1
|
Basavaraju N, Basavakumar Roopa V, Peter M, Medikonda J, Bansal S, Namboothiri PK. Enhanced Piezoresistive Cryogel: MWCNT Nanocomposite-Based Wearable Sensors for Real-Time Human Gait and Exercise Monitoring. ACS OMEGA 2025; 10:4940-4951. [PMID: 39959115 PMCID: PMC11822496 DOI: 10.1021/acsomega.4c10391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/18/2025]
Abstract
The piezoresistive properties of the modified cryogels were studied. The pressure sensitivity of the cryogel:MWCNT (CG:MWCNT) sensors for different concentrations of MWCNTs are studied. FTIR characterization confirms the formation of CG and CG:MWCNT nanocomposites. Porosity was optimized to enhance the conductivity of the nanocomposite by studying various concentrations. The highly porous structure and the elastic nature of the CG:MWCNT sensors resulted in a change in the electrical percolation even for subtle pressure application, and a linear change in pressure was observed up to 700 kPa. The minimum and maximum pressures detected were 0.4 and 700 kPa, respectively. Electromechanical tests confirm high responsive time and no effect of pore size after stability test, which makes the prepared sensor more span of usage in healthcare conditions. Further, a cryogel:MWCNT wearable wireless sensor module was developed, and the gait signals were acquired wirelessly. The prepared sensor system is able to differentiate between normal, fast, and slow gaits. FFT analysis has been performed to understand the repeatability of signals. Overall, the study emphasizes the potential of the developed sensor system in assisting healthcare professionals, researchers, and individuals in assessing gait characteristics and tracking exercise performance.
Collapse
Affiliation(s)
- Niranjan
Deggenahalli Basavaraju
- Department of Biomedical
Engineering, Manipal Institute of Technology,
Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Vaidehi Basavakumar Roopa
- Department of Biomedical
Engineering, Manipal Institute of Technology,
Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Mathew Peter
- Department of Biomedical
Engineering, Manipal Institute of Technology,
Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Jeevan Medikonda
- Department of Biomedical
Engineering, Manipal Institute of Technology,
Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Saumya Bansal
- Department of Biomedical
Engineering, Manipal Institute of Technology,
Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pramod Kesavan Namboothiri
- Department of Biomedical
Engineering, Manipal Institute of Technology,
Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
2
|
Tuna B, Arısoy P, Oktay Başeğmez Hİ, Baydemir Peşint G. Advancing wound healing: controlled release of tannic acid via epitope imprinted antimicrobial spongy cover material. World J Microbiol Biotechnol 2025; 41:59. [PMID: 39900877 PMCID: PMC11790693 DOI: 10.1007/s11274-025-04266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/16/2025] [Indexed: 02/05/2025]
Abstract
The increasing resistance of microorganisms to conventional antibiotics calls for alternative antimicrobial strategies. This study introduces a novel approach to acute wound healing by incorporating epitope-imprinted spongy cover materials with antimicrobial properties, using Tannic acid (TA) as the active agent within biocompatible cryogels imprinted with gallic acid. The spongy materials were synthesized and characterized through Fourier Transform Infrared Spectroscopy (FTIR), swelling tests, and Scanning Electron Microscopy (SEM) to assess their structural and physicochemical properties. The antimicrobial efficacy of the cryogels, loaded with 1.5, 3, 5 mg/mL of TA concentrations, was tested against Staphylococcus aureus and Escherichia coli, common pathogens in wound infections. The highest inhibition zone was determined to be 15 mm for S. aureus and 12 mm for E. coli. Maximum TA adsorption was 210.27 mg/g for eMIP and 24.74 mg/g for NIP. Cumulative release studies revealed the highest release rate occurred within the first 2 h. TA release kinetics indicated a non-Fickian diffusion mechanism. Additionally, the biocompatibility and potential cytotoxicity of the spongy materials, including TA-loaded variants, were assessed using the MTT assay on cultured cells. The results confirmed that the spongy materials are non-toxic and do not inhibit cell proliferation, supporting their suitability for acute wound healing. This study demonstrates that TA-loaded epitope-imprinted Poly(2-hydroxyethyl methacrylate) (pHEMA)-based spongy materials possess antimicrobial properties, making them potential candidates for wound and burn dressing applications.
Collapse
Affiliation(s)
- Büşra Tuna
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Sarıçam, 01250, Adana, Türkiye
| | - Pırıl Arısoy
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Sarıçam, 01250, Adana, Türkiye
| | - Hatice İmge Oktay Başeğmez
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Sarıçam, 01250, Adana, Türkiye
| | - Gözde Baydemir Peşint
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Sarıçam, 01250, Adana, Türkiye.
| |
Collapse
|
3
|
Li F, XinHuang, Wang R, Li Y, Wu L, Qiao X, Zhong Y, Gong G, Huang W. Collagen-based materials in male genitourinary diseases and tissue regeneration. COLLAGEN AND LEATHER 2024; 6:36. [DOI: 10.1186/s42825-024-00185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025]
Abstract
AbstractMale genitourinary dysfunction causes serious physical or mental distress, such as infertility and psychological harm, which leads to impaired quality of life. Current conventional treatments involving drug therapy, surgical repair, and tissue grafting have a limited effect on recovering the function and fertility of the genitourinary organs. To address these limitations, various biomaterials have been explored, with collagen-based materials increasingly gaining attention for reconstructing the male genitourinary system due to their superior biocompatibility, biodegradability, low antigenicity, biomimetic 3D matrix characteristics, hemostatic efficacy, and tissue regeneration capabilities. This review covers the recent biomedical applications of collagen-based materials including treatment of erectile dysfunction, premature ejaculation, penile girth enlargement, prostate cancer, Peyronie's disease, chronic kidney disease, etc. Although there are relatively few clinical trials, the promising results of the existing studies on animal models reveal a bright future for collagen-based materials in the treatment of male genitourinary diseases.
