1
|
Berthold F, Chiduch Y, Lederer M, Schlenk C, Hausmann C, Stute SC. Value-added utilisation of industrial by-products from bioenergy processes for growth of the PHB synthesising bacterium Cupriavidus necator. N Biotechnol 2025; 88:132-140. [PMID: 40348363 DOI: 10.1016/j.nbt.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025]
Abstract
The utilisation of low-value by-products derived from the production of bioenergy as nutrient media for microbial growth was investigated using the polyhydroxybutyrate (PHB) synthesising bacterium Cupriavidus necator as a case study. The potentially suitable by-products crude glycerol (derived from biodiesel production as carbon source) and digestate (resulting from biogas production as source for nitrogen and other nutrients) contain significant amounts of nutrients but also dissolved and solid impurities. In order to minimise negative effects such as clogging in bioreactor infrastructure and complications during product recovery in a future industrial production scale, the amount of solids was reduced by filtration and centrifugation. In addition, the treatment of the liquid anaerobic digestate (LAD) included dilution and pH stabilisation in order to reduce growth inhibition due to excessive concentrations of compounds in the digestate and an unsuitable pH. Experiments were carried out in a stirred tank bioreactor comparing growth on a medium consisting only of treated LAD and crude glycerol with growth on a reference media containing crude glycerol but mineral salts instead of LAD. Fermentation with crude glycerol and LAD showed slightly reduced specific growth rates (0.1 1/h) but a similar cell dry weight (8.8 gCDW/L) compared to the reference media with crude glycerol and mineral salts (0.14 1/h and 9.5 gCDW/L). As no specific conditions were set to promote PHB accumulation, only low levels of PHA of 5,45wPHB/wCDW-% ( ± 1,5) were observed for both medium variations at the end of growth.
Collapse
Affiliation(s)
- Felix Berthold
- Technische Hochschule Nürnberg Georg Simon Ohm, Fakultät Verfahrenstechnik, Wassertorstraße 10, Nürnberg 90489, Germany.
| | - York Chiduch
- Technische Hochschule Nürnberg Georg Simon Ohm, Fakultät Verfahrenstechnik, Wassertorstraße 10, Nürnberg 90489, Germany
| | - Marco Lederer
- Technische Hochschule Nürnberg Georg Simon Ohm, Fakultät Verfahrenstechnik, Wassertorstraße 10, Nürnberg 90489, Germany
| | - Christian Schlenk
- Technische Hochschule Nürnberg Georg Simon Ohm, Fakultät Verfahrenstechnik, Wassertorstraße 10, Nürnberg 90489, Germany
| | - Christian Hausmann
- Technische Hochschule Nürnberg Georg Simon Ohm, Fakultät Verfahrenstechnik, Wassertorstraße 10, Nürnberg 90489, Germany
| | - Stephanie Christine Stute
- Technische Hochschule Nürnberg Georg Simon Ohm, Fakultät Verfahrenstechnik, Wassertorstraße 10, Nürnberg 90489, Germany.
| |
Collapse
|
2
|
Liu Y, Li D, Ran X, Nie W, Semeniuk I, Koretska N. Synthesis, Structure, and Properties of Polyhydroxybutyrate Derived from Azotobacter Vinelandii N-15. ChemistryOpen 2025:e2500150. [PMID: 40326197 DOI: 10.1002/open.202500150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/14/2025] [Indexed: 05/07/2025] Open
Abstract
Biodegradable polymers are of great interest in addressing the current pollution problem caused by synthetic petroleum-based polymers. It is well known that various microorganisms synthesize and store high-molecular-weight polyhydroxyalkanoates in their cytoplasm as water-insoluble inclusions. In this study, the bacterium Azotobacter vinelandii N-15 strain is used for bioplastic production. The optimal polyhydroxybutyrate (PHB) yield (62% of biomass, 23.6 g L-1 dry cells) is achieved by cultivating the bacteria in Burke's medium with molasses as a carbon source (5 wt.%) at 30 °C, 220 rpm, for 50 h. The resulting polymer was characterized using thin-layer chromatography, UV-Vis, fourier transform infrared, nuclear magnetic resonance spectroscopy, gas chromatography, and X-ray diffraction. The results confirmed that the polymer is PHB with a purity of 98.9%, a molecular weight of 1.2 MDa, a crystallinity of 73%, a melting point of 179 °C, a decomposition temperature of 275 °C, a density of 1.22 g cm- 3, a melt flow index of 10 g 10 min-1, a Shore hardness of 82, a tensile strength of 30 MPa, and a relative elongation at break of 4.5%. Thus, a bioplastic with properties suitable for practical applications is successfully obtained using molasses-a byproduct of sugar production.
Collapse
Affiliation(s)
- Yang Liu
- CAS Key Laboratory of high-promance Synthetic Rubber and its Composite Materials, Changchun institute of applied chemistry, Chinese Academy of Sciences, 5625 Renmin. Ave, Changchun, Jilin, 130000, China
| | - Dongwei Li
- CAS Key Laboratory of high-promance Synthetic Rubber and its Composite Materials, Changchun institute of applied chemistry, Chinese Academy of Sciences, 5625 Renmin. Ave, Changchun, Jilin, 130000, China
| | - Xianghai Ran
- CAS Key Laboratory of high-promance Synthetic Rubber and its Composite Materials, Changchun institute of applied chemistry, Chinese Academy of Sciences, 5625 Renmin. Ave, Changchun, Jilin, 130000, China
| | - Wei Nie
- CAS Key Laboratory of high-promance Synthetic Rubber and its Composite Materials, Changchun institute of applied chemistry, Chinese Academy of Sciences, 5625 Renmin. Ave, Changchun, Jilin, 130000, China
| | - Ihor Semeniuk
- CAS Key Laboratory of high-promance Synthetic Rubber and its Composite Materials, Changchun institute of applied chemistry, Chinese Academy of Sciences, 5625 Renmin. Ave, Changchun, Jilin, 130000, China
- L. M. Lytvynenko of the National Academy of Sciences of Ukraine, Department of Physical Chemistry of Fossil Fuels, 3a, Naukova Str., Lviv, 79060, Ukraine
| | - Nataliia Koretska
- L. M. Lytvynenko of the National Academy of Sciences of Ukraine, Department of Physical Chemistry of Fossil Fuels, 3a, Naukova Str., Lviv, 79060, Ukraine
| |
Collapse
|
3
|
Kumar Singh N, Srivastava AK, Sreekrishnan TR, Shivakumar S. Production of medical-grade biopolymer in air lift bioreactors. Prep Biochem Biotechnol 2025:1-8. [PMID: 40277398 DOI: 10.1080/10826068.2025.2496246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Microbes are known to produce biopolymers for societal applications. Economical production of biopolymer (PHB) is desperately required to significantly replace or reduce usage of non-degradable polypropylene produced by disappearing petroleum resources. Besides it is also equally important to ensure abundant availability of low cost medical grade biopolymers which can be used for several medical applications in society. It has been invariably observed that mechanical agitation in the bioreactors features major power consumption in the operation of bioreactors therefore usage of air lift bioreactors are likely to reduce power consumption by mechanical agitation significantly thereby leading to economic biopolymer production. Present investigation evaluates the possible role of pneumatic bioreactors (e.g., Bubble Column, Outer Aeration Inner Settling, Inner Aeration Outer Settling) as alternates to mechanically agitated bioreactors for the economic production of medical grade biopolymers P(3HB) by Bacillus thuringiensis IAM12077 using glycerol and glucose as major substrates. It was observed that Bacillus thuringiensis IAM12077 cultivations featured Biopolymer P(3HB) accumulations of 22.48%, 37.07%, 27.73%, in BC, OAIS, IAOS air lift bioreactors. Relatively higher product yield, volumetric productivity and P(3HB) accumulation was observed in Outer Aeration Inner Settling (OAIS) air lift bioreactor configuration as opposed to other pneumatic bioreactors.
Collapse
Affiliation(s)
- Navodit Kumar Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ashok Kumar Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - T R Sreekrishnan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Srividya Shivakumar
- School of Allied Healthcare and Sciences, Jain deemed-to-be University, Bangalore, Professor Microbiology & Director
| |
Collapse
|
4
|
Magonara C, Montagnese E, Bertasini D, Vona C, Salvatori G, Tayou LN, Villano M, Battista F, Frison N, Bolzonella D, Pesante G. Mixed-culture polyhydroxyalkanoate production with variable hydroxyvalerate content from agri-food residues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36316-4. [PMID: 40240659 DOI: 10.1007/s11356-025-36316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/19/2025] [Indexed: 04/18/2025]
Abstract
Agri -food residues represent an unutilised biomass that can be valorised into high-value compounds. Polyhydroxyalkanoates (PHAs) are one such product, offering a sustainable alternative to fossil-based plastics. PHAs containing hydroxyvalerate monomers (PHBV) are more flexible and less crystalline than pure PHB, making them suitable for a broader range of applications. This study focused on producing PHBV with a targeted hydroxyvalerate monomer content (25-35%, w/w) for use in agricultural materials. Different types of feedstocks (ranging from synthetic to agri-food residue fermentation fluid) were used with mixed microbial cultures to achieve the desired hydroxyvalerate content in the stored PHA. The COD removal efficiency of the selection reactor ranged from 81.6 to 99.1% with synthetic feed, indicating effective substrate uptake, whereas agricultural fermentate resulted in lower carbon uptake (71.4-85.9%). Despite fluctuations throughout the study, the desired hydroxyvalerate monomer content was successfully obtained. The molecular weight and distribution were challenging to correlate with the different feedstocks, though they remained suitable for thermoplastic processing for most set-ups (352 to 1369 kDa). The bacterial community composition changed throughout the selection process, with the feast/famine regime favouring PHA producers such as Thauera, Paracoccus, Neomegalonema, Corynebacterium, and Flavobacterium; however, the introduction of agricultural fermentate led to a loss in speciation.
Collapse
Affiliation(s)
- Claudia Magonara
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Elvis Montagnese
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Davide Bertasini
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Claudia Vona
- Department of Chemistry, Sapienza University of Rome, Roma, 00185, Italy
| | - Gaia Salvatori
- Department of Chemistry, Sapienza University of Rome, Roma, 00185, Italy
| | | | - Marianna Villano
- Department of Chemistry, Sapienza University of Rome, Roma, 00185, Italy
| | - Federico Battista
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Nicola Frison
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - David Bolzonella
- Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Giovanna Pesante
- Department of Biotechnology, University of Verona, Verona, 37134, Italy.
| |
Collapse
|
5
|
Bolla M, Pettinato M, Ferrari PF, Fabiano B, Perego P. Polyhydroxyalkanoates production from laboratory to industrial scale: A review. Int J Biol Macromol 2025; 310:143255. [PMID: 40250686 DOI: 10.1016/j.ijbiomac.2025.143255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Environmental issues related to fossil-based plastics are getting the attention of the media and legislative authorities, addressing the need to improve the plastics' design, collection, and circular economy. In this regard, polyhydroxyalkanoates (PHAs) represent a promising alternative to the conventional polymers, given their biological origin, biodegradability, and biocompatibility. To date, their commercialization covers only a little percentage of the biodegradable plastic application, mainly due to their high cost. However, new production strategies are being investigated and patented, enhancing the PHA market competitiveness. This review tries to fill the gap about the critical investigation on innovative and up-to-date process strategies in PHA production field, deeply evaluating them from a plant-engineering point of view. Several aspects are considered regarding the reduction of the production costs and the increase in the overall PHA productivity and recovery. Among them, the feeding of pre-treated carbon sources derived from food and agro-industrial wastes, the use of mixed microbial cultures as convenient substitutes to the pure ones, and optimized downstream processes are widely discussed. The overlook of the topic is completed by evaluating the innovative technologies existing at pilot and industrial scale, able to achieve improved production yields. Finally, PHA economic and market current conditions are investigated.
