1
|
Murugan M, Saranya E, Ramya M. DNAzyme-based colorimetric biosensor for rapid detection of Shigella flexneri. Sci Rep 2025; 15:14942. [PMID: 40301398 PMCID: PMC12041453 DOI: 10.1038/s41598-025-94494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/13/2025] [Indexed: 05/01/2025] Open
Abstract
Shigella flexneri, a formidable gram-negative bacterium, that triggers the most contagious form of shigellosis through bloody diarrhea, presenting a significant threat. As a severe foodborne pathogen, it underscores the need for intensified research into more effective prevention strategies and heightened public health awareness. The traditional methods used to detect S. flexneri are time-consuming and inconvenient. As a result, there is a need for accurate and rapid diagnostics in food and water samples. The experimental methods involved modifying S. flexneri-specific HGD-aptamer and employing single-walled carbon nanotubes to develop a colorimetric detection assay exploiting DNAzyme. The HGD-aptamer-SWCNT complex binds specifically to S. flexneri cells, resulting in a detectable colorimetric response in a test sample involving enzymatic reactions. The assay's efficacy was validated through sensitivity and specificity evaluations, which demonstrated a detection limit of 51 CFU/mL and selective detection of the target with no signal in different bacterial environments. Comparative analysis with PCR-based methods confirmed the assay's performance, highlighting its potential as a rapid, cost-effective, and user-friendly diagnostic tool. This study introduces an innovative approach to identifying S. flexneri, which has the potential to improve food safety, environmental monitoring, and public health.
Collapse
Affiliation(s)
- Manikandan Murugan
- Molecular Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, College of Engineering and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu, 603 203, India
| | - Elangovan Saranya
- Molecular Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, College of Engineering and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu, 603 203, India
| | - Mohandass Ramya
- Molecular Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, College of Engineering and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu, 603 203, India.
| |
Collapse
|
2
|
Nourry J, Chevalier P, Laurenceau E, Cattoen X, Bertrand X, Peres B, Oukacine F, Peyrin E, Choisnard L. Whole-cell aptamer-based techniques for rapid bacterial detection: Alternatives to traditional methods. J Pharm Biomed Anal 2025; 255:116661. [PMID: 39793371 DOI: 10.1016/j.jpba.2025.116661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Controlling the spread of bacterial infectious diseases is a major public health issue, particularly in view of the pandemic of bacterial resistance to antibiotics. In this context, the detection and identification of pathogenic bacteria is a prerequisite for the implementation of control measures. Current reference methods are mainly based on culture methods, which generate a delay in obtaining a result and requires equipment. Consequently, focusing on the detection of the whole bacterium represents a very attractive alternative, since no culture is required. Several techniques have already been deployed to identify whole-cell bacteria. In recent decades, growing interest in nucleic acid aptamers has emerged as a viable alternative to antibodies as recognition elements, offering preferable stability, cost-efficiency, good specificity and affinity. This review explores current alternative methods for the detection of whole-cell bacteria, with particular emphasis on aptamer-based assays. These assays have shown promising results in various transduction mechanisms, including optical, electrochemical, and mechanical approaches, enhancing their versatility in different diagnostic platforms. The integration of aptamers in these detection methods offers rapid, sensitive, versatile and portable solutions for pathogen identification, positioning them as valuable tools in the fight against bacterial infections.
Collapse
Affiliation(s)
- Juliette Nourry
- University Grenoble Alpes, DPM UMR 5063, CNRS, Grenoble F-38041, France
| | - Pauline Chevalier
- University Grenoble Alpes, DPM UMR 5063, CNRS, Grenoble F-38041, France
| | - Emmanuelle Laurenceau
- University Lyon, University Claude Bernard Lyon 1, INL UMR5270, Ecole Centrale Lyon, CNRS, INSA Lyon, CPE Lyon, Ecully F-69130, France
| | - Xavier Cattoen
- University Grenoble Alpes, Grenoble INP, Institut Néel, CNRS, Grenoble F-38000, France
| | - Xavier Bertrand
- University Bourgogne Franche-Comté, Chrono-environnement, UMR 6249, CNRS, France
| | - Basile Peres
- University Grenoble Alpes, DPM UMR 5063, CNRS, Grenoble F-38041, France
| | - Farid Oukacine
- University Grenoble Alpes, DPM UMR 5063, CNRS, Grenoble F-38041, France
| | - Eric Peyrin
- University Grenoble Alpes, DPM UMR 5063, CNRS, Grenoble F-38041, France.
| | - Luc Choisnard
- University Grenoble Alpes, DPM UMR 5063, CNRS, Grenoble F-38041, France.
| |
Collapse
|
3
|
Singh R, Ryu J, Hyoung Lee W, Kang JH, Park S, Kim K. Wastewater-borne viruses and bacteria, surveillance and biosensors at the interface of academia and field deployment. Crit Rev Biotechnol 2025; 45:413-433. [PMID: 38973015 DOI: 10.1080/07388551.2024.2354709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/03/2024] [Accepted: 04/28/2024] [Indexed: 07/09/2024]
Abstract
Wastewater is a complex, but an ideal, matrix for disease monitoring and surveillance as it represents the entire load of enteric pathogens from a local catchment area. It captures both clinical and community disease burdens. Global interest in wastewater surveillance has been growing rapidly for infectious diseases monitoring and for providing an early warning of potential outbreaks. Although molecular detection methods show high sensitivity and specificity in pathogen monitoring from wastewater, they are strongly limited by challenges, including expensive laboratory settings and prolonged sample processing and analysis. Alternatively, biosensors exhibit a wide range of practical utility in real-time monitoring of biological and chemical markers. However, field deployment of biosensors is primarily challenged by prolonged sample processing and pathogen concentration steps due to complex wastewater matrices. This review summarizes the role of wastewater surveillance and provides an overview of infectious viral and bacterial pathogens with cutting-edge technologies for their detection. It emphasizes the practical utility of biosensors in pathogen monitoring and the major bottlenecks for wastewater surveillance of pathogens, and overcoming approaches to field deployment of biosensors for real-time pathogen detection. Furthermore, the promising potential of novel machine learning algorithms to resolve uncertainties in wastewater data is discussed.
Collapse
Affiliation(s)
- Rajendra Singh
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| | - Jaewon Ryu
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| | - Woo Hyoung Lee
- Department of Civil, Environmental, and Construction Engineering, University of Central FL, Orlando, FL, USA
| | - Joo-Hyon Kang
- Department of Civil and Environmental Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Sanghwa Park
- Bacteria Research Team, Freshwater Bacteria Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju-si, South Korea
| | - Keugtae Kim
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| |
Collapse
|
4
|
Tang Y, Li Y, Chen P, Zhong S, Yang Y. Nucleic Acid Aptamer-Based Sensors for Bacteria Detection: A Review. Bioessays 2025; 47:e202400111. [PMID: 39821800 DOI: 10.1002/bies.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/19/2025]
Abstract
Bacteria have a significant impact on human production and life, endangering human life and health, so rapid detection of infectious agents is essential to improve human health. Aptamers, which are pieces of oligonucleotides (DNA or RNA) have been applied to biosensors for bacteria detection due to their high affinity, selectivity, robust chemical stability, and their compatibility with various signal amplification and signal transduction mechanisms. In this review, we summarize the different bacterial aptamers selected in recent years using SELEX technology and discuss the differences in optical and electrochemical bacterial aptamer sensors. In addition the technological developments and innovations in bacterial aptamer sensor technology are introduced. Combining new materials and methods, the efficiency and stability of the sensors have also been improved. This review summarizes the progress of current bacterial aptamer sensors based on their practical application status and provides an outlook on their future development.
Collapse
Affiliation(s)
- Yalan Tang
- Department of Biology and Medicine ,college of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Yun Li
- Department of Biology and Medicine ,college of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Ping Chen
- Department of Biology and Medicine ,college of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Shian Zhong
- Department of Biology and Medicine ,college of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha, China
| | - Yanjing Yang
- Department of Biology and Medicine ,college of Chemistry and Chemical Engineering, Central South University, Changsha, China
| |
Collapse
|
5
|
Saranya E, Vishwakarma A, Mandrekar KK, Leela KV, Ramya M. A label-free DNAzyme-based colorimetric sensor for the detection of Leptospira interrogans. World J Microbiol Biotechnol 2024; 40:401. [PMID: 39623126 DOI: 10.1007/s11274-024-04210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024]
Abstract
Leptospirosis is a neglected zoonosis caused by a pathogenic spirochete Leptospira. Diagnosis of leptospirosis in the early stage is difficult and can be easily confused with other infections. The existing detection methods are considered chronophagous and labor-intensive. Leptospira survives in the kidney tubules of reservoir animals such as rodents and shed into the environment through their urine. In this study, we developed an Aptamer-DNAzyme-based biosensor for detecting pathogenic Leptospira in environmental water samples. The cell-specific aptamer with an extensive affinity binds to the cell surface proteins to detect the Leptospira interrogans. The DNAzyme that mimics as a peroxidase enzyme, acts as a transducing agent in the colorimetric reaction positively conditioned by the presence of L. interrogans. The Leptospira-specific aptamer coupled with DNAzyme is coated onto carbon nanotubes, to provide a cost-effective nanomaterial-based detection platform. L. interrogans contamination in the samples is detected with a color change of a peroxidase substrate, ABTS. The dissociation constant of the aptazyme was found to be 356.6 nM. The aptazyme system was able to detect up to 119 CFU/mL of L. interrogans exhibiting a high range of selectivity towards the pathogenic spirochete. This simple detection methodology makes the system promising for the environmental monitoring of L. interrogans.
