1
|
Jangid AK, Kim K. Phenylboronic acid-functionalized biomaterials for improved cancer immunotherapy via sialic acid targeting. Adv Colloid Interface Sci 2024; 333:103301. [PMID: 39260104 DOI: 10.1016/j.cis.2024.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/16/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Phenylboronic acid (PBA) is recognized as one of the most promising cancer cell binding modules attributed to its potential to form reversible and dynamic boronic ester covalent bonds. Exploring the advanced chemical versatility of PBA is crucial for developing new anticancer therapeutics. The presence of a specific Lewis acidic boron atom-based functional group and a Π-ring-connected ring has garnered increasing interest in the field of cancer immunotherapy. PBA-derivatized functional biomaterials can form reversible bonds with diols containing cell surface markers and proteins. This review primarily focuses on the following topics: (1) the importance and versatility of PBA, (2) different PBA derivatives with pKa values, (3) specific key features of PBA-mediated biomaterials, and (4) cell surface activity for cancer immunotherapy applications. Specific key features of PBA-mediated materials, including sensing, bioadhesion, and gelation, along with important synthesis strategies, are highlighted. The utilization of PBA-mediated biomaterials for cancer immunotherapy, especially the role of PBA-based nanoparticles and PBA-mediated cell-based therapeutics, is also discussed. Finally, a perspective on future research based on PBA-biomaterials for immunotherapy applications is presented.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea.
| |
Collapse
|
2
|
Kamelnia R, Ahmadi-Hamedani M, Darroudi M, Kamelnia E. Improving the stability of insulin through effective chemical modifications: A Comprehensive review. Int J Pharm 2024; 661:124399. [PMID: 38944170 DOI: 10.1016/j.ijpharm.2024.124399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Insulin, an essential peptide hormone, conjointly regulates blood glucose levels by its receptor and it is used as vital drug to treat diabetes. This therapeutic hormone may undergo different chemical modifications during industrial processes, pharmaceutical formulation, and through its endogenous storage in the pancreatic β-cells. Insulin is highly sensitive to environmental stresses and readily undergoes structural changes, being also able to unfold and aggregate in physiological conditions. Even; small changes altering the structural integrity of insulin may have significant impacts on its biological efficacy to its physiological and pharmacological activities. Insulin analogs have been engineered to achieve modified properties, such as improved stability, solubility, and pharmacokinetics, while preserving the molecular pharmacology of insulin. The casually or purposively strategies of chemical modifications of insulin occurred to improve its therapeutic and pharmaceutical properties. Knowing the effects of chemical modification, formation of aggregates, and nanoparticles on protein can be a new look at the production of protein analogues drugs and its application in living system. The project focused on effects of chemical modifications and nanoparticles on the structure, stability, aggregation and their results in effective drug delivery system, biological activity, and pharmacological properties of insulin. The future challenge in biotechnology and pharmacokinetic arises from the complexity of biopharmaceuticals, which are often molecular structures that require formulation and delivery strategies to ensure their efficacy and safety.
Collapse
Affiliation(s)
- Reyhane Kamelnia
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Mahmood Ahmadi-Hamedani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran.
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Kamelnia
- Department of biology, Faculty of sciences, Mashhad branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
3
|
Aktas Eken G, Huang Y, Prucker O, Rühe J, Ober C. Advancing Glucose Sensing Through Auto-Fluorescent Polymer Brushes: From Surface Design to Nano-Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309040. [PMID: 38334235 DOI: 10.1002/smll.202309040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/23/2023] [Indexed: 02/10/2024]
Abstract
Designing smart (bio)interfaces with the capability to sense and react to changes in local environments offers intriguing possibilities for new surface-based sensing devices and technologies. Polymer brushes make ideal materials to design such adaptive and responsive interfaces given their large variety of functional and structural possibilities as well as their outstanding abilities to respond to physical, chemical, and biological stimuli. Herein, a practical sensory interface for glucose detection based on auto-fluorescent polymer brushes decorated with phenylboronic acid (PBA) receptors is presented. The glucose-responsive luminescent surfaces, which are capable of translating conformational transitions triggered by pH variations and binding events into fluorescent readouts without the need for fluorescent dyes, are grown from both nanopatterned and non-patterned substrates. Two-photon laser scanning confocal microscopy and atomic force microscopy (AFM) analyses reveal the relationship between the brush conformation and glucose concentration and confirm that the phenylboronic acid functionalized brushes can bind glucose over a range of physiologically relevant concentrations in a reversible manner. The combination of auto-fluorescent polymer brushes with synthetic receptors presents a promising avenue for designing innovative and robust sensing systems, which are essential for various biomedical applications, among other uses.
