USA
- Materials Sciences Division and Joint Center for Energy Storage Research, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nitash P Balsara
- Department of Chemical and Biomolecular Engineering and College of Chemistry, University of California, Berkeley, CA, USA
- Materials Sciences Division and Joint Center for Energy Storage Research, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alexander Giovannitti
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| | - Christopher J Takacs
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| |
Collapse
|
6
|
Battaglia AM, Pahlavanlu P, Grignon E, An SY, Seferos DS. High Active Material Loading in Organic Electrodes Enabled by a Multifunctional Binder. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42298-42307. [PMID: 36083595 DOI: 10.1021/acsami.2c10070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic electrodes are promising candidates for next-generation lithium-ion batteries due to their low cost and sustainable nature; however, they often suffer from very low conductivity and active material loadings. The conventional binder used in organic-based Li-ion batteries is poly(vinylidene fluoride) (PVDF), yet it is electrochemically inactive and thus occupies volume and mass without storing energy. Here, we report an organic mixed ionic-electronic conducting polymer, poly[norbornene-1,2-bis(C(O)OPEDOT)]25-b-[norbornene-1,2-bis-(C(O)PEG12)]25 denoted PEDOT-b-PEG for simplicity, as a cathode binder to address the aforementioned issues. The polymer contains a poly(3,4-ethylenedioxythiophene) (PEDOT) functionality to provide electronic conductivity, as well as poly(ethylene glycol) (PEG) chains to impart ionic conductivity to the cathode composite. We compare electrodes containing a perylene diimide (PDI) active material, conductive carbon, and a polymeric binder (either PVDF or PEDOT-b-PEG) with different weight ratios to study the impact of active material loading and type of binder on the performance of the cell. The lithium-ion cells prepared with the PEDOT-b-PEG polymer binder result in higher capacities and decreased impedance at all active material loadings compared to cathodes prepared with the PVDF-containing electrodes, demonstrating potential as a new binder to achieve higher active material loadings in organic electrodes. The strategy of preparing these polymers should be broadly applicable to other classes of mixed polymer conductors.
Collapse
Affiliation(s)
- Alicia M Battaglia
- Department of Chemistry, University of Toronto, 80 Street George Street, Toronto, Ontario M5S 3H6, Canada
| | - Paniz Pahlavanlu
- Department of Chemistry, University of Toronto, 80 Street George Street, Toronto, Ontario M5S 3H6, Canada
| | - Eloi Grignon
- Department of Chemistry, University of Toronto, 80 Street George Street, Toronto, Ontario M5S 3H6, Canada
| | - So Young An
- Department of Chemistry, University of Toronto, 80 Street George Street, Toronto, Ontario M5S 3H6, Canada
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto, 80 Street George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
7
|
Kang CSM, Hutt OE, Pringle JM. Halide-Free Synthesis of New Difluoro(oxalato)borate [DFOB] - -Based Ionic Liquids and Organic Ionic Plastic Crystals. Chemphyschem 2022; 23:e202200115. [PMID: 35451216 PMCID: PMC9401595 DOI: 10.1002/cphc.202200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/31/2022] [Indexed: 11/29/2022]
Abstract
The implementation of next-generation batteries requires the development of safe, compatible electrolytes that are stable and do not cause safety problems. The difluoro(oxalato)borate ([DFOB]- ) anion has been used as an electrolyte additive to aid with stability, but such an approach has most commonly been carried out using flammable solvent electrolytes. As an alternative approach, utilisation of the [DFOB]- anion to make ionic liquids (ILs) or Organic Ionic Plastic Crystals (OIPCs) allows the advantageous properties of ILs or OIPCs, such as higher thermal stability and non-volatility, combined with the benefits of the [DFOB]- anion. Here, we report the synthesis of new [DFOB]- -based ILs paired with triethylmethylphosphonium [P1222 ]+ , and diethylisobutylmethylphosphonium [P122i4 ]+ . We also report the first OIPCs containing the [DFOB]- anion, formed by combination with the 1-ethyl-1-methylpyrrolidinium [C2 mpyr]+ cation, and the triethylmethylammonium [N1222 ]+ cation. The traditional synthetic route using halide starting materials has been successfully replaced by a halide-free tosylate-based synthetic route that is advantageous for a purer, halide free product. The synthesised [DFOB]- -based salts exhibit good thermal stability, while the ILs display relatively high ionic conductivity. Thus, the new [DFOB]- -based electrolytes show promise for further investigation as battery electrolytes both in liquid and solid-state form.
Collapse
Affiliation(s)
- Colin S. M. Kang
- Institute for Frontier MaterialsDeakin University221 Burwood HwyBurwoodVictoriaAustralia
| | - Oliver E. Hutt
- Boron Molecular500 Princes HwyNoble ParkVictoriaAustralia
| | - Jennifer M. Pringle
- Institute for Frontier MaterialsDeakin University221 Burwood HwyBurwoodVictoriaAustralia
| |
Collapse
|
8
|
Poly(3,4-ethylenedioxythiophene) Electrosynthesis in the Presence of Mixtures of Flexible-Chain and Rigid-Chain Polyelectrolytes. Polymers (Basel) 2021; 13:polym13223866. [PMID: 34833165 PMCID: PMC8623408 DOI: 10.3390/polym13223866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
The electrochemical synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT) was first carried out in the presence of mixtures of flexible-chain and rigid-chain polyacids and their Na-salts. Earlier on with the example of polyaniline, we have shown the non-additive effect of the rigid-chain component of polyacid mixtures on the electrodeposition of polyaniline films, their morphology and spectroelectrochemical properties. In this study, we confirmed the non-additive effect and showed that such mixed PEDOT-polyelectrolyte films possess unique morphology, spectroelectrochemical and ammonia sensing properties. The electrosynthesis was carried out in potential cycling, galvanostatic and potentiostatic regimes and monitored by in situ UV-Vis spectroscopy. UV-Vis spectroelectrochemistry of the obtained PEDOT-polyelectrolyte films revealed the dominating influence of the rigid-chain polyacid on the electronic structure of the mixed complexes. The mixed PEDOT-polyacid films demonstrated the best ammonia sensing performance (in the range of 5 to 25 ppm) as compared to the films of individual PEDOT-polyelectrolyte films.
Collapse
|