1
|
Snow F, O'Connell C, Yang P, Kita M, Pirogova E, Williams RJ, Kapsa RMI, Quigley A. Engineering interfacial tissues: The myotendinous junction. APL Bioeng 2024; 8:021505. [PMID: 38841690 PMCID: PMC11151436 DOI: 10.1063/5.0189221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
The myotendinous junction (MTJ) is the interface connecting skeletal muscle and tendon tissues. This specialized region represents the bridge that facilitates the transmission of contractile forces from muscle to tendon, and ultimately the skeletal system for the creation of movement. MTJs are, therefore, subject to high stress concentrations, rendering them susceptible to severe, life-altering injuries. Despite the scarcity of knowledge obtained from MTJ formation during embryogenesis, several attempts have been made to engineer this complex interfacial tissue. These attempts, however, fail to achieve the level of maturity and mechanical complexity required for in vivo transplantation. This review summarizes the strategies taken to engineer the MTJ, with an emphasis on how transitioning from static to mechanically inducive dynamic cultures may assist in achieving myotendinous maturity.
Collapse
|
2
|
Dvorak N, Liu Z, Mouthuy PA. Soft bioreactor systems: a necessary step toward engineered MSK soft tissue? Front Robot AI 2024; 11:1287446. [PMID: 38711813 PMCID: PMC11070535 DOI: 10.3389/frobt.2024.1287446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/12/2024] [Indexed: 05/08/2024] Open
Abstract
A key objective of tissue engineering (TE) is to produce in vitro funcional grafts that can replace damaged tissues or organs in patients. TE uses bioreactors, which are controlled environments, allowing the application of physical and biochemical cues to relevant cells growing in biomaterials. For soft musculoskeletal (MSK) tissues such as tendons, ligaments and cartilage, it is now well established that applied mechanical stresses can be incorporated into those bioreactor systems to support tissue growth and maturation via activation of mechanotransduction pathways. However, mechanical stresses applied in the laboratory are often oversimplified compared to those found physiologically and may be a factor in the slow progression of engineered MSK grafts towards the clinic. In recent years, an increasing number of studies have focused on the application of complex loading conditions, applying stresses of different types and direction on tissue constructs, in order to better mimic the cellular environment experienced in vivo. Such studies have highlighted the need to improve upon traditional rigid bioreactors, which are often limited to uniaxial loading, to apply physiologically relevant multiaxial stresses and elucidate their influence on tissue maturation. To address this need, soft bioreactors have emerged. They employ one or more soft components, such as flexible soft chambers that can twist and bend with actuation, soft compliant actuators that can bend with the construct, and soft sensors which record measurements in situ. This review examines types of traditional rigid bioreactors and their shortcomings, and highlights recent advances of soft bioreactors in MSK TE. Challenges and future applications of such systems are discussed, drawing attention to the exciting prospect of these platforms and their ability to aid development of functional soft tissue engineered grafts.
Collapse
Affiliation(s)
| | | | - Pierre-Alexis Mouthuy
- Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Gomez-Cerezo MN, Perevoshchikova N, Ruan R, Moerman KM, Bindra R, Lloyd DG, Zheng MH, Saxby DJ, Vaquette C. Additively manufactured polyethylene terephthalate scaffolds for scapholunate interosseous ligament reconstruction. BIOMATERIALS ADVANCES 2023; 149:213397. [PMID: 37023566 DOI: 10.1016/j.bioadv.2023.213397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
The regeneration of the ruptured scapholunate interosseous ligament (SLIL) represents a clinical challenge. Here, we propose the use of a Bone-Ligament-Bone (BLB) 3D-printed polyethylene terephthalate (PET) scaffold for achieving mechanical stabilisation of the scaphoid and lunate following SLIL rupture. The BLB scaffold featured two bone compartments bridged by aligned fibres (ligament compartment) mimicking the architecture of the native tissue. The scaffold presented tensile stiffness in the range of 260 ± 38 N/mm and ultimate load of 113 ± 13 N, which would support physiological loading. A finite element analysis (FEA), using inverse finite element analysis (iFEA) for material property identification, showed an adequate fit between simulation and experimental data. The scaffold was then biofunctionalized using two different methods: injected with a Gelatin Methacryloyl solution containing human mesenchymal stem cell spheroids (hMSC) or seeded with tendon-derived stem cells (TDSC) and placed in a bioreactor to undergo cyclic deformation. The first approach demonstrated high cell viability, as cells migrated out of the spheroid and colonised the interstitial space of the scaffold. These cells adopted an elongated morphology suggesting the internal architecture of the scaffold exerted topographical guidance. The second method demonstrated the high resilience of the scaffold to cyclic deformation and the secretion of a fibroblastic related protein was enhanced by the mechanical stimulation. This process promoted the expression of relevant proteins, such as Tenomodulin (TNMD), indicating mechanical stimulation may enhance cell differentiation and be useful prior to surgical implantation. In conclusion, the PET scaffold presented several promising characteristics for the immediate mechanical stabilisation of disassociated scaphoid and lunate and, in the longer-term, the regeneration of the ruptured SLIL.
