1
|
Chandimali N, Bak SG, Park EH, Cheong SH, Park SI, Lee SJ. 3D bioprinting: Advancing the future of food production layer by layer. Food Chem 2025; 471:142828. [PMID: 39798378 DOI: 10.1016/j.foodchem.2025.142828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
3D bioprinting is an advanced manufacturing technique that involves the precise layer-by-layer deposition of biomaterials, such as cells, growth factors, and biomimetic scaffolds, to create three-dimensional living structures. It essentially combines the complexity of biology with the principles of 3D printing, making it possible to fabricate complex biological structures with extreme control and accuracy. This review discusses how 3D bioprinting is developing as an essential step in the creation of alternative food such as cultured meat and seafood. In light of the growing global issues associated with food sustainability and the ethical challenges raised by conventional animal agriculture, 3D bioprinting is emerging as a key technology that will transform food production in the years to come. This paper also addresses in detail each of the components that make up bioprinting systems, such as the bioinks and scaffolds used, the various types of bioprinter models, and the software systems that control the production process. It offers a thorough examination of the processes involved in printing diverse food items using bioprinting. Beyond the scope of this conversation, 3D bioprinting, which provides superior precision and scalability in tissue engineering, is a crucial node in the broader system of cultured meat and seafood production. But like any emerging technology, 3D bioprinting has its limitations. In light of this, this study emphasizes the necessity of ongoing research and development to advance bioprinting towards widespread use and, ultimately, promote a more resilient, ethical, and sustainable food supply system.
Collapse
Affiliation(s)
- Nisansala Chandimali
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea; Department of Applied Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Seon-Gyeong Bak
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Eun Hyun Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea; Department of Veterinary Pathology, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sun Hee Cheong
- Department of Marine Bio Food Science, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Sang-Ik Park
- Department of Veterinary Pathology, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seung-Jae Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea; Department of Applied Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
2
|
Milazzo M, Rovelli R, Ricci C, Macchi T, Gallone G, Danti S. Rheology and Printability of Hydroxyapatite/Sodium Alginate Bioinks Added with Bovine or Fish Collagen Peptides. Gels 2025; 11:209. [PMID: 40136914 PMCID: PMC11941987 DOI: 10.3390/gels11030209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
The high biocompatibility and the key role of collagen in bone extracellular matrix make it useful for tissue engineering. However, the high demand, costs, and challenges of extracting good-quality collagen have led to the use of collagen derivatives and search for non-human alternatives. This study investigates fish and bovine collagen peptides (Collf and Collb, respectively) as sustainable sources for 3D-printed bone scaffolds by developing and characterizing peptide-incorporated alginate/hydroxyapatite-based bioinks. The chemical analysis revealed structural similarities between the peptides, while rheological tests showed a slightly higher viscosity of Collf-based inks, which improved shape fidelity during the printing process. Upon oscillating rheological tests, both the Collf and Collb-based ink formulations demonstrated a solid-like behavior at frequencies higher than 0.4 Hz, which is crucial for maintaining the printed structure integrity during extrusion. Although Collb-based inks exhibited better pore printability, Collf-based inks achieved superior resolution and geometry retention. Macro-porous structures printed from both inks showed good accuracy, with minimal shrinkage attributed to hydroxyapatite. Both the produced inks had a high gel fraction and swelling behavior, with Collb-based outperforming Collf-based inks. Finally, both ink formulations resulted to be cytocompatibile with human dermal fibroblasts. These findings position Collf- and Collb-based inks as promising alternatives for bone tissue scaffolds, offering a sustainable balance between performance and structural stability in 3D printing applications.
Collapse
Affiliation(s)
- Mario Milazzo
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy;
- The BioRobotics Institute, Sant’Anna School of Advanced Studies, Viale Rinaldo Piaggio, Pontedera, 56025 Tuscany, Italy
| | - Roberta Rovelli
- PEGASO Doctoral School of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Claudio Ricci
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy;
| | - Teresa Macchi
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy;
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Savi 10, 56126 Pisa, Italy
| | - Giuseppe Gallone
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy;
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy;
- The BioRobotics Institute, Sant’Anna School of Advanced Studies, Viale Rinaldo Piaggio, Pontedera, 56025 Tuscany, Italy
| |
Collapse
|
3
|
Setareyi R, Hatamian-Zarmi A, Mokhtari-Hosseini ZB, Kianirad S, Heidarian E, Abbasi-Malati S, Feizollahi N, Naji M. Biofabrication and evaluation of 3D printed and cast PCL / collagen-alginate hydrogel tubular scaffolds for urethral tissue engineering. Int J Biol Macromol 2025; 307:142143. [PMID: 40090646 DOI: 10.1016/j.ijbiomac.2025.142143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
The urethra is a fibromuscular tube that transports urine from the bladder to the exterior of the body. Congenital disorders and urethral wall strictures caused by traumatic injuries, infections, iatrogenic injuries, and tumor removals can impair urethral function. This research aimed to create a 3D printed scaffold of the urethra using casting and 3D printing techniques, and then the constructed scaffolds were characterized. The final scaffolds consisted of a 3D-printed mesh made of poly-ε-caprolactone (PCL) that was cast with a hybrid hydrogel of collagen-alginate and crosslinked. The swelling of hydrogels containing more alginate in the structure eventually led to the collapse of the hydrogel skeleton. The gradual increase in the compressive strength of the hydrogel scaffolds was consistent with the rise in alginate hydrogels. Rheological properties clearly showed shear-thinning behavior for samples containing more alginate. The viability of rat bladder smooth muscle cells in the CA82 hydrogel (collagen:alginate 8:2 v/v) was higher than in the CA37 hydrogel (collagen:alginate 3:7 v/v). In addition, the expression of functional genes of rat smooth muscle cells was improved in the CA82 hydrogel. The described method and fabricated scaffold could provide a promising approach for urethral reconstruction by tissue engineering.
Collapse
Affiliation(s)
- Rasool Setareyi
- Department of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Ashrafalsadat Hatamian-Zarmi
- Department of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.
| | - Zahra-Beagom Mokhtari-Hosseini
- Department of Chemical Engineering, Faculty of Petroleum and Petrochemical Engineering, Hakim Sabzevari University, Sabzevar, Iran.
| | - Soheil Kianirad
- Department of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Ehsan Heidarian
- Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Abbasi-Malati
- Department of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Narjes Feizollahi
- Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Naji
- Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Roser SM, Munarin F, Polucha C, Minor AJ, Choudhary G, Coulombe KLK. Customized Heparinized Alginate and Collagen Hydrogels for Tunable, Local Delivery of Angiogenic Proteins. ACS Biomater Sci Eng 2025; 11:1612-1628. [PMID: 39945764 DOI: 10.1021/acsbiomaterials.4c01823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
Therapeutic protein delivery has ushered in a promising new generation of disease treatment, garnering more recognition for its clinical potential than ever. However, proteins' limited stability, extremely short average half-lives, and evidenced toxicity following systemic delivery continue to undercut their efficacy. Biomaterial-based protein delivery, however, demonstrates the potential to overcome these obstacles. To this end, we have developed a heparinized alginate and collagen hydrogel for the local, sustained delivery of therapeutic proteins. In an effort to match this ubiquitous application of protein delivery to various disease states and target tissues with sufficient versatility, we identified three distinct delivery modes as design targets. A shear-thinning, low-viscosity injectable for minimal tissue damage, a higher-viscosity gel plug for subcutaneous injection, and a submillimeter-thickness film for solid-form implantation were optimized and characterized in this work. In vitro assessments confirmed feasible injection control, mechanical stability for up to 6 h of unsubmerged storage, and isotropic early collagen fibril assembly. Release kinetics were assessed both in vitro and in vivo, demonstrating up to 14 days of functional vascular endothelial growth factor delivery. Rodent models of pulmonary hypertension, subcutaneous injection, and myocardial infarction, three promising applications of protein therapeutics, were used to assess the feasible delivery and biocompatibility of the injectable gel, gel plug, and film, respectively. Histological evaluation of the delivered materials and surrounding tissue showed high biocompatibility with cell and blood vessel infiltration, remodeling, and integration with the host tissue. Our successful customization of the biomaterial to heterogeneous delivery modes demonstrates its versatile capacity for the local, sustained delivery of therapeutic proteins for a diverse array of regenerative medicine applications.
Collapse
Affiliation(s)
- Stephanie M Roser
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Fabiola Munarin
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Collin Polucha
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Alicia J Minor
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Gaurav Choudhary
- Division of Cardiology, Providence VA Medical Center, Providence, Rhode Island 02908, United States
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island 02903, United States
| | - Kareen L K Coulombe
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island 02903, United States
| |
Collapse
|
5
|
Liu S, Ma L. Therapeutic effects of chitosan/β-glycerophosphate/collagen hydrogel combined with MSCs on chronic achilles tendon injury via the Akt/GSK-3β pathway. J Orthop Surg Res 2025; 20:204. [PMID: 40012050 DOI: 10.1186/s13018-025-05607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/12/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Chronic Achilles tendon injuries, commonly resulting from inadequate management of acute incidents, significantly reduce patients' quality of life. Current treatments, including conservative, surgical, and regenerative approaches, often yield suboptimal results. This study investigated the therapeutic effectiveness of a chitosan/β-glycerophosphate/collagen (C/GP/Co) hydrogel combined with bone marrow mesenchymal stem cells (MSCs) for chronic Achilles tendon injury in a rat model. MATERIAL & METHODS A temperature-sensitive injectable C/GP/Co hydrogel was synthesized and combined with MSCs to treat a chronic Achilles tendon injury in Sprague-Dawley rats. The rats were divided into four groups receiving saline (model), C/GP/Co hydrogel, C/GP/Co/MSCs hydrogel, or normal control. After 6 weeks, morphological, biomechanical, and molecular assessments were conducted, including histology, Western blot analysis for protein expression, and the evaluation of the Akt/GSK-3β signaling pathway. RESULTS The C/GP/Co/MSCs hydrogel significantly enhanced tendon healing compared to the model and C/GP/Co groups, as evidenced by improved collagen fiber organization and an increased type I/III collagen ratio on histological analysis. Western blot results revealed activation of the Akt/GSK-3β pathway by the C/GP/Co/MSCs hydrogel, leading to enhanced tendon cell proliferation and reduced apoptosis, demonstrated by a decreased Bax/Bcl-2 ratio and Caspase-3 expression. Downregulation of inflammation markers CD206 and CD163 was significant. Biomechanical testing indicated that the C/GP/Co/MSCs hydrogel restored tendon tensile strength closer to normal levels. CONCLUSIONS The C/GP/Co/MSCs hydrogel establishes a supportive microenvironment for MSC function, aiding tendon healing through the Akt/GSK-3β pathway. Its dual role in inflammation and apoptosis reduction, while enhancing biomechanical properties, demonstrates its potential as an innovative treatment for persistent Achilles tendon ailments. Future research endeavors should comprehensively explore the molecular pathways and assess their clinical applicability.
