1
|
Parthasarathy V, Kumar PS, Aureen Albert A, Krishnasamy S, Chandrasekar M. Recent progress in nanocellulose-based biocomposites for bone tissue engineering and wound healing applications. Carbohydr Polym 2025; 357:123455. [PMID: 40158986 DOI: 10.1016/j.carbpol.2025.123455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/11/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
Nanocellulose (NC) is considered as promising biomaterial owing to its stiffness, renewability, high strength, and biodegradability. NC is classified into three types such as cellulose nanocrystals (CNCs), bacterial nanocellulose (BNC), and cellulose nanofibers (CNFs), and they differ with each other in terms of size, mechanical behaviour, morphology, and crystallinity. The development of biocomposites with nanocellulose as reinforcing agent has gained much attention among researchers owing to their promising applications in various sectors. The thermal, mechanical, and biodegradable properties of both synthetic and natural polymers can be enhanced by reinforcing them with nanocellulose. The fabrication of NC-based biocomposites can be achieved by employing different techniques such as solution casting, resin impregnation and melt compounding methods. The porosity, tensile modulus, tensile strength, MVTR (moisture-vapour transmission rate), biocompatibility, hydrophilic, water retention ability, bio-adhesiveness and hemocompatibility are the essential properties of tissue engineering scaffolds and wound dressing materials, and these properties can be optimized by reinforcing them with NC. This review intends to focus on the reinforcing effect of NC on the physicochemical and thermo-mechanical characteristics of NC-based biocomposites. This review also aims to summarize the utilization of NC-based biocomposites in tissue engineering scaffolds and wound dressing applications.
Collapse
Affiliation(s)
- V Parthasarathy
- Department of Physics, Rajalakshmi Institute of Technology, Chennai 600124, Tamil Nadu, India.
| | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Puducherry, India
| | - Annie Aureen Albert
- Department of Physics, Hindustan Institute of Technology and Science, Padur, Tamil Nadu, India
| | - Senthilkumar Krishnasamy
- Department of Mechanical Engineering, PSG Institute of Technology and Applied Research, Coimbatore 641 062, India
| | - M Chandrasekar
- SIMCRASH centre, Department of Aerospace Engineering, Hindustan Institute of Technology & Science, Padur, Chennai 603103, India
| |
Collapse
|
2
|
Juma H, Zhao C, Wang Q, Guo Y, Fan X, Fan W, Zhao L, Sun J, Wang D, Wang Y. Enhanced Antioxidant and Antibacterial Properties of Polybutylene Adipate-Terephthalate/Curcumin Composite Films Using Surface-Modified Cellulose Nanocrystals. Polymers (Basel) 2025; 17:830. [PMID: 40219221 PMCID: PMC11990951 DOI: 10.3390/polym17070830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/14/2025] Open
Abstract
Polybutylene adipate-terephthalate (PBAT) offers a convincing ecological alternative to the traditional fossil-based plastics due to its biodegradability and robust mechanical properties. The objective of this study is to develop PBAT-based bio-composite films through incorporating functionalized cellulose nanocrystals (CNC) and curcumin (CUR). In order to improve the interfacial compatibility with the PBAT matrix and co-doping with CUR, CNC was modified using dodecyl succinic anhydride (DxCNC). In this ternary bio-composite system, CUR functioned as a bio-based antioxidant and antimicrobial agent. The presence of CUR also provides excellent UV-shielding properties, whereas the DxCNC effectively enhances the controlled release of CUR. The synergistic effect between DxCNC and CUR in boosting antimicrobial properties, with the inhibition values for E. coli and S. aureus reached 1.82 log CFU/cm2 and 2.12 log CFU/cm2, respectively. These findings indicate DxCNC/CUR/PBAT ternary composite films as a promising material for eco-friendly packaging products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yonggui Wang
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, China; (H.J.); (C.Z.); (Q.W.); (Y.G.); (X.F.); (W.F.); (L.Z.); (J.S.); (D.W.)
| |
Collapse
|
3
|
Sun J, Yang X, Bai Y, Fang Z, Zhang S, Wang X, Yang Y, Guo Y. Recent Advances in Cellulose Nanofiber Modification and Characterization and Cellulose Nanofiber-Based Films for Eco-Friendly Active Food Packaging. Foods 2024; 13:3999. [PMID: 39766942 PMCID: PMC11675707 DOI: 10.3390/foods13243999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
There is growing interest in the use of bio-based materials as viable alternatives to petrochemical-based packaging. However, the practical application of bio-based films is often hampered by their poor barrier and poor mechanical properties. In this context, cellulose nanofibers (CNFs) have attracted considerable attention owing to their exceptional biodegradability, high aspect ratio, and large surface area. The extraction of CNFs from agricultural waste or non-food biomass represents a sustainable approach that can effectively balance cost and environmental impacts. The functionalization of CNFs improves the economics of raw materials and production processes while expanding their applications. This paper reviews recent advances in cellulose nanofibers, including their sources, surface modification, and characterization techniques. Furthermore, we systematically discuss the interactions of CNFs with different composites in the development of functional food films. Finally, we highlight the application of cellulose nanofiber films in food preservation. Due to their environmentally friendly properties, CNFs are a promising alternative to petroleum-based plastics. The aim of this paper is to present the latest discoveries and advances in CNFs while exploring the future prospects for edible food films, thereby encouraging further research and application of CNFs in the field of active food packaging.
Collapse
Affiliation(s)
- Jiaojiao Sun
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China; (J.S.); (X.W.); (Y.Y.)
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
- School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China; (Y.B.); (Z.F.)
| | - Xi Yang
- College of Food Science and Engineering, Ningbo University, Ningbo 315100, China;
| | - Yifan Bai
- School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China; (Y.B.); (Z.F.)
| | - Zhisheng Fang
- School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China; (Y.B.); (Z.F.)
| | - Shuai Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China; (J.S.); (X.W.); (Y.Y.)
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
| | - Xiaoyu Wang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China; (J.S.); (X.W.); (Y.Y.)
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
| | - Yali Yang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China; (J.S.); (X.W.); (Y.Y.)
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
| | - Yurong Guo
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China; (J.S.); (X.W.); (Y.Y.)