Collapse
|
4
|
Characterization of Bone Marrow and Wharton's Jelly Mesenchymal Stromal Cells Response on Multilayer Braided Silk and Silk/PLCL Scaffolds for Ligament Tissue Engineering. Polymers (Basel) 2020; 12:polym12092163. [PMID: 32971891 PMCID: PMC7569883 DOI: 10.3390/polym12092163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/29/2022] Open
Abstract
(1) Background: A suitable scaffold with adapted mechanical and biological properties for ligament tissue engineering is still missing. (2) Methods: Different scaffold configurations were characterized in terms of morphology and a mechanical response, and their interactions with two types of stem cells (Wharton's jelly mesenchymal stromal cells (WJ-MSCs) and bone marrow mesenchymal stromal cells (BM-MSCs)) were assessed. The scaffold configurations consisted of multilayer braids with various number of silk layers (n = 1, 2, 3), and a novel composite scaffold made of a layer of copoly(lactic acid-co-(e-caprolactone)) (PLCL) embedded between two layers of silk. (3) Results: The insertion of a PLCL layer resulted in a higher porosity and better mechanical behavior compared with pure silk scaffold. The metabolic activities of both WJ-MSCs and BM-MSCs increased from day 1 to day 7 except for the three-layer silk scaffold (S3), probably due to its lower porosity. Collagen I (Col I), collagen III (Col III) and tenascin-c (TNC) were expressed by both MSCs on all scaffolds, and expression of Col I was higher than Col III and TNC. (4) Conclusions: the silk/PLCL composite scaffolds constituted the most suitable tested configuration to support MSCs migration, proliferation and tissue synthesis towards ligament tissue engineering.
Collapse
|
5
|
Lim WL, Liau LL, Ng MH, Chowdhury SR, Law JX. Current Progress in Tendon and Ligament Tissue Engineering. Tissue Eng Regen Med 2019; 16:549-571. [PMID: 31824819 PMCID: PMC6879704 DOI: 10.1007/s13770-019-00196-w] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 02/08/2023] Open
Abstract
Background Tendon and ligament injuries accounted for 30% of all musculoskeletal consultations with 4 million new incidences worldwide each year and thus imposed a significant burden to the society and the economy. Damaged tendon and ligament can severely affect the normal body movement and might lead to many complications if not treated promptly and adequately. Current conventional treatment through surgical repair and tissue graft are ineffective with a high rate of recurrence. Methods In this review, we first discussed the anatomy, physiology and pathophysiology of tendon and ligament injuries and its current treatment. Secondly, we explored the current role of tendon and ligament tissue engineering, describing its recent advances. After that, we also described stem cell and cell secreted product approaches in tendon and ligament injuries. Lastly, we examined the role of the bioreactor and mechanical loading in in vitro maturation of engineered tendon and ligament. Results Tissue engineering offers various alternative ways of treatment from biological tissue constructs to stem cell therapy and cell secreted products. Bioreactor with mechanical stimulation is instrumental in preparing mature engineered tendon and ligament substitutes in vitro. Conclusions Tissue engineering showed great promise in replacing the damaged tendon and ligament. However, more study is needed to develop ideal engineered tendon and ligament.
