1
|
Du Y, Zhang Q, Wu H, Liu X, Chen G, Liang Y, Li Q, Gu Y, Zhang M, Wang H. Improvement of glucose detection using 10 nm Al 2O 3 thin film on diamond solution-gate field-effect transistor. Talanta 2025; 286:127560. [PMID: 39813913 DOI: 10.1016/j.talanta.2025.127560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Glucose detection is crucial for diagnosis, prevention and treatment of diabetes mellitus. In this work, 10 nm Al2O3 thin film was introduced on the channel of diamond solution-gate field-effect transistor (SGFET) to improve the performance of glucose detection. AFM results show the roughness of channel surface increased after Al2O3 thin film deposition. Then, 1-pyrenebutyric acid-N-hydroxy succinimide ester (Pyr-NHS) and glucose oxidase (GOD) were linked on the channel. The morphology after each modification step was evaluated by SEM, and the result indicated an uneven Al2O3 distribution. XPS spectra further confirmed the effective modification of Pyr-NHS and GOD. In addition, the shifts of transfer characteristics for each concentration of glucose were analyzed, which illustrated a wide linear response (10-8-10-2 M), a high sensitivity (-44.01 mV/log10[glucose concentration]) and a low detection limitation (10-8 M). All these results show an excellent detection performance, which may provide a new idea for the design of diamond SGFET biosensor.
Collapse
Affiliation(s)
- Yuxiang Du
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Laboratory of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qianwen Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Laboratory of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huaxiong Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Laboratory of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaohuan Liu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Laboratory of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Genqiang Chen
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Laboratory of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuesong Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Laboratory of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qi Li
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Laboratory of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yangxin Gu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Laboratory of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Minghui Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Laboratory of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Hongxing Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Laboratory of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
2
|
Kang L, Jiang J, Liu S, Ai J, Hong J, Tang C, Jun SC, Yamauchi Y, Zhang J. In Situ Spatially Confined Silver Nanoparticles in 3D Laser-Induced Graphene Architecture for All-in-One Planar Supercapacitor-Glucose Sensor System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412044. [PMID: 40195885 DOI: 10.1002/smll.202412044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/05/2025] [Indexed: 04/09/2025]
Abstract
Self-powered integrated systems that leverage micro-supercapacitors as power sources for sensors are vital for portable and wearable electronics; however, they often encounter compatibility issues arising from bifunctional active materials that enable high energy storage capacity and sensing performance. Herein, a spatial confinement approach is proposed for designing in situ-encased silver nanoparticles within a 3D porous laser-induced graphene framework (LIG/Ag), which serves as a bifunctional active material for all-in-one supercapacitor-sensor systems. Such engineered LIG/Ag features ample pseudocapacitive active sites, high electrical conductivity, and fast ion diffusion channels, which favor high reaction kinetics and electrode material utilization, significantly improving its electrochemical reactivity. Flexible symmetric supercapacitors (FCSs) assembled with an optimized LIG/Ag achieve a high energy density of 0.27 µWh cm-2, with a capacitance retention of 92.6% after 10 000 cycles, as well as good mechanical stability. Furthermore, a flexible three-electrode (FTE) assembled with the optimized LIG/Ag exhibits a glucose detection sensitivity of 405.24 µA mM-1 cm-2 and a fast response time of less than 1 s. As a proof-of-concept, a flexible, planar, self-powered glucose detection system with a LIG/Ag hybrid serving as a bifunctional active material delivers favorable capacitive properties and high glucose sensitivity, demonstrating its feasibility for glucose concentration monitoring.
Collapse
Affiliation(s)
- Ling Kang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| | - Jiaming Jiang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai, 201620, China
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Jin Ai
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Jongwoo Hong
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| | - Chenghuan Tang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jian Zhang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| |
Collapse
|
3
|
Crapnell RD, Bernalte E, Muñoz RAA, Banks CE. Electroanalytical overview: the use of laser-induced graphene sensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:635-651. [PMID: 39648867 DOI: 10.1039/d4ay01793e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Laser-induced graphene, which was first reported in 2014, involves the creation of graphene by using a laser to modify a polyimide surface. Since then, laser-induced graphene has been extensively studied for application in different scientific fields. One beneficial approach is the use of laser-induced graphene coupled with electrochemistry, where there is a growing need for disposable, conductive, reproducible, flexible, biocompatible, sustainable, and economical electrodes. In this mini overview, we explore the use of laser-induced graphene as the basis of electroanalytical sensors. We first introduce laser-induced graphene, before moving to the use of laser-induced graphene electrodes highlighting the various approaches and different laser parameters used to produce different graphene micro and macro structures, whilst describing how these structures are characterised and benchmarked for those working in the field of laser-induced graphene electrodes for comparison aspects. Next, we turn to the use of laser-induced graphene electrodes as the basis of electrochemical sensing platforms towards key analytes and its use in the development of biosensors. We provide a critical overview of the use of laser-induced graphene sensors compared to screen-printed and additive manufactured electrodes, providing future suggestions for the field.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Dalton Building, Chester Street, Manchester, M1 5GD, UK.
| | - Elena Bernalte
- Faculty of Science and Engineering, Manchester Metropolitan University, Dalton Building, Chester Street, Manchester, M1 5GD, UK.
| | - Rodrigo A A Muñoz
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, 38400-902, Minas Gerais, Brazil
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Dalton Building, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
4
|
Nyenhuis J, Heuer C, Bahnemann J. 3D Printing in Biocatalysis and Biosensing: From General Concepts to Practical Applications. Chem Asian J 2024; 19:e202400717. [PMID: 39340791 PMCID: PMC11639642 DOI: 10.1002/asia.202400717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 09/30/2024]
Abstract
3D printing has matured into a versatile technique that offers researchers many different printing methods and materials with varying properties. Nowadays, 3D printing is deployed within a myriad of different applications, ranging from chemistry to biotechnology -including bioanalytics, biocatalysis or biosensing. Due to its inherent design flexibility (which enables rapid prototyping) and ease of use, 3D printing facilitates the relatively quick and easy creation of new devices with unprecedented functions.. This review article describes how 3D printing can be employed for research in the fields of biochemistry and biotechnology, and specifically for biocatalysis and biosensor applications. We survey different relevant 3D printing techniques, as well as the surface activation and functionalization of 3D-printed materials. Finally, we show how 3D printing is used for the fabrication of reaction ware and enzymatic assays in biocatalysis research, as well as for the generation of biosensors using aptamers, antibodies, and enzymes as recognition elements.