- National Research & Development Center of Apple Processing Technology, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xi’an 710119, China
| |
Collapse
|
4
|
Han J, Shen Y, Cao R, Wang W, Duan J, Duan J, Bao C. Active herbal ingredients and drug delivery design for tumor therapy: a review. Chin J Nat Med 2024; 22:1134-1162. [PMID: 39725513 DOI: 10.1016/s1875-5364(24)60741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Indexed: 12/28/2024]
Abstract
Active herbal ingredients are gaining recognition for their potent anti-tumor efficacy, attributable to various mechanisms including tumor cell inhibition, immune system activation, and tumor angiogenesis inhibition. Recent studies have revealed that numerous anti-tumor herbal ingredients, such as ginsenosides, ursolic acid, oleanolic acid, and Angelica sinensis polysaccharides, can be utilized to develop smart drug carriers like liposomes, micelles, and nanoparticles. These carriers can deliver active herbal ingredients and co-deliver anti-tumor drugs to enhance drug accumulation at tumor sites, thereby improving anti-tumor efficacy. This study provides a comprehensive analysis of the mechanisms by which these active herbal ingredients-derived carriers enhance therapeutic outcomes. Additionally, it highlights the structural properties of these active herbal ingredients, demonstrating how their unique features can be strategically employed to design smart drug carriers with improved anti-tumor efficacy. The insights presented aim to serve as a reference and guide future innovations in the design and application of smart drug carriers for cancer therapy that leverage active herbal ingredients.
Collapse
Affiliation(s)
- Jing Han
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanxi Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruiying Cao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiren Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jialun Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunjie Bao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
5
|
Habibullah S, Swain R, Das M, Bhuyan SK, Mohanty B, Mallick S. Engineered PVA-tamarind gum-based biocomposite for sustained ophthalmic delivery of moxifloxacin: Effect of nanocellulose on physicochemical, mechanoelectrical and permeation kinetics. Int J Biol Macromol 2024; 283:137712. [PMID: 39557255 DOI: 10.1016/j.ijbiomac.2024.137712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
Widely used polysaccharide-based films in ophthalmic drug delivery have major limitations of inadequate mechanical strength, poor electrical conductivity, and insufficient ocular drug permeability. Moxifloxacin (MFX) biocomposite film of adequate mechanoelectrical properties was developed for sustained ophthalmic drug delivery. Nanocellulose (NC) incorporated (2.5, 5.0, 7.5, and 10.0 %) PVA-tamarind gum-based moxifloxacin composite was prepared using solvent casting method. The addition of NC improved the mechanical properties of the film, demonstrating its ability to strengthen the structure. Stress relaxation (SR) of the film has been augmented (64.67±7.55 to 73.15±0.34 %) due to increased content of NC (0 to 10 %) respectively. Film containing 5 % NC showed the critical edge of tensile strength (11.9±0.39 MPa), and also the threshold limit of electrical conductivity (4.5*107 Ω). The same film exhibited continued drug release as well as erosion-controlled sustained ocular permeation (pH 7.4) and revealed the highest antibacterial activity (ZOI of disc diffusion, cm) with Pseudomonas aeruginosa (4.63±0.15) and Staphylococcus aureus (4.30±0.26) of MFX (≈224 μg). Notably, incorporating NC produced non-irritating and safe for corneal delivery as confirmed by the Draize model test. Our findings suggested that the NC-containing PVA-tamarind gum-based composite film holds a promising approach for sustained ophthalmic delivery of MFX.
Collapse
Affiliation(s)
- Sk Habibullah
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be) University, Bhubaneswar 751003, Odisha, India
| | - Rakesh Swain
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be) University, Bhubaneswar 751003, Odisha, India
| | - Mouli Das
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be) University, Bhubaneswar 751003, Odisha, India
| | - Sisir Kumar Bhuyan
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur-754202, Cuttack, Odisha, India
| | - Biswaranjan Mohanty
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur-754202, Cuttack, Odisha, India.
| | - Subrata Mallick
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be) University, Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
6
|
Yang M, Sun C, Chang L, Liu S, Zheng D, Chen Y, Sun X, Tan H, Zhang Y. A novel sustainable wood-based negative air anion generator utilizing in-situ polymerization of polylactic acid to reinforce the cellulose framework. Int J Biol Macromol 2024; 282:137166. [PMID: 39510454 DOI: 10.1016/j.ijbiomac.2024.137166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
The generation of negative air ions (NAI) by furniture contributes to indoor air purification and enhances the living environment. However, commercially available furniture typically relies on surface coatings to release NAI. Over time, the degradation of these coatings leads to a significant decline in NAI release performance, presenting a persistent challenge for sustained effectiveness. Here, a novel sustainable wood-based negative air anion generator (SWNG) had been developed, utilizing a cellulose framework as the substrate. The in-situ synthesis of polylactic acid (PLA) within the wood incorporated titanium dioxide (TiO2), tourmaline (TL), and cellulose acetate, firmly anchoring these materials within the wood structure. Compared to the cellulose framework alone, the NAI production of the SWNG had increased by 406.67 %. The impregnation with PLA enhanced the enduring photocatalytic activity of TiO2 and TL in this innovative wooden NAI generator. After undergoing 200 cycles of testing between -40 °C and 50 °C, it continued to sustain NAI production, demonstrating exceptional antibacterial performance. Overall, this study introduced a novel sustainable wood-based negative air ion generator as a highly stable material with sustainable properties, offering significant potential for applications in improving indoor air quality and in the domain of home construction.
Collapse
Affiliation(s)
- Minghui Yang
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| | - Ce Sun
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China.
| | - Liang Chang
- Ningbo Straight Face Information Service Co., LTD, Ningbo 315000, China.
| | - Song Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Dingyuan Zheng
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| | - Yang Chen
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| | - Xiaoxiao Sun
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| | - Haiyan Tan
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| | - Yanhua Zhang
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China.
