1
|
Oh J, Wee ASH, Park E, Hwang J, Kim SJ, Jeong HY, Khine MT, Pujar P, Lee J, Kim Y, Kim S. Enhancing Nonenzymatic Glucose Detection Through Cobalt-Substituted Hafnia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408687. [PMID: 39994904 PMCID: PMC12005825 DOI: 10.1002/advs.202408687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/16/2024] [Indexed: 02/26/2025]
Abstract
Engineered defect chemistry in ultrathin (≈5 nm) hafnia through substitutional cobalt (HCO) is investigated for selective glucose sensing. Thin films of HCO, grown using chemical solution deposition (CSD)-traditionally used to grow thick films-on silicon, show significant glucose sensing activity and undergo monoclinic to orthorhombic phase transformation. The presence of multivalent cobalt in hafnia, with oxygen vacancies in proximity, selectively oxidizes glucose with minimal interference from ascorbic acid, dopamine, and uric acid. Theoretical investigations reveal that these oxygen vacancies create a shallow donor level that significantly enhances electrocatalytic activity by promoting charge transfer to the conduction band. This results in considerable selectivity, repeatability, and reproducibility in sensing characteristics. These findings highlight the technological importance of using CSD for thin films, paving the way for ultrathin CSD-processed HCOs as potential candidates for selective glucose sensing applications.
Collapse
Affiliation(s)
- Jeonghyeon Oh
- Multifunctional Nano Bio Electronics LabSchool of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwonGyeonggi‐do16419Republic of Korea
| | - Avis Sin Hui Wee
- Multifunctional Nano Bio Electronics LabSchool of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwonGyeonggi‐do16419Republic of Korea
| | - Eun‐Byeol Park
- Department of Energy ScienceSungkyunkwan University (SKKU)SuwonGyeonggi‐do16419Republic of Korea
| | - Jaejin Hwang
- Department of PhysicsPusan National UniversityBusan46241Republic of Korea
| | - Seon Je Kim
- Department of Energy ScienceSungkyunkwan University (SKKU)SuwonGyeonggi‐do16419Republic of Korea
| | - Hu Young Jeong
- Graduate School of Semiconductor Materials and Devices EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Myat Thet Khine
- Multifunctional Nano Bio Electronics LabSchool of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwonGyeonggi‐do16419Republic of Korea
| | - Pavan Pujar
- Department of Ceramic EngineeringIndian Institute of Technology (IIT‐BHU)VaranasiUttar Pradesh221005India
| | - Jaekwang Lee
- Department of PhysicsPusan National UniversityBusan46241Republic of Korea
| | - Young‐Min Kim
- Department of Energy ScienceSungkyunkwan University (SKKU)SuwonGyeonggi‐do16419Republic of Korea
| | - Sunkook Kim
- Multifunctional Nano Bio Electronics LabSchool of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwonGyeonggi‐do16419Republic of Korea
| |
Collapse
|
2
|
Zhao RN, Ke YY, Sun HY, Quan C, Xu Q, Li J, Guan JQ, Zhang YM. Achievements and challenges in glucose oxidase-instructed multimodal synergistic antibacterial applications. Microbiol Res 2025; 297:128149. [PMID: 40187057 DOI: 10.1016/j.micres.2025.128149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
Glucose oxidase (GOx) with unique catalytic properties and inherent biocompatibility can effectively oxidize both endogenous and exogenous glucose with oxygen (O2) into gluconic acid and hydrogen peroxide (H2O2). Accordingly, the GOx-based catalytic chemistry offers new possibilities for designing and constructing multimodal synergistic antibacterial systems. The consumption of glucose permanently downregulates bacterial cell metabolism by blocking essential energy supplies, inhibiting their growth and survival. Additionally, the production of gluconic acid could downregulates the pH within the bacterial infection microenvironment, enhancing the production of hydroxyl radicals (∙OH) from H2O2 via enhanced Fenton or Fendon-like reactions and triggering the pH-responsive release of drugs. Furthermore, the generated H2O2 in situ avoids the addition of exogenous hydrogen peroxide. Therefore, it is possible to design GOx-based multimodal antibacterial synergistic therapies by combining GOx-instructed cascade reactions with other therapeutic approaches such as chemodynamic therapies (CDT), hypoxia-activated prodrugs, photosensitizers, and stimuli-responsive drug release. Such multimodal strategies are expected to exhibit better therapeutic effects than single therapeutic modes. This tutorial review highlights recent advancements in GOx-instructed multimodal synergistic antibacterial systems, focusing on design philosophy and construction strategies. Current challenges and future prospects for advancing GOx-based multimodal antibacterial synergistic therapies are discussed.
Collapse
Affiliation(s)
- Rui-Nan Zhao
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Yi-Yin Ke
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Hui-Yan Sun
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Chunshan Quan
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Qingsong Xu
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Jun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, P. O. Box 110, Dalian 116023, China.
| | - Jing-Qi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, China.
| | - Yan-Mei Zhang
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China.
| |
Collapse
|
3
|
Zhao YS, Huang J, Yang X, Wang W, Yu DG, He H, Liu P, Du K. Electrospun nanofibers and their application as sensors for healthcare. Front Bioeng Biotechnol 2025; 13:1533367. [PMID: 40182987 PMCID: PMC11965663 DOI: 10.3389/fbioe.2025.1533367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Electrospinning is a type of electrohydrodynamics that utilizes high-voltage electrostatic force to stretch a polymer solution into nanofibers under the influence of an electric field, with most of the fibers falling onto a collector. This technology is favored by researchers across various fields due to its simple and inexpensive device for producing nanofibers in a straightforward manner. Nanofibers prepared through electrospinning have a high specific surface area and high porosity. Electrospinning technology shows extensive potential, especially within biomedical sensors. This article provides a systematic overview of the factors influencing electrospinning, the parameters of the electrospinning process, the types of electrospun nanofibers, and the applications of electrospinning technology in the field of sensors, including wearable sensors, pressure sensors, and glucose sensors. The paper summarizes the research progress in this field and points out the direction of development for electrospinning technology, as well as the future challenges.