Collapse
Affiliation(s)
- Jonathan Nyenhuis
- Institute of PhysicsChair of Technical BiologyUniversity of AugsburgUniversitätsstr. 1Augsburg86159Germany
| | - Christopher Heuer
- Institute of PhysicsChair of Technical BiologyUniversity of AugsburgUniversitätsstr. 1Augsburg86159Germany
- Institute of PhysicsCentre for Advanced Analytics and Predictive SciencesUniversity of AugsburgUniversitätsstr. 1Augsburg86159Germany
| | - Janina Bahnemann
- Institute of PhysicsChair of Technical BiologyUniversity of AugsburgUniversitätsstr. 1Augsburg86159Germany
- Institute of PhysicsCentre for Advanced Analytics and Predictive SciencesUniversity of AugsburgUniversitätsstr. 1Augsburg86159Germany
| |
Collapse
|
5
|
Kocak M, Can Osmanogullari S, Soyler D, Arın Ozturmen B, Bekircan O, Biyiklioglu Z, Soylemez S. Synthesis and comparison of the performance of two different water-soluble phthalocyanine based electrochemical biosensor. Bioelectrochemistry 2024; 160:108788. [PMID: 39106731 DOI: 10.1016/j.bioelechem.2024.108788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Herein, a comparative study between novel water-soluble phthalocyanine-based biosensors was performed for the application of glucose sensing. For this purpose, two different copper (II) and manganese (III) phthalocyanines and their water-soluble derivatives were synthesized, and then their role as a supporting material for enzyme immobilization was evaluated by comparing their sensor performances. Two different phthalocyanine (AP-OH2-MnQ (MnPc) and AP-OH2-CuQ (CuPc)) were tested using electrochemical biosensor with immobilized glucose oxidase (GOx). To the best of our knowledge, the related water-soluble phthalocyanine-based glucose biosensors were attempted for the first time, and the developed approach resulted in improved biosensor characteristics. The constructed biosensors GE/MnPc/GOx and GE/CuPc/GOx showed good linearity between 0.003-1.0 mM and 0.05-0.4 mM, respectively. The limit of detection was estimated at 0.0026 mM for the GE/MnPc/GOx and 0.019 mM for the GE/CuPc/GOx. KMapp and sensitivity values were also calculated as 0.026 mM and 175.043 µAmM-1 cm-2 for the GE/MnPc/GOx biosensor and 0.178 mM and 117.478 µAmM-1 cm-2 for the GE/CuPc/GOx biosensor. Moreover, the fabricated biosensors were successfully tested to detect glucose levels in beverages with high recovery results. The present study shows that the proposed water-soluble phthalocyanines could be a good alternative for quick and cheap glucose sensing with improved analytical characteristics.
Collapse
Affiliation(s)
- Merve Kocak
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, 42090 Konya, Turkey; Science Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42100 Konya, Turkey
| | - Sila Can Osmanogullari
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Dilek Soyler
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, 42090 Konya, Turkey; Science Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42100 Konya, Turkey
| | - Berivan Arın Ozturmen
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Olcay Bekircan
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Zekeriya Biyiklioglu
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Saniye Soylemez
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, 42090 Konya, Turkey; Science Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42100 Konya, Turkey.
| |
Collapse
|
6
|
Aftab S, Koyyada G, Mukhtar M, Kabir F, Nazir G, Memon SA, Aslam M, Assiri MA, Kim JH. Laser-Induced Graphene for Advanced Sensing: Comprehensive Review of Applications. ACS Sens 2024; 9:4536-4554. [PMID: 39284075 DOI: 10.1021/acssensors.4c01717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Laser-induced graphene (LIG) and Laser-scribed graphene (LSG) are both advanced materials with significant potential in various applications, particularly in the field of sustainable sensors. The practical uses of LIG (LSG), which include gas detection, biological process monitoring, strain assessment, and environmental variable tracking, are thoroughly examined in this review paper. Its tunable characteristics distinguish LIG (LSG), which is developed from accurate laser beam modulation on polymeric substrates, and they are essential in advancing sensing technologies in many applications. The recent advances in LIG (LSG) applications include energy storage, biosensing, and electronics by steadily advancing efficiency and versatility. The remarkable flexibility of LIG (LSG) and its transformative potential in regard to sensor manufacturing and utilization are highlighted in this manuscript. Moreover, it thoroughly examines the various fabrication methods used in LIG (LSG) production, highlighting precision and adaptability. This review navigates the difficulties that are encountered in regard to implementing LIG sensors and looks ahead to future developments that will propel the industry forward. This paper provides a comprehensive summary of the latest research in LIG (LSG) and elucidates this innovative material's advanced and sustainable elements.