Graphic Abstract
Collapse
|
4
|
Lai Y, Xiao X, Huang Z, Duan H, Yang L, Yang Y, Li C, Feng L. Photocrosslinkable Biomaterials for 3D Bioprinting: Mechanisms, Recent Advances, and Future Prospects. Int J Mol Sci 2024; 25:12567. [PMID: 39684279 DOI: 10.3390/ijms252312567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Constructing scaffolds with the desired structures and functions is one of the main goals of tissue engineering. Three-dimensional (3D) bioprinting is a promising technology that enables the personalized fabrication of devices with regulated biological and mechanical characteristics similar to natural tissues/organs. To date, 3D bioprinting has been widely explored for biomedical applications like tissue engineering, drug delivery, drug screening, and in vitro disease model construction. Among different bioinks, photocrosslinkable bioinks have emerged as a powerful choice for the advanced fabrication of 3D devices, with fast crosslinking speed, high resolution, and great print fidelity. The photocrosslinkable biomaterials used for light-based 3D printing play a pivotal role in the fabrication of functional constructs. Herein, this review outlines the general 3D bioprinting approaches related to photocrosslinkable biomaterials, including extrusion-based printing, inkjet printing, stereolithography printing, and laser-assisted printing. Further, the mechanisms, advantages, and limitations of photopolymerization and photoinitiators are discussed. Next, recent advances in natural and synthetic photocrosslinkable biomaterials used for 3D bioprinting are highlighted. Finally, the challenges and future perspectives of photocrosslinkable bioinks and bioprinting approaches are envisaged.
Collapse
Affiliation(s)
- Yushang Lai
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiong Xiao
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziwei Huang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongying Duan
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liping Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuchu Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenxi Li
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Feng
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Han A, Chang YH. Physicochemical, structural, and in-vitro release properties of carboxymethyl cellulose-based cryogel beads incorporating resveratrol-loaded microparticles for colon-targeted delivery system. Food Chem 2024; 457:140153. [PMID: 38908240 DOI: 10.1016/j.foodchem.2024.140153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
The objective of this study was to investigate the physicochemical, structural, and in vitro release properties of carboxymethyl cellulose (CMC)-based cryogel beads incorporating resveratrol-loaded microparticles (MP) for colon-targeted delivery system. CMC-based cryogel beads were produced by ionic cross-linking with different concentrations (2%, 3%, and 4%) of AlCl3. Based on FE-SEM images, CMC-based cryogel beads showed a smoother surface and more compact internal structure with increasing AlCl3 concentrations, which was proven to be due to the new cross-linking between the -COO- group of CMC and Al3+ by FT-IR analysis. The encapsulation efficiency of the cryogel beads was significantly increased from 79.48% to 85.74% by elevating the concentrations of AlCl3 from 2% to 4%, respectively. In vitro release study showed that all CMC-based cryogel beads had higher stability for resveratrol than MP in simulated gastric conditions and can efficiently deliver resveratrol to colon without the premature release.
Collapse
Affiliation(s)
- Areum Han
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoon Hyuk Chang
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
6
|
Behrendt F, Gottschaldt M, Schubert US. Surface functionalized cryogels - characterization methods, recent progress in preparation and application. MATERIALS HORIZONS 2024; 11:4600-4637. [PMID: 39021096 DOI: 10.1039/d4mh00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cryogels are polymeric materials with a sponge-like microstructure and have attracted significant attention in recent decades. Research has focused on their composition, fabrication techniques, characterization methods as well as potential or existing fields of applications. The use of functional precursors or functionalizing ligands enables the preparation of cryogels with desired properties such as biocompatibility or responsivity. They can also exhibit adsorptive properties or can be used for catalytical purposes. Although a very brief overview about several functional (macro-)monomers and functionalizing ligands has been provided by previous reviewers for certain cryogel applications, so far there has been no particular focus on the evaluation of the functionalization success and the characterization methods used. This review will provide a comprehensive overview of different characterization methods most recently used for the evaluation of cryogel functionalization. Furthermore, new functional (macro-)monomers and subsequent cryogel functionalization strategies are discussed, based on synthetic polymers, biopolymers and a combination of both. This review highlights the importance of the functionalization aspect in cryogel research in order to produce materials with tailored properties for certain applications.
Collapse
Affiliation(s)
- Florian Behrendt
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Gottschaldt
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Abbe Center of Photonics (ACP), Albert-Einstein-Straße 6, 07743 Jena, Germany
| |
Collapse
|
7
|
Zhao X, Li N, Zhang Z, Hong J, Zhang X, Hao Y, Wang J, Xie Q, Zhang Y, Li H, Liu M, Zhang P, Ren X, Wang X. Beyond hype: unveiling the Real challenges in clinical translation of 3D printed bone scaffolds and the fresh prospects of bioprinted organoids. J Nanobiotechnology 2024; 22:500. [PMID: 39169401 PMCID: PMC11337604 DOI: 10.1186/s12951-024-02759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Bone defects pose significant challenges in healthcare, with over 2 million bone repair surgeries performed globally each year. As a burgeoning force in the field of bone tissue engineering, 3D printing offers novel solutions to traditional bone transplantation procedures. However, current 3D-printed bone scaffolds still face three critical challenges in material selection, printing methods, cellular self-organization and co-culture, significantly impeding their clinical application. In this comprehensive review, we delve into the performance criteria that ideal bone scaffolds should possess, with a particular focus on the three core challenges faced by 3D printing technology during clinical translation. We summarize the latest advancements in non-traditional materials and advanced printing techniques, emphasizing the importance of integrating organ-like technologies with bioprinting. This combined approach enables more precise simulation of natural tissue structure and function. Our aim in writing this review is to propose effective strategies to address these challenges and promote the clinical translation of 3D-printed scaffolds for bone defect treatment.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Na Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Ziqi Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Jinjia Hong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Jia Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Qingpeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Huifei Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Meixian Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Pengfei Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Xiuyun Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| |
Collapse
|
8
|
Jirvankar P, Agrawal S, Chambhare N, Agrawal R. Harnessing Biopolymer Gels for Theranostic Applications: Imaging Agent Integration and Real-Time Monitoring of Drug Delivery. Gels 2024; 10:535. [PMID: 39195064 DOI: 10.3390/gels10080535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Biopolymer gels have gained tremendous potential for therapeutic applications due to their biocompatibility, biodegradability, and ability to adsorb and bind biological fluids, making them attractive for drug delivery and therapy. In this study, the versatility of biopolymer gels is explored in theranostic backgrounds, with a focus on integrating imaging features and facilitating real-time monitoring of drug delivery. Different methods of delivery are explored for incorporating imaging agents into biopolymer gels, including encapsulation, surface functionalization, nanoparticle encapsulation, and layer-by-layer assembly techniques. These methods exhibit the integration of agents and real-time monitoring drug delivery. We summarize the synthesis methods, general properties, and functional mechanisms of biopolymer gels, demonstrating their broad applications as multimodal systems for imaging-based therapeutics. These techniques not only enable multiple imaging but also provide signal enhancement and facilitate imaging targets, increasing the diagnostic accuracy and therapeutic efficacy. In addition, current techniques for incorporating imaging agents into biopolymer gels are discussed, as well as their role in precise drug delivery and monitoring.