Collapse
Affiliation(s)
- Gozde Aktas Eken
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Yuming Huang
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Oswald Prucker
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Jürgen Rühe
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
- Cluster of Excellence livMatS @FIT, Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, Goerges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Christopher Ober
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
4
|
Xu L, Cao Y, Xu Y, Li R, Xu X. Redox-Responsive Polymeric Nanoparticle for Nucleic Acid Delivery and Cancer Therapy: Progress, Opportunities, and Challenges. Macromol Biosci 2024; 24:e2300238. [PMID: 37573033 DOI: 10.1002/mabi.202300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Cancer development and progression of cancer are closely associated with the activation of oncogenes and loss of tumor suppressor genes. Nucleic acid drugs (e.g., siRNA, mRNA, and DNA) are widely used for cancer therapy due to their specific ability to regulate the expression of any cancer-associated genes. However, nucleic acid drugs are negatively charged biomacromolecules that are susceptible to serum nucleases and cannot cross cell membrane. Therefore, specific delivery tools are required to facilitate the intracellular delivery of nucleic acid drugs. In the past few decades, a variety of nanoparticles (NPs) are designed and developed for nucleic acid delivery and cancer therapy. In particular, the polymeric NPs in response to the abnormal redox status in cancer cells have garnered much more attention as their potential in redox-triggered nanostructure dissociation and rapid intracellular release of nucleic acid drugs. In this review, the important genes or signaling pathways regulating the abnormal redox status in cancer cells are briefly introduced and the recent development of redox-responsive NPs for nucleic acid delivery and cancer therapy is systemically summarized. The future development of NPs-mediated nucleic acid delivery and their challenges in clinical translation are also discussed.
Collapse
Affiliation(s)
- Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
5
|
Horn CM, Arumugam P, Van Roy Z, Heim CE, Fallet RW, Bertrand BP, Shinde D, Thomas VC, Romanova SG, Bronich TK, Hartman CW, Garvin KL, Kielian T. Granulocytic myeloid-derived suppressor cell activity during biofilm infection is regulated by a glycolysis/HIF1a axis. J Clin Invest 2024; 134:e174051. [PMID: 38421730 PMCID: PMC11014666 DOI: 10.1172/jci174051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
Staphylococcus aureus is a leading cause of biofilm-associated prosthetic joint infection (PJI). A primary contributor to infection chronicity is an expansion of granulocytic myeloid-derived suppressor cells (G-MDSCs), which are critical for orchestrating the antiinflammatory biofilm milieu. Single-cell sequencing and bioinformatic metabolic algorithms were used to explore the link between G-MDSC metabolism and S. aureus PJI outcome. Glycolysis and the hypoxia response through HIF1a were significantly enriched in G-MDSCs. Interfering with both pathways in vivo, using a 2-deoxyglucose nanopreparation and granulocyte-targeted Hif1a conditional KO mice, respectively, attenuated G-MDSC-mediated immunosuppression and reduced bacterial burden in a mouse model of S. aureus PJI. In addition, single-cell RNA-Seq (scRNA-Seq) analysis of granulocytes from PJI patients also showed an enrichment in glycolysis and hypoxia-response genes. These findings support the importance of a glycolysis/HIF1a axis in promoting G-MDSC antiinflammatory activity and biofilm persistence during PJI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Svetlana G. Romanova
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Tatiana K. Bronich
- Department of Pharmacy, Northeastern University, Boston, Massachusetts, USA
| | - Curtis W. Hartman
- Department of Orthopaedic Surgery and Rehabilitation, UNMC, Omaha, Nebraska, USA
| | - Kevin L. Garvin
- Department of Orthopaedic Surgery and Rehabilitation, UNMC, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology and
| |
Collapse
|
6
|
García Cambón TA, Lopez CS, Hanheiser N, Bhatia S, Achazi K, Rivas MV, Spagnuolo CC. Benzoxaborole-grafted high molecular weight chitosan from prawn: Synthesis, characterization, target recognition and antibacterial properties. Carbohydr Polym 2023; 316:120925. [PMID: 37321754 DOI: 10.1016/j.carbpol.2023.120925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 06/17/2023]
Abstract
Boronated polymers are in the focus of dynamic functional materials due to the versatility of the B-O interactions and accessibility of precursors. Polysaccharides are highly biocompatible, and therefore, an attractive platform for anchoring boronic acid groups for further bioconjugation of cis-diol containing molecules. We report for the first time the introduction of benzoxaborole by amidation of the amino groups of chitosan improving solubility and introducing cis-diol recognition at physiological pH. The chemical structures and physical properties of the novel chitosan-benzoxaborole (CS-Bx) as well as two phenylboronic derivatives synthesized for comparison, were characterized by nuclear magnetic resonance (NMR), infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering (DLS), rheology and optical spectroscopic methods. The novel benzoxaborole grafted chitosan was perfectly solubilized in an aqueous buffer at physiological pH, extending the possibilities of boronated materials derived from polysaccharides. The dynamic covalent interaction between boronated chitosan and model affinity ligands, was studied by means of spectroscopy methods. A glycopolymer derived from poly(isobutylene-alt-anhydride) was also synthesized to study the formation of dynamic assemblies with benzoxaborole-grafted chitosan. A first approximation to apply fluorescence microscale thermophoresis for the interactions of the modified polysaccharide is also discussed. Additionally, the activity of CSBx against bacterial adhesion was studied.