Collapse
Affiliation(s)
- Sikandar Aftab
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul 05006, Republic of Korea
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul 05006, Republic of Korea
| | - Ganesh Koyyada
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Department of Chemistry, School of Sciences, SR University, Warangal 506371, Telangana, India
| | - Maria Mukhtar
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul 05006, Republic of Korea
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul 05006, Republic of Korea
| | - Fahmid Kabir
- School of Engineering Science, Simon Fraser University, Burnaby, V5A 1S6 British Columbia, Canada
| | - Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University, Seoul 05006, Republic of Korea
| | - Sufyan Ali Memon
- Defense Systems Engineering Sejong University, Seoul 05006, South Korea
| | - Muhammad Aslam
- Institute of Physics and Technology, Ural Federal University, Mira Street 19, Ekaterinburg 620002, Russia
| | - Mohammed A Assiri
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Jae Hong Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
7
|
Zuliska S, Maksum IP, Einaga Y, Kadja GTM, Irkham I. Advances in electrochemical biosensors employing carbon-based electrodes for detection of biomarkers in diabetes mellitus. ADMET AND DMPK 2024; 12:487-527. [PMID: 39091901 PMCID: PMC11289508 DOI: 10.5599/admet.2361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/07/2024] [Indexed: 08/04/2024] Open
Abstract
Background and purpose The increase in diabetes cases has become a major concern in the healthcare sector, necessitating the development of efficient and minimal diagnostic methods. This study aims to provide a comprehensive examination of electrochemical biosensors for detecting diabetes mellitus biomarkers, with a special focus on the utilization of carbon-based electrodes. Review approach A detailed analysis of electrochemical biosensors incorporating various carbon electrodes, including screen-printed carbon electrodes, glassy carbon electrodes, and carbon paste electrodes, is presented. The advantages of carbon-based electrodes in biosensor design are highlighted. The review covers the detection of several key diabetes biomarkers, such as glucose, glycated hemoglobin (HbA1c), glycated human serum albumin (GHSA), insulin, and novel biomarkers. Key results Recent developments in electrochemical biosensor technology over the last decade are summarized, emphasizing their potential in clinical applications, particularly in point-of-care settings. The utilization of carbon-based electrodes in biosensors is shown to offer significant advantages, including enhanced sensitivity, selectivity, and cost-effectiveness. Conclusion This review underscores the importance of carbon-based electrodes in the design of electrochemical biosensors and raises awareness for the detection of novel biomarkers for more specific and personalized diabetes mellitus cases. The advancements in this field highlight the potential of these biosensors in future clinical applications, especially in point-of-care diagnostics.
Collapse
Affiliation(s)
- Serly Zuliska
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Grandprix Thomreys Marth Kadja
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Irkham Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia
| |
Collapse
|
8
|
Ghosh D, Tabassum R, Sarkar PP, Rahman MA, Jalal AH, Islam N, Ashraf A. Graphene Nanocomposite Ink Coated Laser Transformed Flexible Electrodes for Selective Dopamine Detection and Immunosensing. ACS APPLIED BIO MATERIALS 2024; 7:3143-3153. [PMID: 38662615 DOI: 10.1021/acsabm.4c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Novel and flexible disposable laser-induced graphene (LIG) sensors modified with graphene conductive inks have been developed for dopamine and interleukin-6 (IL-6) detection. The LIG sensors exhibit high reproducibility (relative standard deviation, RSD = 0.76%, N = 5) and stability (RSD = 4.39%, N = 15) after multiple bendings, making the sensors ideal for wearable and stretchable bioelectronics applications. We have developed electrode coatings based on graphene conductive inks, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (G-PEDOT:PSS) and polyaniline (G-PANI), for working electrode modification to improve the sensitivity and limit of detection (LOD). The selectivity of LIG sensors modified with the G-PANI ink is 41.47 times higher than that of the screen-printed electrode with the G-PANI ink modification. We have compared our fabricated bare laser-engraved Kapton sensor (LIG) with the LIG sensors modified with G-PEDOT (LIG/G-PEDOT) and G-PANI (LIG/G-PANI) conductive inks. We have further compared the performance of the fabricated electrodes with commercially available screen-printed electrodes (SPEs) and screen-printed electrodes modified with G-PEDOT:PSS (SPE/G-PEDOT:PSS) and G-PANI (SPE/G-PANI). SPE/G-PANI has a lower LOD of 0.632 μM compared to SPE/G-PEDOT:PSS (0.867 μM) and SPE/G-PANI (1.974 μM). The lowest LOD of the LIG/G-PANI sensor (0.4084 μM, S/N = 3) suggests that it can be a great alternative to measure dopamine levels in a physiological medium. Additionally, the LIG/G-PANI electrode has excellent LOD (2.6234 pg/mL) to detect IL-6. Also, the sensor is successfully able to detect ascorbic acid (AA), dopamine (DA), and uric acid (UA) in their ternary mixture. The differential pulse voltammetry (DPV) result shows peak potential separation of 229, 294, and 523 mV for AA-DA, DA-UA, and UA-AA, respectively.
Collapse
Affiliation(s)
- Dipannita Ghosh
- Oregon State University, Corvallis, Oregon 97331, United States
| | - Ridma Tabassum
- The University of Texas at Rio Grande Valley, ESCNE 2.515, Edinburg, Texas 78539, United States
| | - Pritu Parna Sarkar
- The University of Texas at Rio Grande Valley, ESCNE 2.515, Edinburg, Texas 78539, United States
| | | | - Ahmed Hasnain Jalal
- Department of Electrical and Computer Engineering, The University of Texas at Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Nazmul Islam
- Department of Electrical and Computer Engineering, The University of Texas at Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Ali Ashraf
- The University of Texas at Rio Grande Valley, Edinburg, Texas 78539, United States
| |
Collapse
|
9
|
Behrent A, Borggraefe V, Baeumner AJ. Laser-induced graphene trending in biosensors: understanding electrode shelf-life of this highly porous material. Anal Bioanal Chem 2024; 416:2097-2106. [PMID: 38082134 PMCID: PMC10950954 DOI: 10.1007/s00216-023-05082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 03/21/2024]
Abstract
Laser-induced graphene (LIG) has received much attention in recent years as a possible transducer material for electroanalytical sensors. Its simplicity of fabrication and good electrochemical performance are typically highlighted. However, we found that unmodified and untreated LIG electrodes had a limited shelf-life for certain electroanalytical applications, likely due to the adsorption of adventitious hydrocarbons from the storage environment. Electrode responses did not change immediately after exposure to ambient conditions but over longer periods of time, probably due to the immense specific surface area of the LIG material. LIG shelf-life is seldomly discussed prominently in the literature, yet overall trends for solutions to this challenge can be identified. Such findings from the literature regarding the long-term storage stability of LIG electrodes, pure and modified, are discussed here along with explanations for likely protective mechanisms. Specifically, applying a protective coating on LIG electrodes after manufacture is possibly the easiest method to preserve electrode functionality and should be identified as a trend for well-performing LIG electrodes in the future. Furthermore, suggested influences of the accompanying LIG microstructure/morphology on electrode characteristics are evaluated.