Collapse
Affiliation(s)
- Maria Bolla
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy.
| | - Margherita Pettinato
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy.
| | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| | - Bruno Fabiano
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy.
| | - Patrizia Perego
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia, 15, 16145 Genoa, Italy; Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, via Montallegro, 1, 16145 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| |
Collapse
|
6
|
Simica A, Segovia Y, Navarro-Sempere A, Martínez-Espinosa RM, Pire C. Advanced Strategies for Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Production: PHA Synthase Homologous Overexpression in the Extremophile Haloferax mediterranei. Mar Drugs 2025; 23:166. [PMID: 40278287 PMCID: PMC12028471 DOI: 10.3390/md23040166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Bioplastics such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) are promising alternatives to conventional plastics. However, the high production cost limits their industrial application. In this study, PHBV production was optimized in Haloferax mediterranei by the homologous overexpression of the key enzyme PHA synthase (PhaEC), resulting in the OEphaEC strain. The growth and PHBV production of OEphaEC compared with the parental strain (HM26) were evaluated in three culture media with different nitrogen sources (KNO3, NH4Cl, and casamino acids). The OEphaEC strain exhibited a 20% increase in PHBV production and a 40% increase in 3-hydroxyvalerate monomer (3HV) content in a defined medium with nitrate as a nitrogen source, as determined by GC-MS. Moreover, enzyme activity, measured spectrophotometrically, increased from 2.3 to 3.9 U/mg. Soluble and insoluble protein fractions were analysed to assess the overexpression of PHA synthase. Only PhaE was found in the insoluble protein fraction, where PHBV granules accumulate. Transmission electron microscopy (TEM) images confirmed a higher PHBV content in OEphaEC compared to the parental strain. These results demonstrate that the homologous overexpression of the key enzyme implicated in PHBV biosynthesis can enhance PHBV content, making its production competitive for industrial applications.
Collapse
Affiliation(s)
- Alexandra Simica
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.S.); (R.M.M.-E.)
| | - Yolanda Segovia
- Biotechnology Department, Faculty of Science, University of Alicante Ap. 99, E-03080 Alicante, Spain; (Y.S.); (A.N.-S.)
| | - Alicia Navarro-Sempere
- Biotechnology Department, Faculty of Science, University of Alicante Ap. 99, E-03080 Alicante, Spain; (Y.S.); (A.N.-S.)
| | - Rosa María Martínez-Espinosa
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.S.); (R.M.M.-E.)
- Biochemistry, Molecular Biology, Edaphology and Agrochemistry Department, Faculty of Science, University of Alicante Ap. 99, E-03080 Alicante, Spain
| | - Carmen Pire
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.S.); (R.M.M.-E.)
- Biochemistry, Molecular Biology, Edaphology and Agrochemistry Department, Faculty of Science, University of Alicante Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
7
|
Sachan RSK, Kumar A, Karnwal A, Paramasivam P, Agrawal A, Ayanie AG. Screening and characterization of PHA producing bacteria from sewage water identifying Bacillus paranthracis RSKS-3 for bioplastic production. BMC Microbiol 2025; 25:136. [PMID: 40087570 PMCID: PMC11908031 DOI: 10.1186/s12866-025-03841-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/21/2025] [Indexed: 03/17/2025] Open
Abstract
Polyhydroxyalkanoate (PHA) as bioplastic is considered a replacement for conventional plastic due to its more beneficial properties. The ability of PHA to biodegrade in a shorter period is a major advantage. Different sewage water samples were collected from the Budha Nala near the Maheru regions of Punjab. PHA-producing bacteria were isolated using minimal salt media supplemented with Nile blue. Further screening was carried out using Sudan Black B stain and Nile red stain. The positive isolates were characterized for gram reaction, motility, and biochemical tests. The individual isolates were later screened for maximum PHA accumulation using minimal salt supplemented with glucose. The extracted PHA was characterized using FTIR, XRD, SEM, UV spectroscopy, NMR, and TGA. Twenty-six different PHA-producing bacteria were isolated on minimal salt media supplemented with Nile blue. Upon Sudan Black B stain and Nile red stain, nineteen isolates showed black granules and orange fluorescence bodies under 100X magnification that confirmed polyhydroxyalkanoates. The biochemical tests partially characterized isolates belonging to the Bacillus genus. All the isolates produced PHA in granular form, however, isolate P-3 showed maximum production of 0.068 g/L. The extracted PHA was characterized using FTIR and XRD for its chemical and crystallinity studies and the UV spectroscopy confirmed the extracted PHA by analyzing absorption spectra at 235 nm of standard crotonic acid and sulfuric acid conversion of PHA to crotonic acid. The isolated P-3, Bacillus paranthracis RSKS-3 is the first reported bacterium to produce polyhydroxyalkanoates. Further studies is necessary to optimize the production efficiency of the bacterium for maximum PHA yield.
Collapse
Affiliation(s)
- Rohan Samir Kumar Sachan
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Department of Medical Laboratory Sciences, School of Allied and Healthcare Sciences, GNA University, Phagwara-144401, Punjab, India
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russia
- Department of Technical Sciences, Western Caspian University, Baku, AZ1033, Azerbaijan
- Refrigeration &Air-condition Department, Technical Engineering College, The Islamic University, Najaf, Iraq
| | - Arun Karnwal
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun-248009, Uttarakhand, India.
| | - Prabhu Paramasivam
- Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, 602105, India.
| | - Ashish Agrawal
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Abinet Gosaye Ayanie
- Department of Mechanical Engineering, Adama Science and Technology University, Adama, 2552, Ethiopia.
| |
Collapse
|
8
|
Sabri I, Mohd Yusoff MZ, Nor Muhammad NA, Ho LS, Ramli N. Metabolic conversion of phenol to polyhydroxyalkanoate (PHA) for addressing dual environmental challenges: A review. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100352. [PMID: 39958774 PMCID: PMC11830346 DOI: 10.1016/j.crmicr.2025.100352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025] Open
Abstract
A sustainable approach to microbial polyhydroxyalkanoate (PHA) production involves utilizing waste as a substrate, which can include toxic pollutants like phenol as a carbon feedstock. Phenol-contaminated effluents offer cost-effective and readily available resources for PHA production, while simultaneously addressing phenol contamination issues. Understanding the metabolic conversion of phenol to PHA is crucial to enhance its efficiency, especially considering phenol's toxicity to microbial cells and the substrate-dependent nature of microbial PHA production. In this review, the mechanisms of phenol biodegradation and PHA biosynthesis are first independently elucidated to comprehend the role of bacteria in these processes. Phenol can be metabolized aerobically via various pathways, including catechol meta-cleavage I and II, catechol ortho-cleavage, protocatechuate ortho-cleavage, and protocatechuate meta-cleavage, as well as anaerobically via 4-hydrozybenzoate and/or n-caproate formation. Meanwhile, PHA can be synthesized through the acetoacetyl-CoA (pathway I), de novo fatty acids synthesis (pathway II), β-oxidation (pathway III), and the tricarboxylic acid (TCA) cycle, with the induction of these pathways are highly dependent on the substrate. Given that the link between these two mechanisms was not comprehensively reported before, the second part of the review delve into understanding phenol conversion into PHA, specifically polyhydroxybutyrate (PHB). While phenol toxicity can inhibit bacterial performance, it can be alleviated through the utilization of microbial mixed culture (MMC), which offers a wider range of metabolic capabilities. Utilizing phenol as a carbon feedstock for PHB accumulation could offer a viable approach to boost PHA's commercialization while addressing the issue of phenol pollution.
Collapse
Affiliation(s)
- Izzati Sabri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Mohd Zulkhairi Mohd Yusoff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Nor Azlan Nor Muhammad
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Li Sim Ho
- SD Guthrie Technology Centre Sdn. Bhd., Serdang 43400, Selangor, Malaysia
| | - Norhayati Ramli
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| |
Collapse
|
9
|
Kusuma HS, Sabita A, Putri NA, Azliza N, Illiyanasafa N, Darmokoesoemo H, Amenaghawon AN, Kurniawan TA. Waste to wealth: Polyhydroxyalkanoates (PHA) production from food waste for a sustainable packaging paradigm. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100225. [PMID: 39497731 PMCID: PMC11532435 DOI: 10.1016/j.fochms.2024.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 11/07/2024]
Abstract
The growing demand for sustainable food packaging and the increasing concerns regarding environmental pollution have driven interest in biodegradable materials. This paper presents an in-depth review of the production of Polyhydroxyalkanoates (PHA), a biodegradable polymer, from food waste. PHA-based bioplastics, particularly when derived from low-cost carbon sources such as volatile fatty acids (VFAs) and waste oils, offer a promising solution for reducing plastic waste and enhancing food packaging sustainability. Through optimization of microbial fermentation processes, PHA production can achieve significant efficiency improvements, with yields reaching up to 87 % PHA content under ideal conditions. This review highlights the technical advancements in using PHA for food packaging, emphasizing its biodegradability, biocompatibility, and potential to serve as a biodegradable alternative to petroleum-based plastics. However, challenges such as high production costs, mechanical limitations, and the need for scalability remain barriers to industrial adoption. The future of PHA in food packaging hinges on overcoming these challenges through further research and innovation in production techniques, material properties, and cost reduction strategies, along with necessary legislative support to promote widespread use.
Collapse
Affiliation(s)
- Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Atna Sabita
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Najla Anira Putri
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Nadhira Azliza
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Nafisa Illiyanasafa
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia
| | | | | |
Collapse
|
10
|
Grgurević K, Bramberger D, Miloloža M, Stublić K, Ocelić Bulatović V, Ranilović J, Ukić Š, Bolanča T, Cvetnić M, Markić M, Kučić Grgić D. Producing and Characterizing Polyhydroxyalkanoates from Starch and Chickpea Waste Using Mixed Microbial Cultures in Solid-State Fermentation. Polymers (Basel) 2024; 16:3407. [PMID: 39684153 DOI: 10.3390/polym16233407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The environmental impact of plastic waste is a growing global challenge, primarily due to non-biodegradable plastics from fossil resources that accumulate in ecosystems. Biodegradable polymers like polyhydroxyalkanoates (PHAs) offer a sustainable alternative. PHAs are microbial biopolymers produced by microorganisms using renewable substrates, including agro-industrial byproducts, making them eco-friendly and cost-effective. This study focused on the isolation and characterization of PHA-producing microorganisms from agro-industrial waste, including chickpeas, chickpeas with bean residues, and starch. Screening via Sudan Black staining identified PHA-accumulating strains such as Brevibacillus sp., Micrococcus spp., and Candida krusei, among others. To assess the potential for PHA biosynthesis, solid-state fermentation (SSF) was conducted using agro-industrial waste as substrates, along with a mixed culture of the isolated microorganisms. The highest observed yield was a PHA accumulation of 13.81%, achieved with chickpeas containing bean residues. Structural and thermal characterization of the PHAs was performed using Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). FTIR-ATR spectra indicated polyhydroxybutyrate (PHB), suggesting it as the synthesized PHA type. This study highlights the potential of agro-industrial waste for sustainable PHA production and eco-friendly bioplastics.
Collapse
Affiliation(s)
- Karlo Grgurević
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Dora Bramberger
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Martina Miloloža
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | | | - Vesna Ocelić Bulatović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | | | - Šime Ukić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Tomislav Bolanča
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Matija Cvetnić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marinko Markić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Dajana Kučić Grgić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|
11
|
Hur DH, Lee J, Park SJ, Jeong KJ. Engineering of Pseudomonas putida to produce medium-chain-length polyhydroxyalkanoate from crude glycerol. Int J Biol Macromol 2024; 281:136411. [PMID: 39393726 DOI: 10.1016/j.ijbiomac.2024.136411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/14/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
The development of biodegradable polymers is crucial for addressing environmental issues and waste management challenges, and a medium-chain-length polyhydroxyalkanoate(MCL-PHA) exhibits significant application potential in diverse industrial and environmental contexts owing to its versatility and biodegradability. Here, Pseudomonas putida was metabolically engineered to produce MCL-PHA from crude glycerol. To increase the precursor pool, we first deleted the phaC1ZC2 operon and introduced a plasmid-based overexpression of phaC2 and phaG, and the MCL-PHA content derived from glycerol increased to 18.27 wt% at 60 h. Subsequently, by optimizing the acoA expression through promoter selection and UTR design, the MCL-PHA content further increased to 19.93 wt% at 72 h. Additionally, a notable increase in MCL-PHA production was achieved using PhaC2 designed to have no substrate-trapping effect (PhaC2A477A478). This improvement was guided by filling structural data gaps using AlphaFold2 and docking simulations that revealed the substrate-trapping phenomenon. High-level production of MCL-PHA was achieved through fed-batch fermentation using the final engineered P. putida from refined glycerol, which yielded 34.9 g/L of MCL-PHA with 44.64 wt% at 180 h. Furthermore, using crude glycerol as the sole carbon source enabled the production of 49.5 g/L of MCL-PHA with 45.41 wt% at 180 h in fed-batch culture.
