1
|
Vafadar A, AlaviManesh S, Maddahi ME, Alizadeh M, Movahedpour A, Savardashtaki A. Exosome biosensors for detection of prostate cancer. Clin Chim Acta 2025; 571:120243. [PMID: 40090566 DOI: 10.1016/j.cca.2025.120243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Prostate cancer (PCa) is a highly life-threatening disease in men, causing numerous deaths worldwide. As PCa is often diagnosed at a late stage, current diagnostic methods can be invasive and sometimes lead to unnecessary treatments. Therefore, new non-invasive approaches are needed to detect biomarkers for more rapid and accurate PCa diagnosis. Exosomes, extracellular vesicles, provide valuable insights into cellular health and disease progression. Recent studies have indicated the potential use of exosomes as biomarkers for diagnosing PCa. Developing fast, reliable, and sensitive methods for exosome detection is essential. Biosensors, powerful analytical tools for biological samples, have become increasingly crucial in exosome analysis. This review summarizes recent advancements in biosensor technology for exosome detection and provides insights into future perspectives. The goal is to encourage innovative biosensor-based approaches for exosome detection and contribute to the early diagnosis and clinical monitoring of various diseases.
Collapse
Affiliation(s)
- Asma Vafadar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad AlaviManesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Ehsan Maddahi
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Muhammad W, Song J, Kim S, Ahmed F, Cho E, Lee H, Kim J. Silicon-Based Biosensors: A Critical Review of Silicon's Role in Enhancing Biosensing Performance. BIOSENSORS 2025; 15:119. [PMID: 39997021 PMCID: PMC11852904 DOI: 10.3390/bios15020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
This review into recent advancements in silicon-based technology, with a particular emphasis on the biomedical applications of silicon sensors. Owing to their diminutive size, high sensitivity, and intrinsic compatibility with electronic systems, silicon-based sensors have found widespread utilization across healthcare, industrial, and environmental monitoring domains. In the realm of biomedical sensing, silicon has demonstrated significant potential to enhance human health outcomes while simultaneously driving progress in microfabrication techniques for multifunctional device development. The review systematically examines the versatile roles of silicon in the fabrication of electrodes, sensing channels, and substrates. Silicon electrodes are widely used in electrochemical biosensors for glucose monitoring and neural activity recording, while sensing channels in field-effect transistor biosensors enable the detection of cancer biomarkers and small molecules. Porous silicon substrates are applied in optical biosensors for label-free protein and pathogen detection. Key challenges in this field, including the interaction of silicon with biomolecules, the economic barriers to miniaturization, and issues related to signal stability, are critically analyzed. Proposed strategies to address these challenges and improve sensor functionality and reliability are also discussed. Furthermore, the article explores emerging developments in silicon-based biosensors, particularly their integration into wearable technologies. The pivotal role of artificial intelligence (AI) in enhancing the performance, functionality, and real-time capabilities of these sensors is also highlighted. This review provides a comprehensive overview of the current state, challenges, and future directions in the field of silicon-based biomedical sensing technologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinsik Kim
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea; (W.M.); (J.S.); (S.K.); (F.A.); (E.C.); (H.L.)
| |
Collapse
|
3
|
Wang Y, Talukder N, Nunna BB, Lu M, Tong X, Lee ES. Enhanced Stability and Sensitivity for CA-125 Detection Under Microfluidic Shear Flow Using Polyethylene Glycol-Coated Biosensor. ACS OMEGA 2025; 10:692-702. [PMID: 39829443 PMCID: PMC11740243 DOI: 10.1021/acsomega.4c07596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 01/22/2025]
Abstract
The microfluidic-based point-of-care (POC) diagnostic tool has garnered significant interest in recent years, offering rapid and cost-effective disease detection. There is a growing trend toward integrating microfluidic platforms with biosensors, aligning lab-on-a-chip technologies with POC diagnostic devices. Despite numerous efforts to incorporate biosensors into microfluidic systems, researchers have performed very limited investigations on the stability of biomarker detection when biosensors operate under microfluidic shear flow conditions. Gold nanoparticles (AuNPs) are a widely employed material in capacitive biosensors for antibody immobilization and sensitivity enhancement. However, AuNPs have limitations in providing stable detection of biomarkers within microfluidic shear flow due to their agglomeration nature. This study addresses these limitations by employing 2 kDa polyethylene glycol (PEG) as an intermediate biofunctional layer to immobilize CA-125 antibodies on gold-interdigitated electrodes for the stable and accurate detection of CA-125 antigens. The stabilities and sensitivities of AuNPs and PEG-coated biosensors are evaluated under both static drop and microfluidic shear flow conditions for CA-125 antigen detection. The experimental results demonstrate a capacitive signal response (5660 pF at 10 kHz) 2.2 times higher using the PEG-coated biosensor than the signal (2551 pF at 10 kHz) measured by the AuNP-coated biosensor in the detection of CA-125 antigen-antibody conjugation under static drop conditions, indicating the higher sensitivity of the PEG-coated biosensor. Additionally, the PEG-coated biosensor exhibits better consistency for the CA-125 antigen detection between static drop and microfluidic shear flow conditions (Cp decrease in percentage (ΔCp%↓) = 2.9% at 10 kHz) compared to the electrical signals measured using the AuNP-coated biosensor (ΔCp%↓ = 32.4% at 10 kHz), which suggests that the PEG-coated biosensor demonstrates higher stability for CA-125 antigen detection under microfluidic shear flow conditions. With these significant improvements brought by the PEG-coated biosensor, especially under microfluidic conditions, a substantial hurdle in developing electrical biosensors for POC diagnostic applications has been overcome, expediting further advancements in the field.
Collapse
Affiliation(s)
- Yudong Wang
- Advanced
Energy Systems and Microdevices Laboratory, Department of Mechanical
and Industrial Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Niladri Talukder
- Advanced
Energy Systems and Microdevices Laboratory, Department of Mechanical
and Industrial Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Bharath Babu Nunna
- Department
of Mechanical Engineering, Weber State University, Ogden, Utah 84408, United States
- Division
of Engineering in Medicine, Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Harvard
University, Cambridge, Massachusetts 02139, United States
- Harvard Graduate
School of Education, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Ming Lu
- The
Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Xiao Tong
- The
Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Eon Soo Lee
- Advanced
Energy Systems and Microdevices Laboratory, Department of Mechanical
and Industrial Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
4
|
Huang L, Zhang C, Ye R, Yan B, Zhou X, Xu W, Guo J. Capacitive biosensors for label-free and ultrasensitive detection of biomarkers. Talanta 2024; 266:124951. [PMID: 37487266 DOI: 10.1016/j.talanta.2023.124951] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
Capacitive biosensors are label-free capacitors that can detect biomarkers with the outstanding advantages of simplicity, low cost, and ultrahigh sensitivity. A typical capacitive biosensor consists of a bioreceptor and a transducer, where the bioreceptor captures the biomarker to form a bioreceptor/biomarker conjugate and the transducer generates a detectable signal. In general, antibodies, aptamers, or proteins are exploited as the bioreceptor, while various electrodes including carbon electrodes (CEs), gold electrodes (AuEs), or interdigitated electrodes (IDEs) may serve as the transducer. Because the formation of bioreceptor/biomarker conjugates often leads to a change in capacitance, the capacitive signal is then employed for biomarker detection. This review summarizes recent advances in capacitive biosensors for the detection of biomarkers over the last five years. With a focus on the three common types of bioreceptors, i.e., antibodies, aptamers, and proteins, capacitive biosensors using CEs, AuEs, and IDEs as the transducers are discussed in detail. The immobilization of bioreceptors and signal amplification strategies are described to provide a robust overview of capacitive biosensors for biomarker detection. In addition, analytical methods and future prospects are given to support the application of capacitive biosensors.