Collapse
Affiliation(s)
- Elangovan Saranya
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu, 603 203, India
| | - Archana Vishwakarma
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu, 603 203, India
| | - Kiran K Mandrekar
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu, 603 203, India
| | - Kakithakara Vajravelu Leela
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu, 603 203, India
| | - Mohandass Ramya
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu, 603 203, India.
| |
Collapse
|
6
|
Sujith S, Naresh R, Srivisanth BU, Sajeevan A, Rajaramon S, David H, Solomon AP. Aptamers: precision tools for diagnosing and treating infectious diseases. Front Cell Infect Microbiol 2024; 14:1402932. [PMID: 39386170 PMCID: PMC11461471 DOI: 10.3389/fcimb.2024.1402932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Infectious diseases represent a significant global health challenge, with bacteria, fungi, viruses, and parasitic protozoa being significant causative agents. The shared symptoms among diseases and the emergence of new pathogen variations make diagnosis and treatment complex. Conventional diagnostic methods are laborious and intricate, underscoring the need for rapid, accurate techniques. Aptamer-based technologies offer a promising solution, as they are cost-effective, sensitive, specific, and convenient for molecular disease diagnosis. Aptamers, which are single-stranded RNA or DNA sequences, serve as nucleotide equivalents of monoclonal antibodies, displaying high specificity and affinity for target molecules. They are structurally robust, allowing for long-term storage without substantial activity loss. Aptamers find applications in diverse fields such as drug screening, material science, and environmental monitoring. In biomedicine, they are extensively studied for biomarker detection, diagnostics, imaging, and targeted therapy. This comprehensive review focuses on the utility of aptamers in managing infectious diseases, particularly in the realms of diagnostics and therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
7
|
Liu X, Yuan W, Xiao H. Recent progress on DNAzyme-based biosensors for pathogen detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4917-4937. [PMID: 38984495 DOI: 10.1039/d4ay00934g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Pathogens endanger food safety, agricultural productivity, and human health. Those pathogens are spread through direct/indirect contact, airborne transmission and food/waterborne transmission, and some cause severe health consequences. As the population grows and global connections intensify, the transmission of infectious diseases expands. Traditional detection methods for pathogens still have some shortcomings, such as time-consuming procedures and high operational costs. To fulfil the demands for simple and effective detection, numerous biosensors have been developed. DNAzyme, a unique DNA structure with catalytic activity, is gradually being applied in the field of pathogen detection owing to its ease of preparation and use. In this review, we concentrated on the two main types of DNAzyme, hemin/G-quadruplex DNAzyme (HGD) and RNA-cleaving DNAzyme (RCD), explaining their research progress in pathogen detection. Furthermore, we introduced two additional novel DNAzymes, CLICK 17 DNAzyme and Supernova DNAzyme, which showed promising potential in pathogen detection. Finally, we summarize the strengths and weaknesses of these four DNAzymes and offer feasible recommendations for the development of biosensors.
Collapse
Affiliation(s)
- Xingxing Liu
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Wenxu Yuan
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Heng Xiao
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
8
|
Córdova-Espinoza MG, González-Vázquez R, Barron-Fattel RR, Gónzalez-Vázquez R, Vargas-Hernández MA, Albores-Méndez EM, Esquivel-Campos AL, Mendoza-Pérez F, Mayorga-Reyes L, Gutiérrez-Nava MA, Medina-Quero K, Escamilla-Gutiérrez A. Aptamers: A Cutting-Edge Approach for Gram-Negative Bacterial Pathogen Identification. Int J Mol Sci 2024; 25:1257. [PMID: 38279257 PMCID: PMC10817072 DOI: 10.3390/ijms25021257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Early and accurate diagnoses of pathogenic microorganisms is essential to correctly identify diseases, treating infections, and tracking disease outbreaks associated with microbial infections, to develop precautionary measures that allow a fast and effective response in epidemics and pandemics, thus improving public health. Aptamers are a class of synthetic nucleic acid molecules with the potential to be used for medical purposes, since they can be directed towards any target molecule. Currently, the use of aptamers has increased because they are a useful tool in the detection of specific targets. We present a brief review of the use of aptamers to detect and identify bacteria or even some toxins with clinical importance. This work describes the advances in the technology of aptamers, with the purpose of providing knowledge to develop new aptamers for diagnoses and treatment of different diseases caused by infectious microorganisms.
Collapse
Affiliation(s)
- María Guadalupe Córdova-Espinoza
- Immunology Laboratory, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico;
- National School of Biological Sciences, National Polytechnic Institute, Laboratory of Medical Bacteriology, Mexico City 11350, Mexico; (R.G.-V.); (R.R.B.-F.)
- Mexican Social Security Institute, Unidad Medica de Alta Especialidad, Hospital de Especialidades, “Dr. Antonio Fraga Mouret”, National Medical Center La Raza, Mexico City 02990, Mexico
| | - Rosa González-Vázquez
- National School of Biological Sciences, National Polytechnic Institute, Laboratory of Medical Bacteriology, Mexico City 11350, Mexico; (R.G.-V.); (R.R.B.-F.)
- Mexican Social Security Institute, Unidad Medica de Alta Especialidad, Hospital de Especialidades, “Dr. Antonio Fraga Mouret”, National Medical Center La Raza, Mexico City 02990, Mexico
| | - Rolando Rafik Barron-Fattel
- National School of Biological Sciences, National Polytechnic Institute, Laboratory of Medical Bacteriology, Mexico City 11350, Mexico; (R.G.-V.); (R.R.B.-F.)
| | - Raquel Gónzalez-Vázquez
- Laboratory of Biotechnology, Department of Biological Systems, Metropolitana Campus Xochimilco, CONAHCYT—Universidad Autonoma, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldia Coyoacan, Mexico City 04960, Mexico;
| | - Marco Antonio Vargas-Hernández
- Research Department, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico; (M.A.V.-H.); (E.M.A.-M.)
| | - Exsal Manuel Albores-Méndez
- Research Department, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico; (M.A.V.-H.); (E.M.A.-M.)
| | - Ana Laura Esquivel-Campos
- Laboratory of Biotechnology, Department of Biological Systems, Universidad Autonoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldia Coyoacan, Mexico City 04960, Mexico; (A.L.E.-C.); (F.M.-P.); (L.M.-R.)
| | - Felipe Mendoza-Pérez
- Laboratory of Biotechnology, Department of Biological Systems, Universidad Autonoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldia Coyoacan, Mexico City 04960, Mexico; (A.L.E.-C.); (F.M.-P.); (L.M.-R.)
| | - Lino Mayorga-Reyes
- Laboratory of Biotechnology, Department of Biological Systems, Universidad Autonoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Alcaldia Coyoacan, Mexico City 04960, Mexico; (A.L.E.-C.); (F.M.-P.); (L.M.-R.)
| | - María Angélica Gutiérrez-Nava
- Laboratory of Microbial Ecology, Department of Biological Systems, Universidad Autonoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Coyoacan, Mexico City 04960, Mexico;
| | - Karen Medina-Quero
- Immunology Laboratory, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico;
| | - Alejandro Escamilla-Gutiérrez
- National School of Biological Sciences, National Polytechnic Institute, Laboratory of Medical Bacteriology, Mexico City 11350, Mexico; (R.G.-V.); (R.R.B.-F.)
- Mexican Social Security Institute, Unidad Medica de Alta Especialidad, Microbiology Laboratory, Hospital General “Dr. Gaudencio González Garza”, National Medical Center La Raza, Mexico City 02990, Mexico
| |
Collapse
|
9
|
Singh R, Dutt S, Sharma P, Sundramoorthy AK, Dubey A, Singh A, Arya S. Future of Nanotechnology in Food Industry: Challenges in Processing, Packaging, and Food Safety. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200209. [PMID: 37020624 PMCID: PMC10069304 DOI: 10.1002/gch2.202200209] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Indexed: 05/27/2023]
Abstract
Over the course of the last several decades, nanotechnology has garnered a growing amount of attention as a potentially valuable technology that has significantly impacted the food industry. Nanotechnology helps in enhancing the properties of materials and structures that are used in various fields such as agriculture, food, pharmacy, and so on. Applications of nanotechnology in the food market have included the encapsulation and distribution of materials to specific locations, the improvement of flavor, the introduction of antibacterial nanoparticles into food, the betterment of prolonged storage, the detection of pollutants, enhanced storage facilities, locating, identifying, as well as consumer awareness. Labeling food goods with nano barcodes helps ensure their security and may also be used to track their distribution. This review article presents a discussion about current advances in nanotechnology along with its applications in the field of food-tech, food packaging, food security, enhancing life of food products, etc. A detailed description is provided about various synthesis routes of nanomaterials, that is, chemical, physical, and biological methods. Nanotechnology is a rapidly improving the field of food packaging and the future holds great opportunities for more enhancement via the development of new nanomaterials and nanosensors.