Collapse
Affiliation(s)
- Dong Hoon Hur
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Joonyoung Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Graduate School of Engineering Biology, KAIST, Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
12
|
Merino D. Embracing Nature's Clockwork: Crafting Plastics for Degradation in Plant Agricultural Systems. ACS MATERIALS AU 2024; 4:450-458. [PMID: 39280809 PMCID: PMC11393932 DOI: 10.1021/acsmaterialsau.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 09/18/2024]
Abstract
In the 21st century, global agriculture confronts the urgent challenge of increasing food production by 70% by 2050 while simultaneously addressing environmental and health concerns. Plastics, integral to agricultural innovation, present sustainability challenges due to their non-biodegradable nature and contribution to pollution. This perspective examines the transition to bioplastics, emphasizing their bio-based origin and their crucial characteristic of being readily biodegradable in the soil. Key bioplastics such as poly(lactic acid) (PLA), polyhydroxyalkanoates (PHAs), and biomass-derived polymers are discussed, particularly regarding the microplastic generation in soil resulting from their use in specific applications like mulch films, delivery systems, and soil conditioners. Embracing bioplastics signifies a significant step forward in achieving sustainable agriculture and addressing plastic waste. However, it is highlighted that while some bioplastics can be recovered and recycled, special applications where the plastic is in intimate contact with soil pose challenges for recovery. In these cases, that represent more than the 50% of plastics used in agriculture, meticulous design for biodegradation in soil synchronized with agricultural cycles is necessary. This approach ensures minimal environmental impact and promotes a circular approach to plastic use in agriculture.
Collapse
Affiliation(s)
- Danila Merino
- Basque Center for Macromolecular Design and Engineering (POLYMAT), University of the Basque Country (UPV/EHU), Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
13
|
Mandal M, Roy A, Mitra D, Sarkar A. Possibilities and prospects of bioplastics production from agri-waste using bacterial communities: Finding a silver-lining in waste management. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100274. [PMID: 39310303 PMCID: PMC11416519 DOI: 10.1016/j.crmicr.2024.100274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
To meet the need of the growing global population, the modern agriculture faces tremendous challenges to produce more food as well as fiber, timber, biofuels, etc.; hence generates more waste. This continuous growth of agricultural waste (agri-waste) and its management strategies have drawn the attention worldwide because of its severe environmental impacts including air, soil and water pollution. Similarly, growing concerns about the sustainable future have fuelled the development of biopolymers, substances occurring in and/or produced by living organisms, as substitute for different synthetic and harmful polymers, especially petroleum-based plastics. Now, the components of agri-waste offer encouraging opportunities for the production of bioplastics through mechanical and microbial procedures. Even the microbial, both bacterial and fungal, system results in lower energy consumption and better eco-friendly alternatives. The review mainly concentrates on cataloging and understanding the bacterial 'input' in developing bioplastics from diverse agri-waste. Especially, the bacteria like Cupriavidus necator, Chromatium vinosum, and Pseudomonas aeruginosa produce short- and medium-chain length poly(3-hydroxyalkanote) (P3HB) polymers using starch (from corn and potato waste), and cellulose (from sugarcane bagasse, corn husks waste). Similarly, C. necator, and transformant Wautersia eutropha produce P3HB polymer using lipid-based components (such as palm oil waste). Important to note that, the synthesis of these polymers are interconnected with the bacterial general metabolic activities, for example Krebs cycle, glycolysis cycle, β-oxidation, calvin cycle, de novo fatty acid syntheses, etc. Altogether, the agri-waste is reasonably low-cost feed for the production of bioplastics using bacterial communities; and the whole process certainly provide an opportunity towards sustainable waste management strategy.
Collapse
Affiliation(s)
- Mamun Mandal
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda – 732 103, West Bengal, India
| | - Anamika Roy
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda – 732 103, West Bengal, India
| | - Debasis Mitra
- Department of Microbiology, Graphic Era (Deemed to be University), 566/6, Bell Road, Clement Town, Dehradun, Uttarakhand 248002 India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda – 732 103, West Bengal, India
| |
Collapse
|
14
|
Ho LYL, Pan L, Meng F, Ho KTM, Liu F, Wu MT, Lei HI, Bhachu G, Wang X, Dahlsten O, Sun Y, Lee PH, Tan GYA. Quantum modeling simulates nutrient effect of bioplastic polyhydroxyalkanoate (PHA) production in Pseudomonas putida. Sci Rep 2024; 14:18255. [PMID: 39107357 PMCID: PMC11303679 DOI: 10.1038/s41598-024-68727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Polyhydroxyalkanoates (PHAs) could be used to make sustainable, biodegradable plastics. However, the precise and accurate mechanistic modeling of PHA biosynthesis, especially medium-chain-length PHA (mcl-PHA), for yield improvement remains a challenge to biology. PHA biosynthesis is typically triggered by nitrogen limitation and tends to peak at an optimal carbon-to-nitrogen (C/N) ratio. Specifically, simulation of the underlying dynamic regulation mechanisms for PHA bioprocess is a bottleneck owing to surfeit model complexity and current modeling philosophies for uncertainty. To address this issue, we proposed a quantum-like decision-making model to encode gene expression and regulation events as hidden layers by the general transformation of a density matrix, which uses the interference of probability amplitudes to provide an empirical-level description for PHA biosynthesis. We implemented our framework modeling the biosynthesis of mcl-PHA in Pseudomonas putida with respect to external C/N ratios, showing its optimization production at maximum PHA production of 13.81% cell dry mass (CDM) at the C/N ratio of 40:1. The results also suggest the degree of P. putida's preference in channeling carbon towards PHA production as part of the bacterium's adaptative behavior to nutrient stress using quantum formalism. Generic parameters (kD, kN and theta θ) obtained based on such quantum formulation, representing P. putida's PHA biosynthesis with respect to external C/N ratios, was discussed. This work offers a new perspective on the use of quantum theory for PHA production, demonstrating its application potential for other bioprocesses.
Collapse
Affiliation(s)
- Lawrence Yuk Lung Ho
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Li Pan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Fei Meng
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | - Kin Tung Michael Ho
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Feiyang Liu
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | - Ming-Tsung Wu
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Hei I Lei
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Govind Bhachu
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Xin Wang
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | - Oscar Dahlsten
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering, Imperial College London, London, UK.
| | - Giin Yu Amy Tan
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
15
|
Corti Monzón G, Bertola G, Herrera Seitz MK, Murialdo SE. Exploring polyhydroxyalkanoates biosynthesis using hydrocarbons as carbon source: a comprehensive review. Biodegradation 2024; 35:519-538. [PMID: 38310580 DOI: 10.1007/s10532-023-10068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
Environmental pollution caused by petrochemical hydrocarbons (HC) and plastic waste is a pressing global challenge. However, there is a promising solution in the form of bacteria that possess the ability to degrade HC, making them valuable tools for remediating contaminated environments and effluents. Moreover, some of these bacteria offer far-reaching potential beyond bioremediation, as they can also be utilized to produce polyhydroxyalkanoates (PHAs), a common type of bioplastics. The accumulation of PHAs in bacterial cells is facilitated in environments with high C/N or C/P ratio, which are often found in HC-contaminated environments and effluents. Consequently, some HC-degrading bacteria can be employed to simultaneously produce PHAs and conduct biodegradation processes. Although bacterial bioplastic production has been thoroughly studied, production costs are still too high compared to petroleum-derived plastics. This article aims to provide a comprehensive review of recent scientific advancements concerning the capacity of HC-degrading bacteria to produce PHAs. It will delve into the microbial strains involved and the types of bioplastics generated, as well as the primary pathways for HC biodegradation and PHAs production. In essence, we propose the potential utilization of HC-degrading bacteria as a versatile tool to tackle two major environmental challenges: HC pollution and the accumulation of plastic waste. Through a comprehensive analysis of strengths and weaknesses in this aspect, this review aims to pave the way for future research in this area, with the goal of facilitating and promoting investigation in a field where obtaining PHAs from HC remains a costly and challenging process.
Collapse
Affiliation(s)
- G Corti Monzón
- Instituto de Ciencia y Tecnología de Alimentos y Ambiente, INCITAA, CONICET, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina.
| | - G Bertola
- Instituto de Ciencia y Tecnología de Alimentos y Ambiente, INCITAA, CONICET, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| | - M K Herrera Seitz
- Instituto de Investigaciones Biológicas, IIB, CONICET, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| | - S E Murialdo
- Instituto de Ciencia y Tecnología de Alimentos y Ambiente, INCITAA, CIC, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
16
|
Santin A, Spatola Rossi T, Morlino MS, Gupte AP, Favaro L, Morosinotto T, Treu L, Campanaro S. Autotrophic poly-3-hydroxybutyrate accumulation in Cupriavidus necator for sustainable bioplastic production triggered by nutrient starvation. BIORESOURCE TECHNOLOGY 2024; 406:131068. [PMID: 38972429 DOI: 10.1016/j.biortech.2024.131068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Cupriavidus necator is a facultative chemolithoautotrophic bacterium able to convert carbon dioxide into poly-3-hydroxybutyrate. This is highly promising as the conversion process allows the production of sustainable and biodegradable plastics. Poly-3-hydroxybutyrate accumulation is known to be induced by nutrient starvation, but information regarding the optimal stress conditions controlling the process is still heterogeneous and fragmentary. This study presents a comprehensive comparison of the effects of nutrient stress conditions, namely nitrogen, hydrogen, phosphorus, oxygen, and magnesium deprivation, on poly-3-hydroxybutyrate accumulation in C. necator DSM545. Nitrogen starvation exhibited the highest poly-3-hydroxybutyrate accumulation, achieving 54% of total cell dry weight after four days of nutrient stress, and a carbon conversion efficiency of 85%. The gas consumption patterns indicated flexible physiological mechanisms underlying polymer accumulation and depolymerization. These findings provide insights into strategies for efficient carbon conversion into bioplastics, and highlight the key role of C. necator for future industrial-scale applications.
Collapse
Affiliation(s)
- Anna Santin
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | | | | | - Ameya Pankaj Gupte
- Waste to Bioproducts Lab, Department of Agronomy Food Natural Resources Animals and Environment, University of Padova - Agripolis, 35020 Legnaro PD, Italy.
| | - Lorenzo Favaro
- Waste to Bioproducts Lab, Department of Agronomy Food Natural Resources Animals and Environment, University of Padova - Agripolis, 35020 Legnaro PD, Italy; Department of Microbiology, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa.
| | | | - Laura Treu
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | | |
Collapse
|
17
|
da Conceição E, Buffon E, Beluomini MA, Falone MF, de Andrade FB, Contiero J, Stradiotto NR. Electrochemical detection of poly(3-hydroxybutyrate) production from Burkholderia glumae MA13 using a molecularly imprinted polymer-reduced graphene oxide modified electrode. Mikrochim Acta 2024; 191:492. [PMID: 39066907 DOI: 10.1007/s00604-024-06580-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
The development and application of an electrochemical sensor is reported for detection of poly(3-hydroxybutyrate) (P3HB) - a bioplastic derived from agro-industrial residues. To overcome the challenges of molecular imprinting of macromolecules such as P3HB, this study employed methanolysis reaction to break down the P3HB biopolymer chains into methyl 3-hydroxybutyrate (M3HB) monomers. Thereafter, M3HB were employed as the target molecules in the construction of molecularly imprinted sensors. The electrochemical device was then prepared by electropolymerizing a molecularly imprinted poly (indole-3-acetic acid) thin film on a glassy carbon electrode surface modified with reduced graphene oxide (GCE/rGO-MIP) in the presence of M3HB. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), scanning electron microscopy with field emission gun (SEM-FEG), Raman spectroscopy, attenuated total reflection Fourier-transform infrared (ATR-FTIR) and X-ray Photoelectron Spectroscopy (XPS) were employed to characterize the electrode surface. Under ideal conditions, the MIP sensor exhibited a wide linear working range of 0.1 - 10 nM and a detection limit of 0.3 pM (n = 3). The sensor showed good repeatability, selectivity, and stability over time. For the sensor application, the bioproduction of P3HB was carried out in a bioreactor containing the Burkholderia glumae MA13 strain and sugarcane byproducts as a supplementary carbon source. The analyses were validated through recovery assays, yielding recovery values between 102 and 104%. These results indicate that this MIP sensor can present advantages in the monitoring of P3HB during the bioconversion process.