Collapse
Affiliation(s)
- Tomás A García Cambón
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Guiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Cecilia Samaniego Lopez
- CIHIDECAR-UBA-CONICET, Int. Guiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Natalie Hanheiser
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Sumati Bhatia
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Katharina Achazi
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - M Verónica Rivas
- CIHIDECAR-UBA-CONICET, Int. Guiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina; INN - CONICET, Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, San Martín, Buenos Aires B1650KNA, Argentina
| | - Carla C Spagnuolo
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Guiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina; CIHIDECAR-UBA-CONICET, Int. Guiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina.
| |
Collapse
|
7
|
Kaur J, Gulati M, Zacconi F, Dureja H, Loebenberg R, Ansari MS, AlOmeir O, Alam A, Chellappan DK, Gupta G, Jha NK, Pinto TDJA, Morris A, Choonara YE, Adams J, Dua K, Singh SK. Biomedical Applications of polymeric micelles in the treatment of diabetes mellitus: Current success and future approaches. Expert Opin Drug Deliv 2022; 19:771-793. [PMID: 35695697 DOI: 10.1080/17425247.2022.2087629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Diabetes mellitus (DM) is the most common metabolic disease and multifactorial, harming patients worldwide. Extensive research has been carried out in the search for novel drug delivery systems offering reliable control of glucose levels for diabetics, aiming at efficient management of DM. AREAS COVERED Polymeric micelles (PMs) as smart drug delivery nanocarriers are discussed, focusing on oral drug delivery applications for the management of hyperglycemia. The most recent approaches used for the preparation of smart PMs employ molecular features of amphiphilic block copolymers (ABCs), such as stimulus sensitivity, ligand conjugation, and as a more specific example the ability to inhibit islet amyloidosis. EXPERT OPINION PMs provide a unique platform for self-regulated or spatiotemporal drug delivery, mimicking the working mode of pancreatic islets to maintain glucose homeostasis for prolonged periods. This unique characteristic is achieved by tailoring the functional chemistry of ABCs considering the physicochemical traits of PMs, including sensing capabilities, hydrophobicity, etc. In addition, the application of ABCs for the inhibition of conformational changes in islet amyloid polypeptide garnered attention as one of the root causes of DM. However, research in this field is limited and further studies at the clinical level are required.
Collapse
Affiliation(s)
- Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Flavia Zacconi
- de Farmacia, Pontificia Universidad Cat´olica de ChileDepartamento de Química Org´anica, Facultad de Química y , Santiago, Chile.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Cat´olica de Chile, Macul, Chile
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Raimar Loebenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta AB, Canada
| | - Md Salahuddin Ansari
- Department of Pharmacy Practice, College of Pharmacy Aldawadmi, Shaqra University Shaqra, Saudi Arabia
| | - Othman AlOmeir
- Department of Pharmacy Practice, College of Pharmacy Aldawadmi, Shaqra University Shaqra, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Kharj, KSA
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Malaysia
| | - Gaurav Gupta
- Department of pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, India.,Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | | | - Andrew Morris
- Swansea University Medical School, Swansea University, Singleton Park, Swansea
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
8
|
Giuffrida SG, Forysiak W, Cwynar P, Szweda R. Shaping Macromolecules for Sensing Applications—From Polymer Hydrogels to Foldamers. Polymers (Basel) 2022; 14:polym14030580. [PMID: 35160568 PMCID: PMC8840496 DOI: 10.3390/polym14030580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/14/2022] Open
Abstract
Sensors are tools for detecting, recognizing, and recording signals from the surrounding environment. They provide measurable information on chemical or physical changes, and thus are widely used in diagnosis, environment monitoring, food quality checks, or process control. Polymers are versatile materials that find a broad range of applications in sensory devices for the biomedical sector and beyond. Sensory materials are expected to exhibit a measurable change of properties in the presence of an analyte or a stimulus, characterized by high sensitivity and selectivity of the signal. Signal parameters can be tuned by material features connected with the restriction of macromolecule shape by crosslinking or folding. Gels are crosslinked, three-dimensional networks that can form cavities of different sizes and forms, which can be adapted to trap particular analytes. A higher level of structural control can be achieved by foldamers, which are macromolecules that can attain well-defined conformation in solution. By increasing control over the three-dimensional structure, we can improve the selectivity of polymer materials, which is one of the crucial requirements for sensors. Here, we discuss various examples of polymer gels and foldamer-based sensor systems. We have classified and described applied polymer materials and used sensing techniques. Finally, we deliberated the necessity and potential of further exploration of the field towards the increased selectivity of sensory devices.