| |
Collapse
|
7
|
Zhong C, Nidetzky B. Bottom-Up Synthesized Glucan Materials: Opportunities from Applied Biocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400436. [PMID: 38514194 DOI: 10.1002/adma.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Indexed: 03/23/2024]
Abstract
Linear d-glucans are natural polysaccharides of simple chemical structure. They are comprised of d-glucosyl units linked by a single type of glycosidic bond. Noncovalent interactions within, and between, the d-glucan chains give rise to a broad variety of macromolecular nanostructures that can assemble into crystalline-organized materials of tunable morphology. Structure design and functionalization of d-glucans for diverse material applications largely relies on top-down processing and chemical derivatization of naturally derived starting materials. The top-down approach encounters critical limitations in efficiency, selectivity, and flexibility. Bottom-up approaches of d-glucan synthesis offer different, and often more precise, ways of polymer structure control and provide means of functional diversification widely inaccessible to top-down routes of polysaccharide material processing. Here the natural and engineered enzymes (glycosyltransferases, glycoside hydrolases and phosphorylases, glycosynthases) for d-glucan polymerization are described and the use of applied biocatalysis for the bottom-up assembly of specific d-glucan structures is shown. Advanced material applications of the resulting polymeric products are further shown and their important role in the development of sustainable macromolecular materials in a bio-based circular economy is discussed.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, Graz, 8010, Austria
| |
Collapse
|
8
|
Wossine SE, Thothadri G, Tufa HB, Tucho WM, Murtaza A, Edacherian A, Sayeed Ahmed GM. Isolation and Characterization of Spherical Cellulose Nanocrystals Extracted from the Higher Cellulose Yield of the Jenfokie Plant: Morphological, Structural, and Thermal Properties. Polymers (Basel) 2024; 16:1629. [PMID: 38931979 PMCID: PMC11207728 DOI: 10.3390/polym16121629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Scholars are looking for solutions to substitute hazardous substances in manufacturing nanocellulose from bio-sources to preserve the world's growing environmental consciousness. During the past decade, there has been a notable increase in the use of cellulose nanocrystals (CNCs) in modern science and nanotechnology advancements because of their abundance, biocompatibility, biodegradability, renewability, and superior mechanical properties. Spherical cellulose nanocrystals (J-CNCs) were successfully synthesized from Jenfokie micro-cellulose (J-MC) via sulfuric acid hydrolysis in this study. The yield (up to 58.6%) and specific surface area (up to 99.64 m2/g) of J-CNCs were measured. A field emission gun-scanning electron microscope (FEG-SEM) was used to assess the morphology of the J-MC and J-CNC samples. The spherical shape nanoparticles with a mean nano-size of 34 nm for J-CNCs were characterized using a transmission electron microscope (TEM). X-ray diffraction (XRD) was used to determine the crystallinity index and crystallinity size of J-CNCs, up to 98.4% and 6.13 nm, respectively. The chemical composition was determined using a Fourier transform infrared (FT-IR) spectroscope. Thermal characterization of thermogravimetry analysis (TGA), derivative thermogravimetry (DTG), and differential thermal analysis (DTA) was conducted to identify the thermal stability and cellulose pyrolysis behavior of both J-MC and J-CNC samples. The thermal analysis of J-CNC indicated lower thermal stability than J-MC. It was noted that J-CNC showed higher levels of crystallinity and larger crystallite sizes than J-MC, indicating a successful digestion and an improvement of the main crystalline structure of cellulose. The X-ray diffraction spectra and TEM images were utilized to establish that the nanocrystals' size was suitable. The novelty of this work is the synthesis of spherical nanocellulose with better properties, chosen with a rich source of cellulose from an affordable new plant (studied for the first time) by stepwise water-retted extraction, continuing from our previous study.
Collapse
Affiliation(s)
- Solomon Estifo Wossine
- Department of Mechanical Engineering, Adama Science and Technology University, Adama 1888, Ethiopia; (S.E.W.); (H.B.T.)
| | - Ganesh Thothadri
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Habtamu Beri Tufa
- Department of Mechanical Engineering, Adama Science and Technology University, Adama 1888, Ethiopia; (S.E.W.); (H.B.T.)
| | | | - Adil Murtaza
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Abhilash Edacherian
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | - Gulam Mohammed Sayeed Ahmed
- Center of Excellence (COE) for Advanced Manufacturing Engineering, Department of Mechanical Engineering, Adama Science and Technology University, Adama 1888, Ethiopia;
| |
Collapse
|
9
|
Ramezani G, Stiharu I, van de Ven TGM, Nerguizian V. Advancements in Hybrid Cellulose-Based Films: Innovations and Applications in 2D Nano-Delivery Systems. J Funct Biomater 2024; 15:93. [PMID: 38667550 PMCID: PMC11051498 DOI: 10.3390/jfb15040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
This review paper delves into the realm of hybrid cellulose-based materials and their applications in 2D nano-delivery systems. Cellulose, recognized for its biocompatibility, versatility, and renewability, serves as the core matrix for these nanomaterials. The paper offers a comprehensive overview of the latest advancements in the creation, analysis, and application of these materials, emphasizing their significance in nanotechnology and biomedical domains. It further illuminates the integration of nanomaterials and advanced synthesis techniques that have significantly improved the mechanical, chemical, and biological properties of hybrid cellulose-based materials.
Collapse
Affiliation(s)
- Ghazaleh Ramezani
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Ion Stiharu
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Theo G. M. van de Ven
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada;
| | - Vahe Nerguizian
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre Dame West, Montreal, QC H3C 1K3, Canada;
| |
Collapse
|
10
|
Wu QZ, Lin WQ, Wu JY, Cao LW, Li HH, Gao R, Du WZ, Sheng GP, Chen YG, Li WW. Transcriptomic Insights into Metabolism-Dependent Biosynthesis of Bacterial Nanocellulose. ACS APPLIED BIO MATERIALS 2024; 7:1801-1809. [PMID: 38416780 DOI: 10.1021/acsabm.3c01222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Bacterial nanocellulose (BNC) is an attractive green-synthesized biomaterial for biomedical applications and various other applications. However, effective engineering of BNC production has been limited by our poor knowledge of the related metabolic processes. In contrast to the traditional perception that genome critically determines biosynthesis behaviors, here we discover that the glucose metabolism could also drastically affect the BNC synthesis in Gluconacetobacter hansenii. The transcriptomic profiles of two model BNC-producing strains, G. hansenii ATCC 53582 and ATCC 23769, which have highly similar genomes but drastically different BNC yields, were compared. The results show that their BNC synthesis capacities were highly related to metabolic activities such as ATP synthesis, ion transport protein assembly, and carbohydrate metabolic processes, confirming an important role of metabolism-related transcriptomes in governing the BNC yield. Our findings provide insights into the microbial biosynthesis behaviors from a transcriptome perspective, potentially guiding cellular engineering for biomaterial synthesis.
Collapse
Affiliation(s)
- Qi-Zhong Wu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research of USTC, Suzhou 215123, China
| | - Wei-Qiang Lin
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Jian-Yu Wu
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research of USTC, Suzhou 215123, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Li-Wen Cao
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hui-Hui Li
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research of USTC, Suzhou 215123, China
| | - Rui Gao
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research of USTC, Suzhou 215123, China
| | - Wen-Zheng Du
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yin-Guang Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wen-Wei Li
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research of USTC, Suzhou 215123, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Carvalho APAD, Értola R, Conte-Junior CA. Nanocellulose-based platforms as a multipurpose carrier for drug and bioactive compounds: From active packaging to transdermal and anticancer applications. Int J Pharm 2024; 652:123851. [PMID: 38272194 DOI: 10.1016/j.ijpharm.2024.123851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
The nanocellulose has unique characteristics, such as biocompatibility, good mechanical strength, and low cytotoxicity. The nanocellulose crystalline portion is responsible for good mechanical resistance, while the amorphous portion is responsible for flexibility. Such features make it a promising candidate for multiple applications related to the modulation of substance release: targeted cancer therapy, transdermal drug delivery, and controlled-release packaging materials. Thus, in this study, we discussed nanocellulose as a multipurpose material for drug delivery and bioactive compound carriers in controlled delivery systems with varied applications in pharmaceutic fields. Herein, we focus on understanding key factors such as i) polymer-drug interactions and surface modification strategies in controlled release rates, ii) therapeutic efficacy, and iii) biocompatibility aspects. The tunable chemistry surface plays a fundamental approach limiting the quick release of active substances in drug delivery systems. Several works on a pre-clinical stage of investigation were overviewed, reporting robust evidence on nanocellulose to design bioactive compounds/drug delivery carriers based on stimuli-responsive drug release and controlled delivery systems for higher efficiency in cancer therapies, purposing target therapy and reduced side effects. Nanocellulose was also identified as a solid candidate material in active packaging for pharmaceutical products. Cellulose nanocrystals and bacterial cellulose demonstrated strong potential to overcome the challenge of controlled release profile and open novel insights in advanced active packaging materials for pharmaceutics with controlled release of antioxidant and antimicrobial substances. Moreover, the concept overview in this work might be extended in active food packaging technologies to flavor-releasing/absorbing systems or antimicrobial/antioxidant carriers for extending the shelf life of foods.
