1
|
Mieriņa I, Grigale-Sorocina Z, Birks I. The Chemistry of Behind the UV-Curable Nail Polishes. Polymers (Basel) 2025; 17:1166. [PMID: 40362950 PMCID: PMC12073227 DOI: 10.3390/polym17091166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
As far as history tells, people have set efforts both to improve the conditions and to change the visual outfit of the skin, nails, and hair. The first information on nail cosmetics is found in ancient China and Egypt, where various nature-derived compositions were used for changing the colour of the nails. Nowadays more mechanically and chemically durable systems for nail polishes are elaborated. This review focuses on the latest achievements in the field of UV-curable nail polishes. Herein, the polymerization mechanisms of various systems (acrylates, as well as epoxides and thiols) occurring in nail polishes are described. Besides plausible side reactions of the polymerization process are characterized. Thus, the main drawbacks for forming a uniform, perfect layer are illuminated. For effective curing, the choice of photoinitiators may be crucial; thus, various types of photoinitiators as well as their main advantages and disadvantages are characterized. Ensuring effective adhesion between the substrate (human nail) and the polymer film is one of the challenges for the nail polish industry-thus the plausible interactions between the adhesion promoters and the keratin are described. Regarding the film-forming agents, a comprehensive overview of the composition of the traditional UV-curing nail polishes is provided, but the main emphasis is devoted to alternative, nature-derived film-forming agents that could introduce renewable resources into nail cosmetics. Additionally, this review gives short insight into the latest innovations in UV-curing nail cosmetics, like (1) nail polishes with improved pealability, (2) covalently polymer-bonded dyes and photoinitiators, thus reducing the release of the low-molecular compounds or their degradation products, and (3) UV-curing nail polishes as delivery systems for nail treatment medicine.
Collapse
Affiliation(s)
- Inese Mieriņa
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P.Valdena Str. 3, LV-1048 Riga, Latvia
| | - Zane Grigale-Sorocina
- R&D, Kinetics Nail Systems, Kurzemes Prospekts 3K, LV-1067 Riga, Latvia; (Z.G.-S.); (I.B.)
| | - Ingmars Birks
- R&D, Kinetics Nail Systems, Kurzemes Prospekts 3K, LV-1067 Riga, Latvia; (Z.G.-S.); (I.B.)
| |
Collapse
|
2
|
Dohi T, Elboray EE, Kikushima K, Morimoto K, Kita Y. Iodoarene Activation: Take a Leap Forward toward Green and Sustainable Transformations. Chem Rev 2025; 125:3440-3550. [PMID: 40053418 PMCID: PMC11951092 DOI: 10.1021/acs.chemrev.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
Constructing chemical bonds under green sustainable conditions has drawn attention from environmental and economic perspectives. The dissociation of (hetero)aryl-halide bonds is a crucial step of most arylations affording (hetero)arene derivatives. Herein, we summarize the (hetero)aryl halides activation enabling the direct (hetero)arylation of trapping reagents and construction of highly functionalized (hetero)arenes under benign conditions. The strategies for the activation of aryl iodides are classified into (a) hypervalent iodoarene activation followed by functionalization under thermal/photochemical conditions, (b) aryl-I bond dissociation in the presence of bases with/without organic catalysts and promoters, (c) photoinduced aryl-I bond dissociation in the presence/absence of organophotocatalysts, (d) electrochemical activation of aryl iodides by direct/indirect electrolysis mediated by organocatalysts and mediators acting as electron shuttles, and (e) electrophotochemical activation of aryl iodides mediated by redox-active organocatalysts. These activation modes result in aryl iodides exhibiting diverse reactivity as formal aryl cations/radicals/anions and aryne precursors. The coupling of these reactive intermediates with trapping reagents leads to the facile and selective formation of C-C and C-heteroatom bonds. These ecofriendly, inexpensive, and functional group-tolerant activation strategies offer green alternatives to transition metal-based catalysis.
Collapse
Affiliation(s)
- Toshifumi Dohi
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Elghareeb E. Elboray
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Department
of Chemistry, Faculty of Science, South
Valley University, Qena 83523, Egypt
| | - Kotaro Kikushima
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Koji Morimoto
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Yasuyuki Kita
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| |
Collapse
|
3
|
Choi Y, Kim J, Lee C, Lee G, Hyeon J, Jeong SK, Cho N. Enhancing the Mechanical Strength of a Photocurable 3D Printing Material Using Potassium Titanate Additives for Craniofacial Applications. Biomimetics (Basel) 2024; 9:698. [PMID: 39590270 PMCID: PMC11592189 DOI: 10.3390/biomimetics9110698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Photopolymerization-based three-dimensional (3D) printing techniques such as stereolithography (SLA) attract considerable attention owing to their superior resolution, low cost, and relatively high printing speed. However, the lack of studies on improving the mechanical properties of 3D materials highlights the importance of delving deeper into additive manufacturing research. These materials possess considerable potential in the medical field, particularly for applications such as anatomical models, medical devices, and implants. In this study, we investigated the enhancement of mechanical strength in 3D-printed photopolymers through the incorporation of potassium titanate powder (K2Ti8O17), with a particular focus on potential applications in medical devices. The mechanical strength of the photopolymer containing potassium titanate was analyzed by measuring its flexural strength, hardness, and tensile strength. Additionally, poly(ethylene glycol) (PEG) was used as a stabilizer to optimize the dispersion of potassium titanate in the photopolymer. The flexural strengths of the printed specimens were in the range of 15-39 MPa (Megapascals), while the measured surface hardness and tensile strength were in the range of 41-80 HDD (Hardness shore D) and 2.3-15 MPa, respectively. Furthermore, the output resolution was investigated by testing it with a line-patterned structure. The 3D-printing photopolymer without PEG stabilizers produced line patterns with a thickness of 0.3 mm, whereas the 3D-printed resin containing a PEG stabilizer produced line patterns with a thickness of 0.2 mm. These findings demonstrate that the composite materials not only exhibit improved mechanical performance but also allow for high-resolution printing. Furthermore, this composite material was successfully utilized to print implants for pre-surgical inspection. This process ensures the precision and quality of medical device production, emphasizing the material's practical value in advanced medical applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Soon-ki Jeong
- Department of Energy Engineering, Soonchunhyang University, Asan-si 31538, Republic of Korea; (Y.C.); (J.K.); (C.L.); (G.L.); (J.H.)
| | - Namchul Cho
- Department of Energy Engineering, Soonchunhyang University, Asan-si 31538, Republic of Korea; (Y.C.); (J.K.); (C.L.); (G.L.); (J.H.)