Collapse
Affiliation(s)
- Rajesh Singh
- Food Craft InstituteDepartment of Skill DevelopmentNagrotaJammuJammu and Kashmir181221India
| | - Shradha Dutt
- School of SciencesCluster University of JammuJammuJammu and Kashmir180001India
| | - Priyanka Sharma
- School of Hospitality and Tourism ManagementUniversity of JammuJammuJammu and Kashmir180006India
| | - Ashok K. Sundramoorthy
- Centre for Nano‐BiosensorsDepartment of ProsthodonticsSaveetha Dental College and HospitalsSaveetha Institute of Medical and Technical SciencesChennaiTamil Nadu600077India
| | - Aman Dubey
- Department of PhysicsUniversity of JammuJammuJammu and Kashmir180006India
| | - Anoop Singh
- Department of PhysicsUniversity of JammuJammuJammu and Kashmir180006India
| | - Sandeep Arya
- Department of PhysicsUniversity of JammuJammuJammu and Kashmir180006India
| |
Collapse
|
10
|
Hmila I, Marnissi B, Kamali-Moghaddam M, Ghram A. Aptamer-Assisted Proximity Ligation Assay for Sensitive Detection of Infectious Bronchitis Coronavirus. Microbiol Spectr 2023; 11:e0208122. [PMID: 36651727 PMCID: PMC9927260 DOI: 10.1128/spectrum.02081-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
Infectious bronchitis virus (IBV) is a coronavirus responsible for major health problems in the poultry industry. New virus strains continue to appear, causing large economic losses. To develop a rapid and accurate new quantitative assay for diagnosis of the virus without DNA extraction, we selected highly specific single-stranded DNA (ssDNA) aptamers with a high affinity to IBV, using the systematic evolution of ligands by exponential enrichment (SELEX) technology for aptamer screening, followed by high-throughput sequencing technology. Two of these aptamers, AptIBV5 and AptIBV2, were used to establish homogenous and solid-phase proximity ligation assays (PLAs). The developed assays were evaluated for their sensitivity and specificity using collected field samples and then compared to the newly developed sandwich enzyme-linked aptamer assay (ELAA) and reverse transcription-quantitative PCR (qRT-PCR), as the gold-standard method. The solid-phase PLA showed a lower limit of detection and a broader dynamic range than the two other assays. The developed technique may serve as an alternative assay for the diagnosis of IBV, with the potential to be extended to the detection of other important animal or human viruses. IMPORTANCE Infectious bronchitis virus (IBV) causes high morbidity and mortality and large economic losses in the poultry industry. The virus has the ability to genetically mutate into new IBV strains, causing devastating disease and outbreaks. To better monitor the emergence of this virus, the development of a rapid and highly sensitive diagnostic method should be implemented. For this, we generated aptamers with high affinity and specificity to the IBV in an ssDNA library. Using two high-affinity aptamers, we developed a sandwich ELAA and a very sensitive aptamer-based proximity ligation assay (PLA). The new assay showed high sensitivity and specificity and was used to detect IBV in farm samples. The PLA was compared to the newly developed sandwich ELAA and qRT-PCR, as the gold-standard technique.
Collapse
Affiliation(s)
- Issam Hmila
- Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Boutheina Marnissi
- Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Abdeljelil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
11
|
Costanzo H, Gooch J, Frascione N. Nanomaterials for optical biosensors in forensic analysis. Talanta 2023; 253:123945. [PMID: 36191514 DOI: 10.1016/j.talanta.2022.123945] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
Biosensors are compact analytical devices capable of transducing a biological interaction event into a measurable signal outcome in real-time. They can provide sensitive and affordable analysis of samples without the need for additional laboratory equipment or complex preparation steps. Biosensors may be beneficial for forensic analysis as they can facilitate large-scale high-throughput, sensitive screening of forensic samples to detect target molecules that are of high evidential value. Nanomaterials are gaining attention as desirable components of biosensors that can enhance detection and signal efficiency. Biosensors that incorporate nanomaterials within their design have been widely reported and developed for medical purposes but are yet to find routine employment within forensic science despite their proven potential. In this article, key examples of the use of nanomaterials within optical biosensors designed for forensic analysis are outlined. Their design and mechanism of detection are both considered throughout, discussing how nanomaterials can enhance the detection of the target analyte. The critical evaluation of the optical biosensors detailed within this review article should help to guide future optical biosensor design via the incorporation of nanomaterials, for not only forensic analysis but alternative analytical fields where such biosensors may prove a valuable addition to current workflows.
Collapse
Affiliation(s)
- Hayley Costanzo
- Department of Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - James Gooch
- Department of Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Nunzianda Frascione
- Department of Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
12
|
Lu Q, Zhang S, Ouyang Y, Zhang C, Liu M, Zhang Y, Deng L. Aeromonas salmonicida aptamer selection and construction for colorimetric and ratiometric fluorescence dual-model aptasensor combined with g-C3N4 and G-quadruplex. Talanta 2023; 252:123857. [DOI: 10.1016/j.talanta.2022.123857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
|
13
|
Sarkar DJ, Behera BK, Parida PK, Aralappanavar VK, Mondal S, Dei J, Das BK, Mukherjee S, Pal S, Weerathunge P, Ramanathan R, Bansal V. Aptamer-based NanoBioSensors for seafood safety. Biosens Bioelectron 2023; 219:114771. [PMID: 36274429 DOI: 10.1016/j.bios.2022.114771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Chemical and biological contaminants are of primary concern in ensuring seafood safety. Rapid detection of such contaminants is needed to keep us safe from being affected. For over three decades, immunoassay (IA) technology has been used for the detection of contaminants in seafood products. However, limitations inherent to antibody generation against small molecular targets that cannot elicit an immune response, along with the instability of antibodies under ambient conditions greatly limit their wider application for developing robust detection and monitoring tools, particularly for non-biomedical applications. As an alternative, aptamer-based biosensors (aptasensors) have emerged as a powerful yet robust analytical tool for the detection of a wide range of analytes. Due to the high specificity of aptamers in recognising targets ranging from small molecules to large proteins and even whole cells, these have been suggested to be viable molecular recognition elements (MREs) in the development of new diagnostic and biosensing tools for detecting a wide range of contaminants including heavy metals, antibiotics, pesticides, pathogens and biotoxins. In this review, we discuss the recent progress made in the field of aptasensors for detection of contaminants in seafood products with a view of effectively managing their potential human health hazards. A critical outlook is also provided to facilitate translation of aptasensors from academic laboratories to the mainstream seafood industry and consumer applications.
Collapse
Affiliation(s)
- Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Vijay Kumar Aralappanavar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Shirsak Mondal
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Jyotsna Dei
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Subhankar Mukherjee
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Souvik Pal
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Rajesh Ramanathan
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
14
|
Quintela IA, Vasse T, Lin CS, Wu VCH. Advances, applications, and limitations of portable and rapid detection technologies for routinely encountered foodborne pathogens. Front Microbiol 2022; 13:1054782. [PMID: 36545205 PMCID: PMC9760820 DOI: 10.3389/fmicb.2022.1054782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/17/2022] [Indexed: 12/08/2022] Open
Abstract
Traditional foodborne pathogen detection methods are highly dependent on pre-treatment of samples and selective microbiological plating to reliably screen target microorganisms. Inherent limitations of conventional methods include longer turnaround time and high costs, use of bulky equipment, and the need for trained staff in centralized laboratory settings. Researchers have developed stable, reliable, sensitive, and selective, rapid foodborne pathogens detection assays to work around these limitations. Recent advances in rapid diagnostic technologies have shifted to on-site testing, which offers flexibility and ease-of-use, a significant improvement from traditional methods' rigid and cumbersome steps. This comprehensive review aims to thoroughly discuss the recent advances, applications, and limitations of portable and rapid biosensors for routinely encountered foodborne pathogens. It discusses the major differences between biosensing systems based on the molecular interactions of target analytes and biorecognition agents. Though detection limits and costs still need further improvement, reviewed technologies have high potential to assist the food industry in the on-site detection of biological hazards such as foodborne pathogens and toxins to maintain safe and healthy foods. Finally, this review offers targeted recommendations for future development and commercialization of diagnostic technologies specifically for emerging and re-emerging foodborne pathogens.
Collapse
Affiliation(s)
- Irwin A. Quintela
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Tyler Vasse
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States,*Correspondence: Vivian C. H. Wu,
| |
Collapse
|
15
|
Chen J, Zhou J, Peng Y, Xie Y, Xiao Y. Aptamers: A prospective tool for infectious diseases diagnosis. J Clin Lab Anal 2022; 36:e24725. [PMID: 36245423 PMCID: PMC9701868 DOI: 10.1002/jcla.24725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/05/2022] Open
Abstract
It is well known that people's health is seriously threatened by various pathogens (such as Mycobacterium tuberculosis, Treponema pallidum, Novel coronavirus, HIV, Mucor, etc.), which leads to heavy socioeconomic burdens. Therefore, early and accurate pathogen diagnosis is essential for timely and effective therapies. Up to now, diagnosing human contagious diseases at molecule and nano levels is remarkably difficult owing to insufficient valid probes when it comes to determining the biological markers of pathogens. Aptamers are a set of high‐specificity and high‐sensitivity plastic oligonucleotides screened in vitro via the selective expansion of ligands by exponential enrichment (SELEX). With the advent of aptamer‐based technologies, their merits have aroused mounting academic interest. In recent years, as new detection and treatment tools, nucleic acid aptamers have been extensively utilized in the field of biomedicine, such as pathogen detection, new drug development, clinical diagnosis, nanotechnology, etc. However, the traditional SELEX method is cumbersome and has a long screening cycle, and it takes several months to screen out aptamers with high specificity. With the persistent development of SELEX‐based aptamer screening technologies, the application scenarios of aptamers have become more and more extensive. The present research briefly reviews the research progress of nucleic acid aptamers in the field of biomedicine, especially in the diagnosis of contagious diseases.
Collapse
Affiliation(s)
- Jiayi Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiahuan Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yunchi Peng
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yafeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yongjian Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
16
|
Yılmaz D, Muslu T, Parlar A, Kurt H, Yüce M. SELEX against whole-cell bacteria resulted in lipopolysaccharide binding aptamers. J Biotechnol 2022; 354:10-20. [PMID: 35700936 DOI: 10.1016/j.jbiotec.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
Abstract
Nucleic acid aptamers are target-specific oligonucleotides selected from combinatorial libraries through an iterative in vitro screening process known as Systemic Evolution of Ligands by Exponential Enrichment (SELEX). In this report, the selection of bacteria differentiating ssDNA aptamer candidates from a combinatorial library through the whole-cell SELEX method was performed. The enriched SELEX pool was sequenced using Illumina Next-Generation Sequencing (NGS) technology and analyzed for the most abundant sequences using CLC Genomics Workbench. The sequencing data resulted in several oligonucleotide families from which three individual sequences were chosen per SELEX based on the copy numbers. The binding performance of the selected aptamers was assessed by flow cytometry and fluorescence spectroscopy, and the binding constants were estimated using binding saturation curves. Varying results were obtained from two independent SELEX procedures where the SELEX against the model gram-negative bacterium Escherichia coli provided more selective sequences while the SELEX library used against gram-positive bacterium Listeria monocytogenes did not evolve as expected. The sequences that emerged from E. coli SELEX were shown to bind Lipopolysaccharide residues (LPS) and inhibit LPS-induced macrophage polarization. Thus, it can be said that, performed whole-cell SELEX could be resulted as the selection of aptamers which can bind LPS and inhibit LPS induced inflammation response and thus can be candidates for the inhibition of bacterial infections. In future studies, the selected aptamer sequences could be structurally and chemically modified and exploited as potential diagnostic tools and therapeutic agents as LPS antagonists.