Collapse
Affiliation(s)
- Emanuela da Conceição
- Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, 14800-060, Brazil
- Instituto de Pesquisa em Bioenergia (IPBEN), Universidade Estadual Paulista (UNESP), Araraquara, 14800-060, Brazil
| | - Edervaldo Buffon
- Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, 14800-060, Brazil
- Instituto de Pesquisa em Bioenergia (IPBEN), Universidade Estadual Paulista (UNESP), Araraquara, 14800-060, Brazil
| | - Maísa Azevedo Beluomini
- Instituto de Pesquisa em Bioenergia (IPBEN), Universidade Estadual Paulista (UNESP), Araraquara, 14800-060, Brazil.
- Departamento de Biotecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Jaboticabal, Brasil.
| | - Max Fabrício Falone
- Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, 14800-060, Brazil
- Instituto de Pesquisa em Bioenergia (IPBEN), Universidade Estadual Paulista (UNESP), Araraquara, 14800-060, Brazil
| | - Fernanda Batista de Andrade
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900, Brazil
- Instituto de Pesquisa em Bioenergia (IPBEN), Universidade Estadual Paulista (UNESP), Rio Claro, 13500-230, Brazil
| | - Jonas Contiero
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, 13506-900, Brazil
- Instituto de Pesquisa em Bioenergia (IPBEN), Universidade Estadual Paulista (UNESP), Rio Claro, 13500-230, Brazil
| | - Nelson Ramos Stradiotto
- Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, 14800-060, Brazil
- Instituto de Pesquisa em Bioenergia (IPBEN), Universidade Estadual Paulista (UNESP), Araraquara, 14800-060, Brazil
| |
Collapse
|
18
|
Pinaeva LG, Noskov AS. Biodegradable biopolymers: Real impact to environment pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174445. [PMID: 38981547 DOI: 10.1016/j.scitotenv.2024.174445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Biobased biodegradable polymers (BBP) derived from different renewable resources are commonly considered as attractive alternative to petroleum-based polymers, such as polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), etc. It is because they can address the issues of serious environmental problems resulted from accumulation of plastic wastes. In the review current methods of obtaining of most abundant BBP, polylactic acid (PLA) and polyhydroxybutyrate (PHB), have been studied with an emphasis on the toxicity of compounds used for their production and additives improving consumer characteristics of PLA and PHB based market products. Substantial part of additives was the same used for traditional polymers. Analysis of the data on the response of different organisms and plants on exposure to these materials and their degradation products confirmed the doubts about real safety of BBP. Studies of safer additives are scarce and are of vital importance. Meanwhile, technologies of recycling of traditional petroleum-based polymers were shown to be well-developed, which cannot be said about PLA or PHB based polymers, and their blends with petroleum-based polymers. Therefore, development of more environmentally friendly components and sustainable technologies of production are necessary before following market expansion of biobased biodegradable products.
Collapse
Affiliation(s)
- Larisa G Pinaeva
- Boreskov Institute of Catalysis SB RAS, Pr. Akad. Lavrentieva, 5, 630090 Novosibirsk, Russia.
| | - Aleksandr S Noskov
- Boreskov Institute of Catalysis SB RAS, Pr. Akad. Lavrentieva, 5, 630090 Novosibirsk, Russia.
| |
Collapse
|
19
|
Velayudhan P, M S K, Kalarikkal N, Thomas S. Exploring the Potential of Sustainable Biopolymers as a Shield against Electromagnetic Radiations. ACS APPLIED BIO MATERIALS 2024; 7:3568-3586. [PMID: 38768373 DOI: 10.1021/acsabm.4c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The increasing demand for biodegradable and environmentally friendly materials is shifting the focus from traditional polymer composites to biocomposites in various applications, especially in electromagnetic shielding. Effective utilization of biopolymers demands improved properties and can be achieved to a certain extent by functionalization. Biopolymers such as cellulose, polylactic acid, and starch are some of the potential candidates for mitigating electromagnetic pollution in next-generation electronic devices because of their high aspect ratio, flexibility, light weight, high mechanical strength, thermal stability, and tunable microwave absorption to the electromagnetic interference (EMI) shielding composites. This Review provides an overview of the current advancements in EMI shielding materials and outlines recent research on EMI shielding composites that utilize various biodegradable polymer structures.
Collapse
Affiliation(s)
- Pravitha Velayudhan
- Department of Physics, St. Teresa's College, Ernakulam, Kerala 682011, India
| | - Kala M S
- Department of Physics, St. Teresa's College, Ernakulam, Kerala 682011, India
| | - Nandakumar Kalarikkal
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| |
Collapse
|
20
|
Eam H, Ko D, Lee C, Myung J. Methylosinus trichosporium OB3b bioaugmentation unleashes polyhydroxybutyrate-accumulating potential in waste-activated sludge. Microb Cell Fact 2024; 23:160. [PMID: 38822346 PMCID: PMC11140957 DOI: 10.1186/s12934-024-02442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Wastewater treatment plants contribute approximately 6% of anthropogenic methane emissions. Methanotrophs, capable of converting methane into polyhydroxybutyrate (PHB), offer a promising solution for utilizing methane as a carbon source, using activated sludge as a seed culture for PHB production. However, maintaining and enriching PHB-accumulating methanotrophic communities poses challenges. RESULTS This study investigated the potential of Methylosinus trichosporium OB3b to bioaugment PHB-accumulating methanotrophic consortium within activated sludge to enhance PHB production. Waste-activated sludges with varying ratios of M. trichosporium OB3b (1:0, 1:1, 1:4, and 0:1) were cultivated. The results revealed substantial growth and methane consumption in waste-activated sludge with M. trichosporium OB3b-amended cultures, particularly in a 1:1 ratio. Enhanced PHB accumulation, reaching 37.1% in the same ratio culture, indicates the dominance of Type II methanotrophs. Quantification of methanotrophs by digital polymerase chain reaction showed gradual increases in Type II methanotrophs, correlating with increased PHB production. However, while initial bioaugmentation of M. trichosporium OB3b was observed, its presence decreased in subsequent cycles, indicating the dominance of other Type II methanotrophs. Microbial community analysis highlighted the successful enrichment of Type II methanotrophs-dominated cultures due to the addition of M. trichosporium OB3b, outcompeting Type I methanotrophs. Methylocystis and Methylophilus spp. were the most abundant in M. trichosporium OB3b-amended cultures. CONCLUSIONS Bioaugmentation strategies, leveraging M. trichosporium OB3b could significantly enhance PHB production and foster the enrichment of PHB-accumulating methanotrophs in activated sludge. These findings contribute to integrating PHB production in wastewater treatment plants, providing a sustainable solution for resource recovery.
Collapse
Affiliation(s)
- Hyerim Eam
- Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Dayoung Ko
- Department of Civil, Urban, Earth, and Environmental Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Changsoo Lee
- Department of Civil, Urban, Earth, and Environmental Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Jaewook Myung
- Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
21
|
Gammino M, Gioia C, Maio A, Scaffaro R, Lo Re G. Chemical-free Reactive Melt Processing of Biosourced Poly(butylene-succinate-adipate) for Improved Mechanical Properties and Recyclability. ACS APPLIED POLYMER MATERIALS 2024; 6:5866-5877. [PMID: 38807952 PMCID: PMC11129176 DOI: 10.1021/acsapm.4c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024]
Abstract
Biosourced and biodegradable polyesters like poly(butylene succinate-co-butylene adipate) (PBSA) are gaining traction as promising alternatives to oil-based thermoplastics for single-use applications. However, the mechanical and rheological properties of PBSA are affected by its thermomechanical sensitivity during its melt processing, also hindering PBSA mechanical recycling. Traditional reactive melt processing (RP) methods use chemical additives to counteract these drawbacks, compromising sustainability. This study proposes a green reactive method during melt compounding for PBSA based on a comprehensive understanding of its thermomechanical degradative behavior. Under the hypothesis that controlled degradative paths during melt processing can promote branching/recombination reactions without the addition of chemical additives, we aim to enhance PBSA rheological and mechanical performance. An in-depth investigation of the in-line rheological behavior of PBSA was conducted using an internal batch mixer, exploring parameters such as temperature, screw rotation speed, and residence time. Their influence on PBSA chain scissions, branching/recombination, and cross-linking reactions were evaluated to identify optimal conditions for effective RP. Results demonstrate that specific processing conditions, for example, twelve minutes processing time, 200 °C temperature, and 60 rpm screw rotation speed, promote the formation of the long chain branched structure in PBSA. These structural changes resulted in a notable enhancement of the reacted PBSA rheological and mechanical properties, exhibiting a 23% increase in elastic modulus, a 50% increase in yield strength, and an 80% increase in tensile strength. The RP strategy also improved PBSA mechanical recycling, thus making it a potential replacement for low-density polyethylene (LDPE). Ultimately, this study showcases how finely controlling the thermomechanical degradation during reactive melt processing can improve the material's properties, enabling reliable mechanical recycling, which can serve as a green approach for other biodegradable polymers.
Collapse
Affiliation(s)
- Michele Gammino
- Department
of Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
| | - Claudio Gioia
- Department
of Physics, University of Trento, via Sommarive 14, Povo, 38123 Trento, Italy
| | - Andrea Maio
- Department
of Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
| | - Roberto Scaffaro
- Department
of Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
| | - Giada Lo Re
- Department
of Industrial and Materials Science, Chalmers
University of Technology, Rannvagen 2A, 41258 Gothenburg, Sweden
- Wallenberg
Wood Science Centre, Kemigården 4, 41258 Gothenburg, Sweden
| |
Collapse
|
22
|
Abate T, Amabile C, Muñoz R, Chianese S, Musmarra D. Polyhydroxyalkanoate recovery overview: properties, characterizations, and extraction strategies. CHEMOSPHERE 2024; 356:141950. [PMID: 38599326 DOI: 10.1016/j.chemosphere.2024.141950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Due to their excellent properties, polyhydroxyalkanoates are gaining increasing recognition in the biodegradable polymer market. These biogenic polyesters are characterized by high biodegradability in multiple environments, overcoming the limitation of composting plants only and their versatility in production. The most consolidated techniques in the literature or the reference legislation for the physical, chemical and mechanical characterisation of the final product are reported since its usability on the market is still linked to its quality, including the biodegradability certificate. This versatility makes polyhydroxyalkanoates a promising prospect with the potential to replace fossil-based thermoplastics sustainably. This review analyses and compares the physical, chemical and mechanical properties of poly-β-hydroxybutyrate and poly-β-hydroxybutyrate-co-β-hydroxyvalerate, indicating their current limitations and strengths. In particular, the copolymer is characterised by better performance in terms of crystallinity, hardness and workability. However, the knowledge in this area is still in its infancy, and the selling prices are too high (9-18 $ kg-1). An analysis of the main extraction techniques, established and in development, is also included. Solvent extraction is currently the most widely used method due to its efficiency and final product quality. In this context, the extraction phase of the biopolymer production process remains a major challenge due to its high costs and the need to use non-halogenated toxic solvents to improve the production of good-quality bioplastics. The review also discusses all fundamental parameters for optimising the process, such as solubility and temperature.
Collapse
Affiliation(s)
- Teresa Abate
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031, Aversa, Italy; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain
| | - Claudia Amabile
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031, Aversa, Italy; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain
| | - Raul Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain
| | - Simeone Chianese
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031, Aversa, Italy.
| | - Dino Musmarra
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031, Aversa, Italy
| |
Collapse
|
23
|
Akbar WA, Rahim HU, Rutigliano FA. Microbial- and seaweed-based biopolymers: Sources, extractions and implications for soil quality improvement and environmental sustainability - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120964. [PMID: 38692027 DOI: 10.1016/j.jenvman.2024.120964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/10/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Improving soil quality without creating any environmental problems is an unescapable goal of sustainable agroecosystem management, according to the United Nations 2030 Agenda for Sustainable Development. Therefore, sustainable solutions are in high demand. One of these is the use of biopolymers derived from microbes and seaweed. This paper aims to provide an overview of the sources of extraction and use of microbial (bacteria and cyanobacteria) and seaweed-based biopolymers as soil conditioners, the characteristics of biopolymer-treated soils, and their environmental concerns. A preliminary search was also carried out on the entire Scopus database on biopolymers to find out how much attention has been paid to biopolymers as biofertilizers compared to other applications of these molecules until now. Several soil quality indicators were evaluated, including soil moisture, color, structure, porosity, bulk density, temperature, aggregate stability, nutrient availability, organic matter, and microbial activity. The mechanisms involved in improving soil quality were also discussed.