Collapse
Affiliation(s)
- Wei Lee Lim
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Ling Ling Liau
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, JalanYaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Shiplu Roy Chowdhury
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Liu X, Laurent C, Du Q, Targa L, Cauchois G, Chen Y, Wang X, de Isla N. Mesenchymal stem cell interacted with PLCL braided scaffold coated with poly-l-lysine/hyaluronic acid for ligament tissue engineering. J Biomed Mater Res A 2018; 106:3042-3052. [PMID: 30194699 DOI: 10.1002/jbm.a.36494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 01/07/2023]
Abstract
The challenge of finding an adapted scaffold for ligament tissue engineering remains unsolved after years of researches. A technology to fabricate a multilayer braided scaffold with flexible and elastic poly (l-lactide-co-caprolactone) (PLCL 85/15) has been recently pioneered by our team. In this study, polyelectrolyte multilayer films (PEM) with poly-l-lysine (PLL)/ hyaluronic acid (HA) were deposited on this scaffold. After PEM modification, polygonal (PLL) and particle-like (HA) structures were present on the braided scaffold with no significant variation of fibers Young's modulus. Wharton's jelly mesenchymal stem cells (WJ-MSC) and bone marrow mesenchymal stem cells (BM-MSC) showed good metabolic activity on scaffolds. They presented a spindled shape along the fiber longitudinal direction, and crossed the fibers to form cell bridges. Collagen type I, collagen type III, and tenascin-C secreted by MSCs were detected on day 14. Moreover, one-layer modified scaffold presented increased chemotaxis. As a conclusion, our results indicate that this braided PLCL scaffold with one-layer PEM modification shows inspiring potential with satisfying mechanical properties and biocompatibility. It opens new perspectives to incorporate growth factors within PEM-modified braided PLCL scaffold for ligament tissue engineering and to recruit endogenous cells after implantation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3042-3052, 2018.
Collapse
Affiliation(s)
- Xing Liu
- CNRS UMR 7365 -Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Vandœuvre-lès-Nancy, France
| | - Cédric Laurent
- CNRS UMR 7239 LEM3 - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Qiaoyue Du
- Department of Biomedical Engineering, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Laurie Targa
- CNRS UMR 7365 -Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Vandœuvre-lès-Nancy, France
| | - Ghislaine Cauchois
- CNRS UMR 7365 -Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Vandœuvre-lès-Nancy, France
| | - Yun Chen
- Department of Biomedical Engineering, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xiong Wang
- CNRS UMR 7365 -Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Vandœuvre-lès-Nancy, France
| | - Natalia de Isla
- CNRS UMR 7365 -Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Vandœuvre-lès-Nancy, France
| |
Collapse
|
7
|
Laurent C, Liu X, De Isla N, Wang X, Rahouadj R. Defining a scaffold for ligament tissue engineering: What has been done, and what still needs to be done. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.jocit.2018.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
8
|
Laurent CP, Vaquette C, Liu X, Schmitt JF, Rahouadj R. Suitability of a PLCL fibrous scaffold for soft tissue engineering applications: A combined biological and mechanical characterisation. J Biomater Appl 2018; 32:1276-1288. [PMID: 29409376 DOI: 10.1177/0885328218757064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Poly(lactide-co-ε-caprolactone) (PLCL) has been reported to be a good candidate for tissue engineering because of its good biocompatibility. Particularly, a braided PLCL scaffold (PLL/PCL ratio = 85/15) has been recently designed and partially validated for ligament tissue engineering. In the present study, we assessed the in vivo biocompatibility of acellular and cellularised scaffolds in a rat model. We then determined its in vitro biocompatibility using stem cells issued from both bone marrow and Wharton Jelly. From a biological point of view, the scaffold was shown to be suitable for tissue engineering in all these cases. Secondly, while the initial mechanical properties of this scaffold have been previously reported to be adapted to load-bearing applications, we studied the evolution in time of the mechanical properties of PLCL fibres due to hydrolytic degradation. Results for isolated PLCL fibres were extrapolated to the fibrous scaffold using a previously developed numerical model. It was shown that no accumulation of plastic strain was to be expected for a load-bearing application such as anterior cruciate ligament tissue engineering. However, PLCL fibres exhibited a non-expected brittle behaviour after two months. This may involve a potential risk of premature failure of the scaffold, unless tissue growth compensates this change in mechanical properties. This combined study emphasises the need to characterise the properties of biomaterials in a pluridisciplinary approach, since biological and mechanical characterisations led in this case to different conclusions concerning the suitability of this scaffold for load-bearing applications.