Collapse
Affiliation(s)
- Lei Huang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China; School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China
| | - Run Ye
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China
| | - Bin Yan
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China.
| | - Xiaojia Zhou
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China.
| | - Wenbo Xu
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinhong Guo
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Jalilian F, Valeo C, Chu A, Bhiladvala R. Sensors for Biomass Monitoring in Vegetated Green Infrastructure: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:6404. [PMID: 37514698 PMCID: PMC10385927 DOI: 10.3390/s23146404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Bioretention cells, or rain gardens, can effectively reduce many contaminants in polluted stormwater through phytoremediation and bioremediation. The vegetated soil structure develops bacterial communities both within the soil and around the vegetation roots that play a significant role in the bioremediative process. Prediction of a bioretention cell's performance and efficacy is essential to the design process, operation, and maintenance throughout the design life of the cell. One of the key hurdles to these important issues and, therefore, to appropriate designs, is the lack of effective and inexpensive devices for monitoring and quantitatively assessing this bioremediative process in the field. This research reviews the available technologies for biomass monitoring and assesses their potential for quantifying bioremediative processes in rain gardens. The methods are discussed based on accuracy and calibration requirements, potential for use in situ, in real-time, and for characterizing biofilm formation in media that undergoes large fluctuations in nutrient supply. The methods discussed are microscopical, piezoelectric, fiber-optic, thermometric, and electrochemical. Microscopical methods are precluded from field use but would be essential to the calibration and verification of any field-based sensor. Piezoelectric, fiber-optic, thermometric, and some of the electrochemical-based methods reviewed come with limitations by way of support mechanisms or insufficient detection limits. The impedance-based electrochemical method shows the most promise for applications in rain gardens, and it is supported by microscopical methods for calibration and validation.
Collapse
Affiliation(s)
- Farhad Jalilian
- Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Caterina Valeo
- Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Angus Chu
- Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Rustom Bhiladvala
- Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
6
|
Scarsella M, Barile G, Stornelli V, Safari L, Ferri G. A Survey on Current-Mode Interfaces for Bio Signals and Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:3194. [PMID: 36991905 PMCID: PMC10058727 DOI: 10.3390/s23063194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
In this study, a review of second-generation voltage conveyor (VCII) and current conveyor (CCII) circuits for the conditioning of bio signals and sensors is presented. The CCII is the most known current-mode active block, able to overcome some of the limitations of the classical operational amplifier, which provides an output current instead of a voltage. The VCII is nothing more than the dual of the CCII, and for this reason it enjoys almost all the properties of the CCII but also provides an easy-to-read voltage as an output signal. A broad set of solutions for relevant sensors and biosensors employed in biomedical applications is considered. This ranges from the widespread resistive and capacitive electrochemical biosensors now used in glucose and cholesterol meters and in oximetry to more specific sensors such as ISFETs, SiPMs, and ultrasonic sensors, which are finding increasing applications. This paper also discusses the main benefits of this current-mode approach over the classical voltage-mode approach in the realization of readout circuits that can be used as electronic interfaces for different types of biosensors, including higher circuit simplicity, better low-noise and/or high-speed performance, and lower signal distortion and power consumption.
Collapse
|
7
|
Georgas A, Nestoras L, Kanaris AI, Angelopoulos S, Ferraro A, Hristoforou E. Packaging and Optimization of a Capacitive Biosensor and Its Readout Circuit. SENSORS (BASEL, SWITZERLAND) 2023; 23:765. [PMID: 36679562 PMCID: PMC9865001 DOI: 10.3390/s23020765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
In pipeline production, there is a considerable distance between the moment when the operation principle of a biosensor will be verified in the laboratory until the moment when it can be used in real conditions. This distance is often covered by an optimization and packaging process. This article described the packaging and optimization of a SARS-CoV-2 biosensor, as well as the packaging of its electronic readout circuit. The biosensor was packed with a photosensitive tape, which forms a protective layer and is patterned in a way to form a well in the sensing area. The well is meant to limit the liquid diffusion, thereby reducing the measurement error. Subsequently, a connector between the biosensor and its readout circuit was designed and 3D-printed, ensuring the continuous and easy reading of the biosensor. In the last step, a three-dimensional case was designed and printed, thus protecting the circuit from any damage, and allowing its operation in real conditions.
Collapse
|
8
|
Sampaio I, Takeuti NNK, Gusson B, Machado TR, Zucolotto V. Capacitive immunosensor for COVID-19 diagnosis. MICROELECTRONIC ENGINEERING 2023; 267:111912. [PMID: 36406866 PMCID: PMC9643278 DOI: 10.1016/j.mee.2022.111912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
COVID-19 has spread worldwide and early detection has been the key to controlling its propagation and preventing severe cases. However, diagnostic devices must be developed using different strategies to avoid a shortage of supplies needed for tests' fabrication caused by their large demand in pandemic situations. Furthermore, some tropical and subtropical countries are also facing epidemics of Dengue and Zika, viruses with similar symptoms in early stages and cross-reactivity in serological tests. Herein, we reported a qualitative immunosensor based on capacitive detection of spike proteins of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19. The sensor device exhibited a good signal-to-noise ratio (SNR) at 1 kHz frequency, with an absolute value of capacitance variation significantly smaller for Dengue and Zika NS1 proteins (|ΔC| = 1.5 ± 1.0 nF and 1.8 ± 1.0 nF, respectively) than for the spike protein (|ΔC| = 7.0 ± 1.8 nF). Under the optimized conditions, the established biosensor is able to indicate that the sample contains target proteins when |ΔC| > 3.8 nF, as determined by the cut-off value (CO). This immunosensor was developed using interdigitated electrodes which require a measurement system with a simple electrical circuit that can be miniaturized to enable point-of-care detection, offering an alternative for COVID-19 diagnosis, especially in areas where there is also a co-incidence of Zika and Dengue.