| |
Collapse
|
4
|
McGraw M, Addison B, Clarke RW, Allen RD, Rorrer NA. Synergistic Dual-Cure Reactions for the Fabrication of Thermosets by Chemical Heating. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:11913-11927. [PMID: 39148515 PMCID: PMC11323266 DOI: 10.1021/acssuschemeng.4c01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Large composite structures, such as those used in wind energy applications, rely on the bulk polymerization of thermosets on an impressively large scale. To accomplish this, traditional thermoset polymerizations require both elevated temperatures (>100 °C) and extended cure durations (>5 h) for complete conversion, necessitating the use of oversize ovens or heated molds. In turn, these requirements lead to energy-intensive polymerizations, incurring high manufacturing costs and process emissions. In this study, we develop thermoset polymerizations that can be initiated at room temperature through a transformative "chemical heating" concept, in which the exothermic energy of a secondary reaction is used to facilitate the heating of a primary thermoset polymerization. By leveraging a redox-initiated methacrylate free radical polymerization as a source of exothermic chemical energy, we can achieve peak reaction temperatures >140 °C to initiate the polymerization of epoxy-anhydride thermosets without external heating. Furthermore, by employing Trojan horse methacrylate monomers to induce mixing between methacrylate and epoxy-anhydride domains, we achieve the synthesis of homogeneous hybrid polymeric materials with competitive thermomechanical properties and tunability. Herein, we establish a proof-of-concept for our innovative chemical heating method and advocate for its industrial integration for more energy-efficient and streamlined manufacturing of wind blades and large composite parts more broadly.
Collapse
Affiliation(s)
- Michael
L. McGraw
- Renewable Resources and Enabling
Sciences Center, National Renewable Energy
Laboratory, Golden, Colorado 80401, United States
| | - Bennett Addison
- Renewable Resources and Enabling
Sciences Center, National Renewable Energy
Laboratory, Golden, Colorado 80401, United States
| | - Ryan W. Clarke
- Renewable Resources and Enabling
Sciences Center, National Renewable Energy
Laboratory, Golden, Colorado 80401, United States
| | - Robert D. Allen
- Renewable Resources and Enabling
Sciences Center, National Renewable Energy
Laboratory, Golden, Colorado 80401, United States
| | - Nicholas A. Rorrer
- Renewable Resources and Enabling
Sciences Center, National Renewable Energy
Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
5
|
Bistri D, Arretche I, Lessard JJ, Zakoworotny M, Vyas S, Rongy L, Gómez-Bombarelli R, Moore JS, Geubelle P. A Mechanism-Based Reaction-Diffusion Model for Accelerated Discovery of Thermoset Resins Frontally Polymerized by Olefin Metathesis. J Am Chem Soc 2024; 146:21877-21888. [PMID: 39075856 DOI: 10.1021/jacs.4c06527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Frontal ring-opening metathesis polymerization (FROMP) involves a self-perpetuating exothermic reaction, which enables the rapid and energy-efficient manufacturing of thermoset polymers and composites. Current state-of-the-art reaction-diffusion FROMP models rely on a phenomenological description of the olefin metathesis kinetics, limiting their ability to model the governing thermo-chemical FROMP processes. Furthermore, the existing models are unable to predict the variations in FROMP kinetics with changes in the resin composition and as a result are of limited utility toward accelerated discovery of new resin formulations. In this work, we formulate a chemically meaningful model grounded in the established mechanism of ring-opening metathesis polymerization (ROMP). Our study aims to validate the hypothesis that the ROMP mechanism, applicable to monomer-initiator solutions below 100 °C, remains valid under the nonideal conditions encountered in FROMP, including ambient to >200 °C temperatures, sharp temperature gradients, and neat monomer environments. Through extensive simulations, we demonstrate that our mechanism-based model accurately predicts the FROMP behavior across various resin compositions, including polymerization front velocities and thermal characteristics (e.g., Tmax). Additionally, we introduce a semi-inverse workflow that predicts FROMP behavior from a single experimental data point. Notably, the physiochemical parameters utilized in our model can be obtained through DFT calculations and minimal experiments, highlighting the model's potential for rapid screening of new FROMP chemistries in pursuit of thermoset polymers with superior thermo-chemo-mechanical properties.
Collapse
Affiliation(s)
- Donald Bistri
- Department of Aerospace Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ignacio Arretche
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jacob J Lessard
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael Zakoworotny
- Department of Aerospace Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sagar Vyas
- Department of Aerospace Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Laurence Rongy
- Nonlinear Physical Chemistry Unit, Faculté des Sciences, Université libre de Bruxelles, 1050 Brussels, Belgium
| | - Rafael Gómez-Bombarelli
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Philippe Geubelle
- Department of Aerospace Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Moraru D, Cortés A, Martinez-Diaz D, Prolongo SG, Jiménez-Suárez A, Sangermano M. Sustainable Electrically Conductive Bio-Based Composites via Radical-Induced Cationic Frontal Photopolymerization. Polymers (Basel) 2024; 16:2159. [PMID: 39125185 PMCID: PMC11314415 DOI: 10.3390/polym16152159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Diglycidylether of vanillyl alcohol (DGEVA), in combination with mechanically recycled carbon fibers (RCFs), was used to make, via Radical-Induced Cationic Frontal Photopolymerization (RICFP), fully sustainable and bio-based conductive composites with good electrical conductivity and consequent Joule effect proprieties. Three different fiber lengths, using three different sieve sizes during the mechanical recycling process (0.2, 0.5, and 2.0 mm), were used in five different amounts (ranging from 1 to 25 phr). The samples were first characterized by dynamic mechanical thermal analysis (DMTA), followed byelectrical conductivity and Joule heating tests. More specifically, the mechanical properties of the composites increased when increasing fiber content. Furthermore, the composites obtained with the longest fibers showed the highest electrical conductivity, reaching a maximum of 11 S/m, due to their higher aspect ratio. In this context, the temperature reached by Joule effect was directly related to the electrical conductivity, and was able to reach an average and maximum temperatures of 80 °C and 120 °C, respectively, just by applying 6 V.