Collapse
Affiliation(s)
- Simone Giuseppe Giuffrida
- Łukasiewicz Research Network—PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland; (S.G.G.); (W.F.); (P.C.)
| | - Weronika Forysiak
- Łukasiewicz Research Network—PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland; (S.G.G.); (W.F.); (P.C.)
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Pawel Cwynar
- Łukasiewicz Research Network—PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland; (S.G.G.); (W.F.); (P.C.)
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Roza Szweda
- Łukasiewicz Research Network—PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland; (S.G.G.); (W.F.); (P.C.)
- Correspondence:
| |
Collapse
|
9
|
Leiske MN, Kempe K. A Guideline for the Synthesis of Amino-Acid-Functionalized Monomers and Their Polymerizations. Macromol Rapid Commun 2021; 43:e2100615. [PMID: 34761461 DOI: 10.1002/marc.202100615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/31/2021] [Indexed: 12/16/2022]
Abstract
Amino acids have emerged as a sustainable source for the design of functional polymers. Besides their wide availability, especially their high degree of biocompatibility makes them appealing for a broad range of applications in the biomedical research field. In addition to these favorable characteristics, the versatility of reactive functional groups in amino acids (i.e., carboxylic acids, amines, thiols, and hydroxyl groups) makes them suitable starting materials for various polymerization approaches, which include step- and chain-growth reactions. This review aims to provide an overview of strategies to incorporate amino acids into polymers. To this end, it focuses on the preparation of polymerizable monomers from amino acids, which yield main chain or side chain-functionalized polymers. Furthermore, postpolymerization modification approaches for polymer side chain functionalization are discussed. Amino acids are presented as a versatile platform for the development of polymers with tailored properties.
Collapse
Affiliation(s)
- Meike N Leiske
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan, Ghent, 9000, Belgium
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
10
|
Hayes HLD, Wei R, Assante M, Geogheghan KJ, Jin N, Tomasi S, Noonan G, Leach AG, Lloyd-Jones GC. Protodeboronation of (Hetero)Arylboronic Esters: Direct versus Prehydrolytic Pathways and Self-/Auto-Catalysis. J Am Chem Soc 2021; 143:14814-14826. [PMID: 34460235 DOI: 10.1021/jacs.1c06863] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The kinetics and mechanism of the base-catalyzed hydrolysis (ArB(OR)2 → ArB(OH)2) and protodeboronation (ArB(OR)2 → ArH) of a series of boronic esters, encompassing eight different polyols and 10 polyfluoroaryl and heteroaryl moieties, have been investigated by in situ and stopped-flow NMR spectroscopy (19F, 1H, and 11B), pH-rate dependence, isotope entrainment, 2H KIEs, and KS-DFT computations. The study reveals the phenomenological stability of boronic esters under basic aqueous-organic conditions to be highly nuanced. In contrast to common assumption, esterification does not necessarily impart greater stability compared to the corresponding boronic acid. Moreover, hydrolysis of the ester to the boronic acid can be a dominant component of the overall protodeboronation process, augmented by self-, auto-, and oxidative (phenolic) catalysis when the pH is close to the pKa of the boronic acid/ester.