Collapse
Affiliation(s)
- Isabella Sampaio
- GNano - Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo CP 369, 13560-970 São Carlos, SP, Brazil
| | - Nayla Naomi Kusimoto Takeuti
- GNano - Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo CP 369, 13560-970 São Carlos, SP, Brazil
| | - Beatriz Gusson
- GNano - Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo CP 369, 13560-970 São Carlos, SP, Brazil
| | - Thales Rafael Machado
- GNano - Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo CP 369, 13560-970 São Carlos, SP, Brazil
| | - Valtencir Zucolotto
- GNano - Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo CP 369, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
9
|
Robin P, Gerber-Lemaire S. Design and Preparation of Sensing Surfaces for Capacitive Biodetection. BIOSENSORS 2022; 13:17. [PMID: 36671852 PMCID: PMC9856139 DOI: 10.3390/bios13010017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Despite their high sensitivity and their suitability for miniaturization, biosensors are still limited for clinical applications due to the lack of reproducibility and specificity of their detection performance. The design and preparation of sensing surfaces are suspected to be a cause of these limitations. Here, we first present an updated overview of the current state of use of capacitive biosensors in a medical context. Then, we summarize the encountered strategies for the fabrication of capacitive biosensing surfaces. Finally, we describe the characteristics which govern the performance of the sensing surfaces, along with recent developments that were suggested to overcome their main current limitations.
Collapse
|
10
|
Jiménez-González M, Gómez-Guzmán J, Antaño R, Ortiz-Frade L. THERMODYNAMIC STUDY OF SUPEROXIDE DISMUTASE ADSORPTION PROCESSES OVER CYSTEINE-GOLD ELECTRODE. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Mondal R, Dam P, Chakraborty J, Paret ML, Katı A, Altuntas S, Sarkar R, Ghorai S, Gangopadhyay D, Mandal AK, Husen A. Potential of nanobiosensor in sustainable agriculture: the state-of-art. Heliyon 2022; 8:e12207. [PMID: 36578430 PMCID: PMC9791828 DOI: 10.1016/j.heliyon.2022.e12207] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/28/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
A rapid surge in world population leads to an increase in worldwide demand for agricultural products. Nanotechnology and its applications in agriculture have appeared as a boon to civilization with enormous potential in transforming conventional farming practices into redefined farming activities. Low-cost portable nanobiosensors are the most effective diagnostic tool for the rapid on-site assessment of plant and soil health including plant biotic and abiotic stress level, nutritional status, presence of hazardous chemicals in soil, etc. to maintain proper farming and crop productivity. Nanobiosensors detect physiological signals and convert them into standardized detectable signals. In order to achieve a reliable sensing analysis, nanoparticles can aid in signal amplification and sensor sensitivity by lowering the detection limit. The high selectivity and sensitivity of nanobiosensors enable early detection and management of targeted abnormalities. This study identifies the types of nanobiosensors according to the target application in agriculture sector.
Collapse
Affiliation(s)
- Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Joydeep Chakraborty
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Mathew L. Paret
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy, FL 32351, USA
- Plant Pathology Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Ahmet Katı
- Department of Biotechnology, University of Health Sciences Turkey, 34668, Istanbul, Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, 34668, Istanbul, Turkey
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, 34668, Istanbul, Turkey
- Department of Tissue Engineering, University of Health Sciences Turkey, 34668, Istanbul, Turkey
| | - Ranit Sarkar
- Department of Microbiology, Orissa University of Agriculture & Technology, Bhubaneswar, Odisha 751003, India
| | - Suvankar Ghorai
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Debnirmalya Gangopadhyay
- Silkworm Genetics and Breeding Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Azamal Husen
- Wolaita Sodo University, PO Box 138, Wolaita, Ethiopia
| |
Collapse
|
12
|
Mwanza D, Adeniyi O, Tesfalidet S, Nyokong T, Mashazi P. Capacitive label-free ultrasensitive detection of PSA on a covalently attached monoclonal anti-PSA antibody gold surface. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Chen H, Guo J, Wang Y, Dong W, Zhao Y, Sun L. Bio-Inspired Imprinting Materials for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202038. [PMID: 35908804 PMCID: PMC9534966 DOI: 10.1002/advs.202202038] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Indexed: 05/27/2023]
Abstract
Inspired by the recognition mechanism of biological molecules, molecular imprinting techniques (MITs) are imparted with numerous merits like excellent stability, recognition specificity, adsorption properties, and easy synthesis processes, and thus broaden the avenues for convenient fabrication protocol of bio-inspired molecularly imprinted polymers (MIPs) with desirable functions to satisfy the extensive demands of biomedical applications. Herein, the recent research progress made with respect to bio-inspired imprinting materials is discussed in this review. First, the underlying mechanism and basic components of a typical molecular imprinting procedure are briefly explored. Then, emphasis is put on the introduction of diverse MITs and novel bio-inspired imprinting materials. Following these two sections, practical applications of MIPs in the field of biomedical science are focused on. Last but not least, perspectives on the remaining challenges and future development of bio-inspired imprinting materials are presented.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Jiahui Guo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211800P. R. China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| |
Collapse
|
14
|
Nasir NSA, Deivasigamani R, Wee MFMR, Hamzah AA, Zaid MHM, Rahim MKA, Kayani AA, Abdulhameed A, Buyong MR. Protein Albumin Manipulation and Electrical Quantification of Molecular Dielectrophoresis Responses for Biomedical Applications. MICROMACHINES 2022; 13:mi13081308. [PMID: 36014230 PMCID: PMC9415755 DOI: 10.3390/mi13081308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 05/17/2023]
Abstract
Research relating to dielectrophoresis (DEP) has been progressing rapidly through time as it is a strong and controllable technique for manipulation, separation, preconcentration, and partitioning of protein. Extensive studies have been carried out on protein DEP, especially on Bovine Serum Albumin (BSA). However, these studies involve the usage of dye and fluorescent probes to observe DEP responses as the physical properties of protein albumin molecular structure are translucent. The use of dye and the fluorescent probe could later affect the protein's physiology. In this article, we review three methods of electrical quantification of DEP responses: electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and capacitance measurement for protein BSA DEP manipulation. The correlation of these methods with DEP responses is further discussed. Based on the observations on capacitance measurement, it can be deduced that the electrical quantifying method is reliable for identifying DEP responses. Further, the possibility of manipulating the protein and electrically quantifying DEP responses while retaining the original physiology of the protein and without the usage of dye or fluorescent probe is discussed.