Collapse
Affiliation(s)
- Anna Paula Azevedo de Carvalho
- Research Support Group on Nanomaterials, Polymers, and Interaction with Biosystems (BioNano), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941598, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 20020-000, Brazil; Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil.
| | - Raphael Értola
- Research Support Group on Nanomaterials, Polymers, and Interaction with Biosystems (BioNano), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941598, Brazil
| | - Carlos Adam Conte-Junior
- Research Support Group on Nanomaterials, Polymers, and Interaction with Biosystems (BioNano), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941598, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 20020-000, Brazil; Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
| |
Collapse
|
12
|
Channab BE, El Idrissi A, Essamlali Y, Zahouily M. Nanocellulose: Structure, modification, biodegradation and applications in agriculture as slow/controlled release fertilizer, superabsorbent, and crop protection: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:119928. [PMID: 38219662 DOI: 10.1016/j.jenvman.2023.119928] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/28/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024]
Abstract
This review investigates the potential of nanocellulose in agriculture, encompassing its structure, synthesis, modification, and applications. Our investigation of the characteristics of nanocellulose includes a comprehensive classification of its structure. Various mechanical, chemical and enzymatic synthesis techniques are evaluated, each offering distinct possibilities. The central role of surface functionalization is thoroughly examined. In particular, we are evaluating the conventional production of nanocellulose, thus contributing to the novelty. This review is a pioneering effort to comprehensively explore the use of nanocellulose in slow and controlled release fertilizers, revolutionizing nutrient management and improving crop productivity with reduced environmental impact. Additionally, our work uniquely integrates diverse applications of nanocellulose in agriculture, ranging from slow-release fertilizers, superabsorbent cellulose hydrogels for drought stress mitigation, and long-lasting crop protection via nanocellulose-based seed coatings. The study ends by identifying challenges and unexplored opportunities in the use of nanocellulose in agriculture. This review makes an innovative contribution by being the first comprehensive study to examine the multiple applications of nanocellulose in agriculture, including slow-release and controlled-release fertilizers.
Collapse
Affiliation(s)
- Badr-Eddine Channab
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco.
| | - Ayoub El Idrissi
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco
| | - Younes Essamlali
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Mohamed Zahouily
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| |
Collapse
|
13
|
Nyoo Putro J, Soetaredjo FE, Santoso SP, Irawaty W, Yuliana M, Wijaya CJ, Saptoro A, Sunarso J, Ismadji S. Jackfruit peel cellulose nanocrystal - Alginate hydrogel for doripenem adsorption and release study. Int J Biol Macromol 2024; 257:128502. [PMID: 38040139 DOI: 10.1016/j.ijbiomac.2023.128502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
As a natural raw material to replace synthetic chemicals, cellulose and its derivatives are the most popular choices in the pharmaceutical industry. For drug delivery applications, cellulose is usually used as a cellulose nanocrystal (CNC). CNC-based hydrogels are widely utilized for drug delivery because drug molecules can be encapsulated in their pore-like structures. This study aims to develop CNC hydrogels for the delivery of doripenem antibiotics. CNC was obtained from jackfruit peel extraction, and alginate was used as a network polymer to produce hydrogels. Ionotropic gelation was used in the synthesis of CNC-alginate hydrogel composites. The maximum adsorption of doripenem by CNC was 65.7 mg/g, while the maximum adsorption by CNC-alginate was 98.4 mg/g. One of the most challenging aspects of drug delivery is predicting drug release from a solid matrix using simple and complex mathematical equations. The sigmoidal equation could represent the doripenem release from CNC, while the Ritger-Peppas equation could describe the doripenem release from CNC-Alginate. The biocompatibility testing of CNC and CNC-alginate against a 7F2 cell line indicates that both materials were non-toxic.
Collapse
Affiliation(s)
- Jindrayani Nyoo Putro
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Felycia Edi Soetaredjo
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Wenny Irawaty
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Maria Yuliana
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Christian Julius Wijaya
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Agus Saptoro
- Department of Chemical and Energy Engineering, Curtin University Malaysia, CDT 250 Miri, Sarawak 98009, Malaysia
| | - Jaka Sunarso
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Kuching 93350, Malaysia
| | - Suryadi Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia.
| |
Collapse
|
14
|
Leong MY, Kong YL, Harun MY, Looi CY, Wong WF. Current advances of nanocellulose application in biomedical field. Carbohydr Res 2023; 532:108899. [PMID: 37478689 DOI: 10.1016/j.carres.2023.108899] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Nanocellulose (NC) is a natural fiber that can be extracted in fibrils or crystals form from different natural sources, including plants, bacteria, and algae. In recent years, nanocellulose has emerged as a sustainable biomaterial for various medicinal applications including drug delivery systems, wound healing, tissue engineering, and antimicrobial treatment due to its biocompatibility, low cytotoxicity, and exceptional water holding capacity for cell immobilization. Many antimicrobial products can be produced due to the chemical functionality of nanocellulose, such disposable antibacterial smart masks for healthcare use. This article discusses comprehensively three types of nanocellulose: cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and bacterial nanocellulose (BNC) in view of their structural and functional properties, extraction methods, and the distinctive biomedical applications based on the recently published work. On top of that, the biosafety profile and the future perspectives of nanocellulose-based biomaterials have been further discussed in this review.