Collapse
Affiliation(s)
- Pranita Jirvankar
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha 442001, Maharashtra, India
| | - Surendra Agrawal
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha 442001, Maharashtra, India
| | - Nikhita Chambhare
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha 442001, Maharashtra, India
| | - Rishabh Agrawal
- Bajiraoji Karanjekar College of Pharmacy, Sakoli 441802, Maharashtra, India
| |
Collapse
|
9
|
Zhang Y, Wang J. Current status and prospects of gelatin and its derivatives in oncological applications: Review. Int J Biol Macromol 2024; 274:133590. [PMID: 38996884 DOI: 10.1016/j.ijbiomac.2024.133590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Treating cancer remains challenging due to the substantial side effects and unfavourable pharmacokinetic characteristics of antineoplastic medications, despite the progress made in comprehending the properties and actions of tumour cells in recent years. The advancement of biomaterials, such as stents, implants, personalised drug delivery systems, tailored grafts, cell sheets, and other transplantable materials, has brought about a significant transformation in healthcare and medicine in recent years. Gelatin is a very adaptable natural polymer that finds extensive application in healthcare-related industries owing to its favourable characteristics, including biocompatibility, biodegradability, affordability, and the presence of accessible chemical groups. Gelatin is used as a biomaterial in the biomedical sector for the creation of drug delivery systems (DDSs) since it may be applied to various synthetic procedures. Gelatin nanoparticles (NPs) have been extensively employed as carriers for drugs and genes, specifically targeting diseased tissues such as cancer, tuberculosis, and HIV infection, as well as treating vasospasm and restenosis. This is mostly due to their biocompatibility and ability to degrade naturally. Gelatins possess a diverse array of potential applications that require more elucidation. This review focuses on the use of gelatin and its derivatives in the diagnosis and treatment of cancer. The advancement of biomaterials and bioreactors, coupled with the increasing understanding of emerging applications for biomaterials, has enabled progress in enhancing the efficacy of tumour treatment.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jia Wang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China.
| |
Collapse
|
10
|
Yaman SM, Demir D, Bölgen N. Design of gelatin cryogel scaffolds with the ability to release simvastatin for potential bone tissue engineering applications. Biomed Mater 2024; 19:055019. [PMID: 39025109 DOI: 10.1088/1748-605x/ad651e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Tissue engineering aims to improve or restore damaged tissues by using scaffolds, cells and bioactive agents. In tissue engineering, one of the most important concepts is the scaffold because it has a key role in keeping up and promoting the growth of the cells. It is also desirable to be able to load these scaffolds with drugs that induce tissue regeneration/formation. Based on this, in our study, gelatin cryogel scaffolds were developed for potential bone tissue engineering applications and simvastatin loading and release studies were performed. Simvastatin is lipoliphic in nature and this form is called inactive simvastatin (SV). It is modified to be in hydrophilic form and converted to the active form (SVA). For our study's drug loading and release process, simvastatin was used in both inactive and active forms. The blank cryogels and drug-loaded cryogels were prepared at different glutaraldehyde concentrations (1, 2, and 3%). The effect of the crosslinking agent and the amount of drug loaded were discussed with morphological and physicochemical analysis. As the glutaraldehyde concentration increased gradually, the pores size of the cryogels decreased and the swelling ratio decreased. For the release profile of simvastatin in both forms, we can say that it depended on the form (lipophilic and hydrophilic) of the loaded simvastatin.
Collapse
Affiliation(s)
- Suzan Melis Yaman
- Chemical Engineering Department, Faculty of Engineering, Mersin University, Mersin 33110, Turkey
| | - Didem Demir
- Chemistry and Chemical Process Technologies Department, Mersin Tarsus Organized Industrial Zone Technical Sciences Vocational School, Tarsus University, Mersin 33100, Turkey
| | - Nimet Bölgen
- Chemical Engineering Department, Faculty of Engineering, Mersin University, Mersin 33110, Turkey
| |
Collapse
|
11
|
Arabpour Z, Abedi F, Salehi M, Baharnoori SM, Soleimani M, Djalilian AR. Hydrogel-Based Skin Regeneration. Int J Mol Sci 2024; 25:1982. [PMID: 38396661 PMCID: PMC10888449 DOI: 10.3390/ijms25041982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The skin is subject to damage from the surrounding environment. The repair of skin wounds can be very challenging due to several factors such as severe injuries, concomitant infections, or comorbidities such as diabetes. Different drugs and wound dressings have been used to treat skin wounds. Tissue engineering, a novel therapeutic approach, revolutionized the treatment and regeneration of challenging tissue damage. This field includes the use of synthetic and natural biomaterials that support the growth of tissues or organs outside the body. Accordingly, the demand for polymer-based therapeutic strategies for skin tissue defects is significantly increasing. Among the various 3D scaffolds used in tissue engineering, hydrogel scaffolds have gained special significance due to their unique properties such as natural mimicry of the extracellular matrix (ECM), moisture retention, porosity, biocompatibility, biodegradability, and biocompatibility properties. First, this article delineates the process of wound healing and conventional methods of treating wounds. It then presents an examination of the structure and manufacturing methods of hydrogels, followed by an analysis of their crucial characteristics in healing skin wounds and the most recent advancements in using hydrogel dressings for this purpose. Finally, it discusses the potential future advancements in hydrogel materials within the realm of wound healing.
Collapse
Affiliation(s)
- Zohreh Arabpour
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Farshad Abedi
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud 3614773955, Iran;
| | - Seyed Mahbod Baharnoori
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Mohammad Soleimani
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| |
Collapse
|
12
|
Brebu M, Dumitriu RP, Pamfil D, Butnaru E, Stoleru E. Riboflavin mediated UV crosslinking of chitosan-gelatin cryogels for loading of hydrophobic bioactive compounds. Carbohydr Polym 2024; 324:121521. [PMID: 37985057 DOI: 10.1016/j.carbpol.2023.121521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023]
Abstract
Chitosan-gelatin cryogels with good loading capacity of hydrophobic compounds were successfully obtained by UV-induced crosslinking. Using riboflavin as photoinitiator was a suitable alternative to classical carbodiimide crosslinking in obtaining carrier matrices for bioactive hydrophobic compounds. Chitosan had a double role, acting both as a base polymer for the hydrogel network and as co-initiator in riboflavin photo-crosslinking. This co-initiator role of chitosan is due to its electron donor capacity, being well known as a Lewis base type macromolecule. The rheological behaviour of the chitosan-gelatin hydrogel precursor solutions was greatly influenced by riboflavin addition as well as by UV irradiation. As a consequence, the temperature of the sol-gel transition during cooling decreased to 25.5 °C. Compared with classical carbodiimide crosslinking, UV irradiation lead to gels with increased network stability, enhanced elastic behaviour, higher structural strength and almost total stress recovery yield (99 %), the latter indicating self-healing capacity. The cryogels manifested pH responsive swelling, this being highest at close to neutral pH of 7.4. Although hydrophilic in nature, the chitosan-gelatin cryogels crosslinked under the combined effect of riboflavin and UV exposure possess the necessary chemical functionality and morphology that allowed successful embedding of hydrophobic clove essential oil. This was loaded by immersion or fumigation and imparted antioxidant activity to the polymeric matrix.