Collapse
Affiliation(s)
- Nur Shahira Abdul Nasir
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Revathy Deivasigamani
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - M. F. Mohd Razip Wee
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Azrul Azlan Hamzah
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Mohd Hazani Mat Zaid
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | | | - Aminuddin Ahmad Kayani
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Abdullah Abdulhameed
- Department of Electronics & Communication Engineering, Faculty of Engineering & Petroleum, Hadhramout University, Al-Mukalla 50512, Hadhramout, Yemen
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Correspondence: ; Tel.: +60-12-385-2713
| |
Collapse
|
15
|
Puiu M, Bala C. Affinity Assays for Cannabinoids Detection: Are They Amenable to On-Site Screening? BIOSENSORS 2022; 12:608. [PMID: 36005003 PMCID: PMC9405638 DOI: 10.3390/bios12080608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022]
Abstract
Roadside testing of illicit drugs such as tetrahydrocannabinol (THC) requires simple, rapid, and cost-effective methods. The need for non-invasive detection tools has led to the development of selective and sensitive platforms, able to detect phyto- and synthetic cannabinoids by means of their main metabolites in breath, saliva, and urine samples. One may estimate the time passed from drug exposure and the frequency of use by corroborating the detection results with pharmacokinetic data. In this review, we report on the current detection methods of cannabinoids in biofluids. Fluorescent, electrochemical, colorimetric, and magnetoresistive biosensors will be briefly overviewed, putting emphasis on the affinity formats amenable to on-site screening, with possible applications in roadside testing and anti-doping control.
Collapse
Affiliation(s)
- Mihaela Puiu
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| | - Camelia Bala
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
- Department of Analytical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| |
Collapse
|
16
|
Aptamer-Based Biosensors for the Analytical Determination of Bisphenol A in Foodstuffs. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bisphenol A (BPA) is a synthetic compound utilized to manufacture plastics for Food Contact Materials (FCMs) or resins for the inside of food containers. Since it was recognized as an Endocrine-Disrupting Chemical (EDC), its implications in pathologies, such as cancer, obesity, diabetes, immune system alterations, and developmental and mental disorders, have been widely documented. Diet is considered the main source of exposure for humans to BPA. Consequently, continuous monitoring of the levels of BPA in foods is necessary to assess the risk associated with its consumption in one’s diet. So far, many reviews have been published on biosensors and aptamer-based biosensors, but none of them focus on their applications in their analyses of bisphenols in food matrices. With this review, the authors aim to fill this gap and to take a snapshot of the current state-of-the-art research on aptasensors designed to detect BPA in food matrices. Given that a new TDI value has recently been proposed by the EFSA (0.04 ng/kg), the search for new sensitive tools for the quantitative analysis of BPA is more topical and urgent than ever. From this perspective, aptasensors prove to be a good alternative to traditional analytical techniques for determining BPA levels in food.
Collapse
|
17
|
Luka G, Samiei E, Tasnim N, Dalili A, Najjaran H, Hoorfar M. Comprehensive review of conventional and state-of-the-art detection methods of Cryptosporidium. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126714. [PMID: 34325293 DOI: 10.1016/j.jhazmat.2021.126714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Cryptosporidium is a critical waterborne protozoan pathogen found in water resources that have been a major cause of death and serious illnesses worldwide, costing millions of dollars annually for its detection and treatment. Over the past several decades, substantial efforts have been made towards developing techniques for the detection of Cryptosporidium. Early diagnostic techniques were established based on the existing tools in laboratories, such as microscopes. Advancements in fluorescence microscopy, immunological, and molecular techniques have led to the development of several kits for the detection of Cryptosporidium spp. However, these methods have several limitations, such as long processing times, large sample volumes, the requirement for bulky and expensive laboratory tools, and the high cost of reagents. There is an urgent need to improve these existing techniques and develop low-cost, portable and rapid detection tools for applications in the water quality industry. In this review, we compare recent advances in nanotechnology, biosensing and microfluidics that have facilitated the development of sophisticated tools for the detection of Cryptosporidium spp.Finally, we highlight the advantages and disadvantages, of these state-of-the-art detection methods compared to current analytical methodologies and discuss the need for future developments to improve such methods for detecting Cryptosporidium in the water supply chain to enable real-time and on-site monitoring in water resources and remote areas.
Collapse
Affiliation(s)
- George Luka
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, BC V1V1V7, Canada.
| | - Ehsan Samiei
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
| | - Nishat Tasnim
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, BC V1V1V7, Canada.
| | - Arash Dalili
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, BC V1V1V7, Canada.
| | - Homayoun Najjaran
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, BC V1V1V7, Canada.
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, 3333 University Way, Kelowna, BC V1V1V7, Canada.
| |
Collapse
|
18
|
Wang YQ, Wu PC, Lee MJ, Lee W. Photocontrolled capacitive biosensor based on photoresponsive azobenzene-doped liquid crystals for label-free protein assay. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Luka GS, Nowak E, Toyata QR, Tasnim N, Najjaran H, Hoorfar M. Portable on-chip colorimetric biosensing platform integrated with a smartphone for label/PCR-free detection of Cryptosporidium RNA. Sci Rep 2021; 11:23192. [PMID: 34853388 PMCID: PMC8636559 DOI: 10.1038/s41598-021-02580-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Cryptosporidium, a protozoan pathogen, is a leading threat to public health and the economy. Herein, we report the development of a portable, colorimetric biosensing platform for the sensitive, selective and label/PCR-free detection of Cryptosporidium RNA using oligonucleotides modified gold nanoparticles (AuNPs). A pair of specific thiolated oligonucleotides, complementary to adjacent sequences on Cryptosporidium RNA, were attached to AuNPs. The need for expensive laboratory-based equipment was eliminated by performing the colorimetric assay on a micro-fabricated chip in a 3D-printed holder assembly. A smartphone camera was used to capture an image of the color change for quantitative analysis. The detection was based on the aggregation of the gold nanoparticles due to the hybridization between the complementary Cryptosporidium RNA and the oligonucleotides immobilized on the AuNPs surface. In the complementary RNA's presence, a distinctive color change of the AuNPs (from red to blue) was observed by the naked eye. However, in the presence of non-complementary RNA, no color change was observed. The sensing platform showed wide linear responses between 5 and 100 µM with a low detection limit of 5 µM of Cryptosporidium RNA. Additionally, the sensor developed here can provide information about different Cryptosporidium species present in water resources. This cost-effective, easy-to-use, portable and smartphone integrated on-chip colorimetric biosensor has great potential to be used for real-time and portable POC pathogen monitoring and molecular diagnostics.