Collapse
Affiliation(s)
- Yi-Sa Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jie Huang
- The Third Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Xingjian Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Weqiang Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Hua He
- The Third Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Kewei Du
- Department of Orthopedics, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
4
|
German N, Popov A, Ramanavicius A, Ramanaviciene A. A Platform for the Glucose Biosensor Based on Dendritic Gold Nanostructures and Polyaniline-Gold Nanoparticles Nanocomposite. BIOSENSORS 2025; 15:196. [PMID: 40136993 PMCID: PMC11940116 DOI: 10.3390/bios15030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/28/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025]
Abstract
Diabetes mellitus is a pathological condition that requires continuous measurement of glucose concentration in human blood. In this study, two enzymatic mediator-free glucose biosensors based on premodified graphite rod (GR) electrodes were developed and compared. GR electrode modified with electrochemically synthesized dendritic gold nanostructures (DGNS), a cystamine (Cys) self-assembled monolayer (SAM), and glucose oxidase (GOx) (GR/DGNS/Cys/GOx) and GR electrode modified with DGNS, Cys SAM, enzymatically obtained polyaniline (PANI) nanocomposites with embedded 6 nm gold nanoparticles (AuNPs) and GOx (GR/DGNS/Cys/PANI-AuNPs-GOx/GOx) were investigated electrochemically. Biosensors based on GR/DGNS/Cys/GOx and GR/DGNS/Cys/PANI-AuNPs-GOx/GOx electrodes were characterized by a linear range (LR) of up to 1.0 mM of glucose, storage stability of over 71 days, sensitivity of 93.7 and 72.0 μA/(mM cm2), limit of detection (LOD) of 0.027 and 0.034 mM, reproducibility of 13.6 and 9.03%, and repeatability of 8.96 and 8.01%, respectively. The GR/DGNS/Cys/PANI-AuNPs-GOx/GOx electrode was proposed as more favorable for glucose concentration determination in serum due to its better stability and resistance to interfering electrochemically active species. The technological solutions presented in this paper are expected to enable the development of innovative mediator-free enzymatic glucose biosensors, offering advantages for clinical assays, particularly for controlling blood glucose concentration in individuals with diabetes.
Collapse
Affiliation(s)
- Natalija German
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania;
| | - Anton Popov
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania;
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania;
| | - Arunas Ramanavicius
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania;
| | - Almira Ramanaviciene
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania;
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania;
| |
Collapse
|
5
|
Ivaskiene T, Kaspute G, Bareikiene E, Prentice U. Platelet-Rich Plasma and Electrochemical Biosensors: A Novel Approach to Ovarian Function Evaluation and Diagnostics. Int J Mol Sci 2025; 26:2317. [PMID: 40076937 PMCID: PMC11899975 DOI: 10.3390/ijms26052317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Preserving ovarian function is important to women's reproductive health. It is necessary for fertility and maintaining the overall hormonal balance. Platelet-rich plasma (PRP) is an autologous plasma containing a predominately platelet concentrate prepared from fresh blood. It has been observed that PRP injections into the ovary can renew the functional cells of the cortical layer of the ovary follicles and reactivate the production of sex hormones. It may improve a woman's fertility in the case of premature ovarian failure, the condition after chemotherapy treatment, or during the climacteric period. The main markers to evaluate the procedure's success are elevated anti-Müllerin hormone and enlarged count level of atrial follicles in ovaries. The aim of this review is to identify the ovarian PRP procedure success markers and point out the electrochemical sensor techniques. Literature was selected depending on including and excluding criteria; studies were sorted by topics in two blocks: PRP biomarkers and electrochemistry. As PRP acts as a regenerative care, electrochemical biosensors can provide accurate, real-time data to evaluate the biological response to PRP therapy. The biosensors' ability to monitor hormonal levels and follicle development serves as objective markers of the effectiveness of PRP in restoring ovarian function. Together, these approaches enable a more precise evaluation of ovarian health and fertility outcomes after PRP intervention.
Collapse
Affiliation(s)
- Tatjana Ivaskiene
- State Research Institute Centre for Innovative Medicine, Santariskiu St. 5, LT-08410 Vilnius, Lithuania; (T.I.); (G.K.)
| | - Greta Kaspute
- State Research Institute Centre for Innovative Medicine, Santariskiu St. 5, LT-08410 Vilnius, Lithuania; (T.I.); (G.K.)
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Egle Bareikiene
- State Research Institute Centre for Innovative Medicine, Santariskiu St. 5, LT-08410 Vilnius, Lithuania; (T.I.); (G.K.)
| | - Urte Prentice
- State Research Institute Centre for Innovative Medicine, Santariskiu St. 5, LT-08410 Vilnius, Lithuania; (T.I.); (G.K.)
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT-03225 Vilnius, Lithuania
- Department of Mechatronics, Robotics and Digital Manufacturing, Faculty of Mechanics, Vilnius Gediminas Technical University, Plytines St. 25, LT-10105 Vilnius, Lithuania
| |
Collapse
|
6
|
Daurai B, Baruah AJ, Gogoi M. Recent advances in point-of-care biosensors for pancreatic diseases. Trends Analyt Chem 2024; 179:117867. [DOI: 10.1016/j.trac.2024.117867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Zhang A, Zhang X, Yang L, He F, Dai X, Dong N. Determination of glucose oxidase activity by tyrosine fluorescence spectrophotometry. Heliyon 2024; 10:e32540. [PMID: 38975187 PMCID: PMC11225733 DOI: 10.1016/j.heliyon.2024.e32540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
A novel Fe2+/Tyr/H2O2 fluorescence reaction system has been established for the purpose of analyzing glucose oxidase activity. This system involves the catalysis of glucose oxidase on glucose to produce H2O2, which in turn oxidizes tyrosine to a highly fluorescent substance under the catalysis of Fe2+. The fluorescence intensity is subsequently employed to ascertain the enzymatic activity of glucose oxidase. The enzymatic oxidation reaction and tyrosine fluorescence reaction conditions were optimized based on the H2O2 standard curve equation. Direct fluorescence spectrophotometry was used to determine the activity range and detection limit of glucose oxidase, which were found to be 7.00 × 10-5-7.00 × 10-2 U/mL and 3.36 × 10-5 U/mL (Enzyme-like activity is 6.72 × 10-4 U/mL, The enzyme reaction time is 5 min), respectively, with a relative standard deviation of less than 3.2 %. This method has been successfully applied to determine the activity of glucose oxidase in food additives, with a recovery rate ranging from 96.00 % to 102.0 %.
Collapse
Affiliation(s)
- Aiju Zhang
- Basic Chemistry Teaching Laboratory, Public Course Teaching Department, Gansu Medical College, Pingliang, Gansu, 744000, PR China
| | - Xiaolin Zhang
- Basic Chemistry Teaching Laboratory, Public Course Teaching Department, Gansu Medical College, Pingliang, Gansu, 744000, PR China
| | - Lijing Yang
- Department of Pharmacy, Gansu Medical College, Pingliang, Gansu, 744000, PR China
| | - Fangzhen He
- Basic Chemistry Teaching Laboratory, Public Course Teaching Department, Gansu Medical College, Pingliang, Gansu, 744000, PR China
| | - Xingde Dai
- Department of Pharmacy, Gansu Medical College, Pingliang, Gansu, 744000, PR China
| | - Na Dong
- Department of Pharmacy, Gansu Medical College, Pingliang, Gansu, 744000, PR China
| |
Collapse
|
8
|
Cui F, Li L, Wang D, Li J, Li T. Nanomaterials with Enzyme-like Properties for Combatting Foodborne Pathogen Infections: Classifications, Mechanisms, and Applications in Food Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10179-10194. [PMID: 38685503 DOI: 10.1021/acs.jafc.4c00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
During the transportation and storage of food, foodborne spoilage caused by bacterial and biofilm infection is prone to occur, leading to issues such as short shelf life, economic loss, and sensory quality instability. Therefore, the development of novel and efficient antibacterial agents capable of efficiently inhibiting bacteria throughout various stages of food processing, transportation, and storage is strongly recommended by researchers. The emergence of nanozymes is considered to be an effective candidate for inhibiting foodborne bacteria agents in the food industry. As potent antibacterial agents, nanozymes have the advantages of low cost, high stability, strong broad-spectrum antibacterial ability, and biocompatibility. Herein, we aim to summarize the classification status of various nanozymes. Furthermore, the general catalytic bacteriostatic mechanism of nanozymes against intracellular bacteria, planktonic bacteria, and biofilm activities are highlighted, mainly concerning the destruction of cell walls and/or membranes, reactive oxygen species regulation, HOBr/Cl generation, damage of intracellular components, and so forth. In particular, the review focuses on the pivotal role of nanozymes as antibacterial agents and delivery vehicles in the fields of food preservation applications. We look forward to the future prospects, especially in the field of food preservation, to promote broader applications based on antimicrobial nanozymes.