Collapse
Affiliation(s)
- Deniz Yılmaz
- Sabanci University SUNUM Nanotechnology Research and Application Centre, Tuzla 34956, Istanbul, Turkey
| | - Tuğdem Muslu
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey
| | - Ayhan Parlar
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey
| | - Hasan Kurt
- School of Engineering and Natural Sciences, Istanbul Medipol University, Beykoz, 34810 Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Beykoz, 34810 Istanbul, Turkey; Nanosolar Plasmonics Ltd., Gebze, 41400 Kocaeli, Turkey
| | - Meral Yüce
- Sabanci University SUNUM Nanotechnology Research and Application Centre, Tuzla 34956, Istanbul, Turkey.
| |
Collapse
|
17
|
Sargazi S, Er S, Mobashar A, Gelen SS, Rahdar A, Ebrahimi N, Hosseinikhah SM, Bilal M, Kyzas GZ. Aptamer-conjugated carbon-based nanomaterials for cancer and bacteria theranostics: A review. Chem Biol Interact 2022; 361:109964. [PMID: 35513013 DOI: 10.1016/j.cbi.2022.109964] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded oligonucleotides that link to various substrates with great affinity and selectivity, including small molecules, peptides, proteins, cells, and tissues. For this reason, they can be used as imaging agents for cancer imaging techniques. Multifunctional nanomaterials combined with imaging probes and drugs are promising cancer diagnosis and treatment candidates. On the other hand, carbon-based nanomaterials (CNMs), including such as fullerene, carbon nanotubes, carbon-based quantum dots, carbon nanohorns, graphene oxide and its derivatives carbon nanodots, and nanodiamonds, are sort of smart materials that can be used in a variety of theranostic applications, including photo-triggered therapies. The remarkable physical characteristics, functionalizable chemistry, biocompatibility, and optical properties of these nanoparticles have enabled their utilization in less-invasive therapies. The theranostic agents that emerged by combining aptamers with CNMs have opened a novel alternative for personified medicine of cancer, target-specific imaging, and label-free diagnosis of a broad range of cancers, as well as pathogens. Aptamer-functionalized CNMs have been used as nanovesicles for targeted delivery of anti-cancer agents (i.e., doxorubicin and 5-fluorouracil) to tumor sites. Furthermore, these CNMs conjugated with aptamers have shown great advantages over standard CNMs to sensitively detect Mycobacterium tuberculosis, Escherichia coli, staphylococcus aureus, Vibrio parahaemolyticus, Salmonella typhimurium, Pseudomonas aeruginosa, and Citrobacter freundii. Regrettably, CNMs can form compounds defined as NOAA (nano-objects, and their aggregates and agglomerates larger than 100 nm), that accumulate in the body and cause toxic effects. Surface modification and pretreatment with albumin avoid agglomeration and increase the dispersibility of CNMs, so it is needed to guarantee the desirable interactions between functionalized CNMs and blood plasma proteins. This preliminary review aimed to comprehensively discuss the features and uses of aptamer-conjugated CNMs to manage cancer and bacterial infections.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, 98167-43463, Iran
| | - Simge Er
- Ege University Faculty of Science Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Aisha Mobashar
- Department of Pharmacology, Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Sultan Sacide Gelen
- Ege University Faculty of Science Biochemistry Department, 35100, Bornova, Izmir, Turkey
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, 538-98615, Zabol, Iran.
| | - Narges Ebrahimi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala, 65404, Greece.
| |
Collapse
|
18
|
Xiong L, Xia M, Wang Q, Meng Z, Zhang J, Yu G, Dong Z, Lu Y, Sun Y. DNA aptamers specific for Legionella pneumophila: systematic evolution of ligands by exponential enrichment in whole bacterial cells. Biotechnol Lett 2022; 44:777-786. [PMID: 35416565 DOI: 10.1007/s10529-022-03252-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
Legionella pneumophila is the major causative agent of Legionnaires' disease and Pontiac fever, which pose major public health problems. Rapid detection of L. pneumophila is important for global control of these diseases. Aptamers, short oligonucleotides that bind to targets with high affinity and specificity, have great potential for use in pathogenic bacterium detection, diagnostics, and therapy. Here, we used a whole-cell SELEX (systematic evolution of ligands by exponential enrichment) method to isolate and characterize single-stranded DNA (ssDNA) aptamers against L. pneumophila. A total of 60 ssDNA sequences were identified after 17 rounds of selection. Other bacterial species (Escherichia coli, Bacillus subtilis, Pseudomonas syringae, Staphylococcus aureus, Legionella quateirensis, and Legionella adelaidensis) were used for counterselection to enhance the specificity of ssDNA aptamers against L. pneumophila. Four ssDNA aptamers showed strong affinity and high selectivity for L. pneumophila, with Kd values in the nanomolar range. Bioinformatic analysis of the most specific aptamers revealed predicted conserved secondary structures that might bind to L. pneumophila cell walls. In addition, the binding of these four fluorescently labeled aptamers to the surface of L. pneumophila was observed directly by fluorescence microscopy. These aptamers identified in this study could be used in the future to develop medical diagnostic tools and public environmental detection assays for L. pneumophila.
Collapse
Affiliation(s)
- Lina Xiong
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Mingchen Xia
- Guangzhou Saite Testing Co., LTD, Guangzhou, China
| | - Qinglin Wang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhen Meng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, No. 24, Dongsha Street, Guangzhou, China.,College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, No. 24, Dongsha Street, Guangzhou, China
| | - Jie Zhang
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, No. 24, Dongsha Street, Guangzhou, China.,College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Guohui Yu
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, No. 24, Dongsha Street, Guangzhou, China.,College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, No. 24, Dongsha Street, Guangzhou, China
| | - Zhangyong Dong
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, No. 24, Dongsha Street, Guangzhou, China.,College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, No. 24, Dongsha Street, Guangzhou, China
| | - Yongjun Lu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yunhao Sun
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, No. 24, Dongsha Street, Guangzhou, China. .,College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, No. 24, Dongsha Street, Guangzhou, China.
| |
Collapse
|
19
|
Bashir O, Bhat SA, Basharat A, Qamar M, Qamar SA, Bilal M, Iqbal HMN. Nano-engineered materials for sensing food pollutants: Technological advancements and safety issues. CHEMOSPHERE 2022; 292:133320. [PMID: 34952020 DOI: 10.1016/j.chemosphere.2021.133320] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 02/08/2023]
Abstract
Food spoilage and safety are key concerns of the modern food sector. Among them, several types of polluting agents are the prime grounds of food deterioration. In this context, nanotechnology-based measures are setting new frontiers to strengthen food applications. Herein, we summarize the nanotechnological dimension of the food industry for both processing and packaging applications. Active bioseparation, smart delivery, nanoencapsulation, nutraceuticals, and nanosensors for biological detection are a few emerging topics of nanobiotechnology in the food sector. The development of functional foods is another milestone set by food nanotechnology by building the link between humans and diet. However, the establishment of optimal intake, product formulations, and delivery matrices, the discovery of beneficial compounds are a few of the key challenges that need to be addressed. Nanotechnology provides effective solutions for the aforementioned problem giving various novel nanomaterials and methodologies. Various nanodelivery systems have been designed, e.g., cochleate, liposomes, multiple emulsions, and polysaccharide-protein coacervates. However, their real applications in food sciences are very limited. This review also provides the status and outlook of nanotechnological systems for future food applications.
Collapse
Affiliation(s)
- Omar Bashir
- Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar, 144402, Punjab, India
| | - Shakeel Ahmad Bhat
- College of Agricultural Engineering and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, 190025, India
| | - Aneela Basharat
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Mahpara Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Sarmad Ahmad Qamar
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
20
|
Tessaro L, Aquino A, de Almeida Rodrigues P, Joshi N, Ferrari RG, Conte-Junior CA. Nucleic Acid-Based Nanobiosensor (NAB) Used for Salmonella Detection in Foods: A Systematic Review. NANOMATERIALS 2022; 12:nano12050821. [PMID: 35269310 PMCID: PMC8912873 DOI: 10.3390/nano12050821] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
Salmonella bacteria is a foodborne pathogen found mainly in food products causing severe symptoms in the individual, such as diarrhea, fever, and abdominal cramps after consuming the infected food, which can be fatal in some severe cases. Rapid and selective methods to detect Salmonella bacteria can prevent outbreaks when ingesting contaminated food. Nanobiosensors are a highly sensitive, simple, faster, and lower cost method for the rapid detection of Salmonella, an alternative to conventional enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) techniques. This study systematically searched and analyzed literature data related to nucleic acid-based nanobiosensors (NABs) with nanomaterials to detect Salmonella in food, retrieved from three databases, published between 2010 and 2021. We extracted data and critically analyzed the effect of nanomaterial functionalized with aptamer or DNA at the limit of detection (LOD). Among the nanomaterials, gold nanoparticles (AuNPs) were the most used nanomaterial in studies due to their unique optical properties of the metal, followed by magnetic nanoparticles (MNPs) of Fe3O4, copper nanoparticles (CuNPs), and also hybrid nanomaterials multiwalled carbon nanotubes (c-MWCNT/AuNP), QD/UCNP-MB (quantum dotes upconverting nanoparticle of magnetic beads), and cadmium telluride quantum dots (CdTe QDs@MNPs) showed excellent LOD values. The transducers used for detection also varied from electrochemical, fluorescent, surface-enhanced Raman spectroscopy (SERS), RAMAN spectroscopy, and mainly colorimetric due to the possibility of visualizing the detection result with the naked eye. Furthermore, we show the magnetic separation system capable of detecting the target amplification of the genetic material. Finally, we present perspectives, future research, and opportunities to use point-of-care (POC) diagnostic devices as a faster and lower cost approach for detecting Salmonella in food as they prove to be viable for resource-constrained environments such as field-based or economically limited conditions.