Collapse
Affiliation(s)
- George S Luka
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ephraim Nowak
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Quin Robert Toyata
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Nishat Tasnim
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Homayoun Najjaran
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Mina Hoorfar
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
20
|
Bint E Naser SF, Su H, Liu HY, Manzer ZA, Chao Z, Roy A, Pappa AM, Salleo A, Owens RM, Daniel S. Detection of Ganglioside-Specific Toxin Binding with Biomembrane-Based Bioelectronic Sensors. ACS APPLIED BIO MATERIALS 2021; 4:7942-7950. [DOI: 10.1021/acsabm.1c00878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samavi Farnush Bint E Naser
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Hui Su
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Han-Yuan Liu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zachary A. Manzer
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zhongmou Chao
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Arpita Roy
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Anna-Maria Pappa
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Róisín M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
21
|
Chen C, Gopinath SCB, Anbu P. Longitudinal Zeolite-Iron Oxide Nanocomposite Deposited Capacitance Biosensor for Interleukin-3 in Sepsis Detection. NANOSCALE RESEARCH LETTERS 2021; 16:68. [PMID: 33900481 PMCID: PMC8076396 DOI: 10.1186/s11671-021-03527-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Sepsis is an extreme condition involving a physical response to severe microbial infection and causes fatal and life-threatening issues. Sepsis generates during the chemicals release with the immune system into the bloodstream for fighting against an infection, which causes the inflammation and leads to the medical emergency. A complexed longitudinal zeolite and iron oxide nanocomposite was extracted from coal mine fly ash and utilized to improve the surface characteristics of the capacitance biosensor to identify sepsis attacks. Anti-interleukin-3 (anti-IL-3) antibody was attached to the zeolite- and iron oxide-complexed capacitance electrode surface through an amine linker to interact with the sepsis biomarker IL-3. The morphological and chemical components of the nanocomplex were investigated by FESEM, FETEM, and EDX analyses. At approximately 30 nm, the longitudinal zeolite and iron oxide nanocomposite aided in attaining the limit of IL-3 detection of 3 pg/mL on the linear curve, with a regression coefficient (R2) of 0.9673 [y = 1.638x - 1.1847]. A lower detection limit was achieved in the dose-dependent range (3-100 pg/mL) due to the higher amount of antibody immobilization on the sensing surface due to the nanomaterials and the improved surface current. Furthermore, control experiments with relevant biomolecules did not show capacitance changes, and spiked IL-3 in human serum increased capacitance, indicating the specific and selective detection of IL-3. This study identifies and quantifies IL-3 via potentially useful methods and helps in diagnosing sepsis attack.
Collapse
Affiliation(s)
- Chao Chen
- Department of Intensive Care Units, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450000, Henan, China
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia.
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia.
| | - Periasamy Anbu
- Department of Biological Engineering, College of Engineering, Inha University, Incheon, 402-751, Republic of Korea
| |
Collapse
|
22
|
Chen L, Xie W, Luo Y, Ding X, Fu B, Gopinath SCB, Xiong Y. Sensitive silica-alumina modified capacitive non-Faradaic glucose sensor for gestational diabetes. Biotechnol Appl Biochem 2021; 69:840-847. [PMID: 33786878 DOI: 10.1002/bab.2155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023]
Abstract
A highly sensitive silica-alumina (Si-Al)-modified capacitive non-Faradaic glucose biosensor was introduced to monitor gestational diabetes. Glucose oxidase (GOx) was attached to the Si-Al electrode surface as the probe through amine-modification followed by glutaraldehyde premixed GOx as aldehyde-amine chemistry. This Si-Al (∼50 nm) modified electrode surface has increased the current flow upon binding of GOx with glucose. Capacitance values were increased by increasing the glucose concentrations. A mean capacitance value was plotted and the detection limit was found as 0.03 mg/mL with the regression coefficient value, R² = 0.9782 [y = 0.8391x + 1.338] on the linear range between 0.03 and 1 mg/mL. Further, a biofouling experiment with fructose and galactose did not increase the capacitance, indicating the specific glucose detection. This Si-Al-modified capacitance sensor detects a lower level of glucose presence and helps in monitoring gestational diabetes.
Collapse
Affiliation(s)
- Lizhen Chen
- Department of Obstetrics and Gynecology, Jingdezhen First People's Hospital, Jingdezhen, Jiangxi Province, China
| | - Wenyang Xie
- Department of Gynecological Oncology, Jiujiang Maternal and Child Health Hospital, Jiujiang, Jiangxi Province, China
| | - Yao Luo
- Nanchang University, Nanchang City, Jiangxi Province, China
| | - Xiaolan Ding
- Department of Gynecology of Traditional Chinese Medicine, Binzhou Hospital of Traditional Chinese Medicine, Binzhou, Shandong, China
| | - Bing Fu
- Nanchang University, Nanchang City, Jiangxi Province, China
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Yuanhuan Xiong
- Department of Gynecology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi Province, China
| |
Collapse
|
23
|
De Rycke E, Foubert A, Dubruel P, Bol'hakov OI, De Saeger S, Beloglazova N. Recent advances in electrochemical monitoring of zearalenone in diverse matrices. Food Chem 2021; 353:129342. [PMID: 33714123 DOI: 10.1016/j.foodchem.2021.129342] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
The current manuscript summarizes different electrochemical sensing systems developed within the last 5 years for the detection of zearalenone (ZEN) in diverse matrices such as food, feed, and biofluids. ZEN is one of the most prevalent non-steroidal mycotoxins that is often found in pre- and post-harvest crops. Crops contamination with ZEN and animal exposure to it via contaminated feed, is a global health and economic concern. The European Union has established various preventive programs to control ZEN contamination, and regulations on the maximum levels of ZEN in food and feed. Electrochemical (bio)sensors are a very promising alternative to sensitive but sophisticated and expensive chromatographic techniques. In the current review, recent developments towards electrochemical sensing of ZEN, sorted by type of transducer, their design, development, and approbation/validation are discussed, and the use of specialized electrochemical instrumentation is highlighted.
Collapse
Affiliation(s)
- Esther De Rycke
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; Polymer Chemistry & Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Building S4-Bis, B-9000 Ghent, Belgium
| | - Astrid Foubert
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Building S4-Bis, B-9000 Ghent, Belgium
| | - Oleg I Bol'hakov
- Nanotechnology Education and Research Center, South Ural State University, 454080 Chelyabinsk, Russia; N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Gauteng, South Africa
| | - Natalia Beloglazova
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; Nanotechnology Education and Research Center, South Ural State University, 454080 Chelyabinsk, Russia.
| |
Collapse
|
24
|
Grasso S, Santonico M, Pennazza G, Zompanti A, Piccoli A, Bisogno T, Maccarrone M. BIONOTE as an Innovative Biosensor for Measuring Endocannabinoid Levels. SENSORS 2021; 21:s21020489. [PMID: 33445599 PMCID: PMC7826573 DOI: 10.3390/s21020489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/29/2022]
Abstract
In this study, a novel approach was developed to quantify endocannabinoids (eCBs), and was based on the liquid biosensor BIONOTE. This device is composed of a probe that can be immersed in a solution, and an electronic interface that can record a current related to the oxy-reductive reactions occurring in the sample. The two most representative members of eCBs have been analysed in vitro by BIONOTE: anandamide (N-arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol (2-AG). Bovine serum albumin was used to functionalize the probe and improve the sensibility of the whole analytical system. We show that BIONOTE is able to detect both AEA and 2-AG at concentrations in the low nanomolar range, and to discriminate between these eCBs and their moieties arachidonic acid, ethanolamine and glycerol. Notably, BIONOTE distinguished these five different molecules, and it was also able to quantify AEA in human plasma. Although this is just a proof-of-concept study, we suggest BIONOTE as a cheap and user-friendly prototype sensor for high throughput quantitation of eCB content in biological matrices, with an apparent diagnostic potential for tomorrow’s medicine.