Collapse
Affiliation(s)
- Fangchao Cui
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Lanling Li
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Dangfeng Wang
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, Liaoning 116029, China
| |
Collapse
|
9
|
Liu C, Guan C, Li Y, Li Z, Wang Y, Han G. Advances in Electrochemical Biosensors for the Detection of Common Oral Diseases. Crit Rev Anal Chem 2024:1-21. [PMID: 38366356 DOI: 10.1080/10408347.2024.2315112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Limiting and preventing oral diseases remains a major challenge to the health of populations around the world, so finding ways to detect early-stage diseases (e.g., caries, periodontal disease, and oral cancer) and aiding in their prevention has always been an important clinical treatment concept. The development and application of electrochemical detection technology can provide important support for the early detection and non-invasive diagnosis of oral diseases and make up for the shortcomings of traditional diagnostic methods, which are highly sensitive, non-invasive, cost-effective, and less labor-intensive. It detects specific disease markers in body fluids through electrochemical reactions, discovers early warning signals of diseases, and realizes rapid and reliable diagnosis. This paper comprehensively summarizes the development and application of electrochemical biosensors in the detection and diagnosis of common oral diseases in terms of application platforms, sensing types, and disease detection, and discusses the challenges faced by electrochemical biosensors in the detection of oral diseases as well as the great prospects for future applications, in the hope of providing important insights for the future development of electrochemical biosensors for the early detection of oral diseases.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Changjun Guan
- School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, China
| | - Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanchun Wang
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
10
|
Baradoke A, Jarusaitis A, Reinikovaite V, Jafarov A, Elsakova A, Franckevicius M, Skapas M, Slibinskas R, Drobysh M, Liustrovaite V, Ramanavicius A. Detection of antibodies against SARS-CoV-2 Spike protein by screen-printed carbon electrodes modified by colloidal gold nanoparticles. Talanta 2024; 268:125279. [PMID: 37857108 DOI: 10.1016/j.talanta.2023.125279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
In this work, electrochemical bioanalytical systems for the determination of antibodies against the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike protein (anti-rS) is reported. Environmentally friendly chemicals were applied in the synthesis of gold nanoparticles (AuNPs). The AuNPs were integrated onto the screen-printed carbon electrodes (SPE), and the biological recognition part was based on recombinant SARS-CoV-2 Spike protein (rS), which during the immobilization was cross-linked by glutaraldehyde. Immobilized rS protein based biological recognition part enabled selective recognition of anti-rS antibodies. The current flux of AuNPs reduction (at +200 mV) in a pure phosphate buffer (PB) was employed as the transduction signal. It has been reported that the formation of anti-rS layers on the surface of AuNPs delays the electrode response time (ts), tracked at the current flux density values of 80 μA cm-2. Using the AuNP-modified SPE, we demonstrated a rapid anti-rS detection within a detection limit of 2 ng mL-1 (0.125 binding antibody units mL-1, 17 pM). This system can be applied to track the response of immune system towards SARS-CoV-2 infection and monitoring of Coronavirus Disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Ausra Baradoke
- State Research Institute Center for Physical Sciences and Technology, Sauletekio ave. 3, 10007, Vilnius, Lithuania
| | - Ainis Jarusaitis
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Viktorija Reinikovaite
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Ali Jafarov
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania; Institute of Technology, Nooruse 1, 50411, Tartu, Estonia
| | - Alexandra Elsakova
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania; Institute of Biomedicine and Translational Medicine, Ravila 19, 50412, Tartu, Estonia
| | - Marius Franckevicius
- State Research Institute Center for Physical Sciences and Technology, Sauletekio ave. 3, 10007, Vilnius, Lithuania
| | - Martynas Skapas
- State Research Institute Center for Physical Sciences and Technology, Sauletekio ave. 3, 10007, Vilnius, Lithuania
| | - Rimantas Slibinskas
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania; Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, LT-10257, Vilnius, Lithuania
| | - Maryia Drobysh
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Viktorija Liustrovaite
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Arunas Ramanavicius
- State Research Institute Center for Physical Sciences and Technology, Sauletekio ave. 3, 10007, Vilnius, Lithuania; Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania.
| |
Collapse
|
11
|
Kuznetsova LS, Arlyapov VA, Plekhanova YV, Tarasov SE, Kharkova AS, Saverina EA, Reshetilov AN. Conductive Polymers and Their Nanocomposites: Application Features in Biosensors and Biofuel Cells. Polymers (Basel) 2023; 15:3783. [PMID: 37765637 PMCID: PMC10536614 DOI: 10.3390/polym15183783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Conductive polymers and their composites are excellent materials for coupling biological materials and electrodes in bioelectrochemical systems. It is assumed that their relevance and introduction to the field of bioelectrochemical devices will only grow due to their tunable conductivity, easy modification, and biocompatibility. This review analyzes the main trends and trends in the development of the methodology for the application of conductive polymers and their use in biosensors and biofuel elements, as well as describes their future prospects. Approaches to the synthesis of such materials and the peculiarities of obtaining their nanocomposites are presented. Special emphasis is placed on the features of the interfaces of such materials with biological objects.