Collapse
Affiliation(s)
- M Y Leong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Y L Kong
- Department of Engineering and Applied Sciences, American Degree Program, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - M Y Harun
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - C Y Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - W F Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Revin VV, Liyaskina EV, Parchaykina MV, Kurgaeva IV, Efremova KV, Novokuptsev NV. Production of Bacterial Exopolysaccharides: Xanthan and Bacterial Cellulose. Int J Mol Sci 2023; 24:14608. [PMID: 37834056 PMCID: PMC10572569 DOI: 10.3390/ijms241914608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Recently, degradable biopolymers have become increasingly important as potential environmentally friendly biomaterials, providing a wide range of applications in various fields. Bacterial exopolysaccharides (EPSs) are biomacromolecules, which due to their unique properties have found applications in biomedicine, foodstuff, textiles, cosmetics, petroleum, pharmaceuticals, nanoelectronics, and environmental remediation. One of the important commercial polysaccharides produced on an industrial scale is xanthan. In recent years, the range of its application has expanded significantly. Bacterial cellulose (BC) is another unique EPS with a rapidly increasing range of applications. Due to the great prospects for their practical application, the development of their highly efficient production remains an important task. The present review summarizes the strategies for the cost-effective production of such important biomacromolecules as xanthan and BC and demonstrates for the first time common approaches to their efficient production and to obtaining new functional materials for a wide range of applications, including wound healing, drug delivery, tissue engineering, environmental remediation, nanoelectronics, and 3D bioprinting. In the end, we discuss present limitations of xanthan and BC production and the line of future research.
Collapse
Affiliation(s)
- Viktor V. Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia; (E.V.L.); (M.V.P.); (I.V.K.); (K.V.E.); (N.V.N.)
| | | | | | | | | | | |
Collapse
|
16
|
Guo N, Ma H, Li D, Fan H, Sun C, Sun Y. CS-NO suppresses inhibits glycolysis and gastric cancer progression through regulating YAP/TAZ signaling pathway. Cell Biochem Biophys 2023; 81:561-567. [PMID: 37558859 DOI: 10.1007/s12013-023-01153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/23/2023] [Indexed: 08/11/2023]
Abstract
CONTEXT Gastric cancer (GC) is a significant contributor to global mortality and is recognized for its elevated prevalence and fatality rates. Nitric Oxide (NO) plays a role in multiple aspects of cancer metastasis and progression. CS-NO is a polysaccharide-based biomaterial with NO-releasing properties that shows promising therapeutic potential. Nonetheless, the action mechanism of CS-NO in GC is still largely unclear. METHODS The present study employed various experimental techniques, including CCK-8 assay, colony formation assay, EdU staining, and transwell assays, to evaluate the proliferation, migration, and invasion of GC cells. Additionally, ELISA was utilized to measure glucose uptake, lactate production, and cellular ATP levels in GC cells. In vivo investigations on nude mice were conducted to validate the in vitro results. OBJECTIVE The present study aimed to examine the potential anti-tumor properties of CS-NO on GC through in vitro and in vivo investigations, while also exploring the underlying mechanisms involved. RESULTS Our data suggested that CS-NO might prevent GC cell invasion and migration. Decreased expressions of GLUT1, HK2, and LDHA further demonstrated that CS-NO significantly suppressed aerobic glycolysis in GC cells. The administration of CS-NO resulted in a significant reduction of YAP and TAZ levels in GC cells. Our data further show that CS-NO treatment could inhibit GC cancer growth in mice, consistent with the significant decrease in Ki67, GLUT1 and YAP expression levels. DISCUSSION AND CONCLUSION These findings could reveal the good effects of CS-NO therapy on inhibiting GC.
Collapse
Affiliation(s)
- Na Guo
- The Second Oncology Department, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Hongxuan Ma
- Faculty of Medicine, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Dehui Li
- The Second Oncology Department, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Huanfang Fan
- The Second Oncology Department, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Chunxia Sun
- The Second Oncology Department, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Yunchao Sun
- The Second Surgical Department, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
17
|
Netrusov AI, Liyaskina EV, Kurgaeva IV, Liyaskina AU, Yang G, Revin VV. Exopolysaccharides Producing Bacteria: A Review. Microorganisms 2023; 11:1541. [PMID: 37375041 DOI: 10.3390/microorganisms11061541] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial exopolysaccharides (EPS) are essential natural biopolymers used in different areas including biomedicine, food, cosmetic, petroleum, and pharmaceuticals and also in environmental remediation. The interest in them is primarily due to their unique structure and properties such as biocompatibility, biodegradability, higher purity, hydrophilic nature, anti-inflammatory, antioxidant, anti-cancer, antibacterial, and immune-modulating and prebiotic activities. The present review summarizes the current research progress on bacterial EPSs including their properties, biological functions, and promising applications in the various fields of science, industry, medicine, and technology, as well as characteristics and the isolation sources of EPSs-producing bacterial strains. This review provides an overview of the latest advances in the study of such important industrial exopolysaccharides as xanthan, bacterial cellulose, and levan. Finally, current study limitations and future directions are discussed.
Collapse
Affiliation(s)
- Alexander I Netrusov
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology and Biotechnology, High School of Economics, 119991 Moscow, Russia
| | - Elena V Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Alexandra U Liyaskina
- Institute of the World Ocean, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| |
Collapse
|
18
|
Mamudu U, Hussin MR, Santos JH, Lim RC. Synthesis and characterisation of sulfated-nanocrystalline cellulose in epoxy coatings for corrosion protection of mild steel from sodium chloride solution. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
19
|
Gupta RD, Raghav N. Nano crystalline cellulose based drug delivery system for some non-steroidal anti-inflammatory drugs: Synthesis, characterization and in-vitro simulation studies. Int J Biol Macromol 2023:124983. [PMID: 37236560 DOI: 10.1016/j.ijbiomac.2023.124983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Nano crystalline cellulose (NCC) created a breakthrough in biomedical field because of its important characteristics like large surface area, good mechanical strength, biocompatibility, renewability and feasibility of incorporation to both hydrophilic and hydrophobic substances. In the present study NCC based drug delivery systems (DDSs) of some non-steroidal anti-inflammatory drugs (NSAIDs) were obtained by covalent bonding between hydroxyl groups of NCC with carboxyl group of NSAIDs. Developed DDSs were characterized by means of FT-IR, XRD, SEM and thermal analysis. In-vitro release study and fluorescence study showed that these systems are stable up to 18 h in upper gastrointestinal (GI) tract at pH 1.2 and released NSAIDs in sustained manner over the period of 3 h in intestine at pH 6.8-7.4. Present study performed with the aim to reuse bio-waste even in the form of DDSs is of greater therapeutic efficacy with reduced dosing frequency that overcome physiological adversities involved with NSAIDs.
Collapse
Affiliation(s)
- Renu D Gupta
- Chemistry Department, Kurukshetra University, Kurukshetra 136 119, Haryana, India
| | - N Raghav
- Chemistry Department, Kurukshetra University, Kurukshetra 136 119, Haryana, India.
| |
Collapse
|
20
|
Leong MY, Kong YL, Burgess K, Wong WF, Sethi G, Looi CY. Recent Development of Nanomaterials for Transdermal Drug Delivery. Biomedicines 2023; 11:biomedicines11041124. [PMID: 37189742 DOI: 10.3390/biomedicines11041124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023] Open
Abstract
Nano-engineered medical products first appeared in the last decade. The current research in this area focuses on developing safe drugs with minimal adverse effects associated with the pharmacologically active cargo. Transdermal drug delivery, an alternative to oral administration, offers patient convenience, avoids first-pass hepatic metabolism, provides local targeting, and reduces effective drug toxicities. Nanomaterials provide alternatives to conventional transdermal drug delivery including patches, gels, sprays, and lotions, but it is crucial to understand the transport mechanisms involved. This article reviews the recent research trends in transdermal drug delivery and emphasizes the mechanisms and nano-formulations currently in vogue.