Collapse
Affiliation(s)
- Arne Behrent
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Veronika Borggraefe
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
10
|
Thakur AK, Sengodu P, Jadhav AH, Malmali M. Manganese Carbonate/Laser-Induced Graphene Composite for Glucose Sensing. ACS OMEGA 2024; 9:7869-7880. [PMID: 38405531 PMCID: PMC10882677 DOI: 10.1021/acsomega.3c07642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024]
Abstract
Laser-induced graphene (LIG) has received great interest as a potential candidate for electronic and sensing applications. In the present study, we report the enhanced performance of a manganese carbonate-decorated LIG (MnCO3/LIG) composite electrode material employed for electrochemical glucose detection. Initially, the porous LIG was fabricated by directly lasing poly(ether sulfone) membrane substrate. Then, the MnCO3/LIG composite was synthesized via a hydrothermal method. Later, MnCO3/LIG was immobilized onto a glassy carbon electrode surface and employed for glucose detection. The structure of the MnCO3/LIG composite was carefully characterized. The influence of the MnCO3/LIG composite on the performance of the electrode was investigated using cyclic voltammetry curves. The MnCO3/LIG composite exhibited an excellent sensitivity of 2731.2 μA mM-1 cm-2, and a limit of detection of 2.2 μM was obtained for the detection of glucose. Overall, the performance of the MnCO3/LIG composite was found to be superior to that of most of the MnCO3-based composites.
Collapse
Affiliation(s)
- Amit K. Thakur
- Department
of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Prakash Sengodu
- Department
of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Arvind H. Jadhav
- Centre
for Nano and Material Science (CNMS), Jain
University, Bangalore 562112, India
| | - Mahdi Malmali
- Department
of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
11
|
Zhang Z, Huang L, Chen Y, Qiu Z, Meng X, Li Y. Portable glucose sensing analysis based on laser-induced graphene composite electrode. RSC Adv 2024; 14:1034-1050. [PMID: 38174264 PMCID: PMC10759202 DOI: 10.1039/d3ra06947h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
In this work, a portable electrochemical glucose sensor was studied based on a laser-induced graphene (LIG) composite electrode. A flexible graphene electrode was prepared using LIG technology. Poly(3,4-ethylene dioxythiophene) (PEDOT) and gold nanoparticles (Au NPs) were deposited on the electrode surface by potentiostatic deposition to obtain a composite electrode with good conductivity and stability. Glucose oxidase (GOx) was then immobilized using glutaraldehyde (GA) to create an LIG/PEDOT/Au/GOx micro-sensing interface. The concentration of glucose solution is directly related to the current value by chronoamperometry. Results show that the sensor based on the LIG/PEDOT/Au/GOx flexible electrode can detect glucose solutions within a concentration range of 0.5 × 10-5 to 2.5 × 10-3 mol L-1. The modified LIG electrode provides the resulting glucose sensor with an excellent sensitivity of 341.67 μA mM-1 cm-2 and an ultra-low limit of detection (S/N = 3) of 0.2 × 10-5 mol L-1. The prepared sensor exhibits high sensitivity, stability, and selectivity, making it suitable for analyzing biological fluid samples. The composite electrode is user-friendly, and can be built into a portable biosensor device through smartphone detection. Thus, the developed sensor has the potential to be applied in point-of-care platforms such as environmental monitoring, public health, and food safety.
Collapse
Affiliation(s)
- Zhaokang Zhang
- College of Chemical Engineering, Fuzhou University Fuzhou 350108 China
| | - Lu Huang
- College of Materials and Chemical Engineering, Minjiang University Fuzhou 350108 China
| | - Yiting Chen
- College of Materials and Chemical Engineering, Minjiang University Fuzhou 350108 China
| | - Zhenli Qiu
- College of Materials and Chemical Engineering, Minjiang University Fuzhou 350108 China
| | - Xiangying Meng
- School of Medical Laboratory, Weifang Medical University Weifang 261053 China
| | - Yanxia Li
- College of Materials and Chemical Engineering, Minjiang University Fuzhou 350108 China
| |
Collapse
|
12
|
Nezval D, Bartošík M, Mach J, Švarc V, Konečný M, Piastek J, Špaček O, Šikola T. DFT study of water on graphene: Synergistic effect of multilayer p-doping. J Chem Phys 2023; 159:214710. [PMID: 38047516 DOI: 10.1063/5.0161160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023] Open
Abstract
Recent experiments related to a study concerning the adsorption of water on graphene have demonstrated the p-doping of graphene, although most of the ab initio calculations predict nearly zero doping. To shed more light on this problem, we have carried out van der Waals density functional theory calculations of water on graphene for both individual water molecules and continuous water layers with coverage ranging from one to eight monolayers. Furthermore, we have paid attention to the influence of the water molecule orientation toward graphene on its doping properties. In this article, we present the results of the band structure and the Bader charge analysis, showing the p-doping of graphene can be synergistically enhanced by putting 4-8 layers of an ice-like water structure on graphene having the water molecules oriented with oxygen atoms toward graphene.
Collapse
Affiliation(s)
- D Nezval
- Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic
| | - M Bartošík
- Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic
| | - J Mach
- Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic
| | - V Švarc
- Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic
| | - M Konečný
- Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic
| | - J Piastek
- Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic
| | - O Špaček
- Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic
| | - T Šikola
- Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic
| |
Collapse
|
13
|
OSMANOĞULLARI SC, SÖYLEMEZ S, KARAKURT O, ÖZDEMİR HACIOĞLU S, ÇIRPAN A, TOPPARE L. Innovative polymer engineering for the investigation of electrochemical properties and biosensing ability. Turk J Chem 2023; 47:1271-1284. [PMID: 38173753 PMCID: PMC10760843 DOI: 10.55730/1300-0527.3611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/31/2023] [Accepted: 09/28/2023] [Indexed: 01/05/2024] Open
Abstract
Subtle engineering for the generation of a biosensor from a conjugated polymer with the inclusion of fluorine-substituted benzothiadiazole and indole moieties is reported. The engineering includes the electrochemical copolymerization of the indole-6-carboxylic acid (M1) and 5-fluoro-4,7-bis(4-hexylthiophen-2-yl)benzo[c][1,2,5]thiadiazole (M2) on the indium tin oxide and graphite electrode surfaces for the investigation of both their electrochemical properties and biosensing abilities with their copolymer counterparts. The intermediates and final conjugated polymers, Poly(M1) [P-In6C], Poly(M2) [P-FBTz], and copoly(M1 and M2) [P-In6CFBTz], were entirely characterized by 1H NMR, 13C NMR, CV, UV-Vis-NIR spectrophotometry, and SEM techniques. HOMO energy levels of electrochemically obtained polymers were calculated from the oxidation onsets in anodic scans as -4.78 eV, -5.23 eV, and -4.89 eV, and optical bandgap (Egop) values were calculated from the onset of the lowest-energy π-π* transitions as 2.26 eV, 1.43 eV, and 1.59 eV for P-In6C, P-FBTz, and P-In6CFBTz, respectively. By incorporation of fluorine-substituted benzothiadiazole (M2) into the polymer backbone by electrochemical copolymerization, the poor electrochemical properties of P-In6C were remarkably improved. The polymer P-In6CFBTz demonstrated striking electrochemical properties such as a lower optical band gap, red-shifted absorption, multielectrochromic behavior, a lower switching time, and higher optical contrast. Overall, the newly developed copolymer, which combined the features of each monomer, showed superior electrochemical properties and was tested as a glucose-sensing framework, offering a low detection limit (0.011 mM) and a wide linear range (0.05-0.75 mM) with high sensitivity (44.056 μA mM-1 cm-2).