Collapse
Affiliation(s)
- Lyubov S. Kuznetsova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Vyacheslav A. Arlyapov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Yulia V. Plekhanova
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergei E. Tarasov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Anna S. Kharkova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Evgeniya A. Saverina
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
- Federal State Budgetary Institution of Science, N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Russia
| | - Anatoly N. Reshetilov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
12
|
Kyomuhimbo HD, Feleni U, Haneklaus NH, Brink H. Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review. Polymers (Basel) 2023; 15:3492. [PMID: 37631549 PMCID: PMC10460086 DOI: 10.3390/polym15163492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidase and peroxidase enzymes have attracted attention in various biotechnological industries due to their ease of synthesis, wide range of applications, and operation under mild conditions. Their applicability, however, is limited by their poor stability in harsher conditions and their non-reusability. As a result, several approaches such as enzyme engineering, medium engineering, and enzyme immobilization have been used to improve the enzyme properties. Several materials have been used as supports for these enzymes to increase their stability and reusability. This review focusses on the immobilization of oxidase and peroxidase enzymes on metal and metal oxide nanoparticle-polymer composite supports and the different methods used to achieve the immobilization. The application of the enzyme-metal/metal oxide-polymer biocatalysts in biosensing of hydrogen peroxide, glucose, pesticides, and herbicides as well as blood components such as cholesterol, urea, dopamine, and xanthine have been extensively reviewed. The application of the biocatalysts in wastewater treatment through degradation of dyes, pesticides, and other organic compounds has also been discussed.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Roodepoort, Johannesburg 1710, South Africa;
| | - Nils H. Haneklaus
- Transdisciplinarity Laboratory Sustainable Mineral Resources, University for Continuing Education Krems, 3500 Krems, Austria;
| | - Hendrik Brink
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| |
Collapse
|
13
|
Çetin MZ, Guven N, Apetrei RM, Camurlu P. Highly sensitive detection of glucose via glucose oxidase immobilization onto conducting polymer-coated composite polyacrylonitrile nanofibers. Enzyme Microb Technol 2023; 164:110178. [PMID: 36566669 DOI: 10.1016/j.enzmictec.2022.110178] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Current study introduces composite polyacrylonitrile - multiwall carbon nanotubes nanofibers (PAN-MWCNTs NFs) coated with conducting polymers (polypyrrole (PPy) or poly(3,4-ethylenedioxythiophene) (PEDOT)) by chemical vapor deposition for efficient glucose detection. The potential of nanofibrous assemblies and nano-conducting elements in biosensing was explored as pre-processing of NFs with MWCNTs and post-processing with CPs were both employed. These 'core-shell' conducting NFs were further employed as platforms for glucose oxidase immobilization for enzymatic detection of glucose. The performance of the biosensors was closely correlated with the concentration of immobilized enzyme and with the type of conducting polymer. The biosensors showed high sensitivities of 92.94 and 81.72 µA/mM.cm-2 for (PAN-MWCNTs)/ PEDOT and (PAN-MWCNTs)/ PPy accompanied by low limit of detection values of 2.30 and 2.38 µM, respectively. Good operational stability was observed throughout twenty-five consecutive measurements, over 90% activity was maintained for both sensors. This study represents proof of concept for the methodology, showcasing the advantages of nanomaterial synthesis for bio-applications. The work was compared thoroughly with previously reported biosensors showing some of the best results reported to date in terms of analytical characteristics.
Collapse
Affiliation(s)
| | - Nese Guven
- Akdeniz University, Department of Chemistry, 07058 Antalya, Turkey
| | - Roxana-Mihaela Apetrei
- Akdeniz University, Department of Chemistry, 07058 Antalya, Turkey; Dunarea de Jos' University of Galati, Domneasca Street, 47, Galati RO-800008, Romania
| | - Pinar Camurlu
- Akdeniz University, Department of Chemistry, 07058 Antalya, Turkey.
| |
Collapse
|
14
|
Ramasami Sundhar Baabu P, Mani GK, Rayappan JBB, Tsuyuki Y, Inazu T, Tsuchiya K. Sensor-on-Microtips: Design and Development of Hydrothermally Grown ZnO on Micropipette Tips as a Modified Working Electrode for Detection of Glucose. MICROMACHINES 2023; 14:498. [PMID: 36984905 PMCID: PMC10053005 DOI: 10.3390/mi14030498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Miniaturization of electrochemical components has become less common in the last decade, with the focus predominantly being the design and development of state-of-the-art microelectrodes for achieving small volume analysis of samples. However, such microelectrodes involve cumbersome processing procedures to convert the base material for the required application. A potential paradigm shift in such miniaturization could be achieved by using cheaper alternatives such as plastics to build electrochemical components, such as micropipette tips made of polypropylene, which are commercially available at ease. Hence, this work presents the design of an electrochemical working electrode based upon a micropipette tip, involving minimal processing procedures. Furthermore, such a working electrode was realized by sputtering silver onto a bare micropipette tip using a radio-frequency sputtering technique, to obtain electrical contacts on the tip, followed by hydrothermal growth of ZnO, which acted as the active electrode material. The ZnO nanostructures grown on the micropipette tip were characterized for their morphology and surface properties using a scanning electron microscope (SEM), laser microscope, Raman spectrometer, and X-ray photoelectron spectrometer (XPS). The developed micropipette tip-based electrode was then used as the working electrode in a three-electrode system, wherein its electrochemical stability and properties were analyzed using cyclic voltammetry (CV). Furthermore, the above system was used to detect glucose concentrations of 10-200 µM, to evaluate its sensing properties using amperometry. The developed working electrode exhibited a sensitivity of 69.02 µA/µM cm-2 and limit of detection of 67.5 µM, indicating the potential for using such modified micropipette tips as low-cost miniaturized sensors to detect various bio-analytes in sample solutions.
Collapse
Affiliation(s)
| | - Ganesh Kumar Mani
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Micro/Nano Technology Center, Tokai University, Hiratsuka 259-1292, Japan
| | | | - Yuichiro Tsuyuki
- Hasegawa Machinery Limited, 307 Matsuoka, Fuji-shi 416-0909, Japan
| | - Toshiyuki Inazu
- Department of Applied Chemistry, School of Engineering, Tokai University, Hiratsuka 259-1292, Japan
| | - Kazuyoshi Tsuchiya
- Micro/Nano Technology Center, Tokai University, Hiratsuka 259-1292, Japan
| |
Collapse
|
15
|
Patra S, Sahu KM, Reddy AA, Swain SK. Polymer and biopolymer based nanocomposites for glucose sensing. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2175824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Krishna Manjari Sahu
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - A. Amulya Reddy
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Sarat K. Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| |
Collapse
|
16
|
Zhang X, Tan X, Wang P, Qin J. Application of Polypyrrole-Based Electrochemical Biosensor for the Early Diagnosis of Colorectal Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:674. [PMID: 36839042 PMCID: PMC9967576 DOI: 10.3390/nano13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Although colorectal cancer (CRC) is easy to treat surgically and can be combined with postoperative chemotherapy, its five-year survival rate is still not optimistic. Therefore, developing sensitive, efficient, and compliant detection technology is essential to diagnose CRC at an early stage, providing more opportunities for effective treatment and intervention. Currently, the widely used clinical CRC detection methods include endoscopy, stool examination, imaging modalities, and tumor biomarker detection; among them, blood biomarkers, a noninvasive strategy for CRC screening, have shown significant potential for early diagnosis, prediction, prognosis, and staging of cancer. As shown by recent studies, electrochemical biosensors have attracted extensive attention for the detection of blood biomarkers because of their advantages of being cost-effective and having sound sensitivity, good versatility, high selectivity, and a fast response. Among these, nano-conductive polymer materials, especially the conductive polymer polypyrrole (PPy), have been broadly applied to improve sensing performance due to their excellent electrical properties and the flexibility of their surface properties, as well as their easy preparation and functionalization and good biocompatibility. This review mainly discusses the characteristics of PPy-based biosensors, their synthetic methods, and their application for the detection of CRC biomarkers. Finally, the opportunities and challenges related to the use of PPy-based sensors for diagnosing CRC are also discussed.