Collapse
Affiliation(s)
- Songlin Liu
- Department of Orthopedics, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, Hubei, China
| | - Liang Ma
- Department of Orthopedics, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, Hubei, China.
| |
Collapse
|
6
|
Kim M, Hwang DG, Jang J. Bioprinting approaches in cardiac tissue engineering to reproduce blood-pumping heart function. iScience 2025; 28:111664. [PMID: 39868032 PMCID: PMC11763539 DOI: 10.1016/j.isci.2024.111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
The heart, with its complex structural and functional characteristics, plays a critical role in sustaining life by pumping blood throughout the entire body to supply nutrients and oxygen. Engineered heart tissues have been introduced to reproduce heart functions to understand the pathophysiological properties of the heart and to test and develop potential therapeutics. Although numerous studies have been conducted in various fields to increase the functionality of heart tissue to be similar to reality, there are still many difficulties in reproducing the blood-pumping function of the heart. In this review, we discuss advancements in cells, biomaterials, and biofabrication in cardiac tissue engineering to achieve cardiac models that closely mimic the pumping function. Moreover, we provide insight into future directions by proposing future perspectives to overcome remaining challenges, such as scaling up and biomimetic patterning of blood vessels and nerves through bioprinting.
Collapse
Affiliation(s)
- Minji Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Dong Gyu Hwang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| |
Collapse
|
7
|
Ferreira B, Ferreira C, Martins C, Nunes R, das Neves J, Leite-Pereira C, Sarmento B. Establishment of a 3D multi-layered in vitro model of inflammatory bowel disease. J Control Release 2025; 377:675-688. [PMID: 39617170 DOI: 10.1016/j.jconrel.2024.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Crohn's Disease and Ulcerative Colitis, the main types of Inflammatory Bowel Disease (IBD), are life-threatening gastrointestinal disorders with no definitive cure. The establishment of biorelevant in vitro models that closely recapitulate the IBD microenvironment is of utmost importance to validate newly developed IBD therapies. To address the existing flaws in the current representation of the IBD microenvironment, we propose a novel three-dimensional (3D) in vitro model comprising a multi-layered gastrointestinal tissue with functional immune responses under inflammatory conditions. The multi-layered architecture consists of a lamina propria-like hydrogel with human intestinal fibroblasts (HIF), supporting an epithelial layer composed of Caco-2 and HT29-MTX cells, along with an endothelial layer surrogating the absorptive capillary network. A collagen-alginate composite matrix was optimized for the lamina propria-like hydrogel, preserving HIF metabolic activity and morphology over time. To achieve immune competence, pre-differentiated THP-1-derived macrophages were incorporated into the epithelial barrier. Inflammation was induced through the optimization of an inflammatory cocktail consisting of E. coli O111:B4 lipopolysaccharide combined with a specialized cytokine array (tumor necrosis factor-α, interferon-γ, and interleukin-1β). This inflammation-inducing stimulus led to a significant upregulation of pro-inflammatory cytokines commonly associated with IBD onset, including CCL20, IL-6, CXCL9 and CXCL10. Altogether, this 3D in vitro model has the potential to accelerate the drug development pipeline by providing reliable permeability and efficacy outputs for emerging therapies, reducing unnecessary animal experiments. Moreover, it offers a valuable in vitro platform for studying IBD pathophysiology and cell interplay dynamics.
Collapse
Affiliation(s)
- Bárbara Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Cecília Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; FCUP - Faculdade de Ciências da Universidade do Porto, Universidade do Porto, Porto, Portugal
| | - Cláudia Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Rute Nunes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Catarina Leite-Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
8
|
Song H, Hong Y, Lee H. Rapid automated production of tubular 3D intestine-on-a-chip with diverse cell types using coaxial bioprinting. LAB ON A CHIP 2024; 25:90-101. [PMID: 39648875 DOI: 10.1039/d4lc00731j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Despite considerable animal sacrifices and investments, drug development often falters in clinical trials due to species differences. To address this issue, specific in vitro models, such as organ-on-a-chip technology using human cells in microfluidic devices, are recognized as promising alternatives. Among the various organs, the human small intestine plays a pivotal role in drug development, particularly in the assessment of digestion and nutrient absorption. However, current intestine-on-a-chip devices struggle to accurately replicate the complex 3D tubular structures of the human small intestine, particularly when it comes to integrating a variety of cell types effectively. This limitation is primarily due to conventional fabrication methods, such as soft lithography and replica molding. In this research, we introduce a novel coaxial bioprinting method to construct 3D tubular structures that closely emulate the organization and functionality of the small intestine with multiple cell types. To ensure stable production of these small intestine-like tubular structures, we analyzed the rheological properties of bioinks to select the most suitable materials for coaxial bioprinting technology. Additionally, we conducted biological assessments to validate the gene expression patterns and functional attributes of the 3D intestine-on-a-chip. Our 3D intestine-on-a-chip, which faithfully replicates intestinal functions and organization, demonstrates clear superiority in both structure and biological function compared to the conventional 2D model. This innovative approach holds significant promise for a wide range of future applications.
Collapse
Affiliation(s)
- Heeju Song
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, Republic of Korea.
| | - Yeonjin Hong
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, Republic of Korea.
| | - Hyungseok Lee
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, Republic of Korea.
- Department of Mechanical and Biomedical, Mechatronics Engineering, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea
| |
Collapse
|
9
|
Chen X, Jing S, Xue C, Guan X. Progress in the Application of Hydrogels in Intervertebral Disc Repair: A Comprehensive Review. Curr Pain Headache Rep 2024; 28:1333-1348. [PMID: 38985414 PMCID: PMC11666692 DOI: 10.1007/s11916-024-01296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE OF REVIEW Intervertebral disc degeneration (IVDD) is a common orthopaedic disease and an important cause of lower back pain, which seriously affects the work and life of patients and causes a large economic burden to society. The traditional treatment of IVDD mainly involves early pain relief and late surgical intervention, but it cannot reverse the pathological course of IVDD. Current studies suggest that IVDD is related to the imbalance between the anabolic and catabolic functions of the extracellular matrix (ECM). Anti-inflammatory drugs, bioactive substances, and stem cells have all been shown to improve ECM, but traditional injection methods face short half-life and leakage problems. RECENT FINDINGS The good biocompatibility and slow-release function of polymer hydrogels are being noticed and explored to combine with drugs or bioactive substances to treat IVDD. This paper introduces the pathophysiological mechanism of IVDD, and discusses the advantages, disadvantages and development prospects of hydrogels for the treatment of IVDD, so as to provide guidance for future breakthroughs in the treatment of IVDD.
Collapse
Affiliation(s)
- Xin Chen
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shaoze Jing
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Chenhui Xue
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaoming Guan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
10
|
Jia Y, Han Y, Zhang Y, Li L, Zhang B, Yan X. Multifunctional type lll recombinant human collagen incorporated sodium alginate hydrogel with sustained release of extra cellular vehicles for wound healing multimodal therapy in diabetic mice. Regen Ther 2024; 27:329-341. [PMID: 38873636 PMCID: PMC11170477 DOI: 10.1016/j.reth.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 06/15/2024] Open
Abstract
The effective promotion of wound healing poses a substantial challenge for clinical treatment. Despite evidence supporting the role of extracellular vesicles (EVs) in this process, their therapeutic potential is currently restrict by challenges in targeting and maintaining them. The manufacturing process for rhCol III, or recombinant human collagen III, is stable, and the rejection rate is low. We used a cross-linking method to prepare a rhCol III incorporated sodium alginate (SA) hydrogel, which enabled to accomplish an EV sustained release that was site-specific. Cell viability through MTT assay, proliferation and ROS generation were performed with MC3T3-E1cell lines. In addition, diabetic wounds are characterised by an environment of hyper-inflammation and elevated oxidative stress. The rhCol III/SA-EVs hydrogel, which is a delivery vehicle with anti-inflammatory and antioxidant characteristics, promotes wound healing in this setting. The In vivo effectiveness of the created wound dressing on a diabetic wound model was examined in this study. After 21 days of treatment, the wound dressing significantly (p < 0.05) expedited wound healing compared to the control group, and wound closure was approximately 95% without any negative systemic reactions.
Collapse
Affiliation(s)
- Yao Jia
- The First Hospital of Shanxi Medical University, 85 Jiefang Nan Lu, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Yaxi Han
- The First Hospital of Shanxi Medical University, 85 Jiefang Nan Lu, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Yue Zhang
- The First Hospital of Shanxi Medical University, 85 Jiefang Nan Lu, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Lei Li
- The First Hospital of Shanxi Medical University, 85 Jiefang Nan Lu, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Baolin Zhang
- The First Hospital of Shanxi Medical University, 85 Jiefang Nan Lu, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| | - Xin Yan
- The First Hospital of Shanxi Medical University, 85 Jiefang Nan Lu, Yingze District, Taiyuan City, Shanxi Province, 030001, China
| |
Collapse
|
11
|
Wang Z, Han X, Sun G, Yu M, Qin J, Zhang Y, Ding D. Advances in cancer diagnosis and therapy by alginate-based multifunctional hydrogels: A review. Int J Biol Macromol 2024; 283:137707. [PMID: 39566758 DOI: 10.1016/j.ijbiomac.2024.137707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
The field of oncology has been changed by the application of hydrogels. These 3D polymeric networks have demonstrated significant promise in the treatment of cancer and can boost the efficacy of conventional therapeutics including chemotherapy and immunotherapy. Noteworthy, the development of biocompatible and effective hydrogels has been of interest. In this case, alginate as a biopolymer and carbohydrate polymer has been used to modify or synthesis multifunctional nanoparticles for the treatment of human diseases, especially cancer. Therefore, highlighting the function of alginate in the development of hydrogels in cancer therapy can provide new insights for improving outcome and survival rate of patients. Alginate hydrogels improve the specific and selective delivery of cargo and therefore, they reduce the systemic toxicity of drugs, while they enhance anti-cancer activity. Alginate hydrogels protect the genes against degradation by enzymes and increase blood circulation time. The alginate hydrogels can respond to the specific stimuli in the tumor microenvironment including pH, redox and light to improve the site-specific release of cargo. The nanoparticles can be incorporated in the structure of alginate hydrogels to augment their anti-cancer activity. In addition, alginate hydrogels can accelerate immunotherapy and phototherapy through delivery of immunomodulators and photosensitizers, respectively.