Collapse
Affiliation(s)
- Waqas Ali Akbar
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, via Vivaldi, n. 43, 81100, Caserta, Italy.
| | - Hafeez Ur Rahim
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Italy
| | - Flora Angela Rutigliano
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, via Vivaldi, n. 43, 81100, Caserta, Italy
| |
Collapse
|
24
|
Kukreti N, Kumar P, Kataria R. A sustainable synthesis of polyhydroxyalkanoate from stubble waste as a carbon source using Pseudomonas putida MTCC 2475. Front Bioeng Biotechnol 2024; 12:1343579. [PMID: 38665813 PMCID: PMC11043596 DOI: 10.3389/fbioe.2024.1343579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable polymers that can be produced from lignocellulosic biomass by microorganisms. Cheap and readily available raw material, such as corn stover waste, has the potential to lessen the cost of PHA synthesis. In this research study, corn stover is pretreated with NaOH under conditions optimized for high cellulose and low lignin with central composite design (CCD) followed by characterization using Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM). Design expert software performed further optimization of alkali pretreated corn stover for high total reducing sugar (TRS) enhancement using CCD using response surface methodology (RSM). The optimized condition by RSM produced a TRS yield of 707.19 mg/g. Fermentation using corn stover hydrolysate by Pseudomonas putida MTCC 2475 gave mcl-PHA detected through gas c hromatography - t andem m ass s pectrometry (GC-MS/MS) and characterization of the PHA film by differential scanning calorimetry (DSC), FTIR, and nuclear magnetic resonance (NMR). Thus, this research paper focuses on using agriculture (stubble) waste as an alternative feedstock for PHA production.
Collapse
|
25
|
Wang Q, Jiang W, Cai Y, Tišma M, Baganz F, Shi J, Lye GJ, Xiang W, Hao J. 2-Hydroxyisovalerate production by Klebsiella pneumoniae. Enzyme Microb Technol 2024; 172:110330. [PMID: 37866134 DOI: 10.1016/j.enzmictec.2023.110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023]
Abstract
2-Hydroxyisovalerate is a valuable chemical that can be used in the production of biodegradable polyesters. In nature, it was only produced at a very low level by Lactococcus lactis. 2-Ketoisovalerate is an intermediate metabolite of the branched-chain amino acid biosynthesis pathway, and Klebsiella pneumoniae ΔbudAΔldhA (Kp ΔbudAΔldhA) was a 2-ketoisovalerate producing strain. In this research, 2-hydroxyisovalerate was identified as a metabolite of Kp ΔbudAΔldhA, and its synthesis pathway was revealed. It was found that 2-ketoisovalerate and 2-hydroxyisovalerate were produced by Kp ΔbudA and Kp ΔbudAΔldhA, but not by Kp ΔbudAΔldhAΔilvD in which the 2-ketoisovalerate synthesis was blocked. budA, ldhA, and ilvD encode α-acetolactate decarboxylase, lactate dehydrogenase, and dihydroxy acid dehydratase, respectively. Thus, it was deduced that 2-hydroxyisovalerate was synthesized from 2-ketoisovalerate. Isoenzymes of ketopantoate reductase PanE, PanE2, and IlvC were suspected of being responsible for this reaction. Kinetic parameters of these enzymes were detected, and they all hold the 2-ketoisovalerate reductase activities. PanE and PanE2 use both NADH and NADPH as co-factors. While IlvC only uses NADH as a co-factor. Over-expression of panE, panE2, or ilvC in Kp ΔbudAΔldhA all enhanced the production of 2-hydroxyisovalerate. Accordingly, 2-hydroxyisovalerate levels were reduced by knocking out panE or panE2. In fed-batch fermentation, 14.41 g/L of 2-hydroxyisovalerate was produced by Kp ΔbudAΔldhA-panE, with a substrate conversion ratio of 0.13 g/g glucose.
Collapse
Affiliation(s)
- Qinghui Wang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, People's Republic of China; Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, People's Republic of China
| | - Weiyan Jiang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yaoyu Cai
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Marina Tišma
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, Osijek HR-31000, Croatia
| | - Frank Baganz
- Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, People's Republic of China
| | - Gary J Lye
- Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, People's Republic of China
| | - Jian Hao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, People's Republic of China; Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
26
|
Jin A, del Valle LJ, Puiggalí J. Copolymers and Blends Based on 3-Hydroxybutyrate and 3-Hydroxyvalerate Units. Int J Mol Sci 2023; 24:17250. [PMID: 38139077 PMCID: PMC10743438 DOI: 10.3390/ijms242417250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
This review presents a comprehensive update of the biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), emphasizing its production, properties, and applications. The overall biosynthesis pathway of PHBV is explored in detail, highlighting recent advances in production techniques. The inherent physicochemical properties of PHBV, along with its degradation behavior, are discussed in detail. This review also explores various blends and composites of PHBV, demonstrating their potential for a range of applications. Finally, the versatility of PHBV-based materials in multiple sectors is examined, emphasizing their increasing importance in the field of biodegradable polymers.
Collapse
Affiliation(s)
- Anyi Jin
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (A.J.); (L.J.d.V.)
- Venvirotech Biotechnology S.L., Santa Perpètua de Mogoda, 08130 Barcelona, Spain
| | - Luis J. del Valle
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (A.J.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (A.J.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| |
Collapse
|
27
|
De Melo RN, de Souza Hassemer do G, Nascimento LH, Colet R, Steffens C, Junges A, Valduga E. Kinetic and stoichiometric parameters in the fed-batch bioreactor production of poly(3-hydroxybutyrate) by Bacillus megaterium using different carbon sources. Bioprocess Biosyst Eng 2023; 46:1791-1799. [PMID: 37882827 DOI: 10.1007/s00449-023-02935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
This study investigates the effects of different strategies on poly(3-hydroxybutyrate)-P(3HB) production in a fed-batch bioreactor by Bacillus megaterium using candy industry effluent (CIE), sucrose, and rice parboiled water (RPW) as carbon sources. In biosynthesis, kinetic and stoichiometric parameters of substrate conversion into products and/or cells, productivity, instantaneous, and specific conversion rates were evaluated. The maximum concentration of P(3HB) was 4.00 g.L-1 (77% of the total dry mass) in 42 h of cultivation in minimal medium/RPW added with a carbon source based on CIE, demonstrating that the fed-batch provided an increase of approximately 22% in the polymer concentration and 32% in the overall productivity in relation to medium based on commercial sucrose. Fed-batch cultivation also had the advantage of avoiding the extra time required for inoculum preparation and sterilization of the bioreactor during the batch, which thereby increased the overall industrial importance of the process. Effluents from the candy, confectionery, and/or rice parboiling industries can be used as alternative substrates for P(3HB) production at a low cost.
Collapse
Affiliation(s)
- Rafaela Nery De Melo
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil
| | | | - Lucas Henrique Nascimento
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil
| | - Rosicler Colet
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil
| | - Clarice Steffens
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil.
| | - Alexander Junges
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil
| | - Eunice Valduga
- Department of Food Engineering, URI - Erechim, Av. Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil
| |
Collapse
|
28
|
Tubio CR, Valle X, Carvalho E, Moreira J, Costa P, Correia DM, Lanceros-Mendez S. Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) Blends with Poly(caprolactone) and Poly(lactic acid): A Comparative Study. Polymers (Basel) 2023; 15:4566. [PMID: 38232003 PMCID: PMC10708000 DOI: 10.3390/polym15234566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Poly(hydroxybutyrate-co-hidroxyvalerate) (PHBV) is a biodegradable polymer, which is a potential substitute for plastics made from fossil resources. Due to its practical interest in the field of tissue engineering, packaging, sensors, and electronic devices, the demand for PHBV with specific thermal, electrical, as well as mechanical requirements is growing. In order to improve these properties, we have developed PHBV blends with two thermoplastic biodegradable polyesters, including poly(caprolactone) (PCL) and poly(lactic acid) (PLA). We analysed the effect of these biopolymers on the morphological, wetting, structural, thermal, mechanical, and electrical characteristics of the materials. Further, the biodegradation of the samples in simulated body fluid conditions was evaluated, as well as the antibacterial activity. The results demonstrate that the blending with PCL and PLA leads to films with a dense morphology, increases the hydrophilic character, and induces a reinforcement of the mechanical characteristics with respect to pristine PHBV. In addition, a decrease in dielectric constant and a.c. electrical conductivity was noticed for PHBV/PLA and PHBV/PCL blends compared to neat PHBV polymer. All neat polymers and blends showed antibacterial properties against S. aureus, with more than 40% bacterial reduction, which increased to 72% in the presence of PCL polymer for a blend ratio of 50/50. Thus, it is demonstrated a suitable way to further tailor a variety of functionalities of PHBV for specific applications, by the development of polymer blends with PLA or PCL.
Collapse
Affiliation(s)
- Carmen R. Tubio
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (X.V.); (S.L.-M.)
| | - Xabier Valle
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (X.V.); (S.L.-M.)
| | - Estela Carvalho
- Physics Center of Minho and Porto Universities (CF-UM-UP) and LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; (E.C.); (J.M.); (P.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Joana Moreira
- Physics Center of Minho and Porto Universities (CF-UM-UP) and LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; (E.C.); (J.M.); (P.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Pedro Costa
- Physics Center of Minho and Porto Universities (CF-UM-UP) and LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; (E.C.); (J.M.); (P.C.)
| | | | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (X.V.); (S.L.-M.)
- Physics Center of Minho and Porto Universities (CF-UM-UP) and LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; (E.C.); (J.M.); (P.C.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
29
|
Medeiros Garcia Alcântara J, Iannacci F, Morbidelli M, Sponchioni M. Soft sensor based on Raman spectroscopy for the in-line monitoring of metabolites and polymer quality in the biomanufacturing of polyhydroxyalkanoates. J Biotechnol 2023; 377:23-33. [PMID: 37879569 DOI: 10.1016/j.jbiotec.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Polyhydroxyalkanoates (PHA) are among the most promising bio-based alternatives to conventional petroleum-based plastics. These biodegradable polyesters can in fact be produced by fermentation from bacteria like Cupriavidus necator, thus reducing the environmental footprint of the manufacturing process. However, ensuring consistent product quality attributes is a major challenge of biomanufacturing. To address this issue, the implementation of real-time monitoring tools is essential to increase process understanding, enable a prompt response to possible process deviations and realize on-line process optimization. In this work, a soft sensor based on in situ Raman spectroscopy was developed and applied to the in-line monitoring of PHA biomanufacturing. This strategy allows the collection of quantitative information directly from the culture broth, without the need for sampling, and at high frequency. In fact, through an optimized multivariate data analysis pipeline, this soft sensor allows monitoring cell dry weight, as well as carbon and nitrogen source concentrations with root mean squared errors (RMSE) equal to 3.71, 7 and 0.03 g/L, respectively. In addition, this tool allows the in-line monitoring of intracellular PHA accumulation, with an RMSE of 14 gPHA/gCells. For the first time, also the number and weight average molecular weights of the polymer produced could be monitored, with RMSE of 8.7E4 and 11.6E4 g/mol, respectively. Overall, this work demonstrates the potential of Raman spectroscopy in the in-line monitoring of biotechnology processes, leading to the simultaneous measurement of several process variables in real time without the need of sampling and labor-intensive sample preparations.
Collapse
Affiliation(s)
- João Medeiros Garcia Alcântara
- Dept. of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Francesco Iannacci
- Dept. of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Massimo Morbidelli
- Dept. of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Mattia Sponchioni
- Dept. of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy.
| |
Collapse
|
30
|
Diniz MSDF, Mourão MM, Xavier LP, Santos AV. Recent Biotechnological Applications of Polyhydroxyalkanoates (PHA) in the Biomedical Sector-A Review. Polymers (Basel) 2023; 15:4405. [PMID: 38006129 PMCID: PMC10675258 DOI: 10.3390/polym15224405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 11/26/2023] Open
Abstract
Petroleum-derived plastics are materials of great importance for the contemporary lifestyle, and are widely used commercially because they are low cost, resistant, malleable, and weightless, in addition to their hydrophobic character. However, some factors that confer the qualities of these materials also cause problems, mainly environmental, associated with their use. The COVID-19 pandemic aggravated these impacts due to the high demand for personal protective equipment and the packaging sector. In this scenario, bioplastics are environmentally positive alternatives to these plastics due to their applicability in several areas ranging from packaging, to biomedicine, to agriculture. Polyhydroxyalkanoates (PHAs) are biodegradable biopolymers usually produced by microorganisms as an energy reserve. Their structural variability provides a wide range of applications, making them a viable option to replace polluting materials. PHAs can be applied in various biotechnology sectors, such as producing drug carriers and scaffolds for tissue engineering. This review aimed to survey works published in the last five years on the study and biotechnological application of PHAs in the biomedical sector, exploring the versatility and advantages of their use and helping to understand how to enhance their application.