Collapse
|
17
|
Simulation of electrical conductivity for polymer silver nanowires systems. Sci Rep 2023; 13:5. [PMID: 36593261 PMCID: PMC9807585 DOI: 10.1038/s41598-022-25548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/30/2022] [Indexed: 01/03/2023] Open
Abstract
A simple model is developed for the conductivity of polymeric systems including silver nanowires (AgNWs). This model reveals the effects of interphase thickness, tunneling distance, waviness and aspect ratio of nanowires, as well as effective filler volume fraction on the percolation and electrical conductivity of AgNW-reinforced samples. The validity of this model is tested by using the measured data from several samples. Based on this model, the conductivity calculations are in proper accordance with the measured values. A large network and a low percolation onset are produced by nanowires with a high aspect ratio developing the nanocomposite conductivity. The results also show that a thicker interphase expands the network, thereby increasing the electrical conductivity. Furthermore, non-waved AgNWs exhibit more conductivity compared to wavy nanowires. It is concluded that the surface energies of polymer medium and nanowires have no effect on the conductivity of samples. On the other hand, the volume fraction and aspect ratio of nanowires, in addition to the interphase thickness and tunneling distance have the greatest influences on the conductivity of nanocomposites.
Collapse
|
18
|
Su X, Zhang Y, Jia Z, Zhang S, Gao Y, Huang Y, Xu C, Liu E. In-situ synthesis of metasequoia-leaf-like Cu/Cu2O/Ni(OH)2 on a glassy carbon electrode for efficient non-enzymatic glucose sensing. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Ti3C2Tx MXene/Graphene/AuNPs 3D porous composites for high sensitivity and fast response glucose biosensing. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Izadyar A, Van MN, Miranda M, Weatherford S, Hood EE, Seok I. Development of a highly sensitive glucose nanocomposite biosensor based on recombinant enzyme from corn. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6530-6538. [PMID: 35587543 DOI: 10.1002/jsfa.12019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Enzymes are biocatalysts that play a vital role in the production of biomolecules. Plants can be a valuable and cost-effective source for producing well-structured recombinant enzymes. Glucose is one of the most important biological molecules, providing energy to most living systems. An electrochemical method for immobilization of enzyme is promising because it is economic, generates less component waste, improves the signal-to-noise ratio, leads to a lower limit of detection, and stabilizes and protects the enzyme structure. RESULTS A glucose biosensor was constructed using polyaniline (PANI) and a recombinant enzyme from corn, plant-produced manganese peroxidase (PPMP), with polymerization of aniline as a monomer in the presence of gold nanoparticles (AuNPs)-glucose oxidase (GOx), and bovine serum albumin. Using linear sweep voltammetry and cyclic voltammetry techniques, PANI-AuNPs-GOx-PPMP/Au electrode exhibited a superior sensing property with a wider linear range of 0.005-16.0 mm, and a lower detection limit of 0.001 mm compared to PANI-GOx-PPMP/Au electrode and PANI-GOx-PPMP/AuNPs/Au electrode. The biosensor selectivity was assessed by determining glucose concentrations in the presence of ascorbic acid, dopamine, aspartame, and caffeine. CONCLUSION We conclude that a plant-produced Mn peroxidase enzyme combined with conductive polymers and AuNPs results in a promising nanocomposite biosensor for detecting glucose. The use of such devices for quality control in the food industry can have a significant economic impact. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anahita Izadyar
- Department of Chemistry and Physics, Arkansas State University, Jonesboro, AR, USA
| | - My Ni Van
- Department of Chemistry and Physics, Arkansas State University, Jonesboro, AR, USA
| | - Marcela Miranda
- Department of Chemistry and Physics, Arkansas State University, Jonesboro, AR, USA
| | - Scout Weatherford
- Department of Chemistry and Physics, Arkansas State University, Jonesboro, AR, USA
| | - Elizabeth E Hood
- Arkansas Biosciences Institute and College of Agriculture, Arkansas State University, Jonesboro, AR, USA
| | - Ilwoo Seok
- College of Engineering and Computer Science, Arkansas State University, Jonesboro, AR, USA
| |
Collapse
|
21
|
Sun R, Lv R, Du T, Li Y, Zhang Y, Chen L, Qi Y. Freeze-thaw induced co-assembly of multi-enzyme immobilized AuNPs probes for fast detection of glucose and hypoxanthine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Development and Practical Application of Glucose Biosensor Based on Dendritic Gold Nanostructures Modified by Conducting Polymers. BIOSENSORS 2022; 12:bios12080641. [PMID: 36005036 PMCID: PMC9405657 DOI: 10.3390/bios12080641] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022]
Abstract
In this study, graphite rod (GR) electrodes were electrochemically modified by dendritic gold nanostructures (DGNs) followed by immobilization of glucose oxidase (GOx) in the presence of mediator phenazine methosulfate (PMS). Modified with polyaniline (PANI) or polypyrrole (Ppy), GOx/DGNs/GR electrodes were used in glucose biosensor design. Different electrochemical methods were applied for the registration of glucose concentration, and constant potential amperometry (CPA) was chosen as the best one. PANI and Ppy layers synthesized enzymatically on the GOx/DGNs/GR electrodes extended the linear glucose determination range, the width of which depended on the duration of PANI- and Ppy-layers formation. Enzymatically formed polypyrrole was determined as the most suitable polymer for the modification and formation of the glucose biosensor instead of polyaniline, because it was 1.35 times more sensitive and had a 2.57 times lower limit of detection (LOD). The developed glucose biosensor based on the Ppy/GOx/DGNs/GR electrode was characterized by appropriate sensitivity (59.4 μA mM−1 cm−2), low LOD (0.070 mmol L−1), wide linear glucose determination range (up to 19.9 mmol L−1), good repeatability (8.01%), and appropriate storage stability (33 days). The performance of the developed glucose biosensor was tested in biological samples and beverages.
Collapse
|
23
|
Du Y, Zhang X, Liu P, Yu DG, Ge R. Electrospun nanofiber-based glucose sensors for glucose detection. Front Chem 2022; 10:944428. [PMID: 36034672 PMCID: PMC9403008 DOI: 10.3389/fchem.2022.944428] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a chronic, systemic metabolic disease that leads to multiple complications, even death. Meanwhile, the number of people with diabetes worldwide is increasing year by year. Sensors play an important role in the development of biomedical devices. The development of efficient, stable, and inexpensive glucose sensors for the continuous monitoring of blood glucose levels has received widespread attention because they can provide reliable data for diabetes prevention and diagnosis. Electrospun nanofibers are new kinds of functional nanocomposites that show incredible capabilities for high-level biosensing. This article reviews glucose sensors based on electrospun nanofibers. The principles of the glucose sensor, the types of glucose measurement, and the glucose detection methods are briefly discussed. The principle of electrospinning and its applications and advantages in glucose sensors are then introduced. This article provides a comprehensive summary of the applications and advantages of polymers and nanomaterials in electrospun nanofiber-based glucose sensors. The relevant applications and comparisons of enzymatic and non-enzymatic nanofiber-based glucose sensors are discussed in detail. The main advantages and disadvantages of glucose sensors based on electrospun nanofibers are evaluated, and some solutions are proposed. Finally, potential commercial development and improved methods for glucose sensors based on electrospinning nanofibers are discussed.