Collapse
Affiliation(s)
- Hannah L D Hayes
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Ran Wei
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Michele Assante
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| | - Katherine J Geogheghan
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Na Jin
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Simone Tomasi
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Gary Noonan
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Andrew G Leach
- School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Guy C Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
11
|
Akkoç S. Importance of some factors on the Suzuki‐Miyaura cross‐coupling reaction. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Senem Akkoç
- Department of Basic Pharmaceutical Sciences Suleyman Demirel University Isparta Turkey
| |
Collapse
|
12
|
Yolsal U, Horton TA, Wang M, Shaver MP. Polymer-supported Lewis acids and bases: Synthesis and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101313] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Dehghani B, Salami Hosseini M, Salami-Kalajahi M. Neutral pH monosaccharide receptor based on boronic acid decorated poly(2-hydroxyethyl methacrylate): Spectral Methods for determination of glucose-binding and ionization constants. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Park CH, Kim T, Lee GH, Ku KH, Kim SH, Kim BJ. Fluorescent Polymer-MoS 2-Embedded Microgels for Photothermal Heating and Colorimetric Monitoring. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35415-35423. [PMID: 32662977 DOI: 10.1021/acsami.0c08125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photothermal heating with accurate monitoring of local temperature in complex biological fluids is crucial for therapeutic accuracy. Herein, photothermal microgels are developed to heat microscopic volumes through photothermal conversion and report the local temperature with a colorimetric response. The microgels consist of poly(ethylene glycol)-based hydrogels, which integrate temperature-responsive block-copolymer-grafted MoS2 nanosheets (BCP-grafted MoS2 NSs). The MoS2 NSs are used as a fluorescence quencher as well as an efficient photothermal agent, with their surface decorated with three distinct temperature-responsive BCPs containing blue-, green-, and red-fluorescent dyes. Upon irradiation of near-infrared light, MoS2 NSs convert the radiation into heat, and the BCPs change their conformation depending on the local temperature, selectively activating Förster resonance energy transfer of the three dyes. The use of three distinct BCPs and dyes enables the measurement of temperature in a wide range (i.e., from 25 to 50 °C). Importantly, the hydrogel matrix excludes molecules larger than the limiting mesh size so that BCP-grafted MoS2 NSs remain free from contamination against large adhesive proteins such as albumin, thus maintaining their sensitivity even in complex fluids.
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Taewan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Gun Ho Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kang Hee Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
15
|
Fang G, Zhan D, Wang R, Bian Z, Zhang G, Wu Z, Yao Q. A highly selective and sensitive boronic acid-based sensor for detecting Pd 2+ ion under mild conditions. Bioorg Med Chem Lett 2020; 30:127397. [PMID: 32738962 DOI: 10.1016/j.bmcl.2020.127397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 11/19/2022]
Abstract
Herein, a boronic acid-based sensor was reported selectively to recognize Pd2+ ion. The fluorescence intensity increased 36-fold after sensor binding with 2.47 × 10-5 M of Pd2+ ion. It was carried out in the 99% aqueous solution for binding tests, indicating sensor having good water solubility. In addition, it is discernible that Pd2+ ion turned on the blue fluorescence of sensor under a UV-lamp (365 nm), while other ions (Ag+, Al3+, Ba2+, Ca2+, Cr2+, Cd2+, Co2+, Cs2+, Cu2+, Fe2+, Fe3+, K+, Li+, Mg2+, Mn2+, Na+, Ni2+ and Zn2+) did not show the similar change. Furthermore, sensor has a low limit of detection (38 nM) and high selectivity, which exhibits the potential for the development of Pd2+ recognition in practical environments.
Collapse
Affiliation(s)
- Guiqian Fang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, Shandong, China; Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China; Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, China; Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, China
| | - Dongxue Zhan
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, Shandong, China; Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China; Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, China; Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, China
| | - Ran Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, Shandong, China; Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China; Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, China; Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, China
| | - Zhancun Bian
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, Shandong, China; Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China; Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, China; Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, China
| | - Guimin Zhang
- Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Jinan, China; Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, Jinan, China
| | - Zhongyu Wu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China; Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, China; Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, China.
| | - Qingqiang Yao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China; Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, China; Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, China.