Collapse
Affiliation(s)
- Ziwen Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xu Han
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Guowei Sun
- Interventional Center, Fengcheng Central Hospital, Fengcheng 118199, China
| | - Miao Yu
- Department of Respiratory, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Juan Qin
- Department of Endocrinology and Metabolism, Shenyang Fourth People Hospital, Shenyang 110001, China
| | - Yuting Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Ding Ding
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
12
|
Valookolaei FSG, Sazegar H, Rouhi L. Limonene encapsulated alginate/collagen as antibiofilm drug against Acinetobacter baumannii. BMC Biotechnol 2024; 24:86. [PMID: 39487438 PMCID: PMC11531196 DOI: 10.1186/s12896-024-00888-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/26/2024] [Indexed: 11/04/2024] Open
Abstract
This work examined the antibacterial and antibiofilm properties of alginate/collagen nanoparticles containing limonene. The multi-drug resistant (MDR) strains were screened, and the morphological features of the produced nanoparticles were determined utilizing SEM, DLS, and FTIR. Additionally, the encapsulation effectiveness, stability, and drug release were assessed. The levels of OmpA and Bap biofilm genes were assessed using qRT-PCR. At the same time, the antibacterial and cytotoxic activities of the nanoparticles were evaluated using well diffusion and MTT techniques, respectively. LAC nanoparticles measuring 300 ± 9.6 nm in size, 83.64 ± 0.19% encapsulation efficiency, and 60-day stability at 4 °C were synthesized. The biological investigation demonstrated that LAC nanoparticles had potent antibacterial capabilities. This was shown by their ability to significantly decrease the transcription of OmpA and Bap biofilm genes at a statistically significant level of p ≤ 0.05. The nanoparticles exhibited reduced antibiotic resistance compared to free limonene and alginate/collagen. Compared to limonene, LAC nanoparticles exhibited negligible cytotoxicity against HEK-293 at doses ranging from 1.56 to 100 µg/mL (p ≤ 0.01). The findings underscore the potential of LAC nanoparticles as a breakthrough in the fight against highly resistant pathogens. The potent antibacterial effects of LAC nanoparticles versus Acinetobacter baumannii (A. baumannii) MDR strains, considered highly resistant pathogens of significant concern, could inspire new strategies in antibacterial research.
Collapse
Affiliation(s)
| | - Hossein Sazegar
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Leila Rouhi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
13
|
Castilla-Casadiego DA, Loh DH, Pineda-Hernandez A, Rosales AM. Stimuli-Responsive Substrates to Control the Immunomodulatory Potential of Stromal Cells. Biomacromolecules 2024; 25:6319-6337. [PMID: 39283807 PMCID: PMC11506505 DOI: 10.1021/acs.biomac.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Mesenchymal stromal cells (MSCs) have broad immunomodulatory properties that range from regulation, proliferation, differentiation, and immune cell activation to secreting bioactive molecules that inhibit inflammation and regulate immune response. These properties provide MSCs with high therapeutic potency that has been shown to be relevant to tissue engineering and regenerative medicine. Hence, researchers have explored diverse strategies to control the immunomodulatory potential of stromal cells using polymeric substrates or scaffolds. These substrates alter the immunomodulatory response of MSCs, especially through biophysical cues such as matrix mechanical properties. To leverage these cell-matrix interactions as a strategy for priming MSCs, emerging studies have explored the use of stimuli-responsive substrates to enhance the therapeutic value of stromal cells. This review highlights how stimuli-responsive materials, including chemo-responsive, microenvironment-responsive, magneto-responsive, mechano-responsive, and photo-responsive substrates, have specifically been used to promote the immunomodulatory potential of stromal cells by controlling their secretory activity.
Collapse
Affiliation(s)
- David A Castilla-Casadiego
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Darren H Loh
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Aldaly Pineda-Hernandez
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrianne M Rosales
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Yue C, Ding C, Xu M, Hu M, Zhang R. Self-Assembly Behavior of Collagen and Its Composite Materials: Preparation, Characterizations, and Biomedical Engineering and Allied Applications. Gels 2024; 10:642. [PMID: 39451295 PMCID: PMC11507467 DOI: 10.3390/gels10100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Collagen is the oldest and most abundant extracellular matrix protein and has many applications in biomedical, food, cosmetic, and other industries. Previous reviews have already introduced collagen's sources, structures, and biosynthesis. The biological and mechanical properties of collagen-based composite materials, their modification and application forms, and their interactions with host tissues are pinpointed. It is worth noting that self-assembly behavior is the main characteristic of collagen molecules. However, there is currently relatively little review on collagen-based composite materials based on self-assembly. Herein, we briefly reviewed the biosynthesis, extraction, structure, and properties of collagen, systematically presented an overview of the various factors and corresponding characterization techniques that affect the collagen self-assembly process, and summarize and discuss the preparation methods and application progress of collagen-based composite materials in different fields. By combining the self-assembly behavior of collagen with preparation methods of collagen-based composite materials, collagen-based composite materials with various functional reactions can be selectively prepared, and these experiences and outcomes can provide inspiration and practical techniques for the future development directions and challenges of collagen-based composite biomaterials in related applications fields.
Collapse
Affiliation(s)
- Chengfei Yue
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Changkun Ding
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Minjie Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
| | - Min Hu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
| | - Ruquan Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
| |
Collapse
|
15
|
Wang Q, Yan H, Zhang J, Tian B, Li W, Xiao J. Agarose-collagen composite microsphere implants: A biocompatible and robust approach for skin tissue regeneration. Int J Biol Macromol 2024; 277:134510. [PMID: 39111473 DOI: 10.1016/j.ijbiomac.2024.134510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/28/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Photoaged skin, a consequence of UV radiation-induced collagen degradation, presents a significant challenge for skin rejuvenation. Synthetic polymer microspheres, while offering collagen regeneration potential, carry risks like granulomas. To overcome this, we developed a novel agarose-collagen composite microsphere implant for skin tissue regeneration. Fabricated using an emulsification-crosslinking method, these microspheres exhibited excellent uniformity and sphericity (with a diameter of ~38.5 μm), as well as attractive injectability. In vitro studies demonstrated their superior biocompatibility, promoting cell proliferation, adhesion, and migration. Further assessments revealed favorable biosafety and blood compatibility. In vivo experiments in photoaged mice showed that implantation of these microspheres effectively reduced wrinkles, increased skin density, and improved elasticity by stimulating fibroblast encapsulation and collagen regeneration. These findings highlight the potential of agarose-collagen microspheres in dermatological and tissue engineering applications, offering a safer alternative for skin rejuvenation.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China
| | - Huiyu Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China
| | - Jingting Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China
| | - Bei Tian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China
| | - Wenhua Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
16
|
Rahman TT, Wood N, Akib YM, Qin H, Pei Z. Experimental Study on Compatibility of Human Bronchial Epithelial Cells in Collagen-Alginate Bioink for 3D Printing. Bioengineering (Basel) 2024; 11:862. [PMID: 39329604 PMCID: PMC11429095 DOI: 10.3390/bioengineering11090862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/29/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
This paper reports an experimental study on the compatibility of human bronchial epithelial (HBE) cells in a collagen-alginate bioink. The compatibility was assessed using the culture well method with three bioink compositions prepared from a 10% alginate solution and neutralized TeloCol-10 mg/mL collagen stock solution. Cell viability, quantified by (live cell count-dead cell count)/live cell count within the HBE cell-laden hydrogel, was evaluated using the live/dead assay method from Day 0 to Day 6. Experimental results demonstrated that the collagen-alginate 4:1 bioink composition exhibited the highest cell viability on Day 6 (85%), outperforming the collagen-alginate 1:4 bioink composition and the alginate bioink composition, which showed cell viability of 75% and 45%, respectively. Additionally, the live cell count was highest for the collagen-alginate 4:1 bioink composition on Day 0, a trend that persisted through Days 1 to 6, underscoring its superior performance in maintaining cell viability and promoting cell proliferation. These findings show that the compatibility of HBE cells with the collagen-alginate 4:1 bioink composition was higher compared with the other two bioink compositions.
Collapse
Affiliation(s)
- Taieba Tuba Rahman
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; (Y.M.A.); (Z.P.)
| | - Nathan Wood
- Department of Biology, Texas A&M University, College Station, TX 77843, USA; (N.W.); (H.Q.)
| | - Yeasir Mohammad Akib
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; (Y.M.A.); (Z.P.)
| | - Hongmin Qin
- Department of Biology, Texas A&M University, College Station, TX 77843, USA; (N.W.); (H.Q.)
| | - Zhijian Pei
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; (Y.M.A.); (Z.P.)
| |
Collapse
|
17
|
Quílez C, Jeon EY, Pappalardo A, Pathak P, Abaci HE. Efficient Generation of Skin Organoids from Pluripotent Cells via Defined Extracellular Matrix Cues and Morphogen Gradients in a Spindle-Shaped Microfluidic Device. Adv Healthc Mater 2024; 13:e2400405. [PMID: 38452278 PMCID: PMC11305970 DOI: 10.1002/adhm.202400405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Indexed: 03/09/2024]
Abstract
Pluripotent stem cell-derived skin organoids (PSOs) emerge as a developmental skin model that is self-organized into multiple components, such as hair follicles. Despite their impressive complexity, PSOs are currently generated in the absence of 3D extracellular matrix (ECM) signals and have several major limitations, including an inverted anatomy (e.g., epidermis inside/dermis outside). In this work, a method is established to generate PSOs effectively in a chemically-defined 3D ECM environment. After examining various dermal ECM molecules, it is found that PSOs generated in collagen -type I (COLI) supplemented with laminin 511 (LAM511) exhibit increased growth compared to conventional free-floating conditions, but fail to induce complete skin differentiation due in part to necrosis. This problem is addressed by generating the PSOs in a 3D bioprinted spindle-shaped hydrogel device, which constrains organoid growth longitudinally. This culture system significantly reduces organoid necrosis and leads to a twofold increase in keratinocyte differentiation and an eightfold increase in hair follicle formation. Finally, the system is adapted as a microfluidic device to create asymmetrical gradients of differentiation factors and improves the spatial organization of dermal and epidermal cells. This study highlights the pivotal role of ECM and morphogen gradients in promoting and spatially-controlling skin differentiation in the PSO framework.
Collapse
Affiliation(s)
- Cristina Quílez
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés, 28911 Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - Eun Y. Jeon
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alberto Pappalardo
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Pooja Pathak
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hasan E. Abaci
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| |
Collapse
|
18
|
Wierzbicka A, Bartniak M, Waśko J, Kolesińska B, Grabarczyk J, Bociaga D. The Impact of Gelatin and Fish Collagen on Alginate Hydrogel Properties: A Comparative Study. Gels 2024; 10:491. [PMID: 39195020 DOI: 10.3390/gels10080491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Hydrogel materials based on sodium alginate find versatile applications in regenerative medicine and tissue engineering due to their unique properties, such as biocompatibility and biodegradability, and the possibility of the customization of their mechanical properties, such as in terms of the individual requirements of separate clinical applications. These materials, however, have numerous limitations in the area of biological activity. In order to eliminate their limitations, sodium alginate is popularly applied in combination with added gelatin, which represents a product of collagen hydrolysis. Despite numerous beneficial biological properties, matrix materials based on gelatin have poor mechanical properties and are characterized by their ability for rapid degradation in an aqueous environment, particularly at the physiological temperature of the body, which significantly limits the independent application opportunities of this type of composition in the range of scaffolding production dedicated for tissue engineering. Collagen hydrogels, unlike gelatin, are characterized by higher bioactivity, dictated by a greater number of ligands that allow for cell adhesion, as well as better stability under physiological conditions. Fish-derived collagen provides a material that may be efficiently extracted without the risk of mammalian prion infection and can be used in all patients without religious restrictions. Considering the numerous advantages of collagen indicating its superiority over gelatin, within the framework of this study, the compositions of hydrogel materials based on sodium alginate and fish collagen in different concentrations were developed. Prepared hydrogel materials were compared with the properties of a typical composition of alginate with the addition of gelatin. The rheological, mechanical, and physicochemical properties of the developed polymer compositions were evaluated. The first trials of 3D printing by extrusion technique using the analyzed polymer solutions were also conducted. The results obtained indicate that replacing gelatin with fish collagen at an analogous concentration leads to obtaining materials with a lower swelling degree, better mechanical properties, higher stability, limited release kinetics of calcium ions cross-linking the alginate matrix, a slowed process of protein release under physiological conditions, and the possibility of extrusion 3D printing. The conducted analysis highlights that the optimization of the applied concentrations of fish collagen additives to composition based on sodium alginate creates the possibility of designing materials with appropriate mechanical and rheological properties and degradation kinetics adjusted to the requirements of specific applications, leading to the prospective opportunity to produce materials capable of mimicking the properties of relevant soft tissues. Thanks to its excellent bioactivity and lower-than-gelatin viscosity of the polymer solution, fish collagen also provides a prospective solution for applications in the field of 3D bioprinting.