Collapse
Affiliation(s)
- Dumitru Moraru
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy;
| | - Alejandro Cortés
- Materials Science and Engineering Area, University Rey Juan Carlos, C/Tulipán s/n, 28933 Madrid, Spain; (A.C.); (D.M.-D.); (S.G.P.); (A.J.-S.)
| | - David Martinez-Diaz
- Materials Science and Engineering Area, University Rey Juan Carlos, C/Tulipán s/n, 28933 Madrid, Spain; (A.C.); (D.M.-D.); (S.G.P.); (A.J.-S.)
| | - Silvia G. Prolongo
- Materials Science and Engineering Area, University Rey Juan Carlos, C/Tulipán s/n, 28933 Madrid, Spain; (A.C.); (D.M.-D.); (S.G.P.); (A.J.-S.)
- Instituto de Tecnologías para la Sostenibilidad, University Rey Juan Carlos, C/Tulipán s/n, 28933 Madrid, Spain
| | - Alberto Jiménez-Suárez
- Materials Science and Engineering Area, University Rey Juan Carlos, C/Tulipán s/n, 28933 Madrid, Spain; (A.C.); (D.M.-D.); (S.G.P.); (A.J.-S.)
| | - Marco Sangermano
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy;
| |
Collapse
|
7
|
Rekha, Fatma S, Sharma S, Anand RV. Eosin Y-catalyzed reductive homocoupling of para-quinone methides under visible-light. Photochem Photobiol 2024; 100:1078-1088. [PMID: 38597042 DOI: 10.1111/php.13946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
In this manuscript, we demonstrate a visible-light driven dimerization of para-quinone methides using eosin Y catalyst via a reductive homocoupling process. This mild and operationally simple methodology was found to be compatible with a variety of differently substituted para-quinone methides and a broad range of tetra-arylethane derivatives were obtained in moderate to good yields (47%-87%).
Collapse
Affiliation(s)
- Rekha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli (PO), Punjab, India
| | - Shaheen Fatma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli (PO), Punjab, India
| | - Sonam Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli (PO), Punjab, India
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli (PO), Punjab, India
| |
Collapse
|
8
|
Shams AT, Papon EA, Shinde PS, Bara J, Haque A. Degree of Cure, Microstructures, and Properties of Carbon/Epoxy Composites Processed via Frontal Polymerization. Polymers (Basel) 2024; 16:1493. [PMID: 38891440 PMCID: PMC11174699 DOI: 10.3390/polym16111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The frontal polymerization (FP) of carbon/epoxy (C/Ep) composites is investigated, considering FP as a viable route for the additive manufacturing (AM) of thermoset composites. Neat epoxy (Ep) resin-, short carbon fiber (SCF)-, and continuous carbon fiber (CCF)-reinforced composites are considered in this study. The evolution of the exothermic reaction temperature, polymerization frontal velocity, degree of cure, microstructures, effects of fiber concentration, fracture surface, and thermal and mechanical properties are investigated. The results show that exothermic reaction temperatures range between 110 °C and 153 °C, while the initial excitation temperatures range from 150 °C to 270 °C. It is observed that a higher fiber content increases cure time and decreases average frontal velocity, particularly in low SCF concentrations. This occurs because resin content, which predominantly drives the exothermic reaction, decreases with increased fiber content. The FP velocities of neat Ep resin- and SCF-reinforced composites are seen to be 0.58 and 0.50 mm/s, respectively. The maximum FP velocity (0.64 mm/s) is observed in CCF/Ep composites. The degree of cure (αc) is observed to be in the range of 70% to 85% in FP-processed composites. Such a range of αc is significantly low in comparison to traditional composites processed through a long cure cycle. The glass transition temperature (Tg) of neat epoxy resin is seen to be approximately 154 °C, and it reduces slightly to a lower value (149 °C) for SCF-reinforced composites. The microstructures show significantly high void contents (12%) and large internal cracks. These internal cracks are initiated due to high thermal residual stress developed during curing for non-uniform temperature distribution. The tensile properties of FP-cured samples are seen to be inferior in comparison to autoclave-processed neat epoxy. This occurs mostly due to the presence of large void contents, internal cracks, and a poor degree of cure. Finally, a highly efficient and controlled FP method is desirable to achieve a defect-free microstructure with improved mechanical and thermal properties.
Collapse
Affiliation(s)
- Aurpon Tahsin Shams
- Department of Aerospace Engineering and Mechanics, The University of Alabama, Tuscaloosa, AL 35487, USA; (A.T.S.); (E.A.P.)
| | - Easir Arafat Papon
- Department of Aerospace Engineering and Mechanics, The University of Alabama, Tuscaloosa, AL 35487, USA; (A.T.S.); (E.A.P.)
| | - Pravin S. Shinde
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA; (P.S.S.); (J.B.)
| | - Jason Bara
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA; (P.S.S.); (J.B.)
| | - Anwarul Haque
- Department of Aerospace Engineering and Mechanics, The University of Alabama, Tuscaloosa, AL 35487, USA; (A.T.S.); (E.A.P.)
| |
Collapse
|
9
|
Groce B, Aucoin AV, Ullah MA, DiCesare J, Wingfield C, Sardin J, Harris JT, Nguyen JC, Raley P, Stanley SS, Palardy G, Pojman JA. Free-Standing 3D Printing of Epoxy-Vinyl Ether Structures Using Radical-Induced Cationic Frontal Polymerization. ACS APPLIED POLYMER MATERIALS 2024; 6:572-582. [PMID: 38230368 PMCID: PMC10788858 DOI: 10.1021/acsapm.3c02226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
The application of frontal polymerization to additive manufacturing has advantages in energy consumption and speed of printing. Additionally, with frontal polymerization, it is possible to print free-standing structures that require no supports. A resin was developed using a mixture of epoxies and vinyl ether with an iodonium salt and peroxide initiating system that frontally polymerizes through radical-induced cationic frontal polymerization. The formulation, which was optimized for reactivity, physical properties, and rheology, allowed the printing of free-standing structures. Increasing ratios of vinyl ether and reactive cycloaliphatic epoxide were found to increase the front velocity. Addition of carbon nanofibers increased the front velocity more than the addition of milled carbon fibers. The resin filled with carbon nanofibers and fumed silica exhibited shear-thinning behavior and was suitable for extrusion-based printing at a weight fraction of 4 wt %. A desktop 3D printer was modified to control resin extrusion and deposition with a digital syringe dispenser. Flexural properties of molded and 3D-printed specimens showed that specimens printed in the transverse direction exhibited the lowest strength, likely due to the presence of voids, adhesion issues between filaments, and preferential carbon nanofiber alignment along the filaments. Finally, free-standing printing of single, angled filaments and helical geometries was successfully demonstrated by coordinating ultraviolet-based reaction initiation, low air pressure for resin extrusion, and printing speed to match front velocity.