Collapse
Affiliation(s)
- Sıla Can OSMANOĞULLARI
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon,
Turkiye
| | - Saniye SÖYLEMEZ
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, Konya,
Turkiye
| | - Oğuzhan KARAKURT
- Department of Chemistry, Faculty of Arts and Science, Middle East Technical University, Ankara,
Turkiye
| | - Serife ÖZDEMİR HACIOĞLU
- Department of Chemistry, Faculty of Arts and Science, Middle East Technical University, Ankara,
Turkiye
- Department of Basic Sciences of Engineering, Faculty of Engineering and Natural Sciences, İskenderun Technical University, Hatay,
Turkiye
| | - Ali ÇIRPAN
- Department of Chemistry, Faculty of Arts and Science, Middle East Technical University, Ankara,
Turkiye
- Department of Polymer Science and Technology, Middle East Technical University, Ankara,
Turkiye
- Center for Solar Energy Research and Application (GÜNAM), Middle East Technical University, Ankara,
Turkiye
- Department of Micro and Nanotechnology, Middle East Technical University, Ankara,
Turkiye
| | - Levent TOPPARE
- Department of Chemistry, Faculty of Arts and Science, Middle East Technical University, Ankara,
Turkiye
- Department of Polymer Science and Technology, Middle East Technical University, Ankara,
Turkiye
- Department of Biotechnology, Middle East Technical University, Ankara,
Turkiye
| |
Collapse
|
14
|
Miya N, Machogo-Phao LFE, Ntsendwana B. Exploring Copper Oxide and Copper Sulfide for Non-Enzymatic Glucose Sensors: Current Progress and Future Directions. MICROMACHINES 2023; 14:1849. [PMID: 37893284 PMCID: PMC10609065 DOI: 10.3390/mi14101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023]
Abstract
Millions of people worldwide are affected by diabetes, a chronic disease that continuously grows due to abnormal glucose concentration levels present in the blood. Monitoring blood glucose concentrations is therefore an essential diabetes indicator to aid in the management of the disease. Enzymatic electrochemical glucose sensors presently account for the bulk of glucose sensors on the market. However, their disadvantages are that they are expensive and dependent on environmental conditions, hence affecting their performance and sensitivity. To meet the increasing demand, non-enzymatic glucose sensors based on chemically modified electrodes for the direct electrocatalytic oxidation of glucose are a good alternative to the costly enzymatic-based sensors currently on the market, and the research thereof continues to grow. Nanotechnology-based biosensors have been explored for their electronic and mechanical properties, resulting in enhanced biological signaling through the direct oxidation of glucose. Copper oxide and copper sulfide exhibit attractive attributes for sensor applications, due to their non-toxic nature, abundance, and unique properties. Thus, in this review, copper oxide and copper sulfide-based materials are evaluated based on their chemical structure, morphology, and fast electron mobility as suitable electrode materials for non-enzymatic glucose sensors. The review highlights the present challenges of non-enzymatic glucose sensors that have limited their deployment into the market.
Collapse
Affiliation(s)
| | - Lerato F. Eugeni Machogo-Phao
- DSI/Mintek Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125, South Africa; (N.M.); (B.N.)
| | | |
Collapse
|
15
|
Ting JH, Lin PC, Gupta S, Liu CH, Yang T, Lee CY, Lai YT, Tai NH. Dipole moment as the underlying mechanism for enhancing the immobilization of glucose oxidase by ferrocene-chitosan for superior specificity non-invasive glucose sensing. NANOSCALE ADVANCES 2023; 5:4881-4891. [PMID: 37705806 PMCID: PMC10496892 DOI: 10.1039/d3na00340j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/05/2023] [Indexed: 09/15/2023]
Abstract
Non-invasive methods for sensing glucose levels are highly desirable due to the comfortableness, simplicity, and lack of infection risk. However, the insufficient accuracy and ease of interference limit their practical medical applications. Here, we develop a non-invasive salivary glucose biosensor based on a ferrocene-chitosan (Fc-Chit) modified carbon nanotube (CNT) electrode through a simple drop-casting method. Compared with previous studies that relied mainly on trial and error for evaluation, this is the first time that dipole moment was proposed to optimize the electron-mediated Fc-Chit, demonstrating sturdy immobilization of glucose oxidase (GOx) on the electrode and improving the electron transfer process. Thus, the superior sensing sensitivity of the biosensor can achieve 119.97 μA mM-1 cm-2 in phosphate buffered saline (PBS) solution over a wide sensing range of 20-800 μM. Additionally, the biosensor exhibited high stability (retaining 95.0% after three weeks) and high specificity toward glucose in the presence of various interferents, attributed to the specific sites enabling GOx to be sturdily immobilized on the electrode. The results not only provide a facile solution for accurate and regular screening of blood glucose levels via saliva tests but also pave the way for designing enzymatic biosensors with specific enzyme immobilization through fundamental quantum calculations.