Collapse
Affiliation(s)
- Moong Yan Leong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Yeo Lee Kong
- Department of Engineering and Applied Science, America Degree Program, Taylor's University Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Kevin Burgess
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, TX 77842, USA
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
21
|
Zhang F, Shen R, Li N, Yang X, Lin D. Nanocellulose: An amazing nanomaterial with diverse applications in food science. Carbohydr Polym 2023; 304:120497. [PMID: 36641166 DOI: 10.1016/j.carbpol.2022.120497] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/16/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Recently, nanocellulose has gained growing interests in food science due to its many advantages including its broad resource of raw materials, renewability, interface stability, high surface area, mechanical strength, prebiotic characteristics, surface chemistry versatility and easy modification. Since then, this review summarized the sources, morphology, and structure characteristics of nanocellulose. Meanwhile, the mechanical, chemical, and combined treatment methods for the preparation of nanocellulose with desired properties were elaborated. Furthermore, the application of nanocellulose in Pickering emulsions, reinforced food packaging, functional food ingredient, food-grade hydrogels, and biosensors were emphasized. Finally, the safety, challenges, and future perspectives of nanocellulose were discussed. This work provided key developments and effective benefits of nanocellulose for future research opportunities in food.
Collapse
Affiliation(s)
- Fengrui Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Rui Shen
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Nan Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
22
|
Solhi L, Guccini V, Heise K, Solala I, Niinivaara E, Xu W, Mihhels K, Kröger M, Meng Z, Wohlert J, Tao H, Cranston ED, Kontturi E. Understanding Nanocellulose-Water Interactions: Turning a Detriment into an Asset. Chem Rev 2023; 123:1925-2015. [PMID: 36724185 PMCID: PMC9999435 DOI: 10.1021/acs.chemrev.2c00611] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modern technology has enabled the isolation of nanocellulose from plant-based fibers, and the current trend focuses on utilizing nanocellulose in a broad range of sustainable materials applications. Water is generally seen as a detrimental component when in contact with nanocellulose-based materials, just like it is harmful for traditional cellulosic materials such as paper or cardboard. However, water is an integral component in plants, and many applications of nanocellulose already accept the presence of water or make use of it. This review gives a comprehensive account of nanocellulose-water interactions and their repercussions in all key areas of contemporary research: fundamental physical chemistry, chemical modification of nanocellulose, materials applications, and analytical methods to map the water interactions and the effect of water on a nanocellulose matrix.
Collapse
Affiliation(s)
- Laleh Solhi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Valentina Guccini
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Katja Heise
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Iina Solala
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Elina Niinivaara
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Wenyang Xu
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Laboratory of Natural Materials Technology, Åbo Akademi University, TurkuFI-20500, Finland
| | - Karl Mihhels
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Marcel Kröger
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Zhuojun Meng
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Jakob Wohlert
- Wallenberg Wood Science Centre (WWSC), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044Stockholm, Sweden
| | - Han Tao
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| |
Collapse
|
23
|
Ong XR, Chen AX, Li N, Yang YY, Luo HK. Nanocellulose: Recent Advances Toward Biomedical Applications. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xuan-Ran Ong
- Agency for Science, Technology and Research Institute of Sustainability for Chemicals, Energy and Environment 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| | - Adrielle Xianwen Chen
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - Ning Li
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - Yi Yan Yang
- Agency for Science, Technology and Research Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| | - He-Kuan Luo
- Agency for Science, Technology and Research Institute of Sustainability for Chemicals, Energy and Environment 1 Pesek Road, Jurong Island Singapore 627833 Singapore
| |
Collapse
|
24
|
Putro JN, Edi Soetaredjo F, Irawaty W, Budi Hartono S, Santoso SP, Lie J, Yuliana M, Widyarani, Shuwanto H, Wijaya CJ, Gunarto C, Puspitasari N, Ismadji S. Cellulose Nanocrystals (CNCs) and Its Modified Form from Durian Rind as Dexamethasone Carrier. Polymers (Basel) 2022; 14:5197. [PMID: 36501594 PMCID: PMC9740128 DOI: 10.3390/polym14235197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
In this study, CNCs were extracted from durian rind. Modification to CNCs with saponin was conducted at 50 °C for one h. CNCs and CNCs-saponin were employed as dexamethasone carriers. Modification to CNCs using saponin did not change the relative crystallinity of CNCs. CNCs' molecular structure and surface chemistry did not alter significantly after modification. Both nanoparticles have surface charges independently of pH. Dexamethasone-released kinetics were studied at two different pH (7.4 and 5.8). Higuchi, Ritger-Peppas, first-order kinetic and sigmoidal equations were used to represent the released kinetic data. The sigmoidal equation was found to be superior to other models. The CNCs and CNCs-saponin showed burst release at 30 min. The study indicated that cell viability decreased by 30% after modification with saponin.
Collapse
Affiliation(s)
- Jindrayani Nyoo Putro
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Felycia Edi Soetaredjo
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Wenny Irawaty
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Sandy Budi Hartono
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Jenni Lie
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Maria Yuliana
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Widyarani
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Samaun Samadikun Science and Technology Center, Sangkuriang, Bandung 40135, Indonesia
| | - Hardy Shuwanto
- Department of Industrial Engineering, Universitas Prima Indonesia, Medan 20117, Indonesia
| | - Christian Julius Wijaya
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Chintya Gunarto
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Nathania Puspitasari
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Suryadi Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| |
Collapse
|
25
|
Revin VV, Liyaskina EV, Parchaykina MV, Kuzmenko TP, Kurgaeva IV, Revin VD, Ullah MW. Bacterial Cellulose-Based Polymer Nanocomposites: A Review. Polymers (Basel) 2022; 14:4670. [PMID: 36365662 PMCID: PMC9654748 DOI: 10.3390/polym14214670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 10/15/2023] Open
Abstract
Bacterial cellulose (BC) is currently one of the most popular environmentally friendly materials with unique structural and physicochemical properties for obtaining various functional materials for a wide range of applications. In this regard, the literature reporting on bacterial nanocellulose has increased exponentially in the past decade. Currently, extensive investigations aim at promoting the manufacturing of BC-based nanocomposites with other components such as nanoparticles, polymers, and biomolecules, and that will enable to develop of a wide range of materials with advanced and novel functionalities. However, the commercial production of such materials is limited by the high cost and low yield of BC, and the lack of highly efficient industrial production technologies as well. Therefore, the present review aimed at studying the current literature data in the field of highly efficient BC production for the purpose of its further usage to obtain polymer nanocomposites. The review highlights the progress in synthesizing BC-based nanocomposites and their applications in biomedical fields, such as wound healing, drug delivery, tissue engineering. Bacterial nanocellulose-based biosensors and adsorbents were introduced herein.