Collapse
Affiliation(s)
- Matheus Silva da Fonseca Diniz
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.M.M.); (L.P.X.)
| | | | | | - Agenor Valadares Santos
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.M.M.); (L.P.X.)
| |
Collapse
|
31
|
Ren ZW, Wang ZY, Ding YW, Dao JW, Li HR, Ma X, Yang XY, Zhou ZQ, Liu JX, Mi CH, Gao ZC, Pei H, Wei DX. Polyhydroxyalkanoates: the natural biopolyester for future medical innovations. Biomater Sci 2023; 11:6013-6034. [PMID: 37522312 DOI: 10.1039/d3bm01043k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are a family of natural microbial biopolyesters with the same basic chemical structure and diverse side chain groups. Based on their excellent biodegradability, biocompatibility, thermoplastic properties and diversity, PHAs are highly promising medical biomaterials and elements of medical devices for applications in tissue engineering and drug delivery. However, due to the high cost of biotechnological production, most PHAs have yet to be applied in the clinic and have only been studied at laboratory scale. This review focuses on the biosynthesis, diversity, physical properties, biodegradability and biosafety of PHAs. We also discuss optimization strategies for improved microbial production of commercial PHAs via novel synthetic biology tools. Moreover, we also systematically summarize various medical devices based on PHAs and related design approaches for medical applications, including tissue repair and drug delivery. The main degradation product of PHAs, 3-hydroxybutyrate (3HB), is recognized as a new functional molecule for cancer therapy and immune regulation. Although PHAs still account for only a small percentage of medical polymers, up-and-coming novel medical PHA devices will enter the clinical translation stage in the next few years.
Collapse
Affiliation(s)
- Zi-Wei Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Ze-Yu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jin-Wei Dao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, 678400, China
| | - Hao-Ru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xue Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xin-Yu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zi-Qi Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jia-Xuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zhe-Chen Gao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, 710069, China
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, 643002, Sichuan, China
| |
Collapse
|
32
|
Kim Y, Flinkstrom Z, Candry P, Winkler MKH, Myung J. Resource availability governs polyhydroxyalkanoate (PHA) accumulation and diversity of methanotrophic enrichments from wetlands. Front Bioeng Biotechnol 2023; 11:1210392. [PMID: 37588137 PMCID: PMC10425282 DOI: 10.3389/fbioe.2023.1210392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/12/2023] [Indexed: 08/18/2023] Open
Abstract
Aquatic environments account for half of global CH4 emissions, with freshwater wetlands being the most significant contributors. These CH4 fluxes can be partially offset by aerobic CH4 oxidation driven by methanotrophs. Additionally, some methanotrophs can convert CH4 into polyhydroxyalkanoate (PHA), an energy storage molecule as well as a promising bioplastic polymer. In this study, we investigate how PHA-accumulating methanotrophic communities enriched from wetlands were shaped by varying resource availability (i.e., C and N concentrations) at a fixed C/N ratio. Cell yields, PHA accumulation, and community composition were evaluated in high (20% CH4 and 10 mM NH4 +) and low resource (0.2% CH4 and 0.1 mM NH4 +) conditions simulating engineered and environmental settings, respectively. High resource availability decreased C-based cell yields, while N-based cell yields remained stable, suggesting nutrient exchange patterns differed between methanotrophic communities at different resource concentrations. PHA accumulation was only observed in high resource enrichments, producing approximately 12.6% ± 2.4% (m/m) PHA, while PHA in low resource enrichments remained below detection. High resource enrichments were dominated by Methylocystis methanotrophs, while low resource enrichments remained significantly more diverse and contained only a minor population of methanotrophs. This study demonstrates that resource concentration shapes PHA-accumulating methanotrophic communities. Together, this provides useful information to leverage such communities in engineering settings as well as to begin understanding their role in the environment.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Zachary Flinkstrom
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Pieter Candry
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Mari-Karoliina H. Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Jaewook Myung
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
33
|
Rodríguez-Cendal AI, Gómez-Seoane I, de Toro-Santos FJ, Fuentes-Boquete IM, Señarís-Rodríguez J, Díaz-Prado SM. Biomedical Applications of the Biopolymer Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Drug Encapsulation and Scaffold Fabrication. Int J Mol Sci 2023; 24:11674. [PMID: 37511432 PMCID: PMC10380382 DOI: 10.3390/ijms241411674] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a biodegradable and biocompatible biopolymer that has gained popularity in the field of biomedicine. This review provides an overview of recent advances and potential applications of PHBV, with special emphasis on drug encapsulation and scaffold construction. PHBV has shown to be a versatile platform for drug delivery, offering controlled release, enhanced therapeutic efficacy, and reduced side effects. The encapsulation of various drugs, such as anticancer agents, antibiotics, and anti-inflammatory drugs, in PHBV nanoparticles or microspheres has been extensively investigated, demonstrating enhanced drug stability, prolonged release kinetics, and increased bioavailability. Additionally, PHBV has been used as a scaffold material for tissue engineering applications, such as bone, cartilage, and skin regeneration. The incorporation of PHBV into scaffolds has been shown to improve mechanical properties, biocompatibility, and cellular interactions, making them suitable for tissue engineering constructs. This review highlights the potential of PHBV in drug encapsulation and scaffold fabrication, showing its promising role in advancing biomedical applications.
Collapse
Affiliation(s)
- Ana Isabel Rodríguez-Cendal
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade de A Coruña, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - Iván Gómez-Seoane
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - Francisco Javier de Toro-Santos
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade de A Coruña, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Servicio de Reumatología, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - Isaac Manuel Fuentes-Boquete
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade de A Coruña, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), 15008 A Coruña, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - José Señarís-Rodríguez
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), 15008 A Coruña, Spain
- Servicio de Cirugía Ortopédica y Traumatología, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - Silvia María Díaz-Prado
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade de A Coruña, Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), 15008 A Coruña, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
34
|
Liu S, Zhou M, Daigger GT, Huang J, Song G. Granule formation mechanism, key influencing factors, and resource recycling in aerobic granular sludge (AGS) wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117771. [PMID: 37004484 DOI: 10.1016/j.jenvman.2023.117771] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
The high-efficiency and additionally economic benefits generated from aerobic granular sludge (AGS) wastewater treatment have led to its increasing popularity among academics and industrial players. The AGS process can recycle high value-added biomaterials including extracellular polymeric substances (EPS), sodium alginate-like external polymer (ALE), polyhydroxyfatty acid (PHA), and phosphorus (P), etc., which can serve various fields including agriculture, construction, and chemical while removing pollutants from wastewaters. The effects of various key operation parameters on formation and structural stability of AGS are comprehensively summarized. The degradable metabolism of typical pollutants and corresponding microbial diversity and succession in the AGS wastewater treatment system are also discussed, especially with a focus on emerging contaminants removal. In addition, recent attempts for potentially effective production of high value-added biomaterials from AGS are proposed, particularly concerning improving the yield, quality, and application of these biomaterials. This review aims to provide a reference for in-depth research on the AGS process, suggesting a new alternative for wastewater treatment recycling.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China; Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Miao Zhou
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Jianping Huang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China.
| |
Collapse
|
35
|
Jiang N, Wang M, Song L, Yu D, Zhou S, Li Y, Li H, Han X. Polyhydroxybutyrate production by recombinant Escherichia coli based on genes related to synthesis pathway of PHB from Massilia sp. UMI-21. Microb Cell Fact 2023; 22:129. [PMID: 37452345 PMCID: PMC10347839 DOI: 10.1186/s12934-023-02142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Polyhydroxybutyrate (PHB) is currently the most common polymer produced by natural bacteria and alternative to conventional petrochemical-based plastics due to its similar material properties and biodegradability. Massilia sp. UMI-21, a newly found bacterium, could produce PHB from starch, maltotriose, or maltose, etc. and could serve as a candidate for seaweed-degrading bioplastic producers. However, the genes involved in PHB metabolism in Massilia sp. UMI-21 are still unclear. RESULTS In the present study, we assembled and annotated the genome of Massilia sp. UMI-21, identified genes related to the metabolism of PHB, and successfully constructed recombinant Escherichia coli harboring PHB-related genes (phaA2, phaB1 and phaC1) of Massilia sp. UMI-21, which showed up to 139.41% more product. Also, the vgb gene (encoding Vitreoscilla hemoglobin) was introduced into the genetically engineered E. coli and gained up to 117.42% more cell dry weight, 213.30% more PHB-like production and 44.09% more product content. Fermentation products extracted from recombinant E. coli harboring pETDuet1-phaA2phaB1-phaC1 and pETDuet1-phaA2phaB1-phaC1-vgb were identified as PHB by Fourier Transform Infrared and Proton nuclear magnetic resonance spectroscopy analysis. Furthermore, the decomposition temperature at 10% weight loss of PHB extracted from Massilia sp. UMI-21, recombinant E. coli DH5α-pETDuet1-phaA2phaB1-phaC1 and DH5α-pETDuet1-phaA2phaB1-phaC1-vgb was 276.5, 278.7 and 286.3 °C, respectively, showing good thermal stability. CONCLUSIONS Herein, we presented the whole genome information of PHB-producing Massilia sp. UMI-21 and constructed novel recombinant strains using key genes in PHB synthesis of strain UMI-21 and the vgb gene. This genetically engineered E. coli strain can serve as an effective novel candidate in E. coli cell factory for PHB production by the rapid cell growth and high PHB production.
Collapse
Affiliation(s)
- Nan Jiang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China
| | - Ming Wang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Linxin Song
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China
| | - Dengbin Yu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China
| | - Shuangzi Zhou
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Haiyan Li
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Xuerong Han
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China.
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China.
| |
Collapse
|
36
|
Dan T, Jing H, Shen T, Zhu J, Liu Y. Performance of production of polyhydroxyalkanoates from food waste fermentation with Rhodopseudomonas palustris. BIORESOURCE TECHNOLOGY 2023:129165. [PMID: 37182681 DOI: 10.1016/j.biortech.2023.129165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
The use of waste as a carbon source can significantly reduce the cost of production of Polyhydroxyalkanoates (PHAs). In this study, an acidified hydrolysate solution derived from food waste (FW) was used as a carbon source for the synthesis of PHAs by Rhodopseudomonas palustris (R. palustris) and optimized the process parameters. The results showed that the PHAs yield reached 48.62% under optimal conditions (an incubation time of 30 days, volatile fatty acids (VFAs) in substrate concentration of 2202.21 mg⋅L-1, an initial pH of 8.0, and inoculum concentration of 15%). The fraction of VFAs affects the composition of PHAs, R. palustris first uses VFAs with an even number of carbons to synthesize poly(3-hydroxybutyrate)(3HB), and later uses VFAs with an odd number of carbons to synthesize poly-3-hydroxyvalerate (3HV). Pathways for the synthesis of PHAs by R. palustris were inferred. R. palustris is a strain with the potential to synthesize PHAs.
Collapse
Affiliation(s)
- Tingxing Dan
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Huiyan Jing
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tian Shen
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jia Zhu
- Shenzhen Key Laboratory of Industrial Water Saving and Urban Sewage Resources, School of Construction and Environmental Engineering, Shenzhen Polytechnic, 518115, China
| | - Yanping Liu
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
37
|
Zhou W, Bergsma S, Colpa DI, Euverink GJW, Krooneman J. Polyhydroxyalkanoates (PHAs) synthesis and degradation by microbes and applications towards a circular economy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118033. [PMID: 37156023 DOI: 10.1016/j.jenvman.2023.118033] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/15/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Overusing non-degradable plastics causes a series of environmental issues, inferring a switch to biodegradable plastics. Polyhydroxyalkanoates (PHAs) are promising biodegradable plastics that can be produced by many microbes using various substrates from waste feedstock. However, the cost of PHAs production is higher compared to fossil-based plastics, impeding further industrial production and applications. To provide a guideline for reducing costs, the potential cheap waste feedstock for PHAs production have been summarized in this work. Besides, to increase the competitiveness of PHAs in the mainstream plastics economy, the influencing parameters of PHAs production have been discussed. The PHAs degradation has been reviewed related to the type of bacteria, their metabolic pathways/enzymes, and environmental conditions. Finally, the applications of PHAs in different fields have been presented and discussed to induce comprehension on the practical potentials of PHAs.