Collapse
Affiliation(s)
- Jo-Han Ting
- Department of Materials Science and Engineering, National Tsing Hua University Hsinchu 300 Taiwan ROC
| | - Po-Chuan Lin
- Department of Chemistry, National Tsing Hua University Hsinchu 300 Taiwan ROC
| | - Shivam Gupta
- Department of Materials Science and Engineering, National Tsing Hua University Hsinchu 300 Taiwan ROC
| | - Ching-Hao Liu
- Department of Materials Science and Engineering, National Tsing Hua University Hsinchu 300 Taiwan ROC
| | - Tzuhsiung Yang
- Department of Chemistry, National Tsing Hua University Hsinchu 300 Taiwan ROC
| | - Chi-Young Lee
- Department of Materials Science and Engineering, National Tsing Hua University Hsinchu 300 Taiwan ROC
| | - Yi-Ting Lai
- Department of Materials Engineering, Ming Chi University of Technology New Taipei City 24301 Taiwan ROC
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology New Taipei City 24301 Taiwan ROC
- Biochemical Technology R&D Center, Ming Chi University of Technology New Taipei City 24301 Taiwan ROC
| | - Nyan-Hwa Tai
- Department of Materials Science and Engineering, National Tsing Hua University Hsinchu 300 Taiwan ROC
| |
Collapse
|
16
|
Wang L, Li M, Li B, Wang M, Zhao H, Zhao F. Electrochemical Sensor Based on Laser-Induced Graphene for Carbendazim Detection in Water. Foods 2023; 12:2277. [PMID: 37372489 DOI: 10.3390/foods12122277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Carbendazim (CBZ) abuse can lead to pesticide residues, which may threaten the environment and human health. In this paper, a portable three-electrode sensor based on laser-induced graphene (LIG) was proposed for the electrochemical detection of CBZ. Compared with the traditional preparation method of graphene, LIG is prepared by exposing the polyimide film to a laser, which is easily produced and patterned. To enhance the sensitivity, platinum nanoparticles (PtNPs) were electrodeposited on the surface of LIG. Under optimal conditions, our prepared sensor (LIG/Pt) has a good linear relationship with CBZ concentration in the range of 1-40 μM, with a low detection limit of 0.67 μM. Further, the sensor shows good recovery rates for the detection of CBZ in wastewater, which provides a fast and reliable method for real-time analysis of CBZ residues in water samples.
Collapse
Affiliation(s)
- Li Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Mengyue Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Bo Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Min Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Hua Zhao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Fengnian Zhao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
17
|
Koukouviti E, Soulis D, Economou A, Kokkinos C. Wooden Tongue Depressor Multiplex Saliva Biosensor Fabricated via Diode Laser Engraving. Anal Chem 2023; 95:6765-6768. [PMID: 37079776 DOI: 10.1021/acs.analchem.3c01211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Since wood is a renewable, biodegradable naturally occurring material, the development of conductive patterns on wood substrates is a new and innovative chapter in sustainable electronics and sensors. Herein, we describe the first wooden (bio)sensing device fabricated via diode laser-induced graphitization. For this purpose, a wooden tongue depressor (WTD) is laser-treated and converted to an electrochemical multiplex biosensing device for oral fluid analysis. A low-cost laser engraver, equipped with a low-power (0.5 W) diode laser, programmably irradiates the surface of the WTD, forming two mini electrochemical cells (e-cells). The two e-cells consist of four graphite electrodes: two working electrodes, a common counter, and a common reference electrode. The two e-cells are spatially separated via programmable pen-plotting, using a commercial hydrophobic marker pen. Proof-of-principle for biosensing is demonstrated for the simultaneous determination of glucose and nitrite in artificial saliva. This wooden electrochemical biodevice is an easy-to-fabricate disposable point-of-care chip with a wide scope of applicability to other bioassays, while it paves the way for the low-cost and straightforward production of wooden electrochemical platforms.
Collapse
Affiliation(s)
- Eleni Koukouviti
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Dionysios Soulis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Anastasios Economou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Christos Kokkinos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| |
Collapse
|
18
|
Jiang H, Xia C, Lin J, Garalleh HA, Alalawi A, Pugazhendhi A. Carbon nanomaterials: A growing tool for the diagnosis and treatment of diabetes mellitus. ENVIRONMENTAL RESEARCH 2023; 221:115250. [PMID: 36646201 DOI: 10.1016/j.envres.2023.115250] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/20/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Diabetes mellitus is a growing disease that affects people of different ages due to deficiencies in insulin action and secretion. Diabetes causing long-term hyperglycemia damages, destroys, and fails essential organs, including kidneys, eyes, hearts, nerves, and blood vessels. The involvement of pathogenic factors makes diabetes mellitus a severe disease. The autoimmune process results in insulin deficiency by destroying the beta-cells in the pancreas. This leads to insulin resistance. As a result of defects and abnormalities in fat, carbohydrate, and protein synthesis, insulin does not work as it should on the target tissues. As diabetes mellitus becomes, more severe, long-term and effective treatment becomes necessary. A wide range of nanomaterials can be used to treat diabetes mellitus in patients. In addition to being potential imaging, diagnostic, and treatment agents for diabetes mellitus, carbon nanomaterials (CNMs) are another group of nanoparticles that exhibit potential interest. The CNMs acts as implantable nanosensor to track and detect blood glucose level in patients with diabetes. CNMS are possible drug carriers that can treat diabetes mellitus selectively, precisely, and effectively. Diabetes mellitus can be diagnosed and treated with CNMs due to their structural specificity and high drug-loading efficiency. The present review explores CNMs for their types, synthesis, and anti-diabetic properties. This review aims to provide a detailed view of the new technology that can be used to decipher the mechanism of CNMs in diabetes mellitus.
Collapse
Affiliation(s)
- Han Jiang
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Junqing Lin
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia
| | - Amr Alalawi
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, India.
| |
Collapse
|
19
|
Mohammadpour-Haratbar A, Mohammadpour-Haratbar S, Zare Y, Rhee KY, Park SJ. A Review on Non-Enzymatic Electrochemical Biosensors of Glucose Using Carbon Nanofiber Nanocomposites. BIOSENSORS 2022; 12:bios12111004. [PMID: 36421123 PMCID: PMC9688744 DOI: 10.3390/bios12111004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 05/09/2023]
Abstract
Diabetes mellitus has become a worldwide epidemic, and it is expected to become the seventh leading cause of death by 2030. In response to the increasing number of diabetes patients worldwide, glucose biosensors with high sensitivity and selectivity have been developed for rapid detection. The selectivity, high sensitivity, simplicity, and quick response of electrochemical biosensors have made them a popular choice in recent years. This review summarizes the recent developments in electrodes for non-enzymatic glucose detection using carbon nanofiber (CNF)-based nanocomposites. The electrochemical performance and limitations of enzymatic and non-enzymatic glucose biosensors are reviewed. Then, the recent developments in non-enzymatic glucose biosensors using CNF composites are discussed. The final section of the review provides a summary of the challenges and perspectives, for progress in non-enzymatic glucose biosensors.