Collapse
Affiliation(s)
- Brecklyn
R. Groce
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandra V. Aucoin
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Md Asmat Ullah
- Department
of Mechanical and Industrial Engineering, Louisiana State University, 3261 Patrick F. Taylor Hall, Baton Rouge, Louisiana 70803, United States
| | - Jake DiCesare
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Claire Wingfield
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jonathan Sardin
- Department
of Mechanical and Industrial Engineering, Louisiana State University, 3261 Patrick F. Taylor Hall, Baton Rouge, Louisiana 70803, United States
| | - Jackson T. Harris
- Department
of Mechanical and Industrial Engineering, Louisiana State University, 3261 Patrick F. Taylor Hall, Baton Rouge, Louisiana 70803, United States
| | - John C. Nguyen
- Department
of Mechanical and Industrial Engineering, Louisiana State University, 3261 Patrick F. Taylor Hall, Baton Rouge, Louisiana 70803, United States
| | - Patrick Raley
- Department
of Mechanical and Industrial Engineering, Louisiana State University, 3261 Patrick F. Taylor Hall, Baton Rouge, Louisiana 70803, United States
| | - Svetlana S. Stanley
- Department
of Mechanical and Industrial Engineering, Louisiana State University, 3261 Patrick F. Taylor Hall, Baton Rouge, Louisiana 70803, United States
| | - Genevieve Palardy
- Department
of Mechanical and Industrial Engineering, Louisiana State University, 3261 Patrick F. Taylor Hall, Baton Rouge, Louisiana 70803, United States
| | - John A. Pojman
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
10
|
Luo T, Ma Y, Cui X. Review on Frontal Polymerization Behavior for Thermosetting Resins: Materials, Modeling and Application. Polymers (Basel) 2024; 16:185. [PMID: 38256983 PMCID: PMC10818476 DOI: 10.3390/polym16020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The traditional curing methods for thermosetting resins are energy-inefficient and environmentally unfriendly. Frontal polymerization (FP) is a self-sustaining process relying on the exothermic heat of polymerization. During FP, the external energy input (such as UV light input or heating) is only required at the initial stage to trigger a localized reaction front. FP is regarded as the rapid and energy-efficient manufacturing of polymers. The precise control of FP is essential for several manufacturing technologies, such as 3D printing, depending on the materials and the coupling of thermal transfer and polymerization. In this review, recent progress on the materials, modeling, and application of FP for thermosetting resins are presented. First, the effects of resin formulations and mixed fillers on FP behavior are discussed. Then, the basic mathematical model and reaction-thermal transfer model of FP are introduced. After that, recent developments in FP-based manufacturing applications are introduced in detail. Finally, this review outlines a roadmap for future research in this field.
Collapse
Affiliation(s)
| | | | - Xiaoyu Cui
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; (T.L.); (Y.M.)
| |
Collapse
|
11
|
Bednarczyk P, Walkowiak K, Irska I. Epoxy (Meth)acrylate-Based Thermally and UV Initiated Curable Coating Systems. Polymers (Basel) 2023; 15:4664. [PMID: 38139916 PMCID: PMC10747391 DOI: 10.3390/polym15244664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Recently, photocurable coatings are being used frequently. However, it is worth mentioning that the use of photopolymerization has its drawbacks, especially in the case of curing coatings on three-dimensional surfaces and in places that are difficult to access for UV radiation. However, it is possible to develop a system in which UV technology and thermal methods for curing coatings can be combined. Moreover, the obtained resins are derived from low-viscosity epoxy resins or diglycidyl ethers, making them an ideal building material for photopolymerization-based three-dimensional printing techniques. Due to the need to improve this method, a series of epoxy (meth)acrylates containing both epoxy and (meth)acrylate groups were obtained via the addition of acrylic or methacrylic acid to epoxy resin, diglycydylether of bisphenol A epoxy resin (DGEBA), cyclohexane dimethanol diglycidyl ether (CHDMDE) and neopentyl glycol diglycidyl ether (NPDE). The structures of the synthesized copolymers were confirmed through spectroscopic analysis (FTIR) and studied regarding their nonvolatile matter content (NV) and acid values (PAVs), as well as their epoxy equivalent values (EEs). Due to the presence of both epoxy and double carbon-carbon pendant groups, two distinct mechanisms can be applied: cationic and radical. Hence, the obtained resins can be cured using UV radiation with thermally appropriate conditions and initiators. This type of method can be used as a solution to many problems currently encountered in using UV technology, such as failure to cure coatings in underexposed areas as well as deformation of coatings. Synthesized epoxy (meth)acrylate prepolymers were employed to formulate photocurable coating compositions. Furthermore, the curing process and properties of cured coatings were investigated regarding some structural factors and parameters. Among the synthesized materials, the most promising are those based on epoxy resin, characterized by their high glass transition temperature values and satisfactory functional properties.
Collapse
Affiliation(s)
- Paulina Bednarczyk
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów 42 Avenue, 71-065 Szczecin, Poland
| | - Konrad Walkowiak
- Department of Materials Technology, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, Piastów 19 Avenue, 70-310 Szczecin, Poland; (K.W.)
| | - Izabela Irska
- Department of Materials Technology, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, Piastów 19 Avenue, 70-310 Szczecin, Poland; (K.W.)
| |
Collapse
|
12
|
Malik MS, Wolfahrt M, Schlögl S. Redox cationic frontal polymerization: a new strategy towards fast and efficient curing of defect-free fiber reinforced polymer composites. RSC Adv 2023; 13:28993-29003. [PMID: 37799301 PMCID: PMC10548789 DOI: 10.1039/d3ra05976f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
Frontal polymerization of epoxy-based thermosets is a promising curing technique for the production of carbon fiber reinforced composites (CFRCs). It exploits the exothermicity of polymerization reactions to convert liquid monomers to a solid 3D network. A self-sustaining curing reaction is triggered by heat or UV-radiation, resulting in a localized thermal reaction zone that propagates through the resin formulation. To date, frontal polymerization is limited to CFRCs with a low fiber volume percent as heat losses compromise on the propagation of the heat front, which is crucial for this autocatalytic curing mechanism. In addition, the choice of suitable epoxy monomers and thermal radical initiators is limited, as highly reactive cycloaliphatic epoxies as well as peroxides decarboxylate during radical induced cationic frontal polymerization. The resulting networks suffer from high defect rates and inferior mechanical properties. Herein, we overcome these shortcomings by introducing redox cationic frontal polymerization (RCFP) as a new frontal curing concept. In the first part of this study, the influence of stannous octoate (reducing agent) was studied on a frontally cured bisphenol A diglycidyl ether resin and mechanical and thermal properties were compared to a conventional anhydride cured counterpart. In a subsequent step, a quasi-isotropic CFRC with a fiber volume of >50 vol%, was successfully cured via RCFP. The composite exhibited a glass transition temperature > 100 °C and a low number of defects. Finally, it was demonstrated that the redox agent effectively prevents decarboxylation during frontal polymerization of a cycloaliphatic epoxy, demonstrating the versatility of RCFP in future applications.