Collapse
Affiliation(s)
- Viktor V. Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Elena V. Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Marina V. Parchaykina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Tatyana P. Kuzmenko
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V. Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Vadim D. Revin
- Faculty of Architecture and Civil Engineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
26
|
Huo Y, Liu Y, Xia M, Du H, Lin Z, Li B, Liu H. Nanocellulose-Based Composite Materials Used in Drug Delivery Systems. Polymers (Basel) 2022; 14:2648. [PMID: 35808693 PMCID: PMC9268916 DOI: 10.3390/polym14132648] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Nanocellulose has lately emerged as one of the most promising "green" materials due to its unique properties. Nanocellulose can be mainly divided into three types, i.e., cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and bacterial cellulose (BC). With the rapid development of technology, nanocellulose has been designed into multidimensional structures, including 1D (nanofibers, microparticles), 2D (films), and 3D (hydrogels, aerogels) materials. Due to its adaptable surface chemistry, high surface area, biocompatibility, and biodegradability, nanocellulose-based composite materials can be further transformed as drug delivery carriers. Herein, nanocellulose-based composite material used for drug delivery was reviewed. The typical drug release behaviors and the drug release mechanisms of nanocellulose-based composite materials were further summarized, and the potential application of nanocellulose-based composite materials was prospected as well.
Collapse
Affiliation(s)
- Ying Huo
- Tianjin Key Laboratory of Pulp and Paper, School of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (Y.H.); (M.X.); (H.D.)
| | - Yingying Liu
- Tianjin Key Laboratory of Pulp and Paper, School of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (Y.H.); (M.X.); (H.D.)
| | - Mingfeng Xia
- Tianjin Key Laboratory of Pulp and Paper, School of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (Y.H.); (M.X.); (H.D.)
| | - Hong Du
- Tianjin Key Laboratory of Pulp and Paper, School of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (Y.H.); (M.X.); (H.D.)
| | - Zhaoyun Lin
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Bin Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Hongbin Liu
- Tianjin Key Laboratory of Pulp and Paper, School of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (Y.H.); (M.X.); (H.D.)
| |
Collapse
|
27
|
Saud A, Saleem H, Zaidi SJ. Progress and Prospects of Nanocellulose-Based Membranes for Desalination and Water Treatment. MEMBRANES 2022; 12:membranes12050462. [PMID: 35629789 PMCID: PMC9147932 DOI: 10.3390/membranes12050462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/10/2022]
Abstract
Membrane-based desalination has proved to be the best solution for solving the water shortage issues globally. Membranes are extremely beneficial in the effective recovery of clean water from contaminated water sources, however, the durability as well as the separation efficiency of the membranes are restricted by the type of membrane materials/additives used in the preparation processes. Nanocellulose is one of the most promising green materials for nanocomposite preparation due to its biodegradability, renewability, abundance, easy modification, and exceptional mechanical properties. This nanocellulose has been used in membrane development for desalination application in the recent past. The study discusses the application of membranes based on different nanocellulose forms such as cellulose nanocrystals, cellulose nanofibrils, and bacterial nanocellulose for water desalination applications such as nanofiltration, reverse osmosis, pervaporation, forward osmosis, and membrane distillation. From the analysis of studies, it was confirmed that the nanocellulose-based membranes are effective in the desalination application. The chemical modification of nanocellulose can definitely improve the surface affinity as well as the reactivity of membranes for the efficient separation of specific contaminants/ions.
Collapse
Affiliation(s)
- Asif Saud
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; (A.S.); (H.S.)
- Industrial Chemistry, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Haleema Saleem
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; (A.S.); (H.S.)
| | - Syed Javaid Zaidi
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; (A.S.); (H.S.)
- Correspondence: ; Tel.: +974-44037723
| |
Collapse
|
28
|
Getya D, Gitsov I. Reactive Cellu-mers-A Novel Approach to Improved Cellulose/Polymer Composites. Polymers (Basel) 2022; 14:1670. [PMID: 35566839 PMCID: PMC9103100 DOI: 10.3390/polym14091670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
In this paper, we describe a novel method for preparation of polymer composites with homogeneous dispersion of natural fibers in the polymer matrix. In our approach, Williamson ether synthesis is used to chemically modify cellulose with polymerizable styrene moieties and transform it into a novel multifunctional cellu-mer that can be further crosslinked by copolymerization with styrene. Reactions with model compounds (cellobiose and cellotriose) successfully confirm the viability of the new strategy. The same approach is used to transform commercially available cellulose nanofibrils (CNFs) of various sizes: Sigmacell and Technocell™ 40, 90 and 150. The styrene-functionalized cellulose oligomers and CNFs are then mixed with styrene and copolymerized in bulk at 65 °C with 2,2'-azobisisobutyronitrile as initiator. The resulting composites are in a form of semi-interpenetrating networks (s-IPN), where poly(styrene) chains are either crosslinked with the uniformly dispersed cellulosic component or entangled through the network. Non-crosslinked poly(styrene) (31-41 w%) is extracted with CHCl3 and analyzed by size-exclusion chromatography to estimate the extent of homopolymerization and reveal the mechanism of the whole process. Electron microscopy analyses of the networks show the lack of cellu-mer agglomeration throughout the polymer matrix. The homogeneous distribution of cellulose entities leads to improved thermal and mechanical properties of the poly(styrene) composites compared to the physical mixtures of the same components and linear poly(styrene) of similar molecular mass.
Collapse
Affiliation(s)
- Dariya Getya
- Department of Chemistry, State University of New York—ESF, Syracuse, NY 13210, USA;
- The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
| | - Ivan Gitsov
- Department of Chemistry, State University of New York—ESF, Syracuse, NY 13210, USA;
- The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
- The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
29
|
Jaffar SS, Saallah S, Misson M, Siddiquee S, Roslan J, Saalah S, Lenggoro W. Recent Development and Environmental Applications of Nanocellulose-Based Membranes. MEMBRANES 2022; 12:287. [PMID: 35323762 PMCID: PMC8950644 DOI: 10.3390/membranes12030287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022]
Abstract
Extensive research and development in the production of nanocellulose production, a green, bio-based, and renewable biomaterial has paved the way for the development of advanced functional materials for a multitude of applications. From a membrane technology perspective, the exceptional mechanical strength, high crystallinity, tunable surface chemistry, and anti-fouling behavior of nanocellulose, manifested from its structural and nanodimensional properties are particularly attractive. Thus, an opportunity has emerged to exploit these features to develop nanocellulose-based membranes for environmental applications. This review provides insights into the prospect of nanocellulose as a matrix or as an additive to enhance membrane performance in water filtration, environmental remediation, and the development of pollutant sensors and energy devices, focusing on the most recent progress from 2017 to 2022. A brief overview of the strategies to tailor the nanocellulose surface chemistry for the effective removal of specific pollutants and nanocellulose-based membrane fabrication approaches are also presented. The major challenges and future directions associated with the environmental applications of nanocellulose-based membranes are put into perspective, with primary emphasis on advanced multifunctional membranes.