Collapse
Affiliation(s)
- Adrianna Wierzbicka
- Institute of Materials Science and Engineering, Lodz University of Technology, 90-537 Lodz, Poland
| | - Mateusz Bartniak
- Institute of Materials Science and Engineering, Lodz University of Technology, 90-537 Lodz, Poland
| | - Joanna Waśko
- Institute of Organic Chemistry, Lodz University of Technology, 90-543 Lodz, Poland
| | - Beata Kolesińska
- Institute of Organic Chemistry, Lodz University of Technology, 90-543 Lodz, Poland
| | - Jacek Grabarczyk
- Institute of Materials Science and Engineering, Lodz University of Technology, 90-537 Lodz, Poland
| | - Dorota Bociaga
- Institute of Materials Science and Engineering, Lodz University of Technology, 90-537 Lodz, Poland
| |
Collapse
|
19
|
Ali SS, Alsharbaty MHM, Al-Tohamy R, Naji GA, Elsamahy T, Mahmoud YAG, Kornaros M, Sun J. A review of the fungal polysaccharides as natural biopolymers: Current applications and future perspective. Int J Biol Macromol 2024; 273:132986. [PMID: 38866286 DOI: 10.1016/j.ijbiomac.2024.132986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
As a unique natural resource, fungi are a sustainable source of lipids, polysaccharides, vitamins, proteins, and other nutrients. As a result, they have beneficial medicinal and nutritional properties. Polysaccharides are among the most significant bioactive components found in fungi. Increasing research has revealed that fungal polysaccharides (FPS) contain a variety of bioactivities, including antitumor, antioxidant, immunomodulatory, anti-inflammatory, hepatoprotective, cardioprotective, and anti-aging properties. However, the exact knowledge about FPS and their applications related to their future possibilities must be thoroughly examined to enhance a better understanding of this sustainable biopolymer source. Therefore, FPS' biological applications and their role in the food and feed industry, agriculture, and cosmetics applications were all discussed in this work. In addition, this review highlighted the mode of action of FPS on human diseases by regulating gut microbiota and discussed the mechanism of FPS as antioxidants in the living cell. The structure-activity connections of FPS were also highlighted and explored. Moreover, future perspectives were listed to pave the way for future studies of FPS applications. Hence, this study can be a scientific foundation for future FPS research and industrial applications.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Mohammed H M Alsharbaty
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq; Branch of Prosthodontics, College of Dentistry, University of Al-Ameed, Karbala, Iraq.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ghassan A Naji
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq; College of Dentistry, The Iraqia University, Baghdad, Iraq.
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yehia A-G Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, 26504 Patras, Greece.
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
20
|
Luo Y, Gao Y. Potential Role of Hydrogels in Stem Cell Culture and Hepatocyte Differentiation. NANO BIOMEDICINE AND ENGINEERING 2024; 16:188-202. [DOI: 10.26599/nbe.2024.9290055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
|
21
|
Ichise SF, Koide T. A Transparent and Injectable Biomaterial Prepared by Mixing Collagen and Anti-Cancer Platinum Derivatives. Macromol Biosci 2024; 24:e2300553. [PMID: 38459799 DOI: 10.1002/mabi.202300553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/04/2024] [Indexed: 03/10/2024]
Abstract
This study presents the synthesis of a cross-linked collagen material, named platinum-containing collagen gel (PCG), which is achieved by simply mixing collagen and derivatives of an anti-cancer platinum complex. The cross-linking reagents are derivatives of cisplatin or transplatin, generated through a ligand exchange with dimethyl sulfoxide. PCG exhibits superior physical strength and transparency compared with the native collagen gel formed through spontaneous fibril formation. The versatility of PCG as a cell culture scaffold, applicable to both 2D and 3D models, with low cytotoxicity is demonstrated. Furthermore, PCG exhibits pH-responsive gel-forming properties. This enables the removal of free cross-linker by dialysis in an acidic solution and subsequent gel formation upon neutralization. This material holds promise for application in cell culture scaffolds and medical injections.
Collapse
Affiliation(s)
- Shinichiro F Ichise
- Department of Clinical Nutrition, Kitasato Junior College of Health and Hygienic Sciences, Niigata, 949-7241, Japan
- Waseda Research Institute for Science and Engineering, Tokyo, 169-8555, Japan
| | - Takaki Koide
- Waseda Research Institute for Science and Engineering, Tokyo, 169-8555, Japan
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| |
Collapse
|
22
|
Tamo AK, Djouonkep LDW, Selabi NBS. 3D Printing of Polysaccharide-Based Hydrogel Scaffolds for Tissue Engineering Applications: A Review. Int J Biol Macromol 2024; 270:132123. [PMID: 38761909 DOI: 10.1016/j.ijbiomac.2024.132123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
In tissue engineering, 3D printing represents a versatile technology employing inks to construct three-dimensional living structures, mimicking natural biological systems. This technology efficiently translates digital blueprints into highly reproducible 3D objects. Recent advances have expanded 3D printing applications, allowing for the fabrication of diverse anatomical components, including engineered functional tissues and organs. The development of printable inks, which incorporate macromolecules, enzymes, cells, and growth factors, is advancing with the aim of restoring damaged tissues and organs. Polysaccharides, recognized for their intrinsic resemblance to components of the extracellular matrix have garnered significant attention in the field of tissue engineering. This review explores diverse 3D printing techniques, outlining distinctive features that should characterize scaffolds used as ideal matrices in tissue engineering. A detailed investigation into the properties and roles of polysaccharides in tissue engineering is highlighted. The review also culminates in a profound exploration of 3D polysaccharide-based hydrogel applications, focusing on recent breakthroughs in regenerating different tissues such as skin, bone, cartilage, heart, nerve, vasculature, and skeletal muscle. It further addresses challenges and prospective directions in 3D printing hydrogels based on polysaccharides, paving the way for innovative research to fabricate functional tissues, enhancing patient care, and improving quality of life.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany; Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany; Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France.
| | - Lesly Dasilva Wandji Djouonkep
- College of Petroleum Engineering, Yangtze University, Wuhan 430100, China; Key Laboratory of Drilling and Production Engineering for Oil and Gas, Wuhan 430100, China
| | - Naomie Beolle Songwe Selabi
- Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
23
|
El-Nablaway M, Rashed F, Taher ES, Atia GA, Foda T, Mohammed NA, Abdeen A, Abdo M, Hînda I, Imbrea AM, Taymour N, Ibrahim AM, Atwa AM, Ibrahim SF, Ramadan MM, Dinu S. Bioactive injectable mucoadhesive thermosensitive natural polymeric hydrogels for oral bone and periodontal regeneration. Front Bioeng Biotechnol 2024; 12:1384326. [PMID: 38863491 PMCID: PMC11166210 DOI: 10.3389/fbioe.2024.1384326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/19/2024] [Indexed: 06/13/2024] Open
Abstract
Periodontitis is an inflammation-related condition, caused by an infectious microbiome and host defense that causes damage to periodontium. The natural processes of the mouth, like saliva production and eating, significantly diminish therapeutic medication residency in the region of periodontal disease. Furthermore, the complexity and diversity of pathological mechanisms make successful periodontitis treatment challenging. As a result, developing enhanced local drug delivery technologies and logical therapy procedures provides the foundation for effective periodontitis treatment. Being biocompatible, biodegradable, and easily administered to the periodontal tissues, hydrogels have sparked substantial an intense curiosity in the discipline of periodontal therapy. The primary objective of hydrogel research has changed in recent years to intelligent thermosensitive hydrogels, that involve local adjustable sol-gel transformations and regulate medication release in reaction to temperature, we present a thorough introduction to the creation and efficient construction of new intelligent thermosensitive hydrogels for periodontal regeneration. We also address cutting-edge smart hydrogel treatment options based on periodontitis pathophysiology. Furthermore, the problems and prospective study objectives are reviewed, with a focus on establishing effective hydrogel delivery methods and prospective clinical applications.
Collapse
Affiliation(s)
- Mohammad El-Nablaway
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Gamal A. Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Tarek Foda
- Oral Health Sciences Department, Temple University’s Kornberg School of Dentistry, Philadelphia, PA, United States
| | - Nourelhuda A. Mohammed
- Physiology and Biochemistry Department, Faculty of Medicine, Mutah University, Al Karak, Jordan
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Ioana Hînda
- Department of Biology, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ana-Maria Imbrea
- Department of Biotechnology, Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timisoara, Timișoara, Romania
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Ateya M. Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port-Said University, Port Said, Egypt
| | - Ahmed M. Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Samah F. Ibrahim
- Department of Internal Medicine, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mahmoud M. Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babes, University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| |
Collapse
|
24
|
Gao C, Zeng Y, Zhang L, Wang J, Yang X, Li K, Ren H, Liu Z. Sustained Secretion of CCL21 via an Implantable Cell Reservoir Hydrogel Enhances the Systemic Antitumor Effect of Radiotherapy. NANO LETTERS 2024; 24:5894-5903. [PMID: 38709593 DOI: 10.1021/acs.nanolett.4c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The combination of radiotherapy (RT) and immunotherapy shows promise in improving the clinical treatment of solid tumors; however, it faces challenges of low response rates and systemic toxicity. Herein, an implantable alginate/collagen hydrogel encapsulating C-C motif ligand 21 (CCL21)-expressing dendritic cells (CCL21-DCs@gel) was developed to potentiate the systemic antitumor effects of RT. The hydrogel functioned as a suitable reservoir for in vivo culture and proliferation of CCL21-DCs, thereby enabling sustained CCL21 release. The local CCL21 gradient induced by CCL21-DCs@gel significantly enhanced the efficacy of RT in suppressing primary tumor growth and inhibiting distant metastasis across several mouse models. Furthermore, the combination of RT with CCL21-DCs@gel provided complete prophylactic protection to mice. Mechanistic investigations revealed that CCL21-DCs@gel potentiated RT by promoting tumor lymphangiogenesis and attracting immune cell infiltration into the tumor. Collectively, these results suggest that CCL21-DCs@gel is a promising adjunct to RT for effectively eradicating tumors and preventing tumor recurrence.