Collapse
Affiliation(s)
- Mihai Brebu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41 A, 700487, Iasi, Romania
| | - Raluca Petronela Dumitriu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41 A, 700487, Iasi, Romania
| | - Daniela Pamfil
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41 A, 700487, Iasi, Romania
| | - Elena Butnaru
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41 A, 700487, Iasi, Romania
| | - Elena Stoleru
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41 A, 700487, Iasi, Romania.
| |
Collapse
|
13
|
Dalal N, Challa R, Thimukonda JJ, Tayalia P. Gelatin Methacryloyl Based Injectable Cryogels with Tunable Degradability for Cell Delivery. Macromol Biosci 2024; 24:e2200562. [PMID: 36974501 DOI: 10.1002/mabi.202200562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/09/2023] [Indexed: 03/29/2023]
Abstract
Scaffold-based cell delivery can improve therapeutic effects of transplanted cells in cell therapy. Biomaterial scaffolds serveas niche for cell growth and proliferation which improves cell survival and overall function post cell delivery. In this study, gelatin methacryloyl based injectable scaffolds made using poly(ethylene)glycol as a sacrificial polymer and cryogelation as a technique, are demonstrated to have tunable degradability and porosity that is required for cell and drug delivery applications. The pore size (10-142 µm) of these gels makes them suitable for loading different cell types as per the application. In vitro studies using mammalian cells confirm that these cryogels are cytocompatible. These cell-laden scaffolds are injectable and have a cell retention ability of up to 90% after injection. Rheology is done to evaluate stiffness and shape recovery property, and it is found that these gels can maintain their original shape even after applying 7 cycles of strain from 0.1% to 20%. Furthermore, their degradability can be modulated between 6 and 10 days by changing the overall polymer composition. Thus, injectability and degradability of these cryogels can circumvent invasive surgical procedures, thereby making them useful for a variety of applications including delivery of cells and bioactive factors.
Collapse
Affiliation(s)
- Neha Dalal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Ramadevi Challa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Jeyapriya J Thimukonda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Prakriti Tayalia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
14
|
Varshney N, Singh P, Rai R, Vishwakarma NK, Mahto SK. Superporous soy protein isolate matrices as superabsorbent dressings for successful management of highly exuding wounds: In vitro and in vivo characterization. Int J Biol Macromol 2023; 253:127268. [PMID: 37813221 DOI: 10.1016/j.ijbiomac.2023.127268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Soy protein isolate (SPI) has received widespread attention of the biomedical research community primarily due to its good biocompatibility, biodegradability, high availability and low cost. Herein, glutaraldehyde cross-linked microporous sponge-like SPI scaffolds were prepared using the cryogelation technique for tissue engineering applications. The prepared SPI scaffolds possess an interconnected porous structure with approximately 90% porosity and an average pore size in the range of 45-92 μm. The morphology, porosity, swelling capacity and degradation rate of the cryogels were found to be dependent on the concentration of polymer to crosslinking agent. All cryogels were found to be elastic and able to maintain physical integrity even after being compressed to one-fifth of their original length during cyclic compression analysis. These cryogels showed excellent mechanical properties, immediate water-triggered shape restoration and absorption speed. Furthermore, cryogels outperformed cotton and gauze in terms of blood clotting and blood cell adherence. The in vitro and in vivo studies demonstrated the potency of SPI scaffolds for skin tissue engineering applications. Our findings showed that crosslinking with glutaraldehyde had no detrimental effects on cell viability. In addition, an in vivo wound healing study in rats validated them as good potential wound dressing materials.
Collapse
Affiliation(s)
- Neelima Varshney
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Priya Singh
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Rohit Rai
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Niraj K Vishwakarma
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Sanjeev Kumar Mahto
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India; Centre for Advanced Biomaterials and Tissue Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
15
|
Vrabič-Brodnjak U. Hybrid Materials of Bio-Based Aerogels for Sustainable Packaging Solutions. Gels 2023; 10:27. [PMID: 38247750 PMCID: PMC10815338 DOI: 10.3390/gels10010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
This review explores the field of hybrid materials in the context of bio-based aerogels for the development of sustainable packaging solutions. Increasing global concern over environmental degradation and the growing demand for environmentally friendly alternatives to conventional packaging materials have led to a growing interest in the synthesis and application of bio-based aerogels. These aerogels, which are derived from renewable resources such as biopolymers and biomass, have unique properties such as a lightweight structure, excellent thermal insulation, and biodegradability. The manuscript addresses the innovative integration of bio-based aerogels with various other materials such as nanoparticles, polymers, and additives to improve their mechanical, barrier, and functional properties for packaging applications. It critically analyzes recent advances in hybridization strategies and highlights their impact on the overall performance and sustainability of packaging materials. In addition, the article identifies the key challenges and future prospects associated with the development and commercialization of hybrid bio-based aerogel packaging materials. The synthesis of this knowledge is intended to contribute to ongoing efforts to create environmentally friendly alternatives that address the current problems associated with conventional packaging while promoting a deeper understanding of the potential of hybrid materials for sustainable packaging solutions.