Collapse
Affiliation(s)
- Ali Mohammadpour-Haratbar
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1949635881, Iran
| | | | - Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1949635881, Iran
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| | - Kyong Yop Rhee
- Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University, Yongin 17104, Korea
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Korea
- Correspondence: (Y.Z.); (K.Y.R.); (S.-J.P.)
| |
Collapse
|
20
|
Gao P, Kasama T, Shin J, Huang Y, Miyake R. A Mediated Enzymatic Electrochemical Sensor Using Paper-Based Laser-Induced Graphene. BIOSENSORS 2022; 12:995. [PMID: 36354502 PMCID: PMC9688852 DOI: 10.3390/bios12110995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Laser-induced graphene (LIG) has been applied in many different sensing devices, from mechanical sensors to biochemical sensors. In particular, LIG fabricated on paper (PaperLIG) shows great promise for preparing cheap, flexible, and disposable biosensors. Distinct from the fabrication of LIG on polyimide, a two-step process is used for the fabrication of PaperLIG. In this study, firstly, a highly conductive PaperLIG is fabricated. Further characterization of PaperLIG confirmed that it was suitable for developing biosensors. Subsequently, the PaperLIG was used to construct a biosensor by immobilizing glucose oxidase, aminoferrocene, and Nafion on the surface. The developed glucose biosensor could be operated at a low applied potential (-90 mV) for amperometric measurements. The as-prepared biosensor demonstrated a limit of detection of (50-75 µM) and a linear range from 100 µM to 3 mM. The influence of the concentration of the Nafion casting solution on the performance of the developed biosensor was also investigated. Potential interfering species in saliva did not have a noticeable effect on the detection of glucose. Based on the experimental results, the simple-to-prepare PaperLIG-based saliva glucose biosensor shows great promise for application in future diabetes management.
Collapse
Affiliation(s)
- Panpan Gao
- Microfluidic Integrated Circuits Research Laboratory, Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Toshihiro Kasama
- Microfluidic Integrated Circuits Research Laboratory, Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Jungchan Shin
- Microfluidic Integrated Circuits Research Laboratory, Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yixuan Huang
- Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Ryo Miyake
- Microfluidic Integrated Circuits Research Laboratory, Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
21
|
Amouzadeh Tabrizi M, Acedo P. An electrochemical membrane-based aptasensor for detection of severe acute respiratory syndrome coronavirus-2 receptor-binding domain. APPLIED SURFACE SCIENCE 2022; 598:153867. [PMID: 35669218 PMCID: PMC9158412 DOI: 10.1016/j.apsusc.2022.153867] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/29/2022] [Accepted: 05/29/2022] [Indexed: 05/11/2023]
Abstract
Herein, we report an electrochemical membrane-based aptasensor for the determination of the SARS-CoV-2 receptor-binding domain (SARS-CoV-2-RBD). For this purpose, the nanoporous anodic aluminium oxide membrane (NPAOM) was first fabricated electrochemically. The NPAOM was then functionalized with 3-mercaptopropyl trimethoxysilane (NPAOM-Si-SH). After that, the NPAOM-Si-SH was decorated with gold nanoparticles by using gold ion and sodium borohydride. The NPAOM-Si-S-Aunano was then attached to the surface of the working electrode of a laser-engraved graphene electrode (LEGE). Subsequently, the LEGE/NPAOM-Si-S-Aunano was fixed inside a flow cell that was made by using a three-dimensional (3D) printer, and then thiolated aptamer was transferred into the flow cell using a pump. The electrochemical behavior of the LEGE/NPAOM-Si-S-Aunano-Aptamer was studied using square wave voltammetry (SWV) in the presence of potassium ferrocyanide as a redox probe. The response of the LEGE/NPAOM-Si-S-Aunano-Aptamer to the different concentrations of the SARS-CoV-2-RBD in human saliva sample was investigated in the concentration range of 2.5-40.0 ng/mL. The limit of the detection was found to be 0.8 ng/mL. The LEGE/NPAOM-Si-S-Aunano-Aptamer showed good selectivity to 5.0 ng/mL of SARS-CoV-2-RBD in the presence of five times of the interfering agents like hemagglutinin and neuraminidase as the influenza A virus major surface glycoproteins.
Collapse
Affiliation(s)
| | - Pablo Acedo
- Electronic Technology Department, Universidad Carlos III de Madrid, Leganés, Spain
| |
Collapse
|
22
|
An Electrochemical Immunosensor for the Determination of Procalcitonin Using the Gold-Graphene Interdigitated Electrode. BIOSENSORS 2022; 12:bios12100771. [PMID: 36290909 PMCID: PMC9599768 DOI: 10.3390/bios12100771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 01/09/2023]
Abstract
Procalcitonin (PCT) is considered a sepsis and infection biomarker. Herein, an interdigitated electrochemical immunosensor for the determination of PCT has been developed. The interdigitated electrode was made of the laser-engraved graphene electrode decorated with gold (LEGE/Aunano). The scanning electron microscopy indicated the LEGE/Aunano has been fabricated successfully. After that, the anti-PTC antibodies were immobilized on the surface of the electrode by using 3-mercaptopropionic acid. The electrochemical performance of the fabricated immunosensor was studied using electrochemical impedance spectroscopy (EIS). The EIS method was used for the determination of PCT in the concentration range of 2.5–800 pg/mL with a limit of detection of 0.36 pg/mL. The effect of several interfering agents such as the C reactive protein (CRP), immunoglobulin G (IgG), and human serum albumin (HSA) was also studied. The fabricated immunosensor had a good selectivity to the PCT. The stability of the immunosensor was also studied for 1 month. The relative standard deviation (RSD) was obtained to be 5.2%.