Collapse
Affiliation(s)
- Leticia Tessaro
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil; (L.T.); (A.A.); (P.d.A.R.); (N.J.); (R.G.F.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, RJ, Brazil
- Post-Graduation Program of Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Adriano Aquino
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil; (L.T.); (A.A.); (P.d.A.R.); (N.J.); (R.G.F.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, RJ, Brazil
- Post-Graduation Program of Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Paloma de Almeida Rodrigues
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil; (L.T.); (A.A.); (P.d.A.R.); (N.J.); (R.G.F.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Post-Graduation Program of Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, RJ, Brazil
| | - Nirav Joshi
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil; (L.T.); (A.A.); (P.d.A.R.); (N.J.); (R.G.F.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Physics Department, Federal University of ABC, Campus Santo André, Santo André 09210-580, SP, Brazil
| | - Rafaela Gomes Ferrari
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil; (L.T.); (A.A.); (P.d.A.R.); (N.J.); (R.G.F.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil; (L.T.); (A.A.); (P.d.A.R.); (N.J.); (R.G.F.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, RJ, Brazil
- Post-Graduation Program of Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Post-Graduation Program of Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, RJ, Brazil
- Correspondence:
| |
Collapse
|
21
|
Assays to Estimate the Binding Affinity of Aptamers. Talanta 2022; 238:122971. [PMID: 34857318 DOI: 10.1016/j.talanta.2021.122971] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Aptamers have become coming-of-age molecular recognition elements in both diagnostic and therapeutic applications. Generated by SELEX, the 'quality control' of aptamers, which involves the validation of their binding affinity against their respective targets is pivotal to ascertain their potency prior to use in any downstream assays or applications. Several aptamers have been isolated thus far, however, the usage of inappropriate validation assays renders some of these aptamers dubitable in terms of their binding capabilities. Driven by this need, we provide an up-to-date critical review of the various strategies used to determine the aptamer-target binding affinity with the aim of providing researchers a better comprehension of the different analytical approaches in respect to the molecular properties of aptamers and their intended targets. The techniques reported have been classified as label-based techniques such as fluorescence intensity, fluorescence anisotropy, filter-binding assays, gel shift assays, ELISA; and label-free techniques such as UV-Vis spectroscopy, circular dichroism, isothermal titration calorimetry, native electrospray ionization-mass spectrometry, quartz crystal microbalance, surface plasmon resonance, NECEEM, backscattering interferometry, capillary electrophoresis, HPLC, and nanoparticle aggregation assays. Hybrid strategies combining the characteristics of both categories such as microscale thermophoresis have been also additionally emphasized. The fundamental principles, complexity, benefits, and challenges under each technique are elaborated in detail.
Collapse
|
22
|
Bakhshandeh B, Sorboni SG, Haghighi DM, Ahmadi F, Dehghani Z, Badiei A. New analytical methods using carbon-based nanomaterials for detection of Salmonella species as a major food poisoning organism in water and soil resources. CHEMOSPHERE 2022; 287:132243. [PMID: 34537453 DOI: 10.1016/j.chemosphere.2021.132243] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/21/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Salmonella is one of the most prevalent causing agents of food- and water-borne illnesses, posing an ongoing public health threat. These food-poisoning bacteria contaminate the resources at different stages such as production, aggregation, processing, distribution, as well as marketing. According to the high incidence of salmonellosis, effective strategies for early-stage detection are required at the highest priority. Since traditional culture-dependent methods and polymerase chain reaction are labor-intensive and time-taking, identification of early and accurate detection of Salmonella in food and water samples can prevent significant health economic burden and lessen the costs. The immense potentiality of biosensors in diagnosis, such as simplicity in operation, the ability of multiplex analysis, high sensitivity, and specificity, have driven research in the evolution of nanotechnology, innovating newer biosensors. Carbon nanomaterials enhance the detection sensitivity of biosensors while obtaining low levels of detection limits due to their possibility to immobilize huge amounts of bioreceptor units at insignificant volume. Moreover, conjugation and functionalization of carbon nanomaterials with metallic nanoparticles or organic molecules enables surface functional groups. According to these remarkable properties, carbon nanomaterials are widely exploited in the development of novel biosensors. To be specific, carbon nanomaterials such as carbon nanotubes, graphene and fullerenes function as transducers in the analyte recognition process or surface immobilizers for biomolecules. Herein the potential application of carbon nanomaterials in the development of novel Salmonella biosensors platforms is reviewed comprehensively. In addition, the current problems and critical analyses of the future perspectives of Salmonella biosensors are discussed.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran; Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran.
| | | | - Dorrin Mohtadi Haghighi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ahmadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Dehghani
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
23
|
Advancement in Salmonella Detection Methods: From Conventional to Electrochemical-Based Sensing Detection. BIOSENSORS-BASEL 2021; 11:bios11090346. [PMID: 34562936 PMCID: PMC8468554 DOI: 10.3390/bios11090346] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
Large-scale food-borne outbreaks caused by Salmonella are rarely seen nowadays, thanks to the advanced nature of the medical system. However, small, localised outbreaks in certain regions still exist and could possess a huge threat to the public health if eradication measure is not initiated. This review discusses the progress of Salmonella detection approaches covering their basic principles, characteristics, applications, and performances. Conventional Salmonella detection is usually performed using a culture-based method, which is time-consuming, labour intensive, and unsuitable for on-site testing and high-throughput analysis. To date, there are many detection methods with a unique detection system available for Salmonella detection utilising immunological-based techniques, molecular-based techniques, mass spectrometry, spectroscopy, optical phenotyping, and biosensor methods. The electrochemical biosensor has growing interest in Salmonella detection mainly due to its excellent sensitivity, rapidity, and portability. The use of a highly specific bioreceptor, such as aptamers, and the application of nanomaterials are contributing factors to these excellent characteristics. Furthermore, insight on the types of biorecognition elements, the principles of electrochemical transduction elements, and the miniaturisation potential of electrochemical biosensors are discussed.
Collapse
|
24
|
|
25
|
Arshad R, Pal K, Sabir F, Rahdar A, Bilal M, Shahnaz G, Kyzas GZ. A review of the nanomaterials use for the diagnosis and therapy of salmonella typhi. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Saad M, Faucher SP. Aptamers and Aptamer-Coupled Biosensors to Detect Water-Borne Pathogens. Front Microbiol 2021; 12:643797. [PMID: 33679681 PMCID: PMC7933031 DOI: 10.3389/fmicb.2021.643797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Aptamers can serve as efficient bioreceptors for the development of biosensing detection platforms. Aptamers are short DNA or RNA oligonucleotides that fold into specific structures, which enable them to selectively bind to target analytes. The method used to identify aptamers is Systematic Evolution of Ligands through Exponential Enrichment (SELEX). Target properties can have an impact on aptamer efficiencies. Therefore, characteristics of water-borne microbial targets must be carefully considered during SELEX for optimal aptamer development. Several aptamers have been described for key water-borne pathogens. Here, we provide an exhaustive overview of these aptamers and discuss important microbial aspects to consider when developing such aptamers.
Collapse
Affiliation(s)
- Mariam Saad
- Department of Natural Resources, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, QC, Canada
| | - Sebastien P. Faucher
- Department of Natural Resources, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
27
|
Rm R, Maroli N, J A, Ponmalai K, K K. Highly adaptable and sensitive FRET-based aptamer assay for the detection of Salmonella paratyphi A. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118662. [PMID: 32810775 DOI: 10.1016/j.saa.2020.118662] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/01/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Here we demonstrate a facile and versatile fluorescence resonance energy transfer (FRET) based aptasensor for rapid detection of Salmonella paratyphi A. The assay shows a detection limit up to 10 cfu·mL-1 with no cross-reactivity with other bacterial species. Less than 8% of inter-assay coefficient variance and recovery rate between 85 and 102% attests the assay reliability. The advantages of FRET-based aptamer assay over the conventional immunoassay formats such as ELISA are the specificity, speed, reliability, and simplicity of the assay. The ssDNA aptamers specific towards pathogenic Salmonella paratyphi A were generated via whole-cell SELEX. The aptamer was conjugated onto quantum dot (QD) that served as the molecular beacon and graphene oxide (GO) was used as a fluorescence quencher. Thus the proposed method enables detection of target pathogen using FRET-based assay. Further interaction of aptamer with pathogen protein DNA gyrase was explored using classical molecular dynamics simulation.
Collapse
Affiliation(s)
- Renuka Rm
- Molecular Immunology Laboratory, DRDO-BU-CLS, Bharathiar University Campus, Coimbatore 641046, Tamil Nadu, India
| | - Nikhil Maroli
- Computational Biology Division, DRDO-BU CLS, Bharathiar University Campus, Coimbatore 641046, Tamil Nadu, India
| | - Achuth J
- Molecular Immunology Laboratory, DRDO-BU-CLS, Bharathiar University Campus, Coimbatore 641046, Tamil Nadu, India
| | - Kolandaivel Ponmalai
- Computational Biology Division, DRDO-BU CLS, Bharathiar University Campus, Coimbatore 641046, Tamil Nadu, India
| | - Kadirvelu K
- Molecular Immunology Laboratory, DRDO-BU-CLS, Bharathiar University Campus, Coimbatore 641046, Tamil Nadu, India.
| |
Collapse
|
28
|
Ning Y, Hu J, Lu F. Aptamers used for biosensors and targeted therapy. Biomed Pharmacother 2020; 132:110902. [PMID: 33096353 PMCID: PMC7574901 DOI: 10.1016/j.biopha.2020.110902] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/07/2023] Open
Abstract
Aptamers are single-stranded nucleic acid sequences that can bind to target molecules with high selectivity and affinity. Most aptamers are screened in vitro by a combinatorial biology technique called systematic evolution of ligands by exponential enrichment (SELEX). Since aptamers were discovered in the 1990s, they have attracted considerable attention and have been widely used in many fields owing to their unique advantages. In this review, we present an overview of the advancements made in aptamers used for biosensors and targeted therapy. For the former, we will discuss multiple aptamer-based biosensors with different principles detected by various signaling methods. For the latter, we will focus on aptamer-based targeted therapy using aptamers as both biotechnological tools for targeted drug delivery and as targeted therapeutic agents. Finally, challenges and new perspectives associated with these two regions were further discussed. We hope that this review will help researchers interested in aptamer-related biosensing and targeted therapy research.