Collapse
Affiliation(s)
- Simone Grasso
- Department of Science and Technology for Humans and the Environment, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (S.G.); (M.S.)
| | - Marco Santonico
- Department of Science and Technology for Humans and the Environment, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (S.G.); (M.S.)
| | - Giorgio Pennazza
- Department of Engineering, Campus Bio-Medico University of Rome, 00128 Rome, Italy;
- Correspondence: (G.P.); (M.M.)
| | - Alessandro Zompanti
- Department of Engineering, Campus Bio-Medico University of Rome, 00128 Rome, Italy;
| | - Alessandra Piccoli
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy;
| | - Tiziana Bisogno
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy;
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- European Center for Brain Research, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
- Correspondence: (G.P.); (M.M.)
| |
Collapse
|
25
|
Kazemifard N, Ensafi AA, Dehkordi ZS. A review of the incorporation of QDs and imprinting technology in optical sensors – imprinting methods and sensing responses. NEW J CHEM 2021. [DOI: 10.1039/d1nj01104a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review aims to cover the simultaneous method of using molecularly imprinted technology and quantum dots (QDs) as well as its application in the field of optical sensors.
Collapse
Affiliation(s)
- Nafiseh Kazemifard
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Ali A. Ensafi
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | | |
Collapse
|
26
|
Zamfir LG, Puiu M, Bala C. Advances in Electrochemical Impedance Spectroscopy Detection of Endocrine Disruptors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6443. [PMID: 33187314 PMCID: PMC7697587 DOI: 10.3390/s20226443] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023]
Abstract
Endocrine disruptors (EDs) are contaminants that may mimic or interfere with the body's hormones, hampering the normal functions of the endocrine system in humans and animals. These substances, either natural or man-made, are involved in development, breeding, and immunity, causing a wide range of diseases and disorders. The traditional detection methods such as enzyme linked immunosorbent assay (ELISA) and chromatography are still the golden techniques for EDs detection due to their high sensitivity, robustness, and accuracy. Nevertheless, they have the disadvantage of being expensive and time-consuming, requiring bulky equipment or skilled personnel. On the other hand, early stage detection of EDs on-the-field requires portable devices fulfilling the Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment free, Deliverable to end users (ASSURED) norms. Electrochemical impedance spectroscopy (EIS)-based sensors can be easily implemented in fully automated, sample-to-answer devices by integrating electrodes in microfluidic chips. The latest achievements on EIS-based sensors are discussed and critically assessed.
Collapse
Affiliation(s)
- Lucian-Gabriel Zamfir
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania; (L.-G.Z.); (M.P.)
| | - Mihaela Puiu
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania; (L.-G.Z.); (M.P.)
| | - Camelia Bala
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania; (L.-G.Z.); (M.P.)
- Department of Analytical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| |
Collapse
|
27
|
Lu Y, Yang Q, Wu J. Recent advances in biosensor-integrated enrichment methods for preconcentrating and detecting the low-abundant analytes in agriculture and food samples. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Yarman A, Scheller FW. How Reliable Is the Electrochemical Readout of MIP Sensors? SENSORS (BASEL, SWITZERLAND) 2020; 20:E2677. [PMID: 32397160 PMCID: PMC7248831 DOI: 10.3390/s20092677] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 01/15/2023]
Abstract
Electrochemical methods offer the simple characterization of the synthesis of molecularly imprinted polymers (MIPs) and the readouts of target binding. The binding of electroinactive analytes can be detected indirectly by their modulating effect on the diffusional permeability of a redox marker through thin MIP films. However, this process generates an overall signal, which may include nonspecific interactions with the nonimprinted surface and adsorption at the electrode surface in addition to (specific) binding to the cavities. Redox-active low-molecular-weight targets and metalloproteins enable a more specific direct quantification of their binding to MIPs by measuring the faradaic current. The in situ characterization of enzymes, MIP-based mimics of redox enzymes or enzyme-labeled targets, is based on the indication of an electroactive product. This approach allows the determination of both the activity of the bio(mimetic) catalyst and of the substrate concentration.
Collapse
Affiliation(s)
- Aysu Yarman
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Frieder W. Scheller
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| |
Collapse
|
29
|
Biomembrane-based organic electronic devices for ligand–receptor binding studies. Anal Bioanal Chem 2020; 412:6265-6273. [DOI: 10.1007/s00216-020-02449-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
|
30
|
Liang J, Wang F, Lin X, Qi H, Wu J. Serologic Diagnosis of Taenia Solium Cysticercosis through Linear Unmixing Analysis of Biosignals from ACEK Capacitive Sensing Method. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2261-2264. [PMID: 31946350 DOI: 10.1109/embc.2019.8856493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cysticercosis is a parasitic infection caused by adult tapeworms, and it constantly plagues the livelihoods of people from subsistence farming communities in developing countries. Diagnosis of Cysticercosis typically requires both central nervous system imaging and serological testing. The most common methods in serological testing are Enzyme-linked Immunosorbent Assay (ELISA) and Enzyme Immuno-electrotransfer Blot (EITB). Both ELISA and EITB methods are excessively time-consuming and labor-intensive. Recent research indicates that a shorter assay time and/or higher sensitivity can be achieved by integrating alternate current electrokinetics (ACEK) with biosensing. However, the raw time-series data is very noisy and the size of the dataset is extremely small, which would bring two potential challenges. On one hand, traditional statistical methods cannot extract features robust enough for high sensitivity as well as high specificity. On the other hand, the small data size limits the usage of automatic feature extractors such as deep neural networks. In this paper, we propose a linear unmixing based approach by exploiting the possibility that the time-series biological signals can be represented as linear combinations of source signals. This paper makes distinctive contributions to the field of bio-signal by introducing the unmixing model from the image processing domain to the time-series domain. Experimental results on the classification of Cysticercosis using 123 samples demonstrate the robustness and superior performance of the linear unmixing method over other conventional classifiers in handling small datasets.