Collapse
Affiliation(s)
- Wen Zhou
- Products and Processes for Biotechnology, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Simon Bergsma
- Products and Processes for Biotechnology, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Dana Irene Colpa
- Products and Processes for Biotechnology, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Gert-Jan Willem Euverink
- Products and Processes for Biotechnology, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Janneke Krooneman
- Products and Processes for Biotechnology, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands; Bioconversion and Fermentation Technology, Research Centre Biobased Economy, Hanze University of Applied Sciences, Groningen, the Netherlands.
| |
Collapse
|
38
|
Kumar R, Sadeghi K, Jang J, Seo J. Mechanical, chemical, and bio-recycling of biodegradable plastics: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163446. [PMID: 37075991 DOI: 10.1016/j.scitotenv.2023.163446] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
The extensive use of petroleum-based non-biodegradable plastics for various applications has led to global concerns regarding the severe environmental issues associated with them. However, biodegradable plastics are emerging as green alternatives to petroleum-based non-biodegradable plastics. Biodegradable plastics, which include bio-based and petroleum-based biodegradable polymers, exhibit advantageous properties such as renewability, biocompatibility, and non-toxicity. Furthermore, certain biodegradable plastics are compatible with existing recycling streams intended for conventional plastics and are biodegradable in controlled and/or predicted environments. Recycling biodegradable plastics before their end-of-life (EOL) degradation further enhances their sustainability and reduces their carbon footprint. Since the production of biodegradable plastic is increasing and these materials will coexist with conventional plastics for many years to come, it is essential to identify the optimal recycling options for each of the most prevalent biodegradable plastics. The substitution of virgin biodegradable plastics by their recyclates leads to higher savings in the primary energy demand and reduces global warming impact. This review covers the current state of the mechanical, chemical, and bio-recycling of post-industrial and post-consumer waste of biodegradable plastics and their related composites. The effects of recycling on the chemical structure and thermomechanical properties of biodegradable plastics are also reported. Additionally, the improvement of biodegradable plastics by blending them with other polymers and nanoparticles is comprehensively discussed. Finally, the status of bioplastic usage, life cycle assessment, EOL management, bioplastic market, and the challenges associated with the recyclability of biodegradable plastics are addressed. This review gives comprehensive insights into the recycling processes that may be employed for the recycling of biodegradable plastics.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, South Korea
| | - Kambiz Sadeghi
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, South Korea
| | - Jaeyoung Jang
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, South Korea
| | - Jongchul Seo
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, South Korea.
| |
Collapse
|
39
|
Mahato RP, Kumar S, Singh P. Production of polyhydroxyalkanoates from renewable resources: a review on prospects, challenges and applications. Arch Microbiol 2023; 205:172. [PMID: 37017747 DOI: 10.1007/s00203-023-03499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 04/06/2023]
Abstract
Bioplastics replace synthetic plastics of petrochemical origin, which contributes challenge to both polymer quality and economics. Novel polyhydroxyalkanoates (PHA)-composite materials, with desirable product quality, could be developed, thus targeting the global plastics market, in the coming years. It is possible that PHA can be a greener substitute for their petroleum-based competitors since they are simply decomposed, which may lessen the pressure on municipal and industrial waste management systems. PHA production has proven to be the bottleneck in industrial application and commercialization because of the high price of carbon substrates and downstream processes required to achieve reliability. Bacterial PHA production by these municipal and industrial wastes, which act as a cheap, renewable carbon substrate, eliminates waste management hassles and acts as an efficient substitute for synthetic plastics. In the present review, challenges and opportunities related to the commercialization of polyhydroxyalkanoates are discussed and presented. Moreover, it discusses critical steps of their production process, feedstock evaluation, optimization strategies, and downstream processes. This information may provide us the complete utilization of bacterial PHA during possible applications in packaging, nutrition, medicine, and pharmaceuticals.
Collapse
Affiliation(s)
- Richa Prasad Mahato
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, 249407, India.
| | - Saurabh Kumar
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Padma Singh
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, 249407, India
| |
Collapse
|
40
|
Nambiar K, P SK, Devaraj D, Sevanan M. Development of biopolymers from microbes and their environmental applications. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Abstract
Inventions begin with the invasion of humans and furnish a better livelihood. In some cases, it turns out to be imperative. The environmental issues of using synthetic polymers, including bio-incompatibility, toxicity, high cost, poor hydrophilicity, and pro-inflammatory degradation of byproducts, are increasing the need for and application of eco-friendly, alternative polymeric substances from medicine to biotechnology, which includes the industries of medicine, cosmetics, confectionery, wastewater treatment, etc., as tissue scaffolds, wound dressings, drug packaging material, dermal fillers, moisturising cream, carriers, sun protectants, antiperspirants, and deodorants; gelling agents; stabilisers, emulsifiers, photographic films, etc. Biopolymers are available in different compounds, produced by microbes, plants, and animals, where microbes, for example, Pseudomonas aeruginosa and Kamagataeibacter sucrofermetans, retain these compounds at an exorbitant level, helping them to sustain adverse conditions. Moreover, compared to plant and animal biopolymers, microbial biopolymers are preferred due to their ease of production, design, and processing at an industrial levels. In this regard, polyhydroxyalkanoates (PHA) and poly-3-hydroxybutyrate (PHB) have together attained assiduity for their biodegradable properties and possess similar features as petrochemical-based polymers, commonly synthetic polymers like polyethylene, polypropylene, etc. This attributes to its non-toxic nature, i.e., it behaves eco-friendly by degrading the components through a carbon-neutral energy cycle to carbon dioxide and water, which lessens the dependence on petroleum-based polymers. This chapter contemplates the methods to develop biopolymers from microbes and their environmental applications, focusing on the confiscation of heavy metals, organic dyes or oils, etc.
Collapse
Affiliation(s)
- Krishnanjana Nambiar
- Department of Biotechnology , Karunya Institute of Technology and Sciences, Deemed to be University , Coimbatore , India
| | - Saravana Kumari P
- Department of Microbiology , Rathnavel Subramaniam College of Arts and Science , Coimbatore , India
| | - Dheeksha Devaraj
- Department of Biotechnology , Karunya Institute of Technology and Sciences, Deemed to be University , Coimbatore , India
| | - Murugan Sevanan
- Department of Biotechnology , Karunya Institute of Technology and Sciences, Deemed to be University , Coimbatore , India
| |
Collapse
|
41
|
Soni S, Chhokar V, Beniwal V, Kumar R, Badgujjar H, Chauhan R, Dudeja S, Kumar A. Cost effective media optimization for PHB production by Bacillus badius MTCC 13004 using the statistical approach. Int J Biol Macromol 2023; 233:123575. [PMID: 36764347 DOI: 10.1016/j.ijbiomac.2023.123575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Polyhydroxybutyrate (PHB) has significant potential for replacing non-biodegradable traditional plastic, which is responsible for several global environmental issues. The main problem with switching to bio-based alternatives for petrochemical plastics is the large price gap on the market. To overcome this problem, the present research was focused on the utilization of inexpensive substrates i.e. agricultural residues for cost-effective PHB production by endospore-forming bacteria Bacillus badius MTCC 13004. For efficient PHB production, Box-Behnken Design (BBD) was selected for media optimization and to observe the interactive effects of four variables i.e. pH, Na acetate, Banana peel, and mustard cake. PHB yield of 2.11 g/L was attained under optimized conditions compared to non-optimized conditions (0.72 g/L). FTIR spectra analysis of PHB extracted from Bacillus badius was found to be similar to commercial PHB. NMR data was also matched with the chemical shift signals CH, CH2, and CH3 of PHB. The melting temperature (Tm) and glass transition temperature (Tg) of PHB from Bacillus badius was found to be 165.14 and 2.68 °C, respectively. Further, PCR protocol was also designed to amplify key enzymes of the PHB synthesis pathway i.e. PHB synthase (phb C gene).
Collapse
Affiliation(s)
- Sweeta Soni
- Dept. of Bio and Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Vinod Chhokar
- Dept. of Bio and Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Vikas Beniwal
- Dept. of Microbiology, Central University of Haryana, Mahendergarh 123031, India
| | - Ravinder Kumar
- Dept. of Bio and Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Hemlata Badgujjar
- Dept. of Bio and Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Rohit Chauhan
- Dept. of Bio and Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Shruti Dudeja
- Dept. of Bio and Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Anil Kumar
- Dept. of Bio and Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar 125001, India.
| |
Collapse
|
42
|
Feng L, Yan J, Jiang Z, Chen X, Li Z, Liu J, Qian X, Liu Z, Liu G, Liu C, Wang Y, Hu G, Dong W, Cui Z. Characterization of polyhydroxybutyrate (PHB) synthesized by newly isolated rare actinomycetes Aquabacterium sp. A7-Y. Int J Biol Macromol 2023; 232:123366. [PMID: 36693609 DOI: 10.1016/j.ijbiomac.2023.123366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Polyhydroxyalkanoates (PHAs) as biodegradable plastics have attracted increasing attention due to its biodegradable, biocompatible and renewable advantages. Exploitation some unique microbes for PHAs production is one of the most competitive approaches to meet complex industrial demand, and further develop next-generation industrial biotechnology. In this study, a rare actinomycetes strain A7-Y was isolated and identified from soil as the first PHAs producer of Aquabacterium genus. Produced PHAs by strain A7-Y was identified as poly(3-hydroxybutyrate) (PHB) based on its structure characteristics, which is also similar with commercial PHB. After optimization of fermentation conditions, strain A7-Y can produce 10.2 g/L of PHB in 5 L fed-batch fermenter, corresponding with 54 % PHB content of dry cell weight, which is superior to the reported actinomycetes species. Furthermore, the phaCAB operon in stain A7-Y was excavated to be responsible for the efficient PHB production and verified in recombinant Escherichia coli. Our results indicate that strain A7-Y and its biosynthetic gene cluster are potential candidates for developing a microbial formulation for the PHB production.
Collapse
Affiliation(s)
- Li Feng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; College of Life Sciences, Shihezi University, Shihezi 832003, PR China
| | - Jinyuan Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Zhitong Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xue Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiawei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Xiujuan Qian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Ziqiang Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Guangyu Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chongyu Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuehan Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Gang Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China.
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
43
|
An J, Ha B, Lee SK. Production of polyhydroxyalkanoates by the thermophile Cupriavidus cauae PHS1. BIORESOURCE TECHNOLOGY 2023; 371:128627. [PMID: 36646360 DOI: 10.1016/j.biortech.2023.128627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Thermophilic production of polyhydroxyalkanoate is considered a very promising way to overcome the problems that may arise when using mesophilic strains. This study reports the first thermophilic polyhydroxybutyrate-producing Cupriavidus species, which are known as the best polyhydroxybutyrate-producing microorganisms. Cupriavidus cauae PHS1 harbors a phbCABR cluster with high similarity to the corresponding proteins of C. necator H16 (80, 93, 96, and 97 %). This strain can produce polyhydroxybutyrate from a range of substrates, including acetate (5 g/L) and phenol (1 g/L), yielding 7.6 % and 18.9 % polyhydroxybutyrate, respectively. Moreover, the strain produced polyhydroxybutyrate at temperatures ranging from 25 to 50 °C, with the highest polyhydroxybutyrate content (47 °C) observed at 45 °C from gluconate. Additionally, the strain could incorporate 3-hydroxyvalerate (12.5 mol. %) into the polyhydroxybutyrate polymer using levulinic acid as a precursor. Thus, Cupriavidus cauae PHS1 may be a promising polyhydroxybutyrate producer as alternative for mesophilic polyhydroxybutyrate-producing Cupriavidus species.