Collapse
|
23
|
Matias TA, de Faria LV, Rocha RG, Silva MNT, Nossol E, Richter EM, Muñoz RAA. Prussian blue-modified laser-induced graphene platforms for detection of hydrogen peroxide. Mikrochim Acta 2022; 189:188. [DOI: 10.1007/s00604-022-05295-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
|
24
|
Affordable equipment to fabricate laser-induced graphene electrodes for portable electrochemical sensing. Mikrochim Acta 2022; 189:185. [PMID: 35396635 DOI: 10.1007/s00604-022-05294-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Graphene-based materials present unique properties for electrochemical applications, and laser-induced conversion of polyimide to graphene is an emerging route to obtain a high-quality material for sensing. Herein we present compact and low-cost equipment constructed from an open-source 3D printer at which a 3.5-W visible (449 nm) laser was adapted to fabricate laser-induced graphene (LIG) electrodes from commercial polyimide, which resulted in electron transfer kinetic (k0) of 5.6 × 10-3 cm s-1 and reproducibility calculated by relative standard deviation (RSD < 5%) from cyclic voltammograms of [Fe(CN)6]3-/4- using 5 different electrodes. LIG electrodes enabled the simultaneous voltammetric determination of uric acid (+ 0.1 V vs. pseudo-reference) and nitrite (+ 0.4 V vs pseudo-reference), with limit of detection (LOD) values of 0.07 and 0.27 µmol L-1, respectively. Amperometric measurements for the detection of H2O2 (applying + 0.0 V vs. Ag|AgCl|KCl(sat.)) after Prussian blue (PB) modification and ciprofloxacin (applying + 1.2 V vs. Ag|AgCl|KCl(sat.)) were performed under flow conditions, which confirmed the high stability of LIG and LIG-PB surfaces. The LOD values were 1.0 and 0.2 µmol L-1 for H2O2 and ciprofloxacin, respectively. The RSD values (< 12%) obtained for the analysis using three different electrodes attested the precision of LIG electrodes manufactured in two designs. No sample matrix effects on the determination of ciprofloxacin in milk samples were observed (recoveries between 84 and 96%). The equipment can be built with less than $300 and each LIG electrode costs less than $0.01.
Collapse
|
25
|
Dixit N, Singh SP. Laser-Induced Graphene (LIG) as a Smart and Sustainable Material to Restrain Pandemics and Endemics: A Perspective. ACS OMEGA 2022; 7:5112-5130. [PMID: 35187327 PMCID: PMC8851616 DOI: 10.1021/acsomega.1c06093] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/19/2022] [Indexed: 05/02/2023]
Abstract
A healthy environment is necessary for a human being to survive. The contagious COVID-19 virus has disastrously contaminated the environment, leading to direct or indirect transmission. Therefore, the environment demands adequate prevention and control strategies at the beginning of the viral spread. Laser-induced graphene (LIG) is a three-dimensional carbon-based nanomaterial fabricated in a single step on a wide variety of low-cost to high-quality carbonaceous materials without using any additional chemicals potentially used for antiviral, antibacterial, and sensing applications. LIG has extraordinary properties, including high surface area, electrical and thermal conductivity, environmental-friendliness, easy fabrication, and patterning, making it a sustainable material for controlling SARS-CoV-2 or similar pandemic transmission through different sources. LIG's antiviral, antibacterial, and antibiofouling properties were mainly due to the thermal and electrical properties and texture derived from nanofibers and micropores. This perspective will highlight the conducted research and the future possibilities on LIG for its antimicrobial, antiviral, antibiofouling, and sensing applications. It will also manifest the idea of incorporating this sustainable material into different technologies like air purifiers, antiviral surfaces, wearable sensors, water filters, sludge treatment, and biosensing. It will pave a roadmap to explore this single-step fabrication technique of graphene to deal with pandemics and endemics in the coming future.
Collapse
Affiliation(s)
- Nandini Dixit
- Environmental
Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Swatantra P. Singh
- Environmental
Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
- Centre
for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
- Interdisciplinary
Program in Climate Studies, Indian Institute
of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
26
|
Balkourani G, Damartzis T, Brouzgou A, Tsiakaras P. Cost Effective Synthesis of Graphene Nanomaterials for Non-Enzymatic Electrochemical Sensors for Glucose: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:355. [PMID: 35009895 PMCID: PMC8749877 DOI: 10.3390/s22010355] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 02/06/2023]
Abstract
The high conductivity of graphene material (or its derivatives) and its very large surface area enhance the direct electron transfer, improving non-enzymatic electrochemical sensors sensitivity and its other characteristics. The offered large pores facilitate analyte transport enabling glucose detection even at very low concentration values. In the current review paper we classified the enzymeless graphene-based glucose electrocatalysts' synthesis methods that have been followed into the last few years into four main categories: (i) direct growth of graphene (or oxides) on metallic substrates, (ii) in-situ growth of metallic nanoparticles into graphene (or oxides) matrix, (iii) laser-induced graphene electrodes and (iv) polymer functionalized graphene (or oxides) electrodes. The increment of the specific surface area and the high degree reduction of the electrode internal resistance were recognized as their common targets. Analyzing glucose electrooxidation mechanism over Cu- Co- and Ni-(oxide)/graphene (or derivative) electrocatalysts, we deduced that glucose electrochemical sensing properties, such as sensitivity, detection limit and linear detection limit, totally depend on the route of the mass and charge transport between metal(II)/metal(III); and so both (specific area and internal resistance) should have the optimum values.
Collapse
Affiliation(s)
- Georgia Balkourani
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos, Greece;
| | - Theodoros Damartzis
- Industrial Processes and Energy Systems Engineering, Institute of Mechanical Engineering, Sion, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| | - Angeliki Brouzgou
- Department of Energy Systems, School of Technology, University of Thessaly, Geopolis, Regional Road Trikala-Larisa, 41500 Larisa, Greece
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos, Greece;
- Laboratory of Materials and Devices for Electrochemical Power Engineering, Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia
- Laboratory of Electrochemical Devices Based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry (RAS), 620990 Yekaterinburg, Russia
| |
Collapse
|