| |
Collapse
|
16
|
Liu Q, Zhong H, Chen M, Zhao C, Liu Y, Xi F, Luo T. Functional nanostructure-loaded three-dimensional graphene foam as a non-enzymatic electrochemical sensor for reagentless glucose detection. RSC Adv 2020; 10:33739-33746. [PMID: 35519067 PMCID: PMC9056722 DOI: 10.1039/d0ra05553k] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Non-enzymatic and reagentless electrochemical sensors for convenient and sensitive detection of glucose are highly desirable for prevention, diagnosis and treatment of diabetes owing to their unique merits of simplicity and easy operation. Facile fabrication of a three-dimensional (3D) sensing interface with non-enzymatic recognition groups and an immobilized electrochemical probe remains challenge. Herein, a novel non-enzymatic electrochemical sensor was developed for the sensitive and reagentless detection of glucose by loading functional nanostructure on 3D graphene. Monolithic and macroporous 3D graphene (3DG) foam grown by chemical vapor deposition (CVD) served as the electrode scaffold. Prussian blue (PB) and gold nanoparticles (AuNPs) were first co-electrodeposited on 3DG (3DG/PB-AuNPs) as immobilized signal indicator and electron conductor. After a polydopamine (PDA) layer was introduced on 3DG/PB-AuNPs via facile self-polymerization of dopamine to stabilize internal PB probes and offer chemical reducibility, the second layer of AuNPs was in situ formed to assemble the recognition ligand, mercaptobenzoboric acid (MPBA). Owing to the high stability of PB and good affinity between MPBA and glucose, the non-enzymatic sensor was able to be used in reagentless detection of glucose with high selectivity, wide linear range (5 μM–65 μM) and low detection limit (1.5 μM). Furthermore, the sensor was used for the detection of glucose level in human serum samples. A non-enzymatic electrochemical sensor was fabricated by loading functional nanostructure on three-dimensional graphene foam for reagentless detection of glucose with high sensitivity and stability.![]()
Collapse
Affiliation(s)
- Qianshi Liu
- Guangxi Medical University Cancer Hospital
- Nanning 530021
- PR China
| | - Huage Zhong
- Guangxi Medical University Cancer Hospital
- Nanning 530021
- PR China
| | - Miao Chen
- Guangxi Medical University Cancer Hospital
- Nanning 530021
- PR China
| | - Chang Zhao
- Guangxi Medical University Cancer Hospital
- Nanning 530021
- PR China
| | - Yan Liu
- Guangxi Medical University Cancer Hospital
- Nanning 530021
- PR China
| | - Fengna Xi
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou
- PR China
| | - Tao Luo
- Guangxi Medical University Cancer Hospital
- Nanning 530021
- PR China
| |
Collapse
|
17
|
Baraniak MK, Lalancette RA, Jäkle F. Electron‐Deficient Borinic Acid Polymers: Synthesis, Supramolecular Assembly, and Examination as Catalysts in Amide Bond Formation. Chemistry 2019; 25:13799-13810. [DOI: 10.1002/chem.201903196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Monika K. Baraniak
- Department of ChemistryRutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Roger A. Lalancette
- Department of ChemistryRutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of ChemistryRutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
18
|
Lim WQ, Phua SZF, Zhao Y. Redox-Responsive Polymeric Nanocomplex for Delivery of Cytotoxic Protein and Chemotherapeutics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31638-31648. [PMID: 31389684 DOI: 10.1021/acsami.9b09605] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Responsive delivery of anticancer proteins into cells is an emerging field in biological therapeutics. Currently, the delivery of proteins is highly compromised by multiple successive physiological barriers that reduce the therapeutic efficacy. Hence, there is a need to design a robust and sustainable nanocarrier to provide suitable protection of proteins and overcome the physiological barriers for better cellular accumulation. In this work, polyethylenimine (PEI) cross-linked by oxaliplatin(IV) prodrug (oxliPt(IV)) was used to fabricate a redox-responsive nanocomplex (PEI-oxliPt(IV)@RNBC/GOD) for the delivery of a reactive oxygen species-cleavable, reversibly caged RNase A protein (i.e., RNase A nitrophenylboronic conjugate, RNBC) and glucose oxidase (GOD) in order to realize efficient cancer treatment. The generation of hydrogen peroxide by GOD can uncage and restore the enzymatic activity of RNBC. On account of the responsiveness of the nanocomplex to highly reducing cellular environment, it would dissociate and release the protein and active oxaliplatin drug, causing cell death by both catalyzing RNA degradation and inhibiting DNA synthesis. As assessed by the RNA degradation assay, the activity of the encapsulated RNBC was recovered by the catalytic production of hydrogen peroxide from GOD and glucose substrate overexpressed in cancer cells. Monitoring of the changes in nanoparticle size confirmed that the nanocomplex could dissociate in the reducing environment, with the release of active oxaliplatin drug and protein. Confocal laser scanning microscopy (CLSM) and flow cytometry analysis revealed highly efficient accumulation of the nanocomplex as compared to free native proteins. In vitro cytotoxicity experiments using 4T1 cancer cells showed ∼80% cell killing efficacy, with highly efficient apoptosis induction. Assisted by the cationic polymeric carrier, it was evident from CLSM images that intracellular delivery of the therapeutic protein significantly depleted the RNA level. Thus, this work provides a promising platform for the delivery of therapeutic proteins and chemotherapeutic drugs for efficient cancer treatment.