Collapse
Affiliation(s)
| | - Markus Wolfahrt
- Polymer Competence Center Leoben Rossegerstraße 12 8700 Leoben Austria
| | - Sandra Schlögl
- Polymer Competence Center Leoben Rossegerstraße 12 8700 Leoben Austria
| |
Collapse
|
13
|
Groce B, Lane EE, Gary DP, Ngo DT, Ngo DT, Shaon F, Belgodere JA, Pojman JA. Kinetic and Chemical Effects of Clays and Other Fillers in the Preparation of Epoxy-Vinyl Ether Composites Using Radical-Induced Cationic Frontal Polymerization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19403-19413. [PMID: 37027250 PMCID: PMC10119861 DOI: 10.1021/acsami.3c00187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Addition of fillers to formulations can generate composites with improved mechanical properties and lower the overall cost through a reduction of chemicals needed. In this study, fillers were added to resin systems consisting of epoxies and vinyl ethers that frontally polymerized through a radical-induced cationic frontal polymerization (RICFP) mechanism. Different clays, along with inert fumed silica, were added to increase the viscosity and reduce the convection, results of which did not follow many trends present in free-radical frontal polymerization. The clays were found to reduce the front velocity of RICFP systems overall compared to systems with only fumed silica. It is hypothesized that chemical effects and water content produce this reduction when clays are added to the cationic system. Mechanical and thermal properties of composites were studied, along with filler dispersion in the cured material. Drying the clays in an oven increased the front velocity. Comparing thermally insulating wood flour to thermally conducting carbon fibers, we observed that the carbon fibers resulted in an increase in front velocity, while the wood flour reduced the front velocity. Finally, it was shown that acid-treated montmorillonite K10 polymerizes RICFP systems containing vinyl ether even in the absence of an initiator, resulting in a short pot life.
Collapse
Affiliation(s)
- Brecklyn
R. Groce
- Department
of Chemistry and the Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Emma E. Lane
- Department
of Chemistry and the Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Daniel P. Gary
- Department
of Chemistry and the Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Douglas T. Ngo
- Department
of Chemistry and the Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Dylan T. Ngo
- Department
of Chemistry and the Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Fahima Shaon
- Department
of Chemistry and the Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jorge A. Belgodere
- Department
of Biological and Agricultural Engineering, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - John A. Pojman
- Department
of Chemistry and the Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
14
|
Suslick BA, Hemmer J, Groce BR, Stawiasz KJ, Geubelle PH, Malucelli G, Mariani A, Moore JS, Pojman JA, Sottos NR. Frontal Polymerizations: From Chemical Perspectives to Macroscopic Properties and Applications. Chem Rev 2023; 123:3237-3298. [PMID: 36827528 PMCID: PMC10037337 DOI: 10.1021/acs.chemrev.2c00686] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The synthesis and processing of most thermoplastics and thermoset polymeric materials rely on energy-inefficient and environmentally burdensome manufacturing methods. Frontal polymerization is an attractive, scalable alternative due to its exploitation of polymerization heat that is generally wasted and unutilized. The only external energy needed for frontal polymerization is an initial thermal (or photo) stimulus that locally ignites the reaction. The subsequent reaction exothermicity provides local heating; the transport of this thermal energy to neighboring monomers in either a liquid or gel-like state results in a self-perpetuating reaction zone that provides fully cured thermosets and thermoplastics. Propagation of this polymerization front continues through the unreacted monomer media until either all reactants are consumed or sufficient heat loss stalls further reaction. Several different polymerization mechanisms support frontal processes, including free-radical, cat- or anionic, amine-cure epoxides, and ring-opening metathesis polymerization. The choice of monomer, initiator/catalyst, and additives dictates how fast the polymer front traverses the reactant medium, as well as the maximum temperature achievable. Numerous applications of frontally generated materials exist, ranging from porous substrate reinforcement to fabrication of patterned composites. In this review, we examine in detail the physical and chemical phenomena that govern frontal polymerization, as well as outline the existing applications.
Collapse
Affiliation(s)
- Benjamin A Suslick
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Julie Hemmer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brecklyn R Groce
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 United States
| | - Katherine J Stawiasz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Philippe H Geubelle
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Giulio Malucelli
- Department of Applied Science and Technology, Politecnico di Torino, 15121 Alessandria, Italy
| | - Alberto Mariani
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
- National Interuniversity Consortium of Materials Science and Technology, 50121 Firenze, Italy
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - John A Pojman
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 United States
| | - Nancy R Sottos
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Ma Y, Liu Z, Qian X, Zhao Y, Li M, Li P. Effect of Excessive Iodonium Salts on the Properties of Radical-Induced Cationic Frontal Polymerization (RICFP) of Epoxy Resin. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Yunlong Ma
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhenyi Liu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xinming Qian
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yao Zhao
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Mingzhi Li
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Pengliang Li
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
16
|
Dumur F. Recent Advances on Photoinitiating Systems Designed for Solar Photocrosslinking Polymerization Reactions. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
17
|
Nurchi C, Buonvino S, Arciero I, Melino S. Sustainable Vegetable Oil-Based Biomaterials: Synthesis and Biomedical Applications. Int J Mol Sci 2023; 24:ijms24032153. [PMID: 36768485 PMCID: PMC9916503 DOI: 10.3390/ijms24032153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
One of the main criteria for ecological sustainability is that the materials produced for common use are green. This can include the use of biomaterials and materials that are environmentally friendly, biodegradable and produced at low cost. The exploration of natural resources as sustainable precursors leads to the production of biopolymers that are useful for 3D printing technology. Recently, waste vegetable oils have been found to be a good alternative source for the production of biopolymers in various applications from the engineering to the biomedicine. In this review, the processes for the synthesis of vegetable oil-based biomaterials are described in detail. Moreover, the functionalization strategies to improve the mechanical properties of these materials and the cell-material interaction for their potential use as micro-structured scaffolds in regenerative medicine are discussed.