Collapse
Affiliation(s)
- Jeongvin An
- School of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Boram Ha
- School of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sung Kuk Lee
- School of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
44
|
Martínez-Herrera RE, Alemán-Huerta ME, Rutiaga-Quiñones OM, de Luna-Santillana EJ, Elufisan TO. A comprehensive view of Bacillus cereus as a polyhydroxyalkanoate (PHA) producer: A promising alternative to Petroplastics. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
45
|
Solid State Polymerization of Biodegradable Poly(butylene sebacate-co-terephthalate): A Rapid, Facile Method for Property Enhancement. Polymers (Basel) 2023; 15:polym15051133. [PMID: 36904373 PMCID: PMC10007135 DOI: 10.3390/polym15051133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Poly(butylene sebacate-co-terephthalate) (PBSeT) has generated attention as a promising biopolymer for preparing bioplastics. However, there are limited studies on the synthesis of PBSeT, impeding its commercialization. Herein, with a view to addressing this challenge, biodegradable PBSeT was modified using solid state polymerization (SSP) with various ranges of time and temperature. The SSP used three different temperatures below the melting temperature of PBSeT. The polymerization degree of SSP was investigated using Fourier-transform infrared spectroscopy. The changes in the rheological properties of PBSeT after SSP were investigated using a rheometer and an Ubbelodhe viscometer. Differential scanning calorimetry and X-ray diffraction showed that the crystallinity of PBSeT was higher after SSP. The investigation revealed that after SSP for 40 min at 90 °C, PBSeT exhibited higher intrinsic viscosity (increased from 0.47 to 0.53 dL/g), crystallinity, and complex viscosity than PBSeT polymerized at other temperatures. However, a high SSP processing time resulted in a decrease in these values. In this experiment, SSP was most effectively performed in the temperature range closest to the melting temperature of PBSeT. This indicates that SSP could be a facile and rapid method for improving the crystallinity and thermal stability of synthesized PBSeT.
Collapse
|
46
|
A G Soares da Silva F, Matos M, Dourado F, A M Reis M, C Branco P, Poças F, Gama M. Development of a layered bacterial nanocellulose-PHBV composite for food packaging. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1077-1087. [PMID: 35218225 DOI: 10.1002/jsfa.11839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Most of the current materials used in food packaging are synthetic and non-degradable, raising environmental issues derived from the accumulation of plastics in landfills/waterways. The food industry increasingly needs eco-friendly sustainable materials that meet food-packaging requirements. Bacterial nanocellulose (BNC), a biopolymer obtained by fermentation, offers very good mechanical properties and the ability to carry and deliver active substances. However, its water-vapor permeability is too high for food-packaging applications. In this work, a layered biodegradable composite based on BNC and polyhydroxyalkanoate (PHBV) was produced, attempting to improve its overall barrier properties. Polyhydroxyalkanoate is a biopolymer with high degree of hydrophobicity and biodegradability, and is also obtained by fermentation. Wet BNC membranes produced by static culture were plasticized by impregnation of solutions of either glycerol (BNCgly ) or polyethylene glycol (MW 600) (BNCPEG ). The plasticized BNC was then coated with PHBV solution dissolved in formic acid, and oven dried at 148 °C. RESULTS Overall, PHBV coating on plasticized BNC reduced water vapor permeability significantly (from 0.990 to 0.032 g.μm.m-2 .day-1 .Pa-1 ) under 50% relative humidity. It increased the hydrophobicity (contact angle from 10-40° to 80-90°) but decreased the stiffness (from 3.1 GPa to 1.3 Gpa) of the composite. CONCLUSIONS Overall, the mechanical and barrier properties of the layered composite obtained were considered suitable for food-packaging applications. The plasticizing (with glycerol or polyethylene glycol) of BNC significantly improved the mechanical performance and the PHBV coating reduced the water affinity (vapor and liquid state) on BNC. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francisco A G Soares da Silva
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Portugal
| | - Mariana Matos
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Fernando Dourado
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Maria A M Reis
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Pedro C Branco
- RAIZ - Forest and Paper Research Institute, Eixo, Aveiro, Portugal
| | - Fátima Poças
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Portugal
- Center for Quality and Food Safety (CINATE), Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Miguel Gama
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
47
|
Zou Y, Yang M, Tao Q, Zhu K, Liu X, Wan C, Harder MK, Yan Q, Liang B, Ntaikou I, Antonopoulou G, Lyberatos G, Zhang Y. Recovery of polyhydroxyalkanoates (PHAs) polymers from a mixed microbial culture through combined ultrasonic disruption and alkaline digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116786. [PMID: 36410150 DOI: 10.1016/j.jenvman.2022.116786] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/26/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
PHAs are a form of cellular storage polymers with diverse structural and material properties, and their biodegradable and renewable nature makes them a potential green alternative to fossil fuel-based plastics. PHAs are obtained through extraction via various mechanical, physical and chemical processes after their intracellular synthesis. Most studies have until now focused on pure cultures, while information on mixed microbial cultures (MMC) remains limited. In this study, ultrasonic (US) disruption and alkaline digestion by NaOH were applied individually and in combination to obtain PHAs products from an acclimated MMC using phenol as the carbon source. Various parameters were tested, including ultrasonic sound energy density, NaOH concentration, treatment time and temperature, and biomass density. US alone caused limited cell lysis and resulted in high energy consumption and low efficiency. NaOH of 0.05-0.2 M was more efficient in cell disruption, but led to PHAs degradation under elevated temperature and prolonged treatment. Combining US and NaOH significantly improved the overall process efficiency, which could reduce energy consumption by 2/3rds with only minimal PHAs degradation. The most significant factor was identified to be NaOH dosage and treatment time, with US sound energy density playing a minor role. Under the semi-optimized condition (0.2 M NaOH, 1300 W L-1, 10 min), over 70% recovery and 80% purity were achieved from a 3 g L-1 MMC slurry of approximately 50% PHAs fraction. The material and thermal properties of the products were analyzed, and the polymers obtained from US + NaOH treatments showed comparable or higher molecular weight to previously reported results. The products also exhibited good thermal stability and rheological properties, compared to the commercial standard. In conclusion, the combined US and NaOH method has the potential in real application as an efficient process to obtain high quality PHAs from MMC, and cost-effectiveness can be further optimized.
Collapse
Affiliation(s)
- Yuqi Zou
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China
| | - Mingfeng Yang
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China
| | - Qiuyue Tao
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China
| | - Keliang Zhu
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China
| | - Marie K Harder
- Values and Sustainability Research Group, Cockcroft Building, University of Brighton, Lewes Road, BN2 4GJ, United Kingdom
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi City, Jiangsu Province, China
| | - Bo Liang
- Adesso Advanced Materials Wuhu Co. Ltd., Bldg.6, Xinghui Science and Technology Industrial Park, Sanshan District, Wuhu City, Anhui Province, China
| | - Ioanna Ntaikou
- Institute of Chemical Engineering Sciences, Platani, Patras, GR 26504, Greece
| | | | - Gerasimos Lyberatos
- Institute of Chemical Engineering Sciences, Platani, Patras, GR 26504, Greece; School of Chemical Engineering, National Technical University of Athens, GR 15780 Athens, Greece
| | - Yi Zhang
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China.
| |
Collapse
|
48
|
Kanzariya R, Gautam A, Parikh S, Shah M, Gautam S. Formation of polyhydroxyalkanoates using agro and industrial waste as a substrate - a review. Biotechnol Genet Eng Rev 2023:1-40. [PMID: 36641590 DOI: 10.1080/02648725.2023.2165222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 01/16/2023]
Abstract
In the present scenario, rising environmental concerns of non-biodegradable plastic pollution and depletion of petroleum based raw materials lead to the development of biopolymers. The biodegradability of biopolymers gives them a specific advantage for the environmental concerns. Polyhydroxyalkanoates (PHAs) are a type of biopolymers which are synthesized by microorganisms. Although there are different substrates available in pure forms which are currently used in the production of PHA, 40% of production cost depends on the expensive substrate which is a major disadvantage and make it far from many applications. The use of an inexpensive carbon source which is high in organic matter content such as waste streams of process industries can make this process viable and diminish PHA production cost. This study explores the current research initiatives on various agricultural and industrial waste feedstocks, formulations and processing conditions for producing PHA in a way that is both inexpensive and beneficial to the environment. The creation of fermentation conditions and metabolic engineering techniques for promoting microbial growth and PHA synthesis were also discussed in the review.
Collapse
Affiliation(s)
- Rekha Kanzariya
- Department of Chemical Engineering, Government Engineering College, Bhuj, India
- Gujarat Technological University, Gandhinagar, India
| | - Alok Gautam
- Gujarat Technological University, Gandhinagar, India
- Shroff S R Rotary Institute of Chemical Technology, Vataria, India
| | - Sachin Parikh
- Gujarat Technological University, Gandhinagar, India
- Directorate of Technical Education, Gandhinagar, India
| | - Maulin Shah
- Department of Microbiology, Environmental Microbiology Lab, Enviro Tech Limited, Ankleshwar, India
| | - Shina Gautam
- Gujarat Technological University, Gandhinagar, India
- Shroff S R Rotary Institute of Chemical Technology, Vataria, India
| |
Collapse
|
49
|
Máčalová D, Janalíková M, Sedlaříková J, Rektoříková I, Koutný M, Pleva P. Genotypic and Phenotypic Detection of Polyhydroxyalkanoate Production in Bacterial Isolates from Food. Int J Mol Sci 2023; 24:ijms24021250. [PMID: 36674766 PMCID: PMC9864133 DOI: 10.3390/ijms24021250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are widely used in medical and potentially in other applications due to their biocompatibility and biodegradability. Understanding PHA biosynthetic pathways may lead to the detection of appropriate conditions (substrates) for producing a particular PHA type by a specific microbial strain. The aim of this study was to establish a method enabling potentially interesting PHA bacterial producers to be found. In the study, all four classes of PHA synthases and other genes involved in PHA formation (fabG, phaA, phaB, phaG, and phaJ) were detected by PCR in 64 bacterial collection strains and food isolates. Acinetobacter, Bacillus, Cupriavidus, Escherichia, Klebsiella, Lelliottia, Lysinibacillus, Mammaliicoccus, Oceanobacillus, Pantoea, Peribacillus, Priestia, Pseudomonas, Rahnella, Staphylococcus, and Stenotrophomonas genera were found among these strains. Fructose, glucose, sunflower oil, and propionic acid were utilized as carbon sources and PHA production was detected by Sudan black staining, Nile blue staining, and FTIR methods. The class I synthase and phaA genes were the most frequently found, indicating the strains' ability to synthesize PHA from carbohydrates. Among the tested bacterial strains, the Pseudomonas genus was identified as able to utilize all tested carbon sources. The Pseudomonas extremorientalis strain was determined as a prospect for biotechnology applications.
Collapse
Affiliation(s)
- Daniela Máčalová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, 275 Vavreckova, 76001 Zlin, Czech Republic
| | - Magda Janalíková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, 275 Vavreckova, 76001 Zlin, Czech Republic
| | - Jana Sedlaříková
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlin, 275 Vavreckova, 76001 Zlin, Czech Republic
| | - Iveta Rektoříková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, 275 Vavreckova, 76001 Zlin, Czech Republic
| | - Marek Koutný
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, 275 Vavreckova, 76001 Zlin, Czech Republic
| | - Pavel Pleva
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, 275 Vavreckova, 76001 Zlin, Czech Republic
- Correspondence:
| |
Collapse
|
50
|
Esposito FP, Vecchiato V, Buonocore C, Tedesco P, Noble B, Basnett P, de Pascale D. Enhanced production of biobased, biodegradable, Poly(3-hydroxybutyrate) using an unexplored marine bacterium Pseudohalocynthiibacter aestuariivivens, isolated from highly polluted coastal environment. BIORESOURCE TECHNOLOGY 2023; 368:128287. [PMID: 36368485 DOI: 10.1016/j.biortech.2022.128287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The production and disposal of plastics from limited fossil reserves, has prompted research for greener and sustainable alternatives. Polyhydroxyalkanoates (PHAs) are biocompatible, biodegradable, and thermoprocessable polyester produced by microbes. PHAs found several applications but their use is limited due to high production cost and low yields. Herein, for the first time, the isolation and characterization of Pseudohalocynthiibacter aestuariivivens P96, a marine bacterium able to produce surprising amount of PHAs is reported. In the best growth condition P96 was able to reach a maximum production of 4.73 g/L, corresponding to the 87 % of total cell dry-weight. Using scanning and transmission microscopy, lab-scale fermentation, spectroscopic techniques, and genome analysis, the production of thermoprocessable polymer Polyhydroxybutyrate P(3HB), a PHAs class, endowed with mechanical and thermal properties comparable to that of petroleum-based plastics was confirmed. This study represents a milestone toward the use of this unexplored marine bacterium for P(3HB) production.
Collapse
Affiliation(s)
- Fortunato Palma Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton 55, 80133 Naples, Italy
| | - Vittoria Vecchiato
- Sustainable Biotechnology Research Group, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| | - Carmine Buonocore
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton 55, 80133 Naples, Italy
| | - Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton 55, 80133 Naples, Italy
| | - Brendon Noble
- Sustainable Biotechnology Research Group, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| | - Pooja Basnett
- Sustainable Biotechnology Research Group, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton 55, 80133 Naples, Italy.
| |
Collapse
|