Collapse
Affiliation(s)
- Wei Qi Lim
- NTU-Northwestern Institute for Nanomedicine, Interdisciplinary Graduate School , Nanyang Technological University , 50 Nanyang Drive , 637553 , Singapore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Soo Zeng Fiona Phua
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Yanli Zhao
- NTU-Northwestern Institute for Nanomedicine, Interdisciplinary Graduate School , Nanyang Technological University , 50 Nanyang Drive , 637553 , Singapore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| |
Collapse
|
19
|
Gaballa H, Theato P. Glucose-Responsive Polymeric Micelles via Boronic Acid–Diol Complexation for Insulin Delivery at Neutral pH. Biomacromolecules 2019; 20:871-881. [DOI: 10.1021/acs.biomac.8b01508] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heba Gaballa
- Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstrasse 45, D-20146 Hamburg, Germany
| | - Patrick Theato
- Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstrasse 45, D-20146 Hamburg, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesser Strasse. 18, D-76131 Karlsruhe, Germany
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces III, Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
20
|
Enhanced uptake of plasmid at boronic acid decorated linear polyethylenimines results in higher transfection efficiency. Biointerphases 2018; 13:061003. [PMID: 30458622 DOI: 10.1116/1.5054930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High molecular weight polyethylenimines (PEIs) are considered as gold standard for transfection studies; however, cytotoxicity associated with branched ones and lower charge density on linear PEIs as well as lower uptake of the resulting deoxyribonucleic acid (DNA) complexes have limited their applications in clinical studies. In order to address these concerns and improve the uptake efficiency of the DNA complexes of linear polyethylenimine (25 kDa), the polymer was grafted with variable amounts of butylboronic acid to obtain a small series of linear polyethylenimine-butylboronic acid polymers. These modified polymers were allowed to interact with plasmid DNA and the resulting complexes were characterized by physicochemical techniques. Dynamic light scattering data showed the formation of nanosized complexes with positive zeta potential values. Furthermore, when these complexes were evaluated in vitro, they not only showed enhanced cell viability but also exhibited higher transfection efficiency as compared to native linear and branched PEIs and a commercially available standard transfection reagent, Lipofectamine 2000.
Collapse
|
21
|
Ishiwari F, Sakamoto M, Matsumura S, Fukushima T. Topology Effect of AIEgen-Appended Poly(acrylic acid) with Biocompatible Segments on Ca 2+-Sensing and Protein-Adsorption-Resistance Properties. ACS Macro Lett 2018; 7:711-715. [PMID: 35632952 DOI: 10.1021/acsmacrolett.8b00291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We recently reported that tetraphenylethene-appended poly(acrylic acid) derivatives (e.g., PAA-TPE0.02) can serve as fluorescent Ca2+ sensors in the presence of physiological concentrations of biologically relevant ions, amino acids, and sugars. However, in the presence of basic proteins such as albumins, the Ca2+-sensing property of the polymer is significantly impaired due to the nonspecific adsorption of protein molecules, which competes with binding to Ca2+. To solve this problem, we explored new designs by focusing on the polymer-chain topology of PAA-TPE0.02 with biocompatible segments. Here, we report the Ca2+-sensing and protein-adsorption-resistance properties of various types of PAA-TPE0.02 copolymers with a poly(oligoethylene glycol acrylate) (polyOEGA) segment, featuring a random, diblock, triblock, or 4-armed-star-block structure. Through this study, we show an interesting topology effect; i.e., a branch-shaped PAA-TPE0.02-co-polyOEGA with biocompatible segments at every terminal (i.e., 4-armed-star-block copolymer) exhibits both good Ca2+-sensing and protein-adsorption-resistance properties.
Collapse
Affiliation(s)
- Fumitaka Ishiwari
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Minami Sakamoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Satoko Matsumura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
22
|
Bojanowski NM, Hainer F, Bender M, Seehafer K, Bunz UHF. An Optical Sensor Array Discriminates Syrups and Honeys. Chemistry 2018; 24:4255-4258. [DOI: 10.1002/chem.201706099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 12/11/2022]
Affiliation(s)
- N. Maximilian Bojanowski
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Felix Hainer
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Markus Bender
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Uwe H. F. Bunz
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Center for Advanced Materials; Im Neuenheimer Feld 225 69120 Heidelberg Germany
| |
Collapse
|
23
|
Zhang X, Xu G, Gadora K, Cheng H, Peng J, Ma Y, Guo Y, Chi C, Zhou J, Ding Y. Dual-sensitive chitosan derivative micelles for site-specific drug release in the treatment of chicken coccidiosis. RSC Adv 2018; 8:14515-14526. [PMID: 35540782 PMCID: PMC9079931 DOI: 10.1039/c8ra02144a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/02/2018] [Indexed: 12/17/2022] Open
Abstract
Here, we report a “dual-sensitive” drug delivery platform packaged with anti-coccidia drug diclazuril (DIC) applied in the field of intestinal-targeted administration.