Collapse
Affiliation(s)
- Urška Vrabič-Brodnjak
- Department of Textiles, Graphic Arts and Design, Faculty of Natural Sciences and Engineering, University of Ljubljana, Snežniška 5, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Li J, He K, Xu Q. Tissue Regeneration with Gelatine/Polysaccharide Derived Hydrogel Scaffolds: From Formulation to In Vivo Efficacy. Gels 2023; 9:744. [PMID: 37754425 PMCID: PMC10531015 DOI: 10.3390/gels9090744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Combinations of different biomaterials with certain formulations may lead to improved properties and have significant potential for use in tissue regeneration applications. However, previously reported studies comparing biomaterials often suffered from inconsistent processing methods or inadequate comprehensive application research, hindering a comprehension of their efficacy in tissue engineering. This report explores the significance of screening the combination of gelatine with polysaccharide materials, specifically hyaluronic acid (HA) and carboxymethyl cellulose (CMC), using the same crosslinking method used for tissue regeneration. Hydrogel scaffolds (Gel/HA and Gel/CMC) at various concentrations were developed and characterized to assess their physiochemical properties. The results demonstrated that the hydrogels exhibited desirable mechanical properties, appropriate swelling behaviour, suitable porosity, and excellent cytocompatibility. In particular, the Gel1HA1 and Gel1CMC1 hydrogels showed remarkable cellular proliferation and aggregation. Further, we performed animal studies and explored the tissue regeneration effects of the Gel1HA1 and Gel1CMC1 hydrogels. Both hydrogels exhibited an accelerated wound closure rate and promoted vessel formation in a rodent full-thickness skin excisional model. Additionally, the subcutaneous implantation model demonstrated the induction of angiogenesis and collagen deposition within the implanted hydrogel samples. Overall, the hydrogels developed in this study demonstrated promising potential for use in the regeneration of soft tissue defects and this study emphasizes the significance of screening biomaterial combinations and formulations for tissue regeneration applications.
Collapse
Affiliation(s)
- Jing Li
- Department of Stomatology, Huadong Hospital, Fudan University, Shanghai 200437, China;
| | - Keying He
- Woundhealing (Hangzhou) Biotechnology Co., Ltd., Hangzhou 310018, China;
| | - Qian Xu
- Department of Stomatology, Huadong Hospital, Fudan University, Shanghai 200437, China;
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China
| |
Collapse
|
17
|
Perez-Estenaga I, Chevalier MT, Peña E, Abizanda G, Alsharabasy AM, Larequi E, Cilla M, Perez MM, Gurtubay J, Garcia-Yebenes Castro M, Prosper F, Pandit A, Pelacho B. A Multimodal Scaffold for SDF1 Delivery Improves Cardiac Function in a Rat Subacute Myocardial Infarct Model. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50638-50651. [PMID: 37566441 PMCID: PMC10636708 DOI: 10.1021/acsami.3c04245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Ischemic heart disease is one of the leading causes of death worldwide. The efficient delivery of therapeutic growth factors could counteract the adverse prognosis of post-myocardial infarction (post-MI). In this study, a collagen hydrogel that is able to load and appropriately deliver pro-angiogenic stromal cell-derived factor 1 (SDF1) was physically coupled with a compact collagen membrane in order to provide the suture strength required for surgical implantation. This bilayer collagen-on-collagen scaffold (bCS) showed the suitable physicochemical properties that are needed for efficient implantation, and the scaffold was able to deliver therapeutic growth factors after MI. In vitro collagen matrix biodegradation led to a sustained SDF1 release and a lack of cytotoxicity in the relevant cell cultures. In vivo intervention in a rat subacute MI model resulted in the full integration of the scaffold into the heart after implantation and biocompatibility with the tissue, with a prevalence of anti-inflammatory and pro-angiogenic macrophages, as well as evidence of revascularization and improved cardiac function after 60 days. Moreover, the beneficial effect of the released SDF1 on heart remodeling was confirmed by a significant reduction in cardiac tissue stiffness. Our findings demonstrate that this multimodal scaffold is a desirable matrix that can be used as a drug delivery system and a scaffolding material to promote functional recovery after MI.
Collapse
Affiliation(s)
- Iñigo Perez-Estenaga
- Regenerative
Medicine Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | - Merari Tumin Chevalier
- CÚRAM,
SFI Research Center for Medical Devices, University of Galway, Galway H91 TK33, Ireland
| | - Estefania Peña
- Aragon
Institute of Engineering Research, University
of Zaragoza, Zaragoza 50009, Spain
- CIBER-BBN—Centro
de Investigación Biomédica en Red en Bioingeniería
Biomateriales y Nanomedicina, Zaragoza 50018, Spain
| | - Gloria Abizanda
- Regenerative
Medicine Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
- Instituto
de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31009, Spain
| | - Amir M. Alsharabasy
- CÚRAM,
SFI Research Center for Medical Devices, University of Galway, Galway H91 TK33, Ireland
| | - Eduardo Larequi
- Regenerative
Medicine Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | - Myriam Cilla
- Aragon
Institute of Engineering Research, University
of Zaragoza, Zaragoza 50009, Spain
- CIBER-BBN—Centro
de Investigación Biomédica en Red en Bioingeniería
Biomateriales y Nanomedicina, Zaragoza 50018, Spain
| | - Marta M. Perez
- Department
of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Zaragoza 50009, Spain
| | - Jon Gurtubay
- Regenerative
Medicine Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | | | - Felipe Prosper
- Regenerative
Medicine Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
- Instituto
de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31009, Spain
- Department
of Cell Therapy and Hematology, Clínica
Universidad de Navarra, Pamplona 31008, Spain
- CIBERONC, Madrid 28029, Spain
| | - Abhay Pandit
- CÚRAM,
SFI Research Center for Medical Devices, University of Galway, Galway H91 TK33, Ireland
| | - Beatriz Pelacho
- Regenerative
Medicine Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
- Instituto
de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31009, Spain
| |
Collapse
|
18
|
Nayak VV, Tovar N, Khan D, Pereira AC, Mijares DQ, Weck M, Durand A, Smay JE, Torroni A, Coelho PG, Witek L. 3D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications-Physicochemical Characterization and In Vitro Evaluation. Gels 2023; 9:637. [PMID: 37623094 PMCID: PMC10454336 DOI: 10.3390/gels9080637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Collagen, an abundant extracellular matrix protein, has shown hemostatic, chemotactic, and cell adhesive characteristics, making it an attractive choice for the fabrication of tissue engineering scaffolds. The aim of this study was to synthesize a fibrillar colloidal gel from Type 1 bovine collagen, as well as three dimensionally (3D) print scaffolds with engineered pore architectures. 3D-printed scaffolds were also subjected to post-processing through chemical crosslinking (in N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide) and lyophilization. The scaffolds were physicochemically characterized through Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis, Differential Scanning Calorimetry, and mechanical (tensile) testing. In vitro experiments using Presto Blue and Alkaline Phosphatase assays were conducted to assess cellular viability and the scaffolds' ability to promote cellular proliferation and differentiation. Rheological analysis indicated shear thinning capabilities in the collagen gels. Crosslinked and lyophilized 3D-printed scaffolds were thermally stable at 37 °C and did not show signs of denaturation, although crosslinking resulted in poor mechanical strength. PB and ALP assays showed no signs of cytotoxicity as a result of crosslinking. Fibrillar collagen was successfully formulated into a colloidal gel for extrusion through a direct inkjet writing printer. 3D-printed scaffolds promoted cellular attachment and proliferation, making them a promising material for customized, patient-specific tissue regenerative applications.