Collapse
Affiliation(s)
| | | | | | - Sonia Melino
- Correspondence: ; Tel.: +39-06-7259-4449; Fax: +39-06-7259-4328
| |
Collapse
|
18
|
Zhou J, Tang L. Synthesis and Structure of 2-Hydroxypropyl Methacrylate-Capped Isophorone Diisocyanate and Poly(Propylene Glycol) Urethane Mixtures and the Properties of their UV-Cured Co-Networks with Isobornyl Methacrylate. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8586. [PMID: 36500080 PMCID: PMC9737471 DOI: 10.3390/ma15238586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Polyurethane acrylate prepolymers with different contents of HIPIH and HIH were synthesized via reacting excessive isophorone diisocyanate (IPDI) with poly(propylene glycol) (PPG) and then end-capping with 2-hydroxypropyl methacrylate (HPMA) in isobornyl methacrylate (IBOMA). After the addition of the photoinitiator PI 1173, the resulting prepolymer resins were irradiated by UV light to form cured materials. The structures of the prepolymers were confirmed by 1H NMR, FT-IR, and GPC. SEM analyses proved that no obvious phase separation was observed within the cured sample. As the content of HIH increased, the viscosity of the prepolymers increased slightly. In addition, the gel content, solvent resistance, Shore hardness, Young's modulus, and the tensile strength of the cured films increased, whereas the elongation at break decreased gradually. The volume shrinkage of the cured samples ranged between 4.5% and 4.8%. DMA analyses showed that the Tgs of the cured samples increased as more HIH structures existed. TGA analyses revealed that the cured samples had high thermal stability. This solvent-free fabrication process was simple, convenient, and controllable. By simply regulating the contents of HIPIH and HIH in the prepolymers, the performances of the cured materials could be adjusted to a wide range.
Collapse
|
19
|
Park J, Kwak SY. Frontal polymerization-triggered simultaneous ring-opening metathesis polymerization and cross metathesis affords anisotropic macroporous dicyclopentadiene cellulose nanocrystal foam. Commun Chem 2022; 5:119. [PMID: 36697913 PMCID: PMC9814902 DOI: 10.1038/s42004-022-00740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/22/2022] [Indexed: 01/28/2023] Open
Abstract
Multifunctionality and effectiveness of macroporous solid foams in extreme environments have captivated the attention of both academia and industries. The most recent rapid, energy-efficient strategy to manufacture solid foams with directionality is the frontal polymerization (FP) of dicyclopentadiene (DCPD). However, there still remains the need for a time efficient one-pot approach to induce anisotropic macroporosity in DCPD foams. Here we show a rapid production of cellular solids by frontally polymerizing a mixture of DCPD monomer and allyl-functionalized cellulose nanocrystals (ACs). Our results demonstrate a clear correlation between increasing % allylation and AC wt%, and the formed pore architectures. Especially, we show enhanced front velocity (vf) and reduced reaction initiation time (tinit) by introducing an optimal amount of 2 wt% AC. Conclusively, the small- and wide-angle X-ray scattering (SAXS, WAXS) analyses reveal that the incorporation of 2 wt% AC affects the crystal structure of FP-mediated DCPD/AC foams and enhances their oxidation resistance.
Collapse
Affiliation(s)
- Jinsu Park
- grid.31501.360000 0004 0470 5905Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 South Korea
| | - Seung-Yeop Kwak
- grid.31501.360000 0004 0470 5905Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 South Korea ,grid.31501.360000 0004 0470 5905Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 South Korea ,grid.31501.360000 0004 0470 5905Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 South Korea
| |
Collapse
|
20
|
Moser BR, Cermak SC, Doll KM, Kenar JA, Sharma BK. A review of fatty epoxide ring opening reactions: Chemistry, recent advances, and applications. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bryan R. Moser
- United States Department of Agriculture, Agricultural Research Service, Bio‐Oils Research Unit National Center for Agricultural Utilization Research Peoria Illinois USA
| | - Steven C. Cermak
- United States Department of Agriculture, Agricultural Research Service, Bio‐Oils Research Unit National Center for Agricultural Utilization Research Peoria Illinois USA
| | - Kenneth M. Doll
- United States Department of Agriculture, Agricultural Research Service, Bio‐Oils Research Unit National Center for Agricultural Utilization Research Peoria Illinois USA
| | - James A. Kenar
- United States Department of Agriculture, Agricultural Research Service, Functional Foods Research Unit National Center for Agricultural Utilization Research Peoria Illinois USA
| | - Brajendra K. Sharma
- United States Department of Agriculture, Agricultural Research Service, Sustainable Biofuels and Co‐Products Research Unit Eastern Regional Research Center Wyndmoor Pennsylvania USA
| |
Collapse
|
21
|
Lang M, Hirner S, Wiesbrock F, Fuchs P. A Review on Modeling Cure Kinetics and Mechanisms of Photopolymerization. Polymers (Basel) 2022; 14:polym14102074. [PMID: 35631956 PMCID: PMC9145830 DOI: 10.3390/polym14102074] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Photopolymerizations, in which the initiation of a chemical-physical reaction occurs by the exposure of photosensitive monomers to a high-intensity light source, have become a well-accepted technology for manufacturing polymers. Providing significant advantages over thermal-initiated polymerizations, including fast and controllable reaction rates, as well as spatial and temporal control over the formation of material, this technology has found a large variety of industrial applications. The reaction mechanisms and kinetics are quite complex as the system moves quickly from a liquid monomer mixture to a solid polymer. Therefore, the study of curing kinetics is of utmost importance for industrial applications, providing both the understanding of the process development and the improvement of the quality of parts manufactured via photopolymerization. Consequently, this review aims at presenting the materials and curing chemistry of such ultrafast crosslinking polymerization reactions as well as the research efforts on theoretical models to reproduce cure kinetics and mechanisms for free-radical and cationic photopolymerizations including diffusion-controlled phenomena and oxygen inhibition reactions in free-radical systems.