Collapse
Affiliation(s)
- Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Xinyi Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
- Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, China
- Shidong Hospital, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Ruiliang Ge
- Department of Outpatient, the Third Afiliated Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
24
|
Morkvenaite-Vilkonciene I, Bucinskas V, Subaciute-Zemaitiene J, Sutinys E, Virzonis D, Dzedzickis A. Development of Electrostatic Microactuators: 5-Year Progress in Modeling, Design, and Applications. MICROMACHINES 2022; 13:1256. [PMID: 36014178 PMCID: PMC9414043 DOI: 10.3390/mi13081256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023]
Abstract
The implementation of electrostatic microactuators is one of the most popular technical solutions in the field of micropositioning due to their versatility and variety of possible operation modes and methods. Nevertheless, such uncertainty in existing possibilities creates the problem of choosing suitable methods. This paper provides an effort to classify electrostatic actuators and create a system in the variety of existing devices. Here is overviewed and classified a wide spectrum of electrostatic actuators developed in the last 5 years, including modeling of different designs, and their application in various devices. The paper provides examples of possible implementations, conclusions, and an extensive list of references.
Collapse
Affiliation(s)
- Inga Morkvenaite-Vilkonciene
- Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, 10257 Vilnius, Lithuania
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Sauletekio 3, 10257 Vilnius, Lithuania
| | - Vytautas Bucinskas
- Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, 10257 Vilnius, Lithuania
| | - Jurga Subaciute-Zemaitiene
- Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, 10257 Vilnius, Lithuania
| | - Ernestas Sutinys
- Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, 10257 Vilnius, Lithuania
| | - Darius Virzonis
- Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, 10257 Vilnius, Lithuania
| | - Andrius Dzedzickis
- Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, 10257 Vilnius, Lithuania
| |
Collapse
|
25
|
BiVO4-based coatings for non-enzymatic photoelectrochemical glucose determination. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Bubniene US, Ratautaite V, Ramanavicius A, Bucinskas V. Conducting Polymers for the Design of Tactile Sensors. Polymers (Basel) 2022; 14:polym14152984. [PMID: 35893948 PMCID: PMC9370767 DOI: 10.3390/polym14152984] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
This paper provides an overview of the application of conducting polymers (CPs) used in the design of tactile sensors. While conducting polymers can be used as a base in a variety of forms, such as films, particles, matrices, and fillers, the CPs generally remain the same. This paper, first, discusses the chemical and physical properties of conducting polymers. Next, it discusses how these polymers might be involved in the conversion of mechanical effects (such as pressure, force, tension, mass, displacement, deformation, torque, crack, creep, and others) into a change in electrical resistance through a charge transfer mechanism for tactile sensing. Polypyrrole, polyaniline, poly(3,4-ethylenedioxythiophene), polydimethylsiloxane, and polyacetylene, as well as application examples of conducting polymers in tactile sensors, are overviewed. Attention is paid to the additives used in tactile sensor development, together with conducting polymers. There is a long list of additives and composites, used for different purposes, namely: cotton, polyurethane, PDMS, fabric, Ecoflex, Velostat, MXenes, and different forms of carbon such as graphene, MWCNT, etc. Some design aspects of the tactile sensor are highlighted. The charge transfer and operation principles of tactile sensors are discussed. Finally, some methods which have been applied for the design of sensors based on conductive polymers, are reviewed and discussed.
Collapse
Affiliation(s)
- Urte Samukaite Bubniene
- Department of Mechatronics, Robotics and Digital Manufacturing, Faculty of Mechanics, Vilnius Gediminas Technical University, J. Basanaviciaus Str. 28, LT-03224 Vilnius, Lithuania;
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania;
- Correspondence: (U.S.B.); (A.R.)
| | - Vilma Ratautaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania;
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania;
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
- Correspondence: (U.S.B.); (A.R.)
| | - Vytautas Bucinskas
- Department of Mechatronics, Robotics and Digital Manufacturing, Faculty of Mechanics, Vilnius Gediminas Technical University, J. Basanaviciaus Str. 28, LT-03224 Vilnius, Lithuania;
| |
Collapse
|
27
|
Khan M, Nagal V, Masrat S, Tuba T, Alam S, Bhat KS, Wahid I, Ahmad R. Vertically Oriented Zinc Oxide Nanorod-Based Electrolyte-Gated Field-Effect Transistor for High-Performance Glucose Sensing. Anal Chem 2022; 94:8867-8873. [PMID: 35699939 DOI: 10.1021/acs.analchem.1c05630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterial-based biosensors are a promising fit for portable and field-deployable diagnosis sensor devices due to their mass production, miniaturization, and integration capabilities. However, the fabrication of highly stable and reproducible biosensor devices is challenging. In this work, we grow a vertically oriented architecture of zinc oxide nanorods onto the active working area (i.e., the channel between the source and drain) of a field-effect transistor (FET) using a low-temperature hydrothermal method. The glucose oxidase enzyme was immobilized on the zinc oxide nanorod surface by a physical adsorption method to fabricate the electrolyte-gated FET-based glucose biosensor. The electrical properties of the electrolyte-gated FET biosensor were measured with different glucose concentrations. We found a linear increase in current up to 80 mM glucose concentration with high sensitivity (74.78 μA/mMcm2) and a low detection limit (∼0.05 mM). We illustrate a highly reproducible fabrication process of zinc oxide nanorod-based FETs, where vertically grown nanorods with a higher surface-to-volume ratio enhance the enzyme immobilization, provide a microenvironment for longer enzyme activity, and translate to better glucose sensing parameters. Additionally, our electrolyte-gated FET biosensor showed promising application in freshly drawn mouse blood samples. These findings suggest a great opportunity to translate into practical high-performance biosensors for a broad range of analytes.
Collapse
Affiliation(s)
- Marya Khan
- Sensors Lab, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Vandana Nagal
- Quantum and Nano Photonics Research Laboratory, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Sakeena Masrat
- Sensors Lab, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Talia Tuba
- Sensors Lab, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Shamshad Alam
- Department of Pharmacology & Therapeutics, Rosewell Park Cancer Institute, Elm Street and Carlton Street, Buffalo, New York 14263, United States
| | - Kiesar Sideeq Bhat
- HP-NTU Digital Manufacturing Laboratory and Department of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798.,Department of Bioresources, University of Kashmir, Hazratbal, Srinagar 190006, India
| | - Iram Wahid
- Department of Biosciences, Integral University, Lucknow 226026, India
| | - Rafiq Ahmad
- Sensors Lab, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
28
|
Osuna V, Vega-Rios A, Zaragoza-Contreras EA, Estrada-Moreno IA, Dominguez RB. Progress of Polyaniline Glucose Sensors for Diabetes Mellitus Management Utilizing Enzymatic and Non-Enzymatic Detection. BIOSENSORS 2022; 12:137. [PMID: 35323407 PMCID: PMC8946794 DOI: 10.3390/bios12030137] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 05/21/2023]
Abstract
Glucose measurement is a fundamental tool in the daily care of Diabetes Mellitus (DM) patients and healthcare professionals. While there is an established market for glucose sensors, the rising number of DM cases has promoted intensive research to provide accurate systems for glucose monitoring. Polyaniline (PAni) is a conductive polymer with a linear conjugated backbone with sequences of single C-C and double C=C bonds. This unique structure produces attractive features for the design of sensing systems such as conductivity, biocompatibility, environmental stability, tunable electrochemical properties, and antibacterial activity. PAni-based glucose sensors (PBGS) were actively developed in past years, using either enzymatic or non-enzymatic principles. In these devices, PAni played roles as a conductive material for electron transfer, biocompatible matrix for enzymatic immobilization, or sensitive layer for detection. In this review, we covered the development of PBGS from 2015 to the present, and it is not even exhaustive; it provides an overview of advances and achievements for enzymatic and non-enzymatic PBGB PBGS for self-monitoring and continuous blood glucose monitoring. Additionally, the limitations of PBGB PBGS to advance into robust and stable technology and the challenges associated with their implementation are presented and discussed.