Collapse
Affiliation(s)
- Chao Gao
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yuwen Zeng
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Linyu Zhang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianze Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiujie Yang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Kui Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - He Ren
- Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Zhaofei Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, China
- Department of Nuclear Medicine, Peking University Third Hospital, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| |
Collapse
|
25
|
Chrungoo S, Bharadwaj T, Verma D. Nanofibrous polyelectrolyte complex incorporated BSA-alginate composite bioink for 3D bioprinting of bone mimicking constructs. Int J Biol Macromol 2024; 266:131123. [PMID: 38537853 DOI: 10.1016/j.ijbiomac.2024.131123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Although several bioinks have been developed for 3D bioprinting applications, the lack of optimal printability, mechanical properties, and adequate cell response has limited their practical applicability. Therefore, this work reports the development of a composite bioink consisting of bovine serum albumin (BSA), alginate, and self-assembled nanofibrous polyelectrolyte complex aggregates of gelatin and chitosan (PEC-GC). The nanofibrous PEC-GC aggregates were prepared and incorporated into the bioink in varying concentrations (0 % to 3 %). The bioink samples were bioprinted and crosslinked post-printing by calcium chloride. The average nanofiber diameter of PEC-GC was 62 ± 15 nm. It was demonstrated that PEC-GC improves the printability and cellular adhesion of the developed bioink and modulates the swelling ratio, degradation rate, and mechanical properties of the fabricated scaffold. The in vitro results revealed that the bioink with 2 % PEC-GC had the best post-printing cell viability of the encapsulated MG63 osteosarcoma cells and well oragnized stress fibers, indicating enhanced cell adhesion. The cell viability was >90 %, as observed from the MTT assay. The composite bioink also showed osteogenic potential, as confirmed by the estimation of alkaline phosphatase activity and collagen synthesis assay. This study successfully fabricated a high-shape fidelity bioink with potential in bone tissue engineering.
Collapse
Affiliation(s)
- Shreya Chrungoo
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Tanmay Bharadwaj
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Devendra Verma
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
26
|
Zimmerling A, Zhou Y, Chen X. Synthesis of Alginate/Collagen Bioink for Bioprinting Respiratory Tissue Models. J Funct Biomater 2024; 15:90. [PMID: 38667547 PMCID: PMC11050917 DOI: 10.3390/jfb15040090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Synthesis of bioinks for bioprinting of respiratory tissue requires considerations related to immunogenicity, mechanical properties, printability, and cellular compatibility. Biomaterials can be tailored to provide the appropriate combination of these properties through the synergy of materials with individual pros and cons. Sodium alginate, a water-soluble polymer derived from seaweed, is a cheap yet printable biomaterial with good structural properties; however, it lacks physiological relevance and cell binding sites. Collagen, a common component in the extra cellular matrix of many tissues, is expensive and lacks printability; however, it is highly biocompatible and exhibits sites for cellular binding. This paper presents our study on the synthesis of bioinks from alginate and collagen for use in bioprinting respiratory tissue models. Bioinks were synthesized from 40 mg/mL (4%) alginate and 3 mg/mL (0.3%) collagen in varying ratios (1:0, 4:1, 3:1, 2:1, and 1:1); then examined in terms of rheological properties, printability, compressive, and tensile properties and cellular compatibility. The results illustrate that the ratio of alginate to collagen has a profound impact on bioink performance and that, among the examined ratios, the 3:1 ratio is the most appropriate for use in bioprinting respiratory tissue scaffolds.
Collapse
Affiliation(s)
- Amanda Zimmerling
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada;
| | - Yan Zhou
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada;
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
27
|
Cai G, Li X, Lin SS, Chen SJ, Rodgers NC, Koning KM, Bi D, Liu AP. Matrix confinement modulates 3D spheroid sorting and burst-like collective migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.23.549940. [PMID: 37546827 PMCID: PMC10401934 DOI: 10.1101/2023.07.23.549940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
While it is known that cells with differential adhesion tend to segregate and preferentially sort, the physical forces governing sorting and invasion in heterogeneous tumors remain poorly understood. To investigate this, we tune matrix confinement, mimicking changes in the stiffness and confinement of the tumor microenvironment, to explore how physical confinement influences individual and collective cell migration in 3D spheroids. High levels of confinement lead to cell sorting while reducing matrix confinement triggers the collective fluidization of cell motion. Cell sorting, which depends on cell-cell adhesion, is crucial to this phenomenon. Burst-like migration does not occur for spheroids that have not undergone sorting, regardless of the degree of matrix confinement. Using computational Self-Propelled Voronoi modeling, we show that spheroid sorting and invasion into the matrix depend on the balance between cell-generated forces and matrix resistance. The findings support a model where matrix confinement modulates 3D spheroid sorting and unjamming in an adhesion-dependent manner, providing insights into the mechanisms of cell sorting and migration in the primary tumor and toward distant metastatic sites.
Collapse
Affiliation(s)
- Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Xinzhi Li
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Shan-Shan Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Samuel J. Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nicole C. Rodgers
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Katherine M. Koning
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Allen P. Liu
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
28
|
Chen Y, Huang J, Wang K, Li X, Rui Y, Fan W. Research on evolution process of full-layer incision of skin tissue under different laser incidences. JOURNAL OF BIOPHOTONICS 2024; 17:e202300284. [PMID: 37700597 DOI: 10.1002/jbio.202300284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
Considering difficulties of achieving vertical incidence of beam in different positions of skin, it is significant to study potential effects of incidence angles of laser on incisions. Surgical platform with a 1064 nm continuous fiber laser was established. Incident angle was adopted and real-time temperature fluctuations in laser operating area could be monitored. The rats were treated with laser at day 0 and day 3 after incision modeling, and H&E, Masson, Sirius Red, and Immuno-histochemical staining and enzyme-linked immunosorbent assay were adopted at day 3, 7, 14 to analyze the performance of healing. Laser with energy density of 67.54 J/mm2 can effectively accelerate wound healing in vivo, in which a laser with incident angle around 60° can effectively avoid scar hyperplasia. Therefore, the use of low energy laser with a small deflection angle has a good clinical application prospect in promoting wound healing.
Collapse
Affiliation(s)
- Yuxin Chen
- School of Material Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Jun Huang
- School of Material Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Kehong Wang
- School of Material Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Xiaopeng Li
- School of Material Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Yunfeng Rui
- Department of Orthopaedics, Southeast University, Zhongda Hospital, Nanjing, China
| | - Wentao Fan
- First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Chiu K, Karpat M, Hahn J, Chang K, Weber M, Wolf M, Aveic S, Fischer H. Cyclic Stretching Triggers Cell Orientation and Extracellular Matrix Remodeling in a Periodontal Ligament 3D In Vitro Model. Adv Healthc Mater 2023; 12:e2301422. [PMID: 37703581 PMCID: PMC11469025 DOI: 10.1002/adhm.202301422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/07/2023] [Indexed: 09/15/2023]
Abstract
During orthodontic tooth movement (OTM), the periodontal ligament (PDL) plays a crucial role in regulating the tissue remodeling process. To decipher the cellular and molecular mechanisms underlying this process in vitro, suitable 3D models are needed that more closely approximate the situation in vivo. Here, a customized bioreactor is developed that allows dynamic loading of PDL-derived fibroblasts (PDLF). A collagen-based hydrogel mixture is optimized to maintain structural integrity and constant cell growth during stretching. Numerical simulations show a uniform stress distribution in the hydrogel construct under stretching. Compared to static conditions, controlled cyclic stretching results in directional alignment of collagen fibers and enhances proliferation and spreading ability of the embedded PDLF cells. Effective force transmission to the embedded cells is demonstrated by a more than threefold increase in Periostin protein expression. The cyclic stretch conditions also promote extensive remodeling of the extracellular matrix, as confirmed by increased glycosaminoglycan production. These results highlight the importance of dynamic loading over an extended period of time to determine the behavior of PDLF and to identify in vitro mechanobiological cues triggered during OTM-like stimulus. The introduced dynamic bioreactor is therefore a useful in vitro tool to study these mechanisms.
Collapse
Affiliation(s)
- Kuo‐Hui Chiu
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Mert Karpat
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Johannes Hahn
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Kao‐Yuan Chang
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Michael Weber
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Michael Wolf
- Department of OrthodonticsRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Sanja Aveic
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| |
Collapse
|
30
|
Wang Z, Xu Z, Yang X, Li M, Yip RCS, Li Y, Chen H. Current application and modification strategy of marine polysaccharides in tissue regeneration: A review. BIOMATERIALS ADVANCES 2023; 154:213580. [PMID: 37634336 DOI: 10.1016/j.bioadv.2023.213580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
Marine polysaccharides (MPs) are exceptional bioactive materials that possess unique biochemical mechanisms and pharmacological stability, making them ideal for various tissue engineering applications. Certain MPs, including agarose, alginate, carrageenan, chitosan, and glucan have been successfully employed as biological scaffolds in animal studies. As carriers of signaling molecules, scaffolds can enhance the adhesion, growth, and differentiation of somatic cells, thereby significantly improving the tissue regeneration process. However, the biological benefits of pure MPs composite scaffold are limited. Therefore, physical, chemical, enzyme modification and other methods are employed to expand its efficacy. Chemically, the structural properties of MPs scaffolds can be altered through modifications to functional groups or molecular weight reduction, thereby enhancing their biological activities. Physically, MPs hydrogels and sponges emulate the natural extracellular matrix, creating a more conducive environment for tissue repair. The porosity and high permeability of MPs membranes and nanomaterials expedite wound healing. This review explores the distinctive properties and applications of select MPs in tissue regeneration, highlighting their structural versatility and biological applicability. Additionally, we provide a brief overview of common modification strategies employed for MP scaffolds. In conclusion, MPs have significant potential and are expected to be a novel regenerative material for tissue engineering.
Collapse
Affiliation(s)
- Zhaokun Wang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Zhiwen Xu
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Xuan Yang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Man Li
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA.
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
31
|
Cruz-Maya I, Altobelli R, Alvarez-Perez MA, Guarino V. Mineralized Microgels via Electrohydrodynamic Atomization: Optimization and In Vitro Model for Dentin-Pulp Complex. Gels 2023; 9:846. [PMID: 37998935 PMCID: PMC10670945 DOI: 10.3390/gels9110846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
There is growing interest in the use of micro-sized hydrogels, including bioactive signals, as efficient platforms for tissue regeneration because they are able to mimic cell niche structure and selected functionalities. Herein, it is proposed to optimize bioactive composite microgels via electrohydrodynamic atomization (EHDA) to regenerate the dentin-pulp complex. The addition of disodium phosphate (Na2HPO4) salts as mineral precursors triggered an in situ reaction with divalent ions in solution, thus promoting the encapsulation of different amounts of apatite-like phases. Morphological analysis via image analysis of optical images confirmed a narrow distribution of perfectly rounded particles, with an average diameter ranging from 223 ± 18 μm to 502 ± 64 μm as a function of mineral content and process parameters used. FTIR, TEM, and EDAX analyses confirmed the formation of calcium phosphates with a characteristic Ca/P ratio close to 1.67 and a needle-like crystal shape. In vitro studies-using dental pulp stem cells (DPSCs) in crown sections of natural teeth slices-showed an increase in cell viability until 14 days, recording a decay of proliferation at 21 days, independent on the mineral amount, suggesting that differentiation is started, as confirmed by the increase of ALP activity at 14 days. In this view, mineralized microgels could be successfully used to support in vitro osteogenesis, working as an interesting model to study dental tissue regeneration.