Collapse
Affiliation(s)
- Margit Lang
- Polymer Competence Center Leoben, 8700 Leoben, Austria;
- Correspondence: ; Tel.: +43-384-242-962-753
| | - Stefan Hirner
- Institute for Chemistry and Technology of Materials, University of Technology Graz, NAWI Graz, 8010 Graz, Austria; (S.H.); (F.W.)
| | - Frank Wiesbrock
- Institute for Chemistry and Technology of Materials, University of Technology Graz, NAWI Graz, 8010 Graz, Austria; (S.H.); (F.W.)
| | - Peter Fuchs
- Polymer Competence Center Leoben, 8700 Leoben, Austria;
| |
Collapse
|
22
|
Schissel SM, Jessop JLP. Transferable shadow cure: A new approach to achieving cationic photopolymerization in light‐restricted areas. J Appl Polym Sci 2022. [DOI: 10.1002/app.52491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sage M. Schissel
- Department of Chemical and Biochemical Engineering University of Iowa Iowa City Iowa USA
| | - Julie L. P. Jessop
- Department of Chemical and Biochemical Engineering University of Iowa Iowa City Iowa USA
| |
Collapse
|
23
|
Wang Q, Popov S, Strehmel V, Gutmann JS, Strehmel B. NIR-sensitized hybrid radical and cationic photopolymerization of several cyanines in combination with diaryliodonium bis(trifluoromethyl)sulfonyl imide. Polym Chem 2022. [DOI: 10.1039/d2py01186g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A series of cyanines exhibiting absorption between 750 and 930 nm reacted after NIR excitation with the bis(t-butylphenyl) iodonium cation comprising the [(CF3SO2)2N]− anion (NTf2)−, resulting in the generation of free radicals and conjugate acids.
Collapse
Affiliation(s)
- Qunying Wang
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 1, D-47798 Krefeld, Germany
| | - Sergey Popov
- Spectrum Info Ltd., Murmanskaya 5, 02094 Kyiv, Ukraine
| | - Veronika Strehmel
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 1, D-47798 Krefeld, Germany
| | - Jochen S. Gutmann
- Department of Physical Chemistry and Center of Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141 Essen, Germany
| | - Bernd Strehmel
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstr. 1, D-47798 Krefeld, Germany
| |
Collapse
|
24
|
Pierau L, Elian C, Akimoto J, Ito Y, Caillol S, Versace DL. Bio-sourced Monomers and Cationic Photopolymerization: The Green combination towards Eco-Friendly and Non-Toxic Materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Li Q, Shen HX, Liu C, Wang CF, Zhu L, Chen S. Advances in Frontal Polymerization Strategy: from Fundamentals to Applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101514] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Lv J, Hu D, Ma W. UV
–thermal‐cured cycloaliphatic epoxy composites with enhanced mechanical properties via Ca
2+
‐modified nanocrystalline cellulose. POLYM INT 2021. [DOI: 10.1002/pi.6267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jing Lv
- School of Materials Science and Engineering South China University of Technology Guangzhou China
- South China Institute of Collaborative Innovation Dongguan China
| | - Dechao Hu
- School of Materials Science and Engineering South China University of Technology Guangzhou China
- South China Institute of Collaborative Innovation Dongguan China
| | - Wenshi Ma
- School of Materials Science and Engineering South China University of Technology Guangzhou China
- South China Institute of Collaborative Innovation Dongguan China
| |
Collapse
|
27
|
|
28
|
Roig A, Ramis X, De la Flor S, Serra À. Sequential photo-thermal curing of (meth)acrylate-epoxy thiol formulations. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Taschner R, Knaack P, Liska R. Bismuthonium‐ and pyrylium‐based radical induced cationic frontal polymerization of epoxides. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Roland Taschner
- Institute of Applied Synthetic Chemistry TU Wien Getreidemarkt 9 Vienna Austria
| | - Patrick Knaack
- Institute of Applied Synthetic Chemistry TU Wien Getreidemarkt 9 Vienna Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry TU Wien Getreidemarkt 9 Vienna Austria
| |
Collapse
|
30
|
Bednarczyk P, Mozelewska K, Nowak M, Czech Z. Photocurable Epoxy Acrylate Coatings Preparation by Dual Cationic and Radical Photocrosslinking. MATERIALS 2021; 14:ma14154150. [PMID: 34361343 PMCID: PMC8348957 DOI: 10.3390/ma14154150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 11/25/2022]
Abstract
In this work, epoxy acrylate resin (EA) based on the industrial-grade bisphenol A-based epoxy resin (Ep6) and acrylic acid (AA) has been synthesized in order to develop hybrid resin comprising both epoxide group and reactive, terminal unsaturation. Obtained epoxy acrylate prepolymer was employed to formulate photocurable coating compositions containing, besides the EA binder, also cationic or radical photoinitiators. Hence, when cationic photoinitiators were applied, polyether-type polymer chains with pending acrylate groups were formed. In the case of free radical polymerization, epoxy acrylates certainly formed a polyacrylate backbone with pending epoxy groups. Owing to the presence of both epoxy and double carbon–carbon pendant groups, the reaction product exhibits photocrosslinking via two distinct mechanisms: (i) cationic ring-opening polymerization and (ii) free radical polymerization. Therefore, photopolymerization behavior of synthetized hybrid resin with various photoinitiators was determined via photo-differential scanning calorimetry (photo-DSC) and real-time infrared spectroscopy (RT-IR) methods, and properties of cured coatings were investigated. The performance of the following type of photoinitiators was tested in the cationic photopolymerization: diaryliodonium cations or triarylsulfonium cations, and the following type of photoinitiators were used to induce free radical photopolymerization: α-hydroxyketones, acylphosphine oxides, and their mixtures. Lastly, the basic physicomechanical properties of cured coatings, such as tack-free time, hardness, adhesion, gloss, and yellowness index, were evaluated. Some structural factors and parameters of cationic and radical photoinitiators and photopolymerization mechanisms affecting the epoxy acrylate hybrid coatings performance are discussed.