Collapse
|
24
|
Cox PA, Reid M, Leach AG, Campbell AD, King EJ, Lloyd-Jones GC. Base-Catalyzed Aryl-B(OH) 2 Protodeboronation Revisited: From Concerted Proton Transfer to Liberation of a Transient Aryl Anion. J Am Chem Soc 2017; 139:13156-13165. [PMID: 28823150 DOI: 10.1021/jacs.7b07444] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pioneering studies by Kuivila, published more than 50 years ago, suggested ipso protonation of the boronate as the mechanism for base-catalyzed protodeboronation of arylboronic acids. However, the study was limited to UV spectrophotometric analysis under acidic conditions, and the aqueous association constants (Ka) were estimated. By means of NMR, stopped-flow IR, and quenched-flow techniques, the kinetics of base-catalyzed protodeboronation of 30 different arylboronic acids has now been determined at pH > 13 in aqueous dioxane at 70 °C. Included in the study are all 20 isomers of C6HnF(5-n)B(OH)2 with half-lives spanning 9 orders of magnitude: <3 ms to 6.5 months. In combination with pH-rate profiles, pKa and ΔS⧧ values, kinetic isotope effects (2H, 10B, 13C), linear free-energy relationships, and density functional theory calculations, we have identified a mechanistic regime involving unimolecular heterolysis of the boronate competing with concerted ipso protonation/C-B cleavage. The relative Lewis acidities of arylboronic acids do not correlate with their protodeboronation rates, especially when ortho substituents are present. Notably, 3,5-dinitrophenylboronic acid is orders of magnitude more stable than tetra- and pentafluorophenylboronic acids but has a similar pKa.
Collapse
Affiliation(s)
- Paul A Cox
- School of Chemistry, University of Edinburgh , Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Marc Reid
- School of Chemistry, University of Edinburgh , Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Andrew G Leach
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University , Byrom Street, Liverpool L3 3AF, U.K
| | | | - Edward J King
- TgK Scientific Limited , 7 Long's Yard, St Margaret's Street, Bradford-on-Avon BA15 1DH, U.K
| | - Guy C Lloyd-Jones
- School of Chemistry, University of Edinburgh , Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
25
|
Bojanowski NM, Bender M, Seehafer K, Bunz UHF. Discrimination of Saccharides by a Simple Array. Chemistry 2017; 23:12253-12258. [DOI: 10.1002/chem.201700831] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Indexed: 11/09/2022]
Affiliation(s)
- N. Maximilian Bojanowski
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Markus Bender
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Uwe H. F. Bunz
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
26
|
Haefner S, Frank P, Langer E, Gruner D, Schmidt U, Elstner M, Gerlach G, Richter A. Chemically controlled micro-pores and nano-filters for separation tasks in 2D and 3D microfluidic systems. RSC Adv 2017. [DOI: 10.1039/c7ra07016k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chemically adapted size exclusion functionalities of PNIPAAm-based nano-filters or micro-pores for separation tasks in microfluidics is presented.
Collapse
Affiliation(s)
- Sebastian Haefner
- Institute for Semiconductors and Microsystems
- Department of Electrical and Computer Engineering
- Technische Universität Dresden
- 01062 Dresden
- Germany
| | - Philipp Frank
- Institute for Semiconductors and Microsystems
- Department of Electrical and Computer Engineering
- Technische Universität Dresden
- 01062 Dresden
- Germany
| | - Enrico Langer
- Institute for Semiconductors and Microsystems
- Department of Electrical and Computer Engineering
- Technische Universität Dresden
- 01062 Dresden
- Germany
| | - Denise Gruner
- Institute for Semiconductors and Microsystems
- Department of Electrical and Computer Engineering
- Technische Universität Dresden
- 01062 Dresden
- Germany
| | - Ulrike Schmidt
- Institute of Solid State Electronics
- Department of Electrical and Computer Engineering
- Technische Universität Dresden
- 01062 Dresden
- Germany
| | - Martin Elstner
- Institute for Semiconductors and Microsystems
- Department of Electrical and Computer Engineering
- Technische Universität Dresden
- 01062 Dresden
- Germany
| | - Gerald Gerlach
- Institute of Solid State Electronics
- Department of Electrical and Computer Engineering
- Technische Universität Dresden
- 01062 Dresden
- Germany
| | - Andreas Richter
- Institute for Semiconductors and Microsystems
- Department of Electrical and Computer Engineering
- Technische Universität Dresden
- 01062 Dresden
- Germany
| |
Collapse
|