Collapse
Affiliation(s)
| | - Cédryck Vaquette
- 2 95541 Queensland University of Technology (QUT) , Brisbane, Australia
| | - Xing Liu
- 3 CNRS, IMoPA, UMR 7365, Biopôle, Université de Lorraine, France
| | | | | |
Collapse
|
9
|
Lui H, Vaquette C, Bindra R. Tissue Engineering in Hand Surgery: A Technology Update. J Hand Surg Am 2017; 42:727-735. [PMID: 28751113 DOI: 10.1016/j.jhsa.2017.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 06/12/2017] [Indexed: 02/02/2023]
Abstract
The field of hand surgery is constantly evolving to meet the challenges of repairing intricate anatomical structures with limited availability of donor tissue. The past 10 years have seen an exponential growth in tissue engineering, which has broadened the perspectives of tackling these age-old problems. Various fabrication techniques such as melt electrospinning and fused deposition modelling have been employed to synthesize 3-dimensional bioscaffolds that can be used to replace lost tissue. These bioscaffolds with strategic biomimicry have been shown to allow for integrative and functional repair of tissue injuries. This review article summarizes the most current advances in tissue engineering and its applications in the field of hand surgery. It outlines the current tissue engineering techniques commonly used for tackling musculoskeletal problems and highlights the most promising approaches according to clinical evidence. In particular, the paper explores regenerative medicine concepts applied to specific tissues including nerve, bone, cartilage, tendon, ligament, and vessels. In the face of innovative and pioneering research, tissue engineering will undoubtedly play a key role in reconstructive hand surgery in the not too distant future.
Collapse
Affiliation(s)
- Hayman Lui
- Department of Orthopaedics, Gold Coast University Hospital & Griffith University School of Medicine, Southport, Australia.
| | - Cedryck Vaquette
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Randip Bindra
- Department of Orthopaedics, Gold Coast University Hospital & Griffith University School of Medicine, Southport, Australia
| |
Collapse
|
10
|
Laurent CP, Ganghoffer JF, Rahouadj R. An Attempt to Predict the Preferential Cellular Orientation in Any Complex Mechanical Environment. Bioengineering (Basel) 2017; 4:bioengineering4010016. [PMID: 28952494 PMCID: PMC5590443 DOI: 10.3390/bioengineering4010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/06/2017] [Accepted: 02/20/2017] [Indexed: 12/13/2022] Open
Abstract
Cells respond to their mechanical environment in different ways: while their response in terms of differentiation and proliferation has been widely studied, the question of the direction in which cells align when subject to a complex mechanical loading in a 3D environment is still widely open. In the present paper, we formulate the hypothesis that the cells orientate in the direction of unitary stretch computed from the right Cauchy-Green tensor in a given mechanical environment. The implications of this hypothesis are studied in different simple cases corresponding to either the available in vitro experimental data or physiological conditions, starting from finite element analysis results to computed preferential cellular orientation. The present contribution is a first step to the formulation of a deeper understanding of the orientation of cells within or at the surface of any 3D scaffold subject to any complex load. It is believed that these initial preferential directions have strong implications as far as the anisotropy of biological structures is concerned.
Collapse
Affiliation(s)
- Cédric P Laurent
- CNRS, LEMTA, UMR 7563, Université de Lorraine, 2 Avenue de la Forêt de Haye, 54502 Vandoeuvre-lès-Nancy, France.
| | - Jean-François Ganghoffer
- CNRS, LEMTA, UMR 7563, Université de Lorraine, 2 Avenue de la Forêt de Haye, 54502 Vandoeuvre-lès-Nancy, France.
| | - Rachid Rahouadj
- CNRS, LEMTA, UMR 7563, Université de Lorraine, 2 Avenue de la Forêt de Haye, 54502 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
11
|
Morais DS, Torres J, Guedes RM, Lopes MA. Current Approaches and Future Trends to Promote Tendon Repair. Ann Biomed Eng 2015; 43:2025-35. [DOI: 10.1007/s10439-015-1369-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/16/2015] [Indexed: 01/31/2023]
|
12
|
|
13
|
Laurent CP, Latil P, Durville D, Rahouadj R, Geindreau C, Orgéas L, Ganghoffer JF. Mechanical behaviour of a fibrous scaffold for ligament tissue engineering: Finite elements analysis vs. X-ray tomography imaging. J Mech Behav Biomed Mater 2014; 40:222-233. [DOI: 10.1016/j.jmbbm.2014.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/25/2014] [Accepted: 09/02/2014] [Indexed: 11/30/2022]
|
14
|
Vaquette C. Biomaterial Structures for Anterior Cruciate Ligament Replacement. Biomaterials 2014. [DOI: 10.1002/9781119043553.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
|