Collapse
Affiliation(s)
- Paulina Bednarczyk
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Karolina Mozelewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Małgorzata Nowak
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Zbigniew Czech
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| |
Collapse
|
31
|
Groce BR, Gary DP, Cantrell JK, Pojman JA. Front velocity dependence on vinyl ether and initiator concentration in
radical‐induced
cationic frontal polymerization of epoxies. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Brecklyn R. Groce
- Department of Chemistry and the Macromolecular Studies Group Louisiana State University Baton Rouge Louisiana USA
| | - Daniel P. Gary
- Department of Chemistry and the Macromolecular Studies Group Louisiana State University Baton Rouge Louisiana USA
| | - Joseph K. Cantrell
- Department of Chemistry and the Macromolecular Studies Group Louisiana State University Baton Rouge Louisiana USA
| | - John A. Pojman
- Department of Chemistry and the Macromolecular Studies Group Louisiana State University Baton Rouge Louisiana USA
| |
Collapse
|
32
|
Huang TL, Chen YC. Ketone Number and Substitution Effect of Benzophenone Derivatives on the Free Radical Photopolymerization of Visible-Light Type-II Photoinitiators. Polymers (Basel) 2021; 13:polym13111801. [PMID: 34072579 PMCID: PMC8199044 DOI: 10.3390/polym13111801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 01/28/2023] Open
Abstract
Three novel visible-light absorbing benzophenone-based hydrogen acceptors (BPD-D, BPDM-D and BPDP-D) were designed on the basis of a donor-benzophenone-donor structural backbone. Mono or diketone units and double diphenylamine electron-donating groups in para-or meta-positions were introduced to comprehend the electronic and structural effects on free radical photopolymerization (FRPP). Such a structural change leads not only to a red-shift of the absorption maxima but strongly enhances their molar extinction coefficients compared to the commercial phototinitiators such as benzophenone (BP) and 4,4'-bis(diethylamino) benzophenone (EMK). In addition, excellent melting points and thermal decomposition temperatures were achieved for those novel compounds. Further, the photochemical reaction behavior was studied by cyclic voltammograms (CV), photolysis and electron spin resonance (ESR) spectroscopy. Finally, benzophenone derivatives in combination with an amine (TEA, triethylamine) as a co-initiator were prepared and initiated the FRPP of trimethylolpropane trimethacrylate (TMPTMA) using a UV lamp as a light source. When used in stoichiometric amounts, the BPDP-D/TEA had the best double bond conversion efficiency among all the compounds studied, and were even superior to the reference compounds of BP/TEA and EMK/TEA. The results and conclusions could provide the fundamental rules applicable for the structural design of benzophenone derivative-based photoinitiators.
Collapse
Affiliation(s)
- Tung-Liang Huang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan;
| | - Yung-Chung Chen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan;
- Photo-SMART (Photo-Sensitive Material Advanced Research and Technology Center), National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
- Correspondence: ; Tel.: +886-7-3814526-15119
| |
Collapse
|
33
|
Peng X, Yao M, Xiao P. Newly Synthesized Chromophore‐linked Iodonium Salts as Photoinitiators of Free Radical Photopolymerization. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- X. Peng
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - M. Yao
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - P. Xiao
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
34
|
Ren X, Xu T, Thomas J, Soucek MD. Isoprene Soya Diels–Alder Adduct and Epoxidation for Photopolymerization. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaofeng Ren
- Department of Polymer Engineering University of Akron Akron OH 44325 USA
| | - Tong Xu
- Department of Polymer Engineering University of Akron Akron OH 44325 USA
| | - Jomin Thomas
- Department of Polymer Engineering University of Akron Akron OH 44325 USA
| | - Mark D. Soucek
- Department of Polymer Engineering University of Akron Akron OH 44325 USA
| |
Collapse
|
35
|
Bejenari I, Dinu R, Montes S, Volf I, Mija A. Hydrothermal Carbon as Reactive Fillers to Produce Sustainable Biocomposites with Aromatic Bio-Based Epoxy Resins. Polymers (Basel) 2021; 13:polym13020240. [PMID: 33445728 PMCID: PMC7828177 DOI: 10.3390/polym13020240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 11/25/2022] Open
Abstract
Thiswork is focused on the development of sustainable biocomposites based on epoxy bioresin reinforced with a natural porous material (hydrochar, HC) that is the product of spruce bark wastes subjected to hydrothermal decomposition. To identify the influence of hydrochar as a reinforcing material on the designed composites, seven formulations were prepared and tested. An aromatic epoxy monomer derived from wood biomass was used to generate the polymeric matrix, and the formulations were prepared varying the filler concentration from 0 to 30 wt %. The reactivity of these formulations, together with the structural, thermal, and mechanical properties of bio-based resin and biocomposites, are investigated. Surprisingly, the reactivity study performed by differential scanning calorimetry (DSC) revealed that HC has a strong impact on polymerization, leading to an important increase in reaction enthalpy and to a decrease of temperature range. The Fourier Transform Infrared Spectroscopy (FT-IR) investigations confirmed the chemical bonding between the resin and the HC, while the dynamic mechanical analysis (DMA) showed increased values of crosslink density and of storage moduli in the biocomposites products compared to the neat bioresin. Thermogravimetric analysis (TGA) points out that the addition of hydrochar led to an improvement of the thermal stability of the biocomposites compared with the neat resorcinol diglycidyl ether (RDGE)-based resin (T5% = 337 °C) by ≈2–7 °C. Significantly, the biocomposites with 15–20 wt % hydrochar showed a higher stiffness value compared to neat epoxy resin, 92SD vs. 82SD, respectively.
Collapse
Affiliation(s)
- Iuliana Bejenari
- Institute of Chemistry of Nice, University Côte d’Azur, UMR CNRS 7272, 06108 Nice, France; (I.B.); (R.D.)
- Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University of Iasi, 73 Prof. D. Mangeron Street, 700050 Iasi, Romania;
| | - Roxana Dinu
- Institute of Chemistry of Nice, University Côte d’Azur, UMR CNRS 7272, 06108 Nice, France; (I.B.); (R.D.)
| | - Sarah Montes
- CIDETEC, Basque Research and Technology Alliance (BRTA), Po. Miramón 196, 20014 Donostia-San Sebastián, Spain;
| | - Irina Volf
- Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University of Iasi, 73 Prof. D. Mangeron Street, 700050 Iasi, Romania;
| | - Alice Mija
- Institute of Chemistry of Nice, University Côte d’Azur, UMR CNRS 7272, 06108 Nice, France; (I.B.); (R.D.)
- Correspondence:
| |
Collapse
|
36
|
Lee ZH, Hammoud F, Hijazi A, Graff B, Lalevée J, Chen YC. Synthesis and free radical photopolymerization of triphenylamine-based oxime ester photoinitiators. Polym Chem 2021. [DOI: 10.1039/d0py01768j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Four visible light triphenylamine-based oxime ester photoinitiators (TP-1–4) were synthesized successfully. Photochemical reaction, photoreactivity and 3D pattern experiments were also conducted.
Collapse
Affiliation(s)
- Zhong-Han Lee
- Department of Chemical and Materials Engineering
- National Kaohsiung University of Science and Technology
- Kaohsiung 80778
- Taiwan
| | - Fatima Hammoud
- Université de Haute-Alsace
- CNRS
- IS2 M UMR 7361
- Mulhouse
- France
| | | | | | | | - Yung-Chung Chen
- Department of Chemical and Materials Engineering
- National Kaohsiung University of Science and Technology
- Kaohsiung 80778
- Taiwan
- Photo-SMART (Photo-sensitive Material Advanced Research and Technology Center)
| |
Collapse
|