Collapse
Affiliation(s)
- Iriczalli Cruz-Maya
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy
- Tissue Bioengineering Laboratory of DEPeI-FO, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City 04510, Mexico;
| | - Rosaria Altobelli
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy
| | - Marco Antonio Alvarez-Perez
- Tissue Bioengineering Laboratory of DEPeI-FO, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City 04510, Mexico;
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
32
|
Jia W, Zhou Z, Zhan W. Musculoskeletal Biomaterials: Stimulated and Synergized with Low Intensity Pulsed Ultrasound. J Funct Biomater 2023; 14:504. [PMID: 37888169 PMCID: PMC10607075 DOI: 10.3390/jfb14100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Clinical biophysical stimulating strategies, which have significant effects on improving the function of organs or treating diseases by causing the salutary response of body, have shown many advantages, such as non-invasiveness, few side effects, and controllable treatment process. As a critical technique for stimulation, the low intensity pulsed ultrasound (LIPUS) has been explored in regulating osteogenesis, which has presented great promise in bone repair by delivering a combined effect with biomaterials. This review summarizes the musculoskeletal biomaterials that can be synergized with LIPUS for enhanced biomedical application, including bone regeneration, spinal fusion, osteonecrosis/osteolysis, cartilage repair, and nerve regeneration. Different types of biomaterials are categorized for summary and evaluation. In each subtype, the verified biological mechanisms are listed in a table or graphs to prove how LIPUS was effective in improving musculoskeletal tissue regeneration. Meanwhile, the acoustic excitation parameters of LIPUS that were promising to be effective for further musculoskeletal tissue engineering are discussed, as well as their limitations and some perspectives for future research. Overall, coupled with biomimetic scaffolds and platforms, LIPUS may be a powerful therapeutic approach to accelerate musculoskeletal tissue repair and even in other regenerative medicine applications.
Collapse
Affiliation(s)
- Wanru Jia
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Zifei Zhou
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weiwei Zhan
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| |
Collapse
|
33
|
Yu YC, Hu MH, Zhuang HZ, Phan THM, Jiang YS, Jan JS. Antibacterial Gelatin Composite Hydrogels Comprised of In Situ Formed Zinc Oxide Nanoparticles. Polymers (Basel) 2023; 15:3978. [PMID: 37836027 PMCID: PMC10575203 DOI: 10.3390/polym15193978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
We report the feasibility of using gelatin hydrogel networks as the host for the in situ, environmentally friendly formation of well-dispersed zinc oxide nanoparticles (ZnONPs) and the evaluation of the antibacterial activity of the as-prepared composite hydrogels. The resulting composite hydrogels displayed remarkable biocompatibility and antibacterial activity as compared to those in previous studies, primarily attributed to the uniform distribution of the ZnONPs with sizes smaller than 15 nm within the hydrogel network. In addition, the composite hydrogels exhibited better thermal stability and mechanical properties as well as lower swelling ratios compared to the unloaded counterpart, which could be attributed to the non-covalent interactions between the in situ formed ZnONPs and polypeptide chains. The presence of ZnONPs contributed to the disruption of bacterial cell membranes, the alteration of DNA molecules, and the subsequent release of reactive oxygen species within the bacterial cells. This chain of events culminated in bacterial cell lysis and DNA fragmentation. This research underscores the potential benefits of incorporating antibacterial agents into hydrogels and highlights the significance of preparing antimicrobial agents within gel networks.
Collapse
Affiliation(s)
- Ya-Chu Yu
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; (Y.-C.Y.); (H.-Z.Z.); (T.H.M.P.); (Y.-S.J.)
| | - Ming-Hsien Hu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan;
- Orthopedic Department, Showchwan Memorial Hospital, Changhua 500, Taiwan
| | - Hui-Zhong Zhuang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; (Y.-C.Y.); (H.-Z.Z.); (T.H.M.P.); (Y.-S.J.)
| | - Thi Ha My Phan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; (Y.-C.Y.); (H.-Z.Z.); (T.H.M.P.); (Y.-S.J.)
| | - Yi-Sheng Jiang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; (Y.-C.Y.); (H.-Z.Z.); (T.H.M.P.); (Y.-S.J.)
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; (Y.-C.Y.); (H.-Z.Z.); (T.H.M.P.); (Y.-S.J.)
| |
Collapse
|
34
|
Gan Z, Qin X, Liu H, Liu J, Qin J. Recent advances in defined hydrogels in organoid research. Bioact Mater 2023; 28:386-401. [PMID: 37334069 PMCID: PMC10273284 DOI: 10.1016/j.bioactmat.2023.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/11/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023] Open
Abstract
Organoids are in vitro model systems that mimic the complexity of organs with multicellular structures and functions, which provide great potential for biomedical and tissue engineering. However, their current formation heavily relies on using complex animal-derived extracellular matrices (ECM), such as Matrigel. These matrices are often poorly defined in chemical components and exhibit limited tunability and reproducibility. Recently, the biochemical and biophysical properties of defined hydrogels can be precisely tuned, offering broader opportunities to support the development and maturation of organoids. In this review, the fundamental properties of ECM in vivo and critical strategies to design matrices for organoid culture are summarized. Two typically defined hydrogels derived from natural and synthetic polymers for their applicability to improve organoids formation are presented. The representative applications of incorporating organoids into defined hydrogels are highlighted. Finally, some challenges and future perspectives are also discussed in developing defined hydrogels and advanced technologies toward supporting organoid research.
Collapse
Affiliation(s)
- Zhongqiao Gan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xinyuan Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Haitao Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiayue Liu
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| |
Collapse
|
35
|
Slyker L, Bonassar LJ. Alginate Conjugation Increases Toughness in Auricular Chondrocyte Seeded Collagen Hydrogels. Bioengineering (Basel) 2023; 10:1037. [PMID: 37760139 PMCID: PMC10526064 DOI: 10.3390/bioengineering10091037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Current auricular cartilage replacements for pediatric microtia fail to address the need for long-term integration and neocartilage formation. While collagen hydrogels have been successful in fostering neocartilage formation, the toughness and extensibility of these materials do not match that of native tissue. This study used the N-terminal functionalization of collagen with alginate oligomers to improve toughness and extensibility through metal-ion complexation. Alginate conjugation was confirmed via FTIR spectroscopy. The retention of native collagen fibrillar structure, thermal gelation, and helical conformation in functionalized gels was confirmed via scanning electron microscopy, oscillatory shear rheology, and circular dichroism spectroscopy, respectively. Alginate-calcium complexation enabled a more than two-fold increase in modulus and work density in functionalized collagen with the addition of 50 mM CaCl2, whereas unmodified collagen decreased in both modulus and work density with increasing calcium concentration. Additionally, the extensibility of alginate-functionalized collagen was increased at 25 and 50 mM CaCl2. Following 2-week culture with auricular chondrocytes, alginate-functionalization had no effect on the cytocompatibility of collagen gels, with no effects on cell density, and increased glycosaminoglycan deposition. Custom MATLAB video analysis was then used to quantify fracture toughness, which was more than 5-fold higher following culture in functionalized collagen and almost three-fold higher in unmodified collagen.
Collapse
Affiliation(s)
- Leigh Slyker
- Meinig of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lawrence J. Bonassar
- Meinig of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
36
|
Devernois E, Coradin T. Synthesis, Characterization and Biological Properties of Type I Collagen-Chitosan Mixed Hydrogels: A Review. Gels 2023; 9:518. [PMID: 37504397 PMCID: PMC10379456 DOI: 10.3390/gels9070518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
Type I collagen and chitosan are two of the main biological macromolecules used to design scaffolds for tissue engineering. The former has the benefits of being biocompatible and provides biochemical cues for cell adhesion, proliferation and differentiation. However, collagen hydrogels usually exhibit poor mechanical properties and are difficult to functionalize. Chitosan is also often biocompatible, but is much more versatile in terms of structure and chemistry. Although it does have important biological properties, it is not a good substrate for mammalian cells. Combining of these two biomacromolecules is therefore a strategy of choice for the preparation of interesting biomaterials. The aim of this review is to describe the different protocols available to prepare Type I collagen-chitosan hydrogels for the purpose of presenting their physical and chemical properties and highlighting the benefits of mixed hydrogels over single-macromolecule ones. A critical discussion of the literature is provided to point out the poor understanding of chitosan-type I collagen interactions, in particular due to the lack of systematic studies addressing the effect of chitosan characteristics.
Collapse
Affiliation(s)
- Enguerran Devernois
- Laboratoire de Chimie de la Matière Condensée de Paris, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Thibaud Coradin
- Laboratoire de Chimie de la Matière Condensée de Paris, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
37
|
Zinc oxide loaded chitosan-elastin-sodium alginate nanocomposite gel using freeze gelation for enhanced adipose stem cell proliferation and antibacterial properties. Int J Biol Macromol 2023; 233:123519. [PMID: 36758760 DOI: 10.1016/j.ijbiomac.2023.123519] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
Hydrogels have been the material of choice for regenerative medicine applications due to their biocompatibility that can facilitate cellular attachment and proliferation. The present study aimed at constructing a porous hydrogel composite scaffold (chitosan, sodium alginate and elastin) for the repair of chronic skin wounds. Chitosan-based hydrogel incorporating varying concentrations of zinc oxide nanoparticles i.e. ZnO-NPs (0, 0.001, 0.01, 0.1 and 1 % w/w) as the antimicrobial agent tested against Escherichia coli (E.coli) and Staphylococcus aureus (S. aureus) exhibited good antibacterial activities. ZnO-NPs were characterized by UV visible spectroscopy, Scanning electron microscopy (SEM) analysis, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. Fabricated gels were characterized by SEM analysis, FTIR, XRD, swelling ratio, degradation behavior and controlled release kinetics of ZnO-NPs. In vitro cytocompatibility of the composite was investigated using human adipose stem cells (ADSCs) by MTT and lactate dehydrogenase (LDH) assay, further assessed by SEM analysis and PKH26 staining. The SEM and XRD analysis confirmed the successful loading of ZnO-NPs into these scaffolds. Fluorescence PKH26 stained images and SEM analysis of ADSCs seeded scaffolds revealed biocompatible nature. The findings suggested that the developed composite gels have potential clinically for tissue engineering and chronic wound treatment.