Collapse
Affiliation(s)
- Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Jue Hu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
29
|
Hwang HS, Jeong JW, Kim YA, Chang M. Carbon Nanomaterials as Versatile Platforms for Biosensing Applications. MICROMACHINES 2020; 11:mi11090814. [PMID: 32872236 PMCID: PMC7569884 DOI: 10.3390/mi11090814] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022]
Abstract
A biosensor is defined as a measuring system that includes a biological receptor unit with distinctive specificities toward target analytes. Such analytes include a wide range of biological origins such as DNAs of bacteria or viruses, or proteins generated from an immune system of infected or contaminated living organisms. They further include simple molecules such as glucose, ions, and vitamins. One of the major challenges in biosensor development is achieving efficient signal capture of biological recognition-transduction events. Carbon nanomaterials (CNs) are promising candidates to improve the sensitivity of biosensors while attaining low detection limits owing to their capability of immobilizing large quantities of bioreceptor units at a reduced volume, and they can also act as a transduction element. In addition, CNs can be adapted to functionalization and conjugation with organic compounds or metallic nanoparticles; the creation of surface functional groups offers new properties (e.g., physical, chemical, mechanical, electrical, and optical properties) to the nanomaterials. Because of these intriguing features, CNs have been extensively employed in biosensor applications. In particular, carbon nanotubes (CNTs), nanodiamonds, graphene, and fullerenes serve as scaffolds for the immobilization of biomolecules at their surface and are also used as transducers for the conversion of signals associated with the recognition of biological analytes. Herein, we provide a comprehensive review on the synthesis of CNs and their potential application to biosensors. In addition, we discuss the efforts to improve the mechanical and electrical properties of biosensors by combining different CNs.
Collapse
Affiliation(s)
- Hye Suk Hwang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (H.S.H.); (Y.A.K.); (M.C.); Tel.: +82-62-530-1771 (M.C.)
| | - Jae Won Jeong
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea;
| | - Yoong Ahm Kim
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (H.S.H.); (Y.A.K.); (M.C.); Tel.: +82-62-530-1771 (M.C.)
| | - Mincheol Chang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (H.S.H.); (Y.A.K.); (M.C.); Tel.: +82-62-530-1771 (M.C.)
| |
Collapse
|
30
|
Selection and Identification of Common Aptamers against Both Vibrio Harveyi and Vibrio Alginolyticus. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60018-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Thevendran R, Navien TN, Meng X, Wen K, Lin Q, Sarah S, Tang TH, Citartan M. Mathematical approaches in estimating aptamer-target binding affinity. Anal Biochem 2020; 600:113742. [PMID: 32315616 DOI: 10.1016/j.ab.2020.113742] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/25/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
The performance of aptamers as versatile tools in numerous analytical applications is critically dependent on their high target binding specificity and selectivity. However, only the technical or methodological aspects of measuring aptamer-target binding affinities are focused, ignoring the equally important mathematical components that play pivotal roles in affinity measurements. In this study, we aim to provide a comprehensive review regarding the utilization of different mathematical models and equations, along with a detailed description of the computational steps involved in mathematically deriving the binding affinity of aptamers against their specific target molecules. Mathematical models ranging from one-site binding to multiple aptameric binding site-based models are explained in detail. Models applied in several different approaches of affinity measurements such as thermodynamics and kinetic analysis, including cooperativity and competitive-assay based mathematical models have been elaborately discussed. Mathematical models incorporating factors that could potentially affect affinity measurements are also further scrutinized.
Collapse
Affiliation(s)
- Ramesh Thevendran
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Tholasi Nadhan Navien
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Xin Meng
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, United States
| | - Kechun Wen
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, United States
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, United States
| | - Shigdar Sarah
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria, 3216, Australia
| | - Thean-Hock Tang
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | - Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia; Department of Mechanical Engineering, Columbia University, New York, NY, 10027, United States.
| |
Collapse
|
32
|
Gutiérrez-Santana JC, Toscano-Garibay JD, López-López M, Coria-Jiménez VR. Aptamers coupled to nanoparticles in the diagnosis and treatment of microbial infections. Enferm Infecc Microbiol Clin 2020; 38:331-337. [PMID: 31948707 DOI: 10.1016/j.eimc.2019.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
There are nanoparticles with remarkable antibacterial characteristics and aptamers able to recognize specific pathogenic bacteria with high affinity and specificity. The combination of both systems has been used to design rapid bacterial detection methods with excellent detection limits. Likewise, the synergism between aptamers and nanoparticles have allowed to optimize the antimicrobial activity of antibiotics and other nanostructures providing them with activity bacterium-specific, turning into attractive and promising tools to fight against bacteria resistant to multiple antimicrobials.
Collapse
Affiliation(s)
- Juan Carlos Gutiérrez-Santana
- Laboratorio de Bacteriología Experimental, Instituto Nacional de Pediatría, Ciudad de México, México; Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México, México.
| | - Julia Dolores Toscano-Garibay
- Unidad de Investigación en Microbiología y Toxicología, Dirección de Investigación, Hospital Juárez de México, Ciudad de México, México
| | - Marisol López-López
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México, México
| | | |
Collapse
|
33
|
Gorski L, Rivadeneira P, Cooley MB. New strategies for the enumeration of enteric pathogens in water. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:765-776. [PMID: 31342654 DOI: 10.1111/1758-2229.12786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/15/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Water quality standards for drinking water and recreational waters have long been based on the enumeration of faecal coliforms in the various water supplies, with 0 CFU Escherichia coli/100 ml for drinking water and <126 CFU generic E. coli/100 ml for recreational waters. Irrigation water will soon undergo the same scrutiny in the United States. For over 50 years the most probable number method has been used by laboratories to estimate the level of viable bacteria in a sample, but this method is labour intensive and slow, especially if large numbers of samples need to be tested. In this review, we describe some recent innovations in methods to enumerate enteric pathogens in water. These methods are based on different reasoning schemes that can be categorized as biosensors and nucleic acid-based methods. All the methods described here used natural water sources. Several were also used to survey the bacterial levels in naturally contaminated samples. The different methods vary in their limits of detection, ease of use, and potential portability. Some combine very good limits of detection with the ability to overcome technical challenges; however, there is considerable room for improvement, as none of the methods are without shortcomings.
Collapse
Affiliation(s)
- Lisa Gorski
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - Paula Rivadeneira
- Department of Soil, Water, and Environmental Science, The University of Arizona, Yuma, AZ, USA
| | - Michael B Cooley
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| |
Collapse
|
34
|
Detection of pathogenic bacteria via nanomaterials-modified aptasensors. Biosens Bioelectron 2019; 150:111933. [PMID: 31818764 DOI: 10.1016/j.bios.2019.111933] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/13/2019] [Accepted: 11/26/2019] [Indexed: 01/17/2023]
Abstract
Detection and identification of special cells via aptamer-based nano-conjugates sensors have been revolutionized over the past few years. These sensing platforms rely on selecting aptamers using systematic evolution of ligands by exponential enrichment (SELEX) in vitro, which allows for sensitive detection of cells. Integration of the aptamer-based sensors (aptasensors) with nanomaterials offers enhanced specificity and sensitivity, which in turn, offers great promise for numerous applications, spanning from bioanalysis to biomedical applications. Accordingly, the demand for using aptamer-conjugated nanomaterials for various applications has progressively increased over the past years. In light of this, this Review seeks to highlight the recent advances in the development of aptamer-conjugated nanomaterials and their utilization for the detection of various pathogens involved in infectious diseases and food contamination.
Collapse
|
35
|
Detection of Gram-negative bacterial outer membrane vesicles using DNA aptamers. Sci Rep 2019; 9:13167. [PMID: 31511614 PMCID: PMC6739373 DOI: 10.1038/s41598-019-49755-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 08/23/2019] [Indexed: 12/03/2022] Open
Abstract
Infection of various pathogenic bacteria causes severe illness to human beings. Despite the research advances, current identification tools still exhibit limitations in detecting Gram-negative bacteria with high accuracy. In this study, we isolated single-stranded DNA aptamers against multiple Gram-negative bacterial species using Toggle-cell-SELEX (systemic evolution of ligands by exponential enrichment) and constructed an aptamer-based detection tool towards bacterial secretory cargo released from outer membranes of Gram-negative bacteria. Three Gram-negative bacteria, Escherichia coli DH5α, E. coli K12, and Serratia marcescens, were sequentially incubated with the pool of random DNA sequences at each SELEX loop. Two aptamers selected, GN6 and GN12, were 4.2-times and 3.6-times higher binding to 108 cells of Gram-negative bacteria than to Gram-positive bacteria tested, respectively. Using GN6 aptamer, we constructed an Enzyme-linked aptamer assay (ELAA) to detect bacterial outer membrane vesicles (OMVs) of Gram-negative bacteria, which contain several outer membrane proteins with potent immunostimulatory effects. The GN6-ELAA showed high sensitivity to detect as low as 25 ng/mL bacterial OMVs. Aptamers developed in this study show a great potential to facilitate medical diagnosis and early detection of bacterial terrorism, based on the ability to detect bacterial OMVs of multiple Gram-negative bacteria.