Collapse
Affiliation(s)
- Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (V.V.N.); (P.G.C.)
| | - Nick Tovar
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
- Department of Oral and Maxillofacial Surgery, New York University, Langone Medical Center and Bellevue Hospital Center, New York, NY 10016, USA
| | - Doha Khan
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
| | - Angel Cabrera Pereira
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
| | - Dindo Q. Mijares
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
| | - Marcus Weck
- Department of Chemistry and Molecular Design Institute, New York University, New York, NY 10003, USA;
| | - Alejandro Durand
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA;
| | - James E. Smay
- School of Materials Science and Engineering, Oklahoma State University, Tulsa, OK 74106, USA;
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA;
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (V.V.N.); (P.G.C.)
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA;
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA;
| |
Collapse
|
19
|
Abdullah T, İlyasoğlu G, Memić A. Designing Lignin-Based Biomaterials as Carriers of Bioactive Molecules. Pharmaceutics 2023; 15:pharmaceutics15041114. [PMID: 37111600 PMCID: PMC10143462 DOI: 10.3390/pharmaceutics15041114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
There is a need to develop circular and sustainable economies by utilizing sustainable, green, and renewable resources in high-tech industrial fields especially in the pharmaceutical industry. In the last decade, many derivatives of food and agricultural waste have gained considerable attention due to their abundance, renewability, biocompatibility, environmental amiability, and remarkable biological features. Particularly, lignin, which has been used as a low-grade burning fuel in the past, recently attracted a lot of attention for biomedical applications because of its antioxidant, anti-UV, and antimicrobial properties. Moreover, lignin has abundant phenolic, aliphatic hydroxyl groups, and other chemically reactive sites, making it a desirable biomaterial for drug delivery applications. In this review, we provide an overview of designing different forms of lignin-based biomaterials, including hydrogels, cryogels, electrospun scaffolds, and three-dimensional (3D) printed structures and how they have been used for bioactive compound delivery. We highlight various design criteria and parameters that influence the properties of each type of lignin-based biomaterial and corelate them to various drug delivery applications. In addition, we provide a critical analysis, including the advantages and challenges encountered by each biomaterial fabrication strategy. Finally, we highlight the prospects and future directions associated with the application of lignin-based biomaterials in the pharmaceutical field. We expect that this review will cover the most recent and important developments in this field and serve as a steppingstone for the next generation of pharmaceutical research.
Collapse
|
20
|
Canatar İ, Zenger O, Özdaş S, Baydemir Peşint G. Pterostilbene loaded poly(vinyl alcohol)-gelatin cryogels as potential bioactive wound dressing material. J Biomed Mater Res B Appl Biomater 2023; 111:1259-1270. [PMID: 36863724 DOI: 10.1002/jbm.b.35230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/02/2023] [Accepted: 01/30/2023] [Indexed: 03/04/2023]
Abstract
Cryogels are support materials which are good at mimicking extracellular matrix due to their excellent hydrophilicity, biocompatibility, and macroporous structure, thus they are useful in facilitating cell activities during healing process. In this study, polyvinyl alcohol-gelatin (PVA-Gel) based cryogel membranes loaded with pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene; PTS) (PVA-Gel/PTS) was synthesized as wound dressing materials. PVA-Gel and PVA-Gel/PTS were synthesized with the polymerization yields of 96% ± 0.23% and 98% ± 0.18%, respectively, and characterized by swelling tests, Brunauer-Emmett-Teller (BET) and scanning electron microscopy (SEM) analysis. The swelling ratios were calculated as 98.6% ± 4.93% and 102% ± 5.1%, macroporosities were determined as 85% ± 2.13% and 88% ± 2.2%, for PVA-Gel and PVA-Gel/PTS, respectively. It was determined that PVA-Gel and PVA-Gel/PTS have 17 m2 /g ± 0.76 m2 /g and 20 m2 /g ± 0.92 m2 /g surface areas, respectively. SEM studies were demonstrated that they have ~100 μm pore sizes. According to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), trypan blue exclusion and live-dead assay results, it was observed that cell proliferation, cell number and cell viability were higher in PVA-Gel/PTS cryogel at 24, 48, and 72 h compared to PVA-Gel. A strong and transparent fluorescent light intensity was observed indicating higher cell population in PVA-Gel/PTS in comparison with PVA-Gel, according to 4',6-diamidino-2-phenylindole (DAPI) staining. SEM, F-Actin, Giemsa staining and inverted-phase microscope image of fibroblasts in PVA-Gel/PTS cryogels revealed that dense fibroblast proliferation and spindle-shaped morphology of cells were preserved. Moreover, DNA agarose gel data demonstrated that PVA-Gel/PTS cryogels had no effect on DNA integrity. Consequently, produced PVA-Gel/PTS cryogel can be used as wound dressing material to promote wound therapies, inducing cell viability and proliferation.