Collapse
|
38
|
Cao Y, Cong H, Yu B, Shen Y. A review on the synthesis and development of alginate hydrogels for wound therapy. J Mater Chem B 2023; 11:2801-2829. [PMID: 36916313 DOI: 10.1039/d2tb02808e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Convenient and low-cost dressings can reduce the difficulty of wound treatment. Alginate gel dressings have the advantages of low cost and safe usage, and they have obvious potential for development in biomedical materials. Alginate gel dressings are currently a research area of great interest owing to their versatility, intelligent, and their application attempts in treating complex wounds. We present a detailed summary of the preparation of alginate hydrogels and a study of their performance improvement. Herein, we summarize the various applications of alginate hydrogels. The research focuses in this area mainly include designing multifunctional dressings for the treatment of various wounds and fabricating specialized dressings to assist physicians in the treatment of complex wounds (TOC). This review gives an outlook for future directions in the field of alginate hydrogel dressings. We hope to attract more research interest and studies in alginate hydrogel dressings, thus contributing to the creation of low-cost and highly effective wound treatment materials.
Collapse
Affiliation(s)
- Yang Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.,School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
39
|
Alginate-Based Hydrogels and Scaffolds for Biomedical Applications. Mar Drugs 2023; 21:md21030177. [PMID: 36976226 PMCID: PMC10055882 DOI: 10.3390/md21030177] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Alginate is a natural polymer of marine origin and, due to its exceptional properties, has great importance as an essential component for the preparation of hydrogels and scaffolds for biomedical applications. The design of biologically interactive hydrogels and scaffolds with advanced, expected and required properties are one of the key issues for successful outcomes in the healing of injured tissues. This review paper presents the multifunctional biomedical applications of alginate-based hydrogels and scaffolds in selected areas, highlighting the key effect of alginate and its influence on the essential properties of the selected biomedical applications. The first part covers scientific achievements for alginate in dermal tissue regeneration, drug delivery systems, cancer treatment, and antimicrobials. The second part is dedicated to our scientific results obtained for the research opus of hydrogel materials for scaffolds based on alginate in synergy with different materials (polymers and bioactive agents). Alginate has proved to be an exceptional polymer for combining with other naturally occurring and synthetic polymers, as well as loading bioactive therapeutic agents to achieve dermal, controlled drug delivery, cancer treatment, and antimicrobial purposes. Our research was based on combinations of alginate with gelatin, 2-hydroxyethyl methacrylate, apatite, graphene oxide and iron(III) oxide, as well as curcumin and resveratrol as bioactive agents. Important features of the prepared scaffolds, such as morphology, porosity, absorption capacity, hydrophilicity, mechanical properties, in vitro degradation, and in vitro and in vivo biocompatibility, have shown favorable properties for the aforementioned applications, and alginate has been an important link in achieving these properties. Alginate, as a component of these systems, proved to be an indispensable factor and played an excellent “role” in the optimal adjustment of the tested properties. This study provides valuable data and information for researchers and demonstrates the importance of the role of alginate as a biomaterial in the design of hydrogels and scaffolds that are powerful medical “tools” for biomedical applications.
Collapse
|
40
|
Solbu AA, Caballero D, Damigos S, Kundu SC, Reis RL, Halaas Ø, Chahal AS, Strand BL. Assessing cell migration in hydrogels: An overview of relevant materials and methods. Mater Today Bio 2023; 18:100537. [PMID: 36659998 PMCID: PMC9842866 DOI: 10.1016/j.mtbio.2022.100537] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/05/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022] Open
Abstract
Cell migration is essential in numerous living processes, including embryonic development, wound healing, immune responses, and cancer metastasis. From individual cells to collectively migrating epithelial sheets, the locomotion of cells is tightly regulated by multiple structural, chemical, and biological factors. However, the high complexity of this process limits the understanding of the influence of each factor. Recent advances in materials science, tissue engineering, and microtechnology have expanded the toolbox and allowed the development of biomimetic in vitro assays to investigate the mechanisms of cell migration. Particularly, three-dimensional (3D) hydrogels have demonstrated a superior ability to mimic the extracellular environment. They are therefore well suited to studying cell migration in a physiologically relevant and more straightforward manner than in vivo approaches. A myriad of synthetic and naturally derived hydrogels with heterogeneous characteristics and functional properties have been reported. The extensive portfolio of available hydrogels with different mechanical and biological properties can trigger distinct biological responses in cells affecting their locomotion dynamics in 3D. Herein, we describe the most relevant hydrogels and their associated physico-chemical characteristics typically employed to study cell migration, including established cell migration assays and tracking methods. We aim to give the reader insight into existing literature and practical details necessary for performing cell migration studies in 3D environments.
Collapse
Affiliation(s)
- Anita Akbarzadeh Solbu
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - David Caballero
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal
| | - Spyridon Damigos
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - Subhas C. Kundu
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, 4805-017, Braga/Guimarães, Portugal
| | - Øyvind Halaas
- Department of Clinical and Molecular Medicine, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - Aman S. Chahal
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Molecular Medicine, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Berit L. Strand
- Department of Biotechnology and Food Sciences, NOBIPOL, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
41
|
Bashir MH, Korany NS, Farag DBE, Abbass MMS, Ezzat BA, Hegazy RH, Dörfer CE, Fawzy El-Sayed KM. Polymeric Nanocomposite Hydrogel Scaffolds in Craniofacial Bone Regeneration: A Comprehensive Review. Biomolecules 2023; 13:biom13020205. [PMID: 36830575 PMCID: PMC9953024 DOI: 10.3390/biom13020205] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Nanocomposite biomaterials combine a biopolymeric matrix structure with nanoscale fillers. These bioactive and easily resorbable nanocomposites have been broadly divided into three groups, namely natural, synthetic or composite, based on the polymeric origin. Preparing such nanocomposite structures in the form of hydrogels can create a three-dimensional natural hydrophilic atmosphere pivotal for cell survival and new tissue formation. Thus, hydrogel-based cell distribution and drug administration have evolved as possible options for bone tissue engineering and regeneration. In this context, nanogels or nanohydrogels, created by cross-linking three-dimensional polymer networks, either physically or chemically, with high biocompatibility and mechanical properties were introduced as promising drug delivery systems. The present review highlights the potential of hydrogels and nanopolymers in the field of craniofacial tissue engineering and bone regeneration.
Collapse
Affiliation(s)
- Maha H. Bashir
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Nahed S. Korany
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Dina B. E. Farag
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Marwa M. S. Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Bassant A. Ezzat
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Radwa H. Hegazy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany
| | - Karim M. Fawzy El-Sayed
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Correspondence: ; Tel.: +49-431-500-26210
| |
Collapse
|
42
|
Tharakan S, Khondkar S, Lee S, Ahn S, Mathew C, Gresita A, Hadjiargyrou M, Ilyas A. 3D Printed Osteoblast-Alginate/Collagen Hydrogels Promote Survival, Proliferation and Mineralization at Low Doses of Strontium Calcium Polyphosphate. Pharmaceutics 2022; 15:pharmaceutics15010011. [PMID: 36678641 PMCID: PMC9865428 DOI: 10.3390/pharmaceutics15010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The generation of biomaterials via 3D printing is an emerging biotechnology with novel methods that seeks to enhance bone regeneration. Alginate and collagen are two commonly used biomaterials for bone tissue engineering and have demonstrated biocompatibility. Strontium (Sr) and Calcium phosphate (CaP) are vital elements of bone and their incorporation in composite materials has shown promising results for skeletal repair. In this study, we investigated strontium calcium polyphosphate (SCPP) doped 3D printed alginate/collagen hydrogels loaded with MC3T3-E1 osteoblasts. These cell-laden scaffolds were crosslinked with different concentrations of 1% SCPP to evaluate the effect of strontium ions on cell behavior and the biomaterial properties of the scaffolds. Through scanning electron microscopy and Raman spectroscopy, we showed that the scaffolds had a granular surface topography with the banding pattern of alginate around 1100 cm-1 and of collagen around 1430 cm-1. Our results revealed that 2 mg/mL of SCPP induced the greatest scaffold degradation after 7 days and least amount of swelling after 24 h. Exposure of osteoblasts to SCPP induced severe cytotoxic effects after 1 mg/mL. pH analysis demonstrated acidity in the presence of SCPP at a pH between 2 and 4 at 0.1, 0.3, 0.5, and 1 mg/mL, which can be buffered with cell culture medium. However, when the SCPP was added to the scaffolds, the overall pH increased indicating intrinsic activity of the scaffold to buffer the SCPP. Moreover, cell viability was observed for up to 21 days in scaffolds with early mineralization at 0.3, 0.5, and 1 mg/mL of SCPP. Overall, low doses of SCPP proved to be a potential additive in biomaterial approaches for bone tissue engineering; however, the cytotoxic effects due to its pH must be monitored closely.
Collapse
Affiliation(s)
- Shebin Tharakan
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Shams Khondkar
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- Department of Bioengineering, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Sally Lee
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Serin Ahn
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Chris Mathew
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Andrei Gresita
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
- Correspondence: (M.H.); (A.I.)
| | - Azhar Ilyas
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- Department Electrical and Computer Engineering, New York Institute of Technology, Old Westbury, NY 11568, USA
- Correspondence: (M.H.); (A.I.)
| |
Collapse
|
43
|
Analyzing and mapping the research status, hotspots, and frontiers of biological wound dressings: An in-depth data-driven assessment. Int J Pharm 2022; 629:122385. [DOI: 10.1016/j.ijpharm.2022.122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
44
|
Li Y, He L, Chen J, Wang J, Zhao S, Liu X, Guo X, Wu Y, Shen X, Li C. 3d oxidized alginate-porcine liver acellular collagen droplets for tumor microenvironment mimicking. Int J Biol Macromol 2022; 215:665-674. [PMID: 35777510 DOI: 10.1016/j.ijbiomac.2022.06.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/19/2022] [Accepted: 06/26/2022] [Indexed: 11/05/2022]
Abstract
The traditional 2d culture has been proved inferior to reproduce the subtle interaction between cell-to-cell and cell-to-extracellular matrix (ECM) in tumor microenvironment (TME) and collagen in ECM contributes to various malignancies of tumors. Hence, the 3d model contained with collagen may overcome the shortcomings of 2d culture. In this study, the in vitro TME mimicking matrix was prepared by coupling porcine liver-derived collagen (COL) and the dialdehyde group of partially oxidized alginate (OA), namely OA-COL, and the 3d OA-COL droplets were polymerized by divalent calcium ions. In the 3d OA-COL droplets, cancer cells displayed vigorous proliferation, and the cells grew in clusters and formed a unique spindle like clone. Quantitative analysis proved that various gene transcription and protein expression were up-regulated for the cells in the 3d OA-COL droplets, including F-actin reassembling, focal adhesion, pseudopodia formation, and the proteins involved in epithelial-to-mesenchymal transition (EMT). The 3d OA-COL droplets induced the cells with strengthened polarity, invasiveness, higher IC50, and manifested stronger tumorigenicity in vivo. The fabricated 3d OA-COL droplets reproduced a variety of TME parameters, constructed an in vitro model similar to the TME in vivo, and it may facilitate many investigations in cell biology and tumor biology.