Collapse
Affiliation(s)
- Syafiqah Syazwani Jaffar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (S.S.J.); (M.M.); (S.S.)
| | - Suryani Saallah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (S.S.J.); (M.M.); (S.S.)
| | - Mailin Misson
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (S.S.J.); (M.M.); (S.S.)
| | - Shafiquzzaman Siddiquee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (S.S.J.); (M.M.); (S.S.)
| | - Jumardi Roslan
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Sariah Saalah
- Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Wuled Lenggoro
- Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
| |
Collapse
|
30
|
Volova TG, Prudnikova SV, Kiselev EG, Nemtsev IV, Vasiliev AD, Kuzmin AP, Shishatskaya EI. Bacterial Cellulose (BC) and BC Composites: Production and Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:192. [PMID: 35055211 PMCID: PMC8780924 DOI: 10.3390/nano12020192] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/30/2022]
Abstract
The synthesis of bacterial cellulose (BC) by Komagataeibacter xylinus strain B-12068 was investigated on various C-substrates, under submerged conditions with stirring and in static surface cultures. We implemented the synthesis of BC on glycerol, glucose, beet molasses, sprat oil, and a mixture of glucose with sunflower oil. The most productive process was obtained during the production of inoculum in submerged culture and subsequent growth of large BC films (up to 0.2 m2 and more) in a static surface culture. The highest productivity of the BC synthesis process was obtained with the growth of bacteria on molasses and glycerol, 1.20 and 1.45 g/L per day, respectively. We obtained BC composites with silver nanoparticles (BC/AgNPs) and antibacterial drugs (chlorhexidine, baneocin, cefotaxime, and doripenem), and investigated the structure, physicochemical, and mechanical properties of composites. The disc-diffusion method showed pronounced antibacterial activity of BC composites against E. coli ATCC 25922 and S. aureus ATCC 25923.
Collapse
Affiliation(s)
- Tatiana G. Volova
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia; (S.V.P.); (E.G.K.); (I.V.N.); (A.D.V.); (E.I.S.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Svetlana V. Prudnikova
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia; (S.V.P.); (E.G.K.); (I.V.N.); (A.D.V.); (E.I.S.)
| | - Evgeniy G. Kiselev
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia; (S.V.P.); (E.G.K.); (I.V.N.); (A.D.V.); (E.I.S.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Ivan V. Nemtsev
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia; (S.V.P.); (E.G.K.); (I.V.N.); (A.D.V.); (E.I.S.)
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia
- Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Alexander D. Vasiliev
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia; (S.V.P.); (E.G.K.); (I.V.N.); (A.D.V.); (E.I.S.)
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Andrey P. Kuzmin
- School of Petroleum and Gas Engineering, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia;
| | - Ekaterina I. Shishatskaya
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia; (S.V.P.); (E.G.K.); (I.V.N.); (A.D.V.); (E.I.S.)
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| |
Collapse
|
31
|
Xie L, Zhang Y, Huang A, Zhou J, Lin N, Lu X. Electrostatic Adsorption and Cytotoxity of Cellulose Nanocrystals with Loading Trace Metal Elements. Macromol Biosci 2021; 22:e2100318. [PMID: 34773451 DOI: 10.1002/mabi.202100318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/27/2021] [Indexed: 01/12/2023]
Abstract
Cellulose nanocrystal (CNC) is the rod-like nano-object derived from natural cellulose with the features of low toxicity and good biocompatibility, widely used as the functional additive and nanomaterial in the biomedicine. Two negatively charged cellulose nanocrystals, CNC and TO-CNC (surface oxidized CNC), are prepared by the sulfuric acid hydrolysis and further surface oxidization. Based on electrostatic adsorption, five trace metal elements (TMEs) including cobalt (Co), nickel (Ni), manganese (Mn), lead (Pb), and cadmium (Cd) are loaded on the surface of two nanocrystals as the biocompatible nanocarriers. The adsorbed contents of TMEs on two nanocrystals are affected by their surface charge densities and the complexes can keep stability under three varied pH conditions. Two cell lines, viz. human nasopharyngeal cancer cell and normal human bronchial epithelial cell, are selected for the investigation of cytotoxity of these TME-loaded nanocrystals at the concentration range of 0.1-500 µg mL-1 . The high concentrations of TME-loaded nanocrystals will induce the inhibition of cells activity and proliferation, particularly for Pb2+ - and Cd2+ -loaded nanocrystals. The cancer cell generally exhibits more sensitivity of cytotoxity to these metal elements than the normal cell, which may be potentially used as the activity inhibitor for specific cells in the future study.
Collapse
Affiliation(s)
- Li Xie
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Yue Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Ao Huang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Ji Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Ning Lin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiang Lu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| |
Collapse
|
32
|
Danial WH, Md Bahri NF, Abdul Majid Z. Preparation, Marriage Chemistry and Applications of Graphene Quantum Dots-Nanocellulose Composite: A Brief Review. Molecules 2021; 26:6158. [PMID: 34684739 PMCID: PMC8537986 DOI: 10.3390/molecules26206158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 12/03/2022] Open
Abstract
Graphene quantum dots (GQDs) are zero-dimensional carbon-based materials, while nanocellulose is a nanomaterial that can be derived from naturally occurring cellulose polymers or renewable biomass resources. The unique geometrical, biocompatible and biodegradable properties of both these remarkable nanomaterials have caught the attention of the scientific community in terms of fundamental research aimed at advancing technology. This study reviews the preparation, marriage chemistry and applications of GQDs-nanocellulose composites. The preparation of these composites can be achieved via rapid and simple solution mixing containing known concentration of nanomaterial with a pre-defined composition ratio in a neutral pH medium. They can also be incorporated into other matrices or drop-casted onto substrates, depending on the intended application. Additionally, combining GQDs and nanocellulose has proven to impart new hybrid nanomaterials with excellent performance as well as surface functionality and, therefore, a plethora of applications. Potential applications for GQDs-nanocellulose composites include sensing or, for analytical purposes, injectable 3D printing materials, supercapacitors and light-emitting diodes. This review unlocks windows of research opportunities for GQDs-nanocellulose composites and pave the way for the synthesis and application of more innovative hybrid nanomaterials.
Collapse
Affiliation(s)
- Wan Hazman Danial
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Nur Fathanah Md Bahri
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Zaiton Abdul Majid
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| |
Collapse
|