Collapse
|
36
|
Paniel N, Noguer T. Detection of Salmonella in Food Matrices, from Conventional Methods to Recent Aptamer-Sensing Technologies. Foods 2019; 8:E371. [PMID: 31480504 PMCID: PMC6770675 DOI: 10.3390/foods8090371] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 01/01/2023] Open
Abstract
Rapid detection of the foodborne pathogen Salmonella in food processing is of crucial importance to prevent food outbreaks and to ensure consumer safety. Detection and quantification of Salmonella species in food samples is routinely performed using conventional culture-based techniques, which are labor intensive, involve well-trained personnel, and are unsuitable for on-site and high-throughput analysis. To overcome these drawbacks, many research teams have developed alternative methods like biosensors, and more particularly aptasensors, were a nucleic acid is used as biorecognition element. The increasing interest in these devices is related to their high specificity, convenience, and relative rapid response. This review aims to present the advances made in these last years in the development of biosensors for the detection and the quantification of Salmonella, highlighting applications on meat from the chicken food chain.
Collapse
Affiliation(s)
- Nathalie Paniel
- Laboratoire BAE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France.
- Unité EMaiRIT'S, Centre Technique de la Conservation des Produits Agricoles (CTCPA), Site Agroparc, 449 Avenue Clément Ader, BP21203, 84911 Avignon, France.
| | - Thierry Noguer
- Laboratoire BAE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France.
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579, Sorbonne Universités (UPMC) Paris 6 et CNRS, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France.
| |
Collapse
|
37
|
Quintela IA, de Los Reyes BG, Lin CS, Wu VCH. Simultaneous Colorimetric Detection of a Variety of Salmonella spp. in Food and Environmental Samples by Optical Biosensing Using Oligonucleotide-Gold Nanoparticles. Front Microbiol 2019; 10:1138. [PMID: 31214132 PMCID: PMC6554661 DOI: 10.3389/fmicb.2019.01138] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/06/2019] [Indexed: 01/17/2023] Open
Abstract
Optical biosensors for rapid detection of significant foodborne pathogens are steadily gaining popularity due to its simplicity and sensitivity. While nanomaterials such as gold nanoparticles (AuNPs) are commonly used as signal amplifiers for optical biosensors, AuNPs can also be utilized as a robust biosensing platform. Many reported optical biosensors were designed for individual pathogen detection in a single assay and have high detection limit (DL). Salmonella spp. is one of the major causative agents of foodborne sickness, hospitalization and deaths. Unfortunately, there are around 2,000 serotypes of Salmonella worldwide, and rapid and simultaneous detection of multiple strains in a single assay is lacking. In this study, a comprehensive and highly sensitive simultaneous colorimetric detection of nineteen (19) environmental and outbreak Salmonella spp. strains was achieved by a novel optical biosensing platform using oligonucleotide-functionalized AuNPs. A pair of newly designed single stranded oligonucleotides (30-mer) was displayed onto the surface of AuNPs (13 nm) as detection probes to hybridize with a conserved genomic region (192-bases) of ttrRSBCA found on a broad range of Salmonella spp. strains. The sandwich hybridization (30 min, 55°C) resulted in a structural formation of highly stable oligonucleotide/AuNPs-DNA complexes which remained undisturbed even after subjecting to an increased salt concentration (2 M, final), thus allowing a direct discrimination via color change of target (red color) from non-target (purplish-blue color) reaction mixtures by direct observation using the naked eye. In food matrices (blueberries and chicken meat), nineteen different Salmonella spp. strains were concentrated using immunomagnetic separation and then simultaneously detected in a 96-well microplate by oligonucleotide-functionalized AuNPs after DNA preparation. Successful oligonucleotide/AuNPs-DNA hybridization was confirmed by gel electrophoresis while AuNPs aggregation in non-target and control reaction mixtures was verified by both spectrophotometric analysis and TEM images. Results showed that the optical AuNP biosensing platform can simultaneously screen nineteen (19) viable Salmonella spp. strains tested with 100% specificity and a superior detection limit of <10 CFU/mL or g for both pure culture and complex matrices setups. The highly sensitive colorimetric detection system can significantly improve the screening and detection of viable Salmonella spp. strains present in complex food and environmental matrices, therefore reducing the risks of contamination and incidence of foodborne diseases.
Collapse
Affiliation(s)
- Irwin A Quintela
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Services, Western Regional Research Center, Albany, CA, United States.,School of Food and Agriculture, University of Maine, Orono, ME, United States
| | | | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Services, Western Regional Research Center, Albany, CA, United States.,Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
38
|
Weerathunge P, Ramanathan R, Torok VA, Hodgson K, Xu Y, Goodacre R, Behera BK, Bansal V. Ultrasensitive Colorimetric Detection of Murine Norovirus Using NanoZyme Aptasensor. Anal Chem 2019; 91:3270-3276. [PMID: 30642158 DOI: 10.1021/acs.analchem.8b03300] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human norovirus (NoV) remains the most common cause of viral gastroenteritis and the leading cause of viral foodborne outbreaks globally. NoV is highly pathogenic with an estimated median viral infective dose (ID50) ranging from 18 to 1015 genome copies. For NoV detection, the only reliable and sensitive method available for detection and quantification is reverse transcription quantitative polymerase chain reaction (RTqPCR). NoV detection in food is particularly challenging, requiring matrix specific concentration of the virus and removal of inhibitory compounds to detection assays. Hence, the RTqPCR method poses some challenges for rapid in-field or point-of-care diagnostic applications. We propose a new colorimetric NanoZyme aptasensor strategy for rapid (10 min) and ultrasensitive (calculated Limit of Detection (LoD) of 3 viruses per assay equivalent to 30 viruses/mL of sample and experimentally demonstrated LoD of 20 viruses per assay equivalent to 200 viruses/mL) detection of the infective murine norovirus (MNV), a readily cultivable surrogate for NoV. Our approach combines the enzyme-mimic catalytic activity of gold nanoparticles with high target specificity of an MNV aptamer to create sensor probes that produce a blue color in the presence of this norovirus, such that the color intensity provides the virus concentrations. Overall, our strategy offers the most sensitive detection of norovirus or a norovirus surrogate achieved to date using a biosensor approach, enabling for the first time, the detection of MNV virion corresponding to the lower end of the ID50 for NoV. We further demonstrate the robustness of the norovirus NanoZyme aptasensor by testing its performance in the presence of other nontarget microorganisms, human serum and shellfish homogenate, supporting the potential of detecting norovirus in complex matrices. This new assay format can, therefore, be of significant importance as it allows ultrasensitive norovirus detection rapidly within minutes, while also offering the simplicity of use and need for nonspecialized laboratory infrastructure.
Collapse
Affiliation(s)
- Pabudi Weerathunge
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science , RMIT University , GPO Box 2476, Melbourne , VIC 3000 , Australia
| | - Rajesh Ramanathan
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science , RMIT University , GPO Box 2476, Melbourne , VIC 3000 , Australia
| | - Valeria A Torok
- South Australian Research and Development Institute (SARDI) , Food Safety and Innovation , GPO Box 397, Adelaide , SA 5064 , Australia
| | - Kate Hodgson
- South Australian Research and Development Institute (SARDI) , Food Safety and Innovation , GPO Box 397, Adelaide , SA 5064 , Australia
| | - Yun Xu
- School of Chemistry, Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom
| | - Royston Goodacre
- School of Chemistry, Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom
| | - Bijay Kumar Behera
- ICAR-Central Inland Fisheries Research Institute , Barrackpore, Kolkata 700100 , India
| | - Vipul Bansal
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science , RMIT University , GPO Box 2476, Melbourne , VIC 3000 , Australia
| |
Collapse
|
39
|
Sai-Anand G, Sivanesan A, Benzigar MR, Singh G, Gopalan AI, Baskar AV, Ilbeygi H, Ramadass K, Kambala V, Vinu A. Recent Progress on the Sensing of Pathogenic Bacteria Using Advanced Nanostructures. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180280] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gopalan Sai-Anand
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Arumugam Sivanesan
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- Metrohm Australia, 56 Buffalo Road, Gladesville, NSW 2111, Australia
| | - Mercy R Benzigar
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Anantha-Iyengar Gopalan
- Research Institute of Advanced Energy Technology, Kyungpook National University, Daegu 41566, Korea
| | - Arun Vijay Baskar
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Hamid Ilbeygi
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Venkata Kambala
- Hudson Marketing Pty Ltd, Level 2/131 Macquarie St, Sydney NSW 2000, Australia
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
40
|
Nasseri B, Soleimani N, Rabiee N, Kalbasi A, Karimi M, Hamblin MR. Point-of-care microfluidic devices for pathogen detection. Biosens Bioelectron 2018; 117:112-128. [PMID: 29890393 PMCID: PMC6082696 DOI: 10.1016/j.bios.2018.05.050] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022]
Abstract
The rapid diagnosis of pathogens is crucial in the early stages of treatment of diseases where the choice of the correct drug can be critical. Although conventional cell culture-based techniques have been widely utilized in clinical applications, newly introduced optical-based, microfluidic chips are becoming attractive. The advantages of the novel methods compared to the conventional techniques comprise more rapid diagnosis, lower consumption of patient sample and valuable reagents, easy application, and high reproducibility in the detection of pathogens. The miniaturized channels used in microfluidic systems simulate interactions between cells and reagents in microchannel structures, and evaluate the interactions between biological moieties to enable diagnosis of microorganisms. The overarching goal of this review is to provide a summary of the development of microfluidic biochips and to comprehensively discuss different applications of microfluidic biochips in the detection of pathogens. New types of microfluidic systems and novel techniques for viral pathogen detection (e.g. HIV, HVB, ZIKV) are covered. Next generation techniques relying on high sensitivity, specificity, lower consumption of precious reagents, suggest that rapid generation of results can be achieved via optical based detection of bacterial cells. The introduction of smartphones to replace microscope based observation has substantially improved cell detection, and allows facile data processing and transfer for presentation purposes.