Collapse
Affiliation(s)
- Yanan Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Lingyun He
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Jiamin Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Jinfeng Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Shujing Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Xingxing Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Xiaoling Guo
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Ying Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China
| | - Xian Shen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China.
| | - Chao Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou 325027, PR China.
| |
Collapse
|
45
|
Lin GSS, Cher CY, Goh YH, Chan DZK, Karobari MI, Lai JCH, Noorani TY. An Insight into the Role of Marine Biopolymer Alginate in Endodontics: A Review. Mar Drugs 2022; 20:md20080539. [PMID: 36005542 PMCID: PMC9409890 DOI: 10.3390/md20080539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 02/06/2023] Open
Abstract
Alginate is a natural marine biopolymer that has been widely used in biomedical applications, but research on its use as an endodontic material is still sparse in the literature. This pioneer review aims to summarize the emerging roles of alginate and to outline its prospective applications as a core biomaterial in endodontics. Ten electronic databases and five textbooks were used to perform a search of English-language literature on the use of alginate in endodontics published between January 1980 and June 2022. The risk of bias (RoB) of each included study was assessed using the Office of Health Assessment and Translation (OHAT) tool. Subsequently, studies were categorized into three tiers to represent the overall risk. Qualitative analysis was performed, and the articles were sorted into different thematic categories. An initial search yielded a total of 1491 articles, but only 13 articles were chosen. For most domains, all the studies were rated with ‘probably low’ or ‘definitely low’ RoB, except for domains 2 and 6. All included studies fall in the Tier 1 category and were either in vitro, in vivo, or ex vivo. Four thematic categories were identified: endodontic regeneration, intracanal medicament, filing material, and chelating agent. Based on the available evidence, alginate has emerged as a cell carrier and scaffold in regenerative endodontics, a microcapsule delivery system for intracanal medicaments, a chelating agent reinforcing material, and a root canal sealer. More well-designed experiments and clinical trials are needed to warrant the promising advent of this hydrogel-based biomaterial.
Collapse
Affiliation(s)
- Galvin Sim Siang Lin
- Department of Dental Materials, Faculty of Dentistry, Asian Institute of Medicine, Science and Technology (AIMST) University, Bedong 08100, Kedah, Malaysia
- Conservative Dentistry Unit, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia
- Correspondence: (G.S.S.L.); (T.Y.N.); Tel.: +604-429-8529 (G.S.S.L.)
| | - Chia Yee Cher
- Department of Dental Materials, Faculty of Dentistry, Asian Institute of Medicine, Science and Technology (AIMST) University, Bedong 08100, Kedah, Malaysia
| | - Yong Hong Goh
- Department of Dental Materials, Faculty of Dentistry, Asian Institute of Medicine, Science and Technology (AIMST) University, Bedong 08100, Kedah, Malaysia
| | - Daryl Zhun Kit Chan
- Department of Dental Materials, Faculty of Dentistry, Asian Institute of Medicine, Science and Technology (AIMST) University, Bedong 08100, Kedah, Malaysia
| | - Mohmed Isaqali Karobari
- Centre for Multidisciplinary Research (CFTR), Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Department of Restorative Dentistry & Endodontics, Faculty of Dentistry, University of Puthisastra, Phnom Penh 12211, Cambodia
| | - Josephine Chang Hui Lai
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Tahir Yusuf Noorani
- Conservative Dentistry Unit, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia
- Correspondence: (G.S.S.L.); (T.Y.N.); Tel.: +604-429-8529 (G.S.S.L.)
| |
Collapse
|
46
|
Heng TT, Tey JY, Soon KS, Woo KK. Utilizing Fish Skin of Ikan Belida (Notopterus lopis) as a Source of Collagen: Production and Rheology Properties. Mar Drugs 2022; 20:md20080525. [PMID: 36005530 PMCID: PMC9410226 DOI: 10.3390/md20080525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Collagen hydrogels have been extensively applied in biomedical applications. However, their mechanical properties are insufficient for such applications. Our previous study showed improved mechanical properties when collagen was blended with alginate. The current study aims to analyze the physico-chemical properties of collagen-alginate (CA) films such as swelling, porosity, denaturation temperature (Td), and rheology properties. Collagen was prepared from discarded fish skin of Ikan Belida (Notopterus lopis) that was derived from fish ball manufacturing industries and cross-linked with alginate from brown seaweed (Sargasum polycystum) of a local species as a means to benefit the downstream production of marine industries. CA hydrogels were fabricated with ratios (v/v) of 1:1, 1:4, 3:7, 4:1, and 7:3 respectively. FTIR spectrums of CA film showed an Amide I shift of 1636.12 cm−1 to 1634.64 cm−1, indicating collagen-alginate interactions. SEM images of CA films show a porous structure that varied from pure collagen. DSC analysis shows Td was improved from 61.26 °C (collagen) to 83.11 °C (CA 3:7). CA 4:1 swelled nearly 800% after 48 h, correlated with the of hydrogels porosity. Most CA demonstrated visco-elastic solid characteristics with greater storage modulus (G′) than lost modulus (G″). Shear thinning and non-Newtonian behavior was observed in CA with 0.4% to 1.0% (w/v) CaCl2. CA hydrogels that were derived from discarded materials shows promising potential to serve as a wound dressing or ink for bio printing in the future.
Collapse
Affiliation(s)
- Tzen T. Heng
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia
| | - Jing Y. Tey
- Department of Mechanical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia
| | - Kean S. Soon
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia
| | - Kwan K. Woo
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
47
|
Alginate based hydrogel inks for 3D bioprinting of engineered orthopedic tissues. Carbohydr Polym 2022; 296:119964. [DOI: 10.1016/j.carbpol.2022.119964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/17/2022] [Accepted: 08/04/2022] [Indexed: 12/27/2022]
|
48
|
Antunes M, Bonani W, Reis RL, Migliaresi C, Ferreira H, Motta A, Neves NM. Development of alginate-based hydrogels for blood vessel engineering. BIOMATERIALS ADVANCES 2022; 134:112588. [PMID: 35525739 DOI: 10.1016/j.msec.2021.112588] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
Vascular diseases are among the primary causes of death worldwide. In serious conditions, replacement of the damaged vessel is required. Autologous grafts are preferred, but their limited availability and difficulty of the harvesting procedures favour synthetic alternatives' use. However, as synthetic grafts may present significant drawbacks, tissue engineering-based solutions are proposed. Herein, tubular hydrogels of alginate combined with collagen type I and/or silk fibroin were prepared by ionotropic gelation using gelatin hydrogel sacrificial moulds loaded with calcium ions (Ca2+). The time of exposure of alginate solutions to Ca2+-loaded gelatin was used to control the wall thickness of the hydrogels (0.47 ± 0.10 mm-1.41 ± 0.21 mm). A second crosslinking step with barium chloride prevented their degradation for a 14 day period and improved mechanical properties by two-fold. Protein leaching tests showed that collagen type I, unlike silk fibroin, was strongly incorporated in the hydrogels. The presence of silk fibroin in the alginate matrix, containing or not collagen, did not significantly improve hydrogels' properties. Conversely, hydrogels enriched only with collagen were able to better support EA.hy926 and MRC-5 cells' growth and characteristic phenotype. These results suggest that a two-step crosslinking procedure combined with the use of collagen type I allow for producing freestanding vascular substitutes with tuneable properties in terms of size, shape and wall thickness.
Collapse
Affiliation(s)
- Margarida Antunes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Walter Bonani
- Department of Industrial Engineering, University of Trento, via Sommarive, 9, 38123 Trento, Italy; BIOtech Research Centre, University of Trento, via delle Regole 101, 38123 Mattarello, Trento, Italy
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Claudio Migliaresi
- Department of Industrial Engineering, University of Trento, via Sommarive, 9, 38123 Trento, Italy; BIOtech Research Centre, University of Trento, via delle Regole 101, 38123 Mattarello, Trento, Italy
| | - Helena Ferreira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, via Sommarive, 9, 38123 Trento, Italy; BIOtech Research Centre, University of Trento, via delle Regole 101, 38123 Mattarello, Trento, Italy
| | - Nuno M Neves
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
49
|
Kakarla AB, Kong I, Kong C, Irving H. Extrusion-Based Bioprinted Boron Nitride Nanotubes Reinforced Alginate Scaffolds: Mechanical, Printability and Cell Viability Evaluation. Polymers (Basel) 2022; 14:polym14030486. [PMID: 35160475 PMCID: PMC8839966 DOI: 10.3390/polym14030486] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
Alginate (Alg) hydrogels are commonly used as bioinks in 3D bioprinting. However, one of the significant drawbacks of using Alg hydrogels is their unstable mechanical properties. In this study, a novel hydrogel-based ink composed of Alg reinforced with functionalised boron nitride nanotubes (f-BNNTs) was developed and systematic quantitative characterisation was conducted to validate its printability, physiochemical properties and biocompatibility. The printability, contact angle and mechanical test results indicated good structural stability of the scaffolds. The thermal stability of the scaffolds increased with the incorporation of f-BNNTs into Alg. Human embryonic kidney cells (HEK 293T) were seeded on the scaffolds and the cell viability was recorded for 24, 48 and 72 h. Quantitative studies showed a slight effect on toxicity with a higher concentration of BNNTs in scaffolds. The results suggest that the 3D printable f-BNNTs reinforced Alg could be used as bioink for tissue engineering applications with further studies on biocompatibility.
Collapse
Affiliation(s)
- Akesh Babu Kakarla
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3552, Australia;
| | - Ing Kong
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3552, Australia;
- Correspondence:
| | - Cin Kong
- Department of Biomedical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Semenyih 43500, Selangor, Malaysia;
| | - Helen Irving
- Department of Rural Clinical Sciences, La Trobe Institute for Molecular Sciences (LIMS), Bendigo, VIC 3552, Australia;
| |
Collapse
|
50
|
Roncada T, Bonithon R, Blunn G, Roldo M. Soft substrates direct stem cell differentiation into the chondrogenic lineage without the use of growth factors. J Tissue Eng 2022; 13:20417314221122121. [PMID: 36199979 PMCID: PMC9528007 DOI: 10.1177/20417314221122121] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Mesenchymal stem cells (MSCs) hold great promise for the treatment of cartilage related injuries. However, selectively promoting stem cell differentiation in vivo is still challenging. Chondrogenic differentiation of MSCs usually requires the use of growth factors that lead to the overexpression of hypertrophic markers. In this study, for the first time the effect of stiffness on MSC differentiation has been tested without the use of growth factors. Three-dimensional collagen and alginate scaffolds were developed and characterised. Stiffness significantly affected gene expression and ECM deposition. While, all hydrogels supported chondrogenic differentiation and allowed deposition of collagen type II and aggrecan, the 5.75 kPa hydrogel showed limited production of collagen type I compared to the other two formulations. These findings demonstrated for the first time that stiffness can guide MSCs differentiation without the use of growth factors within a tissue engineering scaffold suitable for the treatment of cartilage defects.
Collapse
Affiliation(s)
- Tosca Roncada
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Roxane Bonithon
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
- Marta Roldo, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|