Collapse
Affiliation(s)
- Velia Osuna
- CONACYT-CIMAV, SC, Av. Miguel de Cervantes #120, Chihuahua C.P. 31136, Mexico; (V.O.); (I.A.E.-M.)
| | - Alejandro Vega-Rios
- Centro de Investigación en Materiales Avanzados, SC, Av. Miguel de Cervantes #120, Chihuahua C.P. 31136, Mexico; (A.V.-R.); (E.A.Z.-C.)
| | - Erasto Armando Zaragoza-Contreras
- Centro de Investigación en Materiales Avanzados, SC, Av. Miguel de Cervantes #120, Chihuahua C.P. 31136, Mexico; (A.V.-R.); (E.A.Z.-C.)
| | | | - Rocio B. Dominguez
- CONACYT-CIMAV, SC, Av. Miguel de Cervantes #120, Chihuahua C.P. 31136, Mexico; (V.O.); (I.A.E.-M.)
| |
Collapse
|
29
|
Efficient electrochemical detection of hazardous para-nitrophenol based on a carbon paste electrode modified with green synthesized gold/iron oxide nanocomposite. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02094-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Sun KW, Wang F, Ma TM, Zeng H. Investigation on impact of mutual interactions between elements of Ag nano-particle core-MOF material shell nano-complex and incorporated hemoglobin on electro-catalysis on H2O2 electro-reduction. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02070-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
El-Kholy AI, Abdel Fadeel D, Nasr M, El-Sherbiny I, Fadel M. (Rose Bengal)/(Eosin Yellow)-Gold-Polypyrrole Hybrids: A Design for Dual Photo-Active Nano-System with Ultra-High Loading Capacity. Drug Des Devel Ther 2021; 15:5011-5023. [PMID: 34938068 PMCID: PMC8685768 DOI: 10.2147/dddt.s338922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/19/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Enhancement of the photodynamic/photothermal efficiency of two water-soluble dyes, rose bengal (RB) and eosin yellow (EY), via conjugation to a polymeric nano-system gold-polypyrrole nanoparticle (AuPpy NPs). Methodology A multi-step synthesis method and an in situ one-pot synthesis method were used. Loading percentage, particle size, zeta potential, morphology, UV-Vis-NIR spectrophotometry and in vitro photothermal activity were measured. Then, both hybrid nanocomposites were examined for their cytotoxicity and photocytotoxicity on HepG2 cell line as a model for cancer cells. Results Dyes loaded in the traditional multi-step method did not exceed 9% w/w, while in the one-pot synthesis method they reached ~67% w/w and ~75% w/w for EY-AuPpy NPs and RB-AuPpy NPs, respectively. UV-Vis-NIR spectrophotometry showed that both nano-systems exhibited intense absorption in the NIR region. The mean size of the nanoparticles was ~31.5 nm (RB-AuPpy NPs) and ~33.6 nm (EY-AuPpy NPs) with zeta potential values of −26.5 mV and −33 mV, respectively. TEM imaging revealed the morphology of both hybrids, showing ultra-nano spherical-shaped gold cores in the case of RB-AuPpy NPs, and different shapes of larger gold cores in the case of EY-AuPpy NPs, both embedded in the polymer film. Conjugation to AuPpy was found to significantly reduce the dark cytotoxicity of both RB and EY, preserving the photocytotoxicity of EY and enhancing the photocytotoxicity of RB. Conclusion Gold-polypyrrole nanoparticles represent an effective delivery system to improve the photodynamic and photothermal properties of RB and EY. The in situ one-pot synthesis method provided a means to greatly increase the loading capacity of AuPpy NPs. While both hybrid nanocomposites exhibited greatly diminished dark cytotoxicity, RB-AuPpy NPs showed significantly enhanced photocytotoxicity compared to the free dyes. This pattern enables the safe use of both dyes in high concentrations with sustained action, reducing dose frequency and side effects.
Collapse
Affiliation(s)
- Abdullah I El-Kholy
- Department of Medical Applications of Laser, Pharmaceutical Nano-Technology Unit, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza, Egypt
| | - Doaa Abdel Fadeel
- Department of Medical Applications of Laser, Pharmaceutical Nano-Technology Unit, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ibrahim El-Sherbiny
- Nanomaterials Lab, Center for Materials Science, Zewail City of Science and Technology, 6th October City, Giza, Egypt
| | - Maha Fadel
- Department of Medical Applications of Laser, Pharmaceutical Nano-Technology Unit, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza, Egypt
| |
Collapse
|
32
|
Babeli I, Puiggalí-Jou A, Roa JJ, Ginebra MP, García-Torres J, Alemán C. Hybrid conducting alginate-based hydrogel for hydrogen peroxide detection from enzymatic oxidation of lactate. Int J Biol Macromol 2021; 193:1237-1248. [PMID: 34742851 DOI: 10.1016/j.ijbiomac.2021.10.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
A conducting nanocomposite hydrogel is developed for the detection of L-lactate. The hydrogel is based on a mixture of alginate (Alg) and poly(3,4-ethylenedioxythiophene) (PEDOT), which is loaded with gold nanoparticles (GNP). In this novel hydrogel, Alg provides 3D structural support and flexibility, PEDOT confers conductivity and sensing capacity, and GNP provides signal amplification with respect to simple voltammetric and chronoamperometric response. The synergistic combination of the properties provided by each component results in a new flexible nanocomposite with outstanding capacity to detect hydrogen peroxide, which has been used to detect the oxidation of L-lactate. The hydrogel detects hydrogen peroxide with linear response and limits of detection of 0.91 μM and 0.02 μM by cyclic voltammetry and chronoamperometry, respectively. The hydrogel is functionalized with lactate oxidase, which catalyzes the oxidation of L-lactate to pyruvate, forming hydrogen peroxide. For L-lactate detection, the functionalized biosensor works in two linear regimes, one for concentrations lower than 5 mM with a limit of detection of 0.4 mM, and the other for concentrations up to 100 mM with a limit of detection of 3.5 mM. Because of its linear range interval, the developed biosensor could be suitable for a wide number of biological fluids.