Collapse
Affiliation(s)
- Behzad Nasseri
- Departments of Microbiology and Microbial Biotechnology and Nanobiotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran; Chemical Engineering Deptartment and Bioengineeing Division, Hacettepe University, 06800 Beytepe, Ankara, Turkey.
| | - Neda Soleimani
- Departments of Microbiology and Microbial Biotechnology and Nanobiotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran.
| | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
41
|
Liang J, Zhou J, Tan J, Wang Z, Deng L. Aptamer-Based Fluorescent Determination of Salmonella paratyphi A Using Phi29-DNA Polymerase-Assisted Cyclic Amplification. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1505901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jingjing Liang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Jiaqi Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Jianxi Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Zefeng Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Le Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
42
|
Bajpai VK, Kamle M, Shukla S, Mahato DK, Chandra P, Hwang SK, Kumar P, Huh YS, Han YK. Prospects of using nanotechnology for food preservation, safety, and security. J Food Drug Anal 2018; 26:1201-1214. [PMID: 30249319 PMCID: PMC9298566 DOI: 10.1016/j.jfda.2018.06.011] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
The rapid development of nanotechnology has transformed many domains of food science, especially those that involve the processing, packaging, storage, transportation, functionality, and other safety aspects of food. A wide range of nanostructured materials (NSMs), from inorganic metal, metal oxides, and their nanocomposites to nano-organic materials with bioactive agents, has been applied to the food industry. Despite the huge benefits nanotechnology has to offer, there are emerging concerns regarding the use of nanotechnology, as the accumulation of NSMs in human bodies and in the environment can cause several health and safety hazards. Therefore, safety and health concerns as well as regulatory policies must be considered while manufacturing, processing, intelligently and actively packaging, and consuming nano-processed food products. This review aims to provide a basic understanding regarding the applications of nanotechnology in the food packaging and processing industries and to identify the future prospects and potential risks associated with the use of NSMs.
Collapse
Affiliation(s)
- Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, South Korea
| | - Madhu Kamle
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, 791109, Arunachal Pradesh, India
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, South Korea
| | - Dipendra Kumar Mahato
- Department of Agriculture and Food Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Pranjal Chandra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Seung Kyu Hwang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, South Korea
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, 791109, Arunachal Pradesh, India.
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, South Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, South Korea.
| |
Collapse
|
43
|
Pan Q, Luo F, Liu M, Zhang XL. Oligonucleotide aptamers: promising and powerful diagnostic and therapeutic tools for infectious diseases. J Infect 2018; 77:83-98. [PMID: 29746951 PMCID: PMC7112547 DOI: 10.1016/j.jinf.2018.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/02/2018] [Accepted: 04/08/2018] [Indexed: 12/21/2022]
Abstract
The entire human population is at risk of infectious diseases worldwide. Thus far, the diagnosis and treatment of human infectious diseases at the molecular and nanoscale levels have been extremely challenging tasks because of the lack of effective probes to identify and recognize biomarkers of pathogens. Oligonucleotide aptamers are a class of small nucleic acid ligands that are composed of single-stranded DNA (ssDNA) or RNA and act as affinity probes or molecular recognition elements for a variety of targets. These aptamers have an exciting potential for diagnose and/or treatment of specific diseases. In this review, we highlight areas where aptamers have been developed as diagnostic and therapeutic agents for both bacterial and viral infectious diseases as well as aptamer-based detection.
Collapse
Affiliation(s)
- Qin Pan
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Fengling Luo
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Min Liu
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China.
| |
Collapse
|
44
|
Whole-bacterium SELEX of DNA aptamers for rapid detection of E.coli O157:H7 using a QCM sensor. J Biotechnol 2017; 266:39-49. [PMID: 29242148 DOI: 10.1016/j.jbiotec.2017.12.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/27/2017] [Accepted: 12/10/2017] [Indexed: 12/21/2022]
Abstract
The rapid detection of foodborne pathogens is critical to ensure food safety. The objective of this study is to select aptamers specifically bound to Escherichia coli O157:H7 using the whole-bacterium SELEX (Systematic Evolution of Ligands by Exponential Enrichment) and apply the selected aptamer to a QCM (quartz crystal microbalance) sensor for rapid and sensitive detection of target bacteria. A total of 19 rounds of selection against live E. coli O157:H7 and 6 rounds of counter selection against a mixture of Staphylococcus aureus, Listeria monocytogenes, and Salmonella Typhimurium, were performed. The aptamer pool from the last round was cloned and sequenced. One sequence S1 that appeared 16 times was characterized and a dissociation constant (Kd) of 10.30nM was obtained. Subsequently, a QCM aptasensor was developed for the rapid detection of E. coli O157:H7. The limit of detection (LOD) and the detection time of the aptasensor was determined to be 1.46×103 CFU/ml and 50min, respectively. This study demonstrated that the ssDNA aptamer selected by the whole-bacterium SELEX possessed higher sensitivity than previous work and the potential use of the constructed QCM aptasensor in rapid screening of foodborne pathogens.
Collapse
|
45
|
Malekzad H, Jouyban A, Hasanzadeh M, Shadjou N, de la Guardia M. Ensuring food safety using aptamer based assays: Electroanalytical approach. Trends Analyt Chem 2017; 94:77-94. [PMID: 32287541 PMCID: PMC7112916 DOI: 10.1016/j.trac.2017.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aptamers, are being increasingly employed as favorable receptors for constructing highly sensitive biosensors, for their remarkable affinities towards certain targets including a wide scope of biological or chemical substances, and their superiority over other biologic receptors. The selectivity and affinity of the aptamers have been integrated with the wise design of the assay, applying suitable modifications, such as nanomaterials on the electrode surface, employing oligonucleotide-specific amplification strategies or, their combinations. After successful performance of the electrochemical aptasensors for biomedical applications, the food sector with its direct implication for human health, which demands rapid and sensitive and economic analytical solutions for determination of health threatening contaminants in all stages of production process, is the next field of research for developing efficient electrochemical aptasensors. The aim of this review is to categorize and introduce food hazards and summarize the recent electrochemical aptasensors that have been developed to address these contaminants.
Collapse
Affiliation(s)
- Hedieh Malekzad
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Shadjou
- Department of Nanochemistry, Nano Technology Research Center, Urmia University, Urmia, Iran
- Department of Nanochemistry, Faculty of Science, Urmia University, Urmia, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, Burjassot 46100, Valencia, Spain
| |
Collapse
|
46
|
Chandola C, Kalme S, Casteleijn MG, Urtti A, Neerathilingam M. Application of aptamers in diagnostics, drug-delivery and imaging. J Biosci 2017; 41:535-61. [PMID: 27581942 DOI: 10.1007/s12038-016-9632-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aptamers are small, single-stranded oligonucleotides (DNA or RNA) that bind to their target with high specificity and affinity. Although aptamers are analogous to antibodies for a wide range of target recognition and variety of applications, they have significant advantages over antibodies. Since aptamers have recently emerged as a class of biomolecules with an application in a wide array of fields, we need to summarize the latest developments herein. In this review we will discuss about the latest developments in using aptamers in diagnostics, drug delivery and imaging. We begin with diagnostics, discussing the application of aptamers for the detection of infective agents itself, antigens/ toxins (bacteria), biomarkers (cancer), or a combination. The ease of conjugation and labelling of aptamers makes them a potential tool for diagnostics. Also, due to the reduced off-target effects of aptamers, their use as a potential drug delivery tool is emerging rapidly. Hence, we discuss their use in targeted delivery in conjugation with siRNAs, nanoparticles, liposomes, drugs and antibodies. Finally, we discuss about the conjugation strategies applicable for RNA and DNA aptamers for imaging. Their stability and self-assembly after heating makes them superior over protein-based binding molecules in terms of labelling and conjugation strategies.
Collapse
Affiliation(s)
- Chetan Chandola
- 1Center for Cellular and Molecular Platforms, NCBS-TIFR, Bangalore 560 065, India
| | | | | | | | | |
Collapse
|
47
|
Pathania P, Sharma A, Kumar B, Rishi P, Raman Suri C. Selective identification of specific aptamers for the detection of non-typhoidal salmonellosis in an apta-impedimetric sensing format. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2098-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
An Update on Aptamer-Based Multiplex System Approaches for the Detection of Common Foodborne Pathogens. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0814-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Lee J, Jung J, Lee CS, Ha TH. Design and optimization of an ultra-sensitive hairpin DNA aptasensor for Salmonella detection. RSC Adv 2017. [DOI: 10.1039/c7ra06000a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple scheme using a hairpin DNA aptasensor was established to detectSalmonellaTyphimurium (S.Typhimurium).
Collapse
Affiliation(s)
- Jayeon Lee
- Department of Nanobiotechnology
- KRIBB School of Biotechnology
- Korea University of Science & Technology
- Daejeon 34141
- Republic of Korea
| | - Juyeon Jung
- Department of Nanobiotechnology
- KRIBB School of Biotechnology
- Korea University of Science & Technology
- Daejeon 34141
- Republic of Korea
| | - Chang Soo Lee
- Department of Nanobiotechnology
- KRIBB School of Biotechnology
- Korea University of Science & Technology
- Daejeon 34141
- Republic of Korea
| | - Tai Hwan Ha
- Department of Nanobiotechnology
- KRIBB School of Biotechnology
- Korea University of Science & Technology
- Daejeon 34141
- Republic of Korea
| |
Collapse
|
50
|
Ozyurt C, Bora B, Ugurlu O, Evran S. Pathogen-specific nucleic acid aptamers as targeting components of antibiotic and gene delivery systems. NANOSTRUCTURES FOR DRUG DELIVERY 2017:551-577. [DOI: 10.1016/b978-0-323-46143-6.00018-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|