Collapse
|
31
|
Brosel-Oliu S, Abramova N, Uria N, Bratov A. Impedimetric transducers based on interdigitated electrode arrays for bacterial detection - A review. Anal Chim Acta 2019; 1088:1-19. [PMID: 31623704 DOI: 10.1016/j.aca.2019.09.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/29/2019] [Accepted: 09/10/2019] [Indexed: 01/31/2023]
Abstract
Application of the impedance spectroscopy technique to detection of bacteria has advanced considerably over the last decade. This is reflected by the large amount of publications focused on basic research and applications of impedance biosensors. Employment of modern technologies to significantly reduce dimension of impedimetric devices enable on-chip integration of interdigitated electrode arrays for low-cost and easy-to-use sensors. This review is focused on publications dealing with interdigitated electrodes as a transducer unit and different bacteria detection systems using these devices. The first part of the review deals with the impedance technique principles, paying special attention to the use of interdigitated electrodes, while the main part of this work is focused on applications ranging from bacterial growth monitoring to label-free specific bacteria detection.
Collapse
Affiliation(s)
- Sergi Brosel-Oliu
- Departament de Micro-Nano Sistemes, BIOMEMS Group, Institut Microelectrònica de Barcelona (IMB-CNM), CSIC, 08290, Bellaterra, Spain
| | - Natalia Abramova
- Departament de Micro-Nano Sistemes, BIOMEMS Group, Institut Microelectrònica de Barcelona (IMB-CNM), CSIC, 08290, Bellaterra, Spain; Lab. Artificial Sensors Syst., ITMO University, Kronverskiy pr.49, 197101, St.Petersburg, Russia
| | - Naroa Uria
- Departament de Micro-Nano Sistemes, BIOMEMS Group, Institut Microelectrònica de Barcelona (IMB-CNM), CSIC, 08290, Bellaterra, Spain
| | - Andrey Bratov
- Departament de Micro-Nano Sistemes, BIOMEMS Group, Institut Microelectrònica de Barcelona (IMB-CNM), CSIC, 08290, Bellaterra, Spain.
| |
Collapse
|
32
|
Tarannum N, Hendrickson OD, Khatoon S, Zherdev AV, Dzantiev BB. Molecularly imprinted polymers as receptors for assays of antibiotics. Crit Rev Anal Chem 2019; 50:291-310. [DOI: 10.1080/10408347.2019.1626697] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nazia Tarannum
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, India
| | - Olga D. Hendrickson
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Shahjadi Khatoon
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, India
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
33
|
Vogiazi V, de la Cruz A, Mishra S, Shanov V, Heineman WR, Dionysiou DD. A Comprehensive Review: Development of Electrochemical Biosensors for Detection of Cyanotoxins in Freshwater. ACS Sens 2019; 4:1151-1173. [PMID: 31056912 PMCID: PMC6625642 DOI: 10.1021/acssensors.9b00376] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cyanobacteria harmful algal blooms are increasing in frequency and cyanotoxins have become an environmental and public concern in the U.S. and worldwide. In this Review, the majority of reported studies and developments of electrochemical affinity biosensors for cyanotoxins are critically reviewed and discussed. Essential background information about cyanobacterial toxins and electrochemical biosensors is combined with the rapidly moving development of electrochemical biosensors for these toxins. Current issues and future challenges for the development of useful electrochemical biosensors for cyanotoxin detection that meet the demands for applications in field freshwater samples are discussed. The major aspects of the entire review article in a prescribed sequence include (i) the state-of-the-art knowledge of the toxicity of cyanotoxins, (ii) important harmful algal bloom events, (iii) advisories, guidelines, and regulations, (iv) conventional analytical methods for determination of cyanotoxins, (v) electrochemical transduction, (vi) recognition receptors, (vii) reported electrochemical biosensors for cyanotoxins, (viii) summary of analytical performance, and (ix) recent advances and future trends. Discussion includes electrochemical techniques and devices, biomolecules with high affinity, numerous array designs, various detection approaches, and research strategies in tailoring the properties of the transducer-biomolecule interface. Scientific and engineering aspects are presented in depth. This review aims to serve as a valuable source to scientists and engineers entering the interdisciplinary field of electrochemical biosensors for detection of cyanotoxins in freshwaters.
Collapse
Affiliation(s)
- Vasileia Vogiazi
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE) , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Armah de la Cruz
- Office of Research and Development , US Environmental Protection Agency , Cincinnati , Ohio 45220 , United States
| | - Siddharth Mishra
- Mechanical and Materials Engineering , University of Cincinnati , Cincinnati 45221 , Ohio United States
| | - Vesselin Shanov
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE) , University of Cincinnati , Cincinnati , Ohio 45221 , United States
- Mechanical and Materials Engineering , University of Cincinnati , Cincinnati 45221 , Ohio United States
| | - William R Heineman
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE) , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| |
Collapse
|
34
|
Wang L, Filer JE, Lorenz MM, Henry CS, Dandy DS, Geiss BJ. An ultra-sensitive capacitive microwire sensor for pathogen-specific serum antibody responses. Biosens Bioelectron 2019; 131:46-52. [PMID: 30822687 PMCID: PMC6422737 DOI: 10.1016/j.bios.2019.01.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 01/14/2023]
Abstract
Detection of viral infection is commonly performed using serological techniques like the enzyme-linked immunosorbent assay (ELISA) to detect antibody responses. Such assays may also be used to determine the infection phase based on isotype prevalence. However, ELISAs demonstrate limited sensitivity and are difficult to perform at the point of care. Here, we present a novel technique for label-free, rapid detection of ultra-low concentrations of virus specific antibodies. We have developed a simple, robust capacitive biosensor using microwires coated with Zika or Chikungunya virus envelope antigen. With little discernable nonspecific binding, the sensor can detect as few as 10 antibody molecules in a small volume (10 molecules/30 µL) within minutes. It can also be used to rapidly, specifically, and accurately determine the isotype of antigen-specific antibodies. Finally, we demonstrate that anti-Zika virus antibody can be sensitively and specifically detected in dilute mouse serum and can be isotyped using the sensor. Overall, our findings suggest that our microwire sensor platform has the potential to be used as a reliable, sensitive, and inexpensive diagnostic tool to detect immune responses at the point of care.