Collapse
Affiliation(s)
- Ismael Babeli
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Edueard Maristany, 10-14, 08019 Barcelona, Spain
| | - Anna Puiggalí-Jou
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Edueard Maristany, 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain.
| | - Joan Josep Roa
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain; Center for Research in Structural Integrity, Reliability and Micromechanics of Materials, Departament de Ciència i Enginyeria de Materials, Universitat Politècnica de Catalunya, 08030 Barcelona, Spain
| | - Maria-Pau Ginebra
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain; Biomaterials, Biomechanics and Tissue Engineering Group, Departament de Ciència i Enginyeria de Materials, Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Jose García-Torres
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain; Biomaterials, Biomechanics and Tissue Engineering Group, Departament de Ciència i Enginyeria de Materials, Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain.
| | - Carlos Alemán
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Edueard Maristany, 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
33
|
Spiky Durian-Shaped Au@Ag Nanoparticles in PEDOT:PSS for Improved Efficiency of Organic Solar Cells. MATERIALS 2021; 14:ma14195591. [PMID: 34639989 PMCID: PMC8509674 DOI: 10.3390/ma14195591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022]
Abstract
The localized surface plasmon resonance (LSPR) effects of nanoparticles (NPs) are effective for enhancing the power conversion efficiency (PCE) of organic solar cells (OSCs). In this study, spiky durian-shaped Au@Ag core-shell NPs were synthesized and embedded in the hole transport layer (HTL) (poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)) of PTB7:PC71BM bulk-heterojunction OSCs. Different volume ratios of PEDOT:PSS-to-Au@Ag NPs (8%, 10%, 12%, 14%, and 16%) were prepared to optimize synthesis conditions for increased efficiency. The size properties and surface morphology of the NPs and HTL were analyzed using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). UV–Vis spectroscopy and current density–voltage (J-V) analysis were used to investigate the electrical performance of the fabricated OSCs. From the results, we observed that the OSC with a volume ratio of 14% (PEDOT:PSS–to–Au@Ag NPs) performed better than others, where the PCE was improved from 2.50% to 4.15%, which is a 66% increase compared to the device without NPs.
Collapse
|
34
|
Hussain M, Hasnain S, Khan NA, Bano S, Zuhra F, Ali M, Khan M, Abbas N, Ali A. Design and Fabrication of a Fast Response Resistive-Type Humidity Sensor Using Polypyrrole (Ppy) Polymer Thin Film Structures. Polymers (Basel) 2021; 13:polym13183019. [PMID: 34577920 PMCID: PMC8468344 DOI: 10.3390/polym13183019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/22/2023] Open
Abstract
In this research article, an organic polymer based polypyrrole (Ppy) composite material has been synthesized and analyzed for the design and fabrication purposes of a fast-responsive, highly sensitive, and an economical resistive-type novel humidity detection sensor. This humidity sensor most suitably serves the purpose for industrial humidity (i.e., values ranging from low to high) detection applications. First, a polypyrrole composite material (a mixture of polypyrrole, polypyrrole-NiO, polypyrrole-CeO2, and polypyrrole-Nb2O5) has been synthesized by chemical oxidative polymerization method, and then is treated at various temperatures, i.e., 100, 150 and 200 °C, respectively. After this treatment, the synthesized samples were then characterized by using FTIR, SEM, and DTA/TGA techniques for analyzing humidity sensing properties. The polypyrrole samples with the best morphological structure and properties were then incorporated on interdigitated electrodes. For the fabrication purposes of this thin film structure, at first a few drops of polyvinyl alcohol (PVA) were placed over interdigitated electrodes (IDE) and then the synthesized polypyrrole composite was uniformly deposited in the form of a thin film over it. The plots show that this is a good resistive-type humidity detection device for the relative humidity range of 30% to 90%. The response and recovery times of this newly fabricated humidity sensor were reported to be the same as 128 s at room temperature. Additionally, the stability and the repeatability response behavior of this Ppy sensor were verified up to five cycles of multiple repetitions. This presents an excellent stability and repeatability performance of the sensor. Furthermore, the capacitances versus humidity response and recovery properties of the designed sensor were studied too. This illustrates an excellent capacitive verses humidity response and shows a linear and an active behavior. Lastly, the experimental result proves that polypyrrole composite thin film shows a reasonable best performance up to a temperature of 100 °C.
Collapse
Affiliation(s)
- Mushahid Hussain
- Department of Electronics, University of Peshawar, Peshawar 25120, Pakistan; (M.H.); (N.A.K.); (M.K.)
| | - Saqib Hasnain
- Department of Mechatronics Engineering, University of Engineering and Technology, Taxila 47050, Pakistan;
| | - Nadir Ali Khan
- Department of Electronics, University of Peshawar, Peshawar 25120, Pakistan; (M.H.); (N.A.K.); (M.K.)
| | - Shehar Bano
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China;
| | - Fazeelat Zuhra
- Department of Chemistry, University of Peshawar, Peshawar 25120, Pakistan;
| | - Muhammad Ali
- Department of Physics, University of Peshawar, Peshawar 25120, Pakistan;
| | - Munawar Khan
- Department of Electronics, University of Peshawar, Peshawar 25120, Pakistan; (M.H.); (N.A.K.); (M.K.)
| | - Naseem Abbas
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 136-791, Korea
- Correspondence: (N.A.); (A.A.)
| | - Ahsan Ali
- Department of Mechanical Engineering, Gachon University, Seongnam-Si 13120, Korea
- Correspondence: (N.A.); (A.A.)
| |
Collapse
|
35
|
Settu K, Chiu PT, Huang YM. Laser-Induced Graphene-Based Enzymatic Biosensor for Glucose Detection. Polymers (Basel) 2021; 13:2795. [PMID: 34451332 PMCID: PMC8400493 DOI: 10.3390/polym13162795] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 02/03/2023] Open
Abstract
Laser-induced graphene (LIG) has recently been receiving increasing attention due to its simple fabrication and low cost. This study reports a flexible laser-induced graphene-based electrochemical biosensor fabricated on a polymer substrate by the laser direct engraving process. For this purpose, a 450 nm UV laser was employed to produce a laser-induced graphene electrode (LIGE) on a polyimide substrate. After the laser engraving of LIGE, the chitosan-glucose oxidase (GOx) composite was immobilized on the LIGE surface to develop the biosensor for glucose detection. It was observed that the developed LIGE biosensor exhibited good amperometric responses toward glucose detection over a wide linear range up to 8 mM. The GOx/chitosan-modified LIGE biosensor showed high sensitivity of 43.15 µA mM-1 cm-2 with a detection limit of 0.431 mM. The interference studies performed with some possible interfering compounds such as ascorbic acid, uric acid, and urea exhibited no interference as there was no difference observed in the amperometric glucose detection. It was suggested that the LIGE-based biosensor proposed herein was easy to prepare and could be used for low-cost, rapid, and sensitive/selective glucose detection.
Collapse
Affiliation(s)
- Kalpana Settu
- Department of Electrical Engineering, National Taipei University, New Taipei City 23741, Taiwan; (P.-T.C.); (Y.-M.H.)
| | | | | |
Collapse
|