Collapse
Affiliation(s)
- İpek Canatar
- Faculty of Engineering Sciences, Department of Bioengineering, Adana Alpaslan Türkeş Science and Technology University, Adana, Turkey
| | - Okan Zenger
- Faculty of Engineering Sciences, Department of Bioengineering, Adana Alpaslan Türkeş Science and Technology University, Adana, Turkey
| | - Sibel Özdaş
- Faculty of Engineering Sciences, Department of Bioengineering, Adana Alpaslan Türkeş Science and Technology University, Adana, Turkey
| | - Gözde Baydemir Peşint
- Faculty of Engineering Sciences, Department of Bioengineering, Adana Alpaslan Türkeş Science and Technology University, Adana, Turkey
| |
Collapse
|
21
|
Rashid AB, Showva NN, Hoque ME. Gelatin-Based Scaffolds – An Intuitive Support Structure for Regenerative Therapy. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023. [DOI: 10.1016/j.cobme.2023.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
22
|
Senra MR, Marques MDFV, Monteiro SN. Poly (Ether-Ether-Ketone) for Biomedical Applications: From Enhancing Bioactivity to Reinforced-Bioactive Composites-An Overview. Polymers (Basel) 2023; 15:373. [PMID: 36679253 PMCID: PMC9861117 DOI: 10.3390/polym15020373] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/13/2023] Open
Abstract
The global orthopedic market is forecasted to reach US$79.5 billion by the end of this decade. Factors driving the increase in this market are population aging, sports injury, road traffic accidents, and overweight, which justify a growing demand for orthopedic implants. Therefore, it is of utmost importance to develop bone implants with superior mechanical and biological properties to face the demand and improve patients' quality of life. Today, metallic implants still hold a dominant position in the global orthopedic implant market, mainly due to their superior mechanical resistance. However, their performance might be jeopardized due to the possible release of metallic debris, leading to cytotoxic effects and inflammatory responses in the body. Poly (ether-ether-ketone) (PEEK) is a biocompatible, high-performance polymer and one of the most prominent candidates to be used in manufacturing bone implants due to its similarity to the mechanical properties of bone. Unfortunately, the bioinert nature of PEEK culminates in its diminished osseointegration. Notwithstanding, PEEK's bioactivity can be improved through surface modification techniques and by the development of bioactive composites. This paper overviews the advantages of using PEEK for manufacturing implants and addresses the most common strategies to improve the bioactivity of PEEK in order to promote enhanced biomechanical performance.
Collapse
Affiliation(s)
- Mônica Rufino Senra
- Instituto de Macromoleculas Professor Eloisa Mano, Universidade Federal do Rio de Janeiro, Horácio Macedo Av., 2.030, Bloco J, Cidade Universitária, Rio de Janeiro CEP 21941-598, RJ, Brazil
| | - Maria de Fátima Vieira Marques
- Instituto de Macromoleculas Professor Eloisa Mano, Universidade Federal do Rio de Janeiro, Horácio Macedo Av., 2.030, Bloco J, Cidade Universitária, Rio de Janeiro CEP 21941-598, RJ, Brazil
| | - Sergio Neves Monteiro
- Department of Materials Science, Military Institute of Engineering, IME, Praça General Tibúrcio, 80, Urca, Rio de Janeiro CEP 22290-270, RJ, Brazil
| |
Collapse
|
23
|
Abdullah T, Su E, Memić A. Designing Silk-Based Cryogels for Biomedical Applications. Biomimetics (Basel) 2022; 8:5. [PMID: 36648791 PMCID: PMC9844337 DOI: 10.3390/biomimetics8010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
There is a need to develop the next generation of medical products that require biomaterials with improved properties. The versatility of various gels has pushed them to the forefront of biomaterials research. Cryogels, a type of gel scaffold made by controlled crosslinking under subzero or freezing temperatures, have great potential to address many current challenges. Unlike their hydrogel counterparts, which are also able to hold large amounts of biologically relevant fluids such as water, cryogels are often characterized by highly dense and crosslinked polymer walls, macroporous structures, and often improved properties. Recently, one biomaterial that has garnered a lot of interest for cryogel fabrication is silk and its derivatives. In this review, we provide a brief overview of silk-based biomaterials and how cryogelation can be used for novel scaffold design. We discuss how various parameters and fabrication strategies can be used to tune the properties of silk-based biomaterials. Finally, we discuss specific biomedical applications of silk-based biomaterials. Ultimately, we aim to demonstrate how the latest advances in silk-based cryogel scaffolds can be used to address challenges in numerous bioengineering disciplines.
Collapse
Affiliation(s)
| | - Esra Su
- Department of Chemistry, Istanbul Technical University, Istanbul 34467, Turkey
- Faculty of Aquatic Sciences, Aquatic Biotechnology, Istanbul University, Istanbul 34134, Turkey
| | - Adnan Memić
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
24
|
Han MJ, An JA, Kim JM, Heo DN, Kwon IK, Park KM. Calcium peroxide-mediated bioactive hydrogels for enhanced angiogenic paracrine effect and osteoblast proliferation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Cryostructuring of Polymeric Systems: 63. † Synthesis of Two Chemically Tanned Gelatin-Based Cryostructurates and Evaluation of Their Potential as Scaffolds for Culturing of Mammalian Cells. Gels 2022; 8:gels8110695. [DOI: 10.3390/gels8110695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Various gelatin-containing gel materials are used as scaffolds for animal and human cell culturing within the fields of cell technologies and tissue engineering. Cryostructuring is a promising technique for the preparation of efficient macroporous scaffolds in biomedical applications. In the current study, two new gelatin-based cryostructurates were synthesized, their physicochemical properties and microstructure were evaluated, and their ability to serve as biocompatible scaffolds for mammalian cells culturing was tested. The preparation procedure included the dissolution of Type A gelatin in water, the addition of urea to inhibit self-gelation, the freezing of such a solution, ice sublimation in vacuo, and urea extraction with ethanol from the freeze-dried matter followed by its cross-linking in an ethanol medium with either carbodiimide or glyoxal. It was shown that in the former case, a denser cross-linked polymer phase was formed, while in the latter case, the macropores in the resultant biopolymer material were wider. The subsequent biotesting of these scaffolds demonstrated their biocompatibility for human mesenchymal stromal cells and HepG2 cells during subcutaneous implantation in rats. Albumin secretion and urea synthesis by HepG2 cells confirmed the possibility of using gelatin cryostructurates for liver tissue engineering.
Collapse
|
26
|
Applications of Cryostructures in the Chromatographic Separation of Biomacromolecules. J Chromatogr A 2022; 1683:463546. [DOI: 10.1016/j.chroma.2022.463546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 12/20/2022]
|
27
|
Wang Z, Yang Y, Gao Y, Xu Z, Yang S, Jin M. Establishing a novel 3D printing bioinks system with recombinant human collagen. Int J Biol Macromol 2022; 211:400-409. [PMID: 35577188 DOI: 10.1016/j.ijbiomac.2022.05.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022]
Abstract
Bioinks are one of the key elements in realizing three-dimensional (3D) bioprinting. However, bioinks prepared from conventional collagen are hindered to their further applications due to concerns of collagen purity, unstable mechanical properties, and low solubility under neutralized conditions. This study aimed to develop a reliable UV-curable bioink system from a novel water-soluble recombinant human collagen (RHC). RHC was modified by methacrylic anhydride (MAA) and later crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) to obtain Pro-RHCMA. 1H nuclear magnetic resonance (1H NMR) confirmed the methacryloyl grafts, Fourier transform-infrared spectroscopy (FT-IR) illustrated the chemical crosslinking in producing the Pro-RHCMA. Internal morphology, mechanical properties and degradation of UV cured boinks were MAA and EDC/NHS modification-dependent. Photorheological properties and printability of the bioinks were determined. Cellular bioactivities were sustained within the printed bioinks, validating the bioinks biocompatibility in vitro. Finally, qRT-PCR revealed that the Pro-RHCMA bioinks provided a cell-friendly microenvironment for human umbilical vein endothelial cells (HUVECs) and human foreskin fibroblasts (HFFs), by supporting the expression of extracellular matrix (ECM) and angiogenesis-associated proteins, respectively. Taken together, this novel RHC-based bioink system shows great potential in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Zixun Wang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Yang Yang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China; Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, PR China.