Collapse
Affiliation(s)
- Lei Wang
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Jessica E Filer
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA; Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Meghan M Lorenz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles S Henry
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - David S Dandy
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA.
| | - Brian J Geiss
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
35
|
Affiliation(s)
- Ariel L. Furst
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
36
|
A novel capacitive sensor based on molecularly imprinted nanoparticles as recognition elements. Biosens Bioelectron 2018; 120:108-114. [DOI: 10.1016/j.bios.2018.07.070] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 01/05/2023]
|
37
|
Ahmad OS, Bedwell TS, Esen C, Garcia-Cruz A, Piletsky SA. Molecularly Imprinted Polymers in Electrochemical and Optical Sensors. Trends Biotechnol 2018; 37:294-309. [PMID: 30241923 DOI: 10.1016/j.tibtech.2018.08.009] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/25/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022]
Abstract
Molecular imprinting is the process of template-induced formation of specific recognition sites in a polymer. Synthetic receptors prepared using molecular imprinting possess a unique combination of properties such as robustness, high affinity, specificity, and low-cost production, which makes them attractive alternatives to natural receptors. Improvements in polymer science and nanotechnology have contributed to enhanced performance of molecularly imprinted polymer (MIP) sensors. Encouragingly, recent years have seen an increase in high-quality publications describing MIP sensors for the determination of biomolecules, drugs of abuse, and explosives, driving toward applications of this technology in medical and forensic diagnostics. This review aims to provide a focused overview of the latest achievements made in MIP-based sensor technology, with emphasis on research toward real-life applications.
Collapse
Affiliation(s)
- Omar S Ahmad
- Department of Chemistry, College of Education for Pure Science, University of Mosul, Mosul, Iraq; Department of Chemistry, College of Science and Engineering, University of Leicester, Leicester LE1 7RH, UK.
| | - Thomas S Bedwell
- Department of Chemistry, College of Science and Engineering, University of Leicester, Leicester LE1 7RH, UK
| | - Cem Esen
- Department of Chemistry, College of Science and Engineering, University of Leicester, Leicester LE1 7RH, UK; Department of Chemistry, Faculty of Arts and Sciences, Aydın Adnan Menderes University, Aydın 09010, Turkey
| | - Alvaro Garcia-Cruz
- Department of Chemistry, College of Science and Engineering, University of Leicester, Leicester LE1 7RH, UK
| | - Sergey A Piletsky
- Department of Chemistry, College of Science and Engineering, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
38
|
Antibody immobilization strategy for the development of a capacitive immunosensor detecting zearalenone. Talanta 2018; 191:202-208. [PMID: 30262050 DOI: 10.1016/j.talanta.2018.08.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 11/20/2022]
Abstract
A highly sensitive flow-injection capacitive immunosensor was developed for detection of the mycotoxin zearalenone (ZEN). Different strategies for immobilization of an anti-ZEN antibody on the surface of a gold electrode, i.e. polytyramine or self-assembled monolayers (SAMs) of 3-mercaptopropionic acid (3-MPA) and lipoic acid (LA), were used and their performances were compared. The LA- and 3-MPA-based systems showed broad linear ranges for ZEN determination, i.e. from 0.010 nM to 10 nM and from 0.020 nM to 10 nM, respectively. Under optimal conditions, the LA-based immunosensor was capable of performing up till 13 regeneration-interaction cycles (with use of glycine HCl, pH 2.4) with a limit of detection (LOD) of 0.0060 nM, equivalent to 1.9 pg mL-1. It also demonstrated a good inter-assay precision (RSD < 10%). However, the tyramine-based capacitive immunosensor showed a bad repeatability (only 4 regeneration-interaction cycles were possible) and inter-assay precision (RSD > 15%) which did not allow sensitive and precise measurements. The LA-based method was compared with a direct ELISA. These results demonstrated that the label-free developed capacitive immunosensor had a better sensitivity and shorter analysis time in comparison with the direct microwell-plate format.
Collapse
|
39
|
Sharma PS, Iskierko Z, Noworyta K, Cieplak M, Borowicz P, Lisowski W, D'Souza F, Kutner W. Synthesis and application of a “plastic antibody” in electrochemical microfluidic platform for oxytocin determination. Biosens Bioelectron 2018; 100:251-258. [DOI: 10.1016/j.bios.2017.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/13/2017] [Accepted: 09/07/2017] [Indexed: 12/30/2022]
|
40
|
Hartono A, Sanjaya E, Ramli R. Glucose Sensing Using Capacitive Biosensor Based on Polyvinylidene Fluoride Thin Film. BIOSENSORS 2018; 8:E12. [PMID: 29385694 PMCID: PMC5872060 DOI: 10.3390/bios8010012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/22/2022]
Abstract
A polyvinylidene fluoride (PVDF) film-based capacitive biosensor was developed for glucose sensing. This device consists of a PVDF film sandwiched between two electrodes. A capacitive biosensor measures the dielectric properties of the dielectric layers at the interface between the electrolyte and the electrode. A glucose oxidase (GOx) enzyme was immobilized onto the electrode to oxidize glucose. In practice, the biochemical reaction of glucose with the GOx enzyme generates free electron carriers. Consequently, the potential difference between the electrodes is increased, resulting in a measurable voltage output of the biosensor. The device was tested for various glucose concentrations in the range of 0.013 to 5.85 M, and various GOx enzyme concentrations between 4882.8 and 2.5 million units/L. We found that the sensor output increased with increasing glucose concentration up to 5.85 M. These results indicate that the PVDF film-based capacitive biosensors can be properly applied to glucose sensing and provide opportunities for the low-cost fabrication of glucose-based biosensors based on PVDF materials.
Collapse
Affiliation(s)
- Ambran Hartono
- Department of Physics, Faculty of Sciences and Technology, UIN Syarif Hidayatullah Jakarta, Tangerang Selatan, Banten 15412, Indonesia.
| | - Edi Sanjaya
- Department of Physics, Faculty of Sciences and Technology, UIN Syarif Hidayatullah Jakarta, Tangerang Selatan, Banten 15412, Indonesia.
| | - Ramli Ramli
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang 25131, Indonesia.
| |
Collapse
|
41
|
Seckler JM, Meyer NM, Burton ST, Bates JN, Gaston B, Lewis SJ. Detection of trace concentrations of S-nitrosothiols by means of a capacitive sensor. PLoS One 2017; 12:e0187149. [PMID: 29073241 PMCID: PMC5658150 DOI: 10.1371/journal.pone.0187149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/14/2017] [Indexed: 01/25/2023] Open
Abstract
Small molecule S-nitrosothiols are a class of endogenous chemicals in the body, which have been implicated in a variety of biological functions. However, the labile nature of NO and the limits of current detection assays have made studying these molecules difficult. Here we present a method for detecting trace concentrations of S-nitrosothiols in biological fluids. Capacitive sensors when coupled to a semiconducting material represent a method for detecting trace quantities of a chemical in complex solutions. We have taken advantage of the semiconducting and chemical properties of polydopamine to construct a capacitive sensor and associated method of use, which specifically senses S-nitrosothiols in complex biological solutions.
Collapse
Affiliation(s)
- James M. Seckler
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Nikki M. Meyer
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Spencer T. Burton
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - James N. Bates
- Department of Anesthesia, University of Iowa, Iowa City, Iowa, United States of America
| | - Benjamin Gaston
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Rainbow Babies and Children’s Hospital, Cleveland, Ohio, United States of America
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|