| | - Yunbo Gao
- Beijing Tongren Hospital, Capital Medical University, Beijing 100730, PR China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Shulin Yang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| |
Collapse
|
28
|
Demir D, Özdemir S, Gonca S, Bölgen N. Novel styrax liquidus loaded chitosan/polyvinyl alcohol cryogels with antioxidant and antimicrobial properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.52033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Didem Demir
- Chemical Engineering Department, Engineering Faculty Mersin University Mersin Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School Mersin University Mersin Turkey
| | - Serpil Gonca
- Department of Medical Laboratory Services, Health Services Vocational School Mersin University Mersin Turkey
| | - Nimet Bölgen
- Chemical Engineering Department, Engineering Faculty Mersin University Mersin Turkey
| |
Collapse
|
29
|
Mahdavi MR, Kehtari M, Mellati A, Mansour RN, Mahdavi M, Mahdavi M, Enderami SE. Improved biological behaviours and osteoinductive capacity of the gelatin nanofibers while composites with GO/MgO. Cell Biochem Funct 2022; 40:189-198. [PMID: 35118692 DOI: 10.1002/cbf.3688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 11/06/2022]
Abstract
Among the many polymers introduced for bone tissue engineering, natural polymers have more advantages due to their high biocompatibility and biodegradability, despite their low mechanical properties. Herein, gelatin nanofibers with and without magnesium oxide (MgO) and graphene oxide (GO) nanoparticles were fabricated by electrospinning. The fabricated gelatin and gelatin/GO/MgO nanofibers were examined using scanning electron microscopy, protein adsorption, cell attachment and viability assays. The results revealed that biological behaviours of the gelatin nanofibers significantly improved while incorporated with MgO and GO nanoparticles. In the following, osteosupportive capacity of the fabricated scaffolds was investigated by Alizarin-red staining, alkaline phosphatase activity, and calcium content, and bone-related gene and protein assays. The results revealed that the highest osteogenic differentiation potential of human-induced pluripotent stem cells (hiPSCs) was detected while these cells were cultured on the gelatin/GO/MgO nanofibers. However, these makers in the hiPSCs cultured on the gelatin nanofibers were also significantly increased in comparison with the cells cultured on the tissue culture plates as a control. In conclusion, the results revealed that predictable disadvantages in gelatin nanofibers can be greatly improved by the addition of MgO and GO nanoparticles, and the resulting composite scaffold could be a potential candidate for use in bone tissue engineering.
Collapse
Affiliation(s)
| | - Mousa Kehtari
- School of Biology, Faculty of Science, University of Tehran, Tehran, Iran
| | - Amir Mellati
- Department of Tissue Engineering and regenerative medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Mehrad Mahdavi
- Department of Cellular and Molecular, Sinaye Mehr Research Center, Sari, Iran
| | - Mahan Mahdavi
- Department of Cellular and Molecular, Sinaye Mehr Research Center, Sari, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
30
|
Superior Technique for the Production of Agarose Dressing Containing Sericin and Its Wound Healing Property. Polymers (Basel) 2021; 13:polym13193370. [PMID: 34641182 PMCID: PMC8512865 DOI: 10.3390/polym13193370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/28/2022] Open
Abstract
Finding a simple and eco-friendly production technique that matches to the natural agent and results in a truly valuable natural scaffold production is still limited amongst the intensively competitive natural scaffold development. Therefore, the purpose of this study was to develop natural scaffolds that were environmentally friendly, low cost, and easily produced, using natural agents and a physical crosslinking technique. These scaffolds were prepared from agarose and sericin using the freeze-drying method (D) or freeze-thawing together with the freeze-drying method (TD). Moreover, plasticizers were added into the scaffold to improve their properties. Their physical, mechanical, and biological properties were investigated. The results showed that scaffolds that were prepared using the TD method had stronger bonding between sericin and other compounds, leading to a low swelling ratio and low protein release of the scaffolds. This property may be applied in the development of further material as a controlled drug release scaffold. Adding plasticizers, especially glycerin, into the scaffolds significantly increased elongation properties, leading to an increase in elasticity of the scaffold. Moreover, all scaffolds could activate cell migration, which had an advantage on wound healing acceleration. Accordingly, this study was successful in developing natural scaffolds using natural agents and simple and green crosslinking methods.
Collapse
|
31
|
Wartenberg A, Weisser J, Schnabelrauch M. Glycosaminoglycan-Based Cryogels as Scaffolds for Cell Cultivation and Tissue Regeneration. Molecules 2021; 26:5597. [PMID: 34577067 PMCID: PMC8466427 DOI: 10.3390/molecules26185597] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cryogels are a class of macroporous, interconnective hydrogels polymerized at sub-zero temperatures forming mechanically robust, elastic networks. In this review, latest advances of cryogels containing mainly glycosaminoglycans (GAGs) or composites of GAGs and other natural or synthetic polymers are presented. Cryogels produced in this way correspond to the native extracellular matrix (ECM) in terms of both composition and molecular structure. Due to their specific structural feature and in addition to an excellent biocompatibility, GAG-based cryogels have several advantages over traditional GAG-hydrogels. This includes macroporous, interconnective pore structure, robust, elastic, and shape-memory-like mechanical behavior, as well as injectability for many GAG-based cryogels. After addressing the cryogelation process, the fabrication of GAG-based cryogels and known principles of GAG monomer crosslinking are discussed. Finally, an overview of specific GAG-based cryogels in biomedicine, mainly as polymeric scaffold material in tissue regeneration and tissue engineering-related controlled release of bioactive molecules and cells, is provided.
Collapse
Affiliation(s)
- Annika Wartenberg
- Biomaterials Department, INNOVENT e.V., Pruessingstrasse 27B, 07745 Jena, Germany;
| | | | | |
Collapse
|