1
|
Nur A, Demise A, Muanenda Y. Design and Evaluation of a Cloud Computing System for Real-Time Measurements in Polarization-Independent Long-Range DAS Based on Coherent Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:8194. [PMID: 39771929 PMCID: PMC11679394 DOI: 10.3390/s24248194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
CloudSim is a versatile simulation framework for modeling cloud infrastructure components that supports customizable and extensible application provisioning strategies, allowing for the simulation of cloud services. On the other hand, Distributed Acoustic Sensing (DAS) is a ubiquitous technique used for measuring vibrations over an extended region. Data handling in DAS remains an open issue, as many applications need continuous monitoring of a volume of samples whose storage and processing in real time require high-capacity memory and computing resources. We employ the CloudSim tool to design and evaluate a cloud computing scheme for long-range, polarization-independent DAS using coherent detection of Rayleigh backscattering signals and uncover valuable insights on the evolution of the processing times for a diverse range of Virtual Machine (VM) capacities as well as sizes of blocks of processed data. Our analysis demonstrates that the choice of VM significantly impacts computational times in real-time measurements in long-range DAS and that achieving polarization independence introduces minimal processing overheads in the system. Additionally, the increase in the block size of processed samples per cycle results in diminishing increments in overall processing times per batch of new samples added, demonstrating the scalability of cloud computing schemes in long-range DAS and its capability to manage larger datasets efficiently.
Collapse
Affiliation(s)
- Abdusomad Nur
- Addis Ababa Institute of Technology, Addis Ababa University, King George VI St, Addis Ababa 1000, Ethiopia
- Institute of Mechanical Intelligence, Scuola Superiore Sant’Anna, Via G. Moruzzi 1, 56124 Pisa, Italy; (A.D.); (Y.M.)
| | - Almaz Demise
- Institute of Mechanical Intelligence, Scuola Superiore Sant’Anna, Via G. Moruzzi 1, 56124 Pisa, Italy; (A.D.); (Y.M.)
| | - Yonas Muanenda
- Institute of Mechanical Intelligence, Scuola Superiore Sant’Anna, Via G. Moruzzi 1, 56124 Pisa, Italy; (A.D.); (Y.M.)
| |
Collapse
|
2
|
Malarat N, Soleh A, Saisahas K, Samoson K, Promsuwan K, Saichanapan J, Wangchuk S, Meng L, Limbut W. Electropolymerization of poly(phenol red) on laser-induced graphene electrode enhanced adsorption of zinc for electrochemical detection. Talanta 2024; 272:125751. [PMID: 38377665 DOI: 10.1016/j.talanta.2024.125751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
We present a highly sensitive and selective electrode of laser-induced graphene modified with poly(phenol red) (P(PhR)@LIG) for measuring zinc nutrition in rice grains using square wave anodic stripping voltammetry (SWASV). The physicochemical properties of P(PhR)@LIG were investigated with scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Fourier infrared spectroscopy (FT-IR) and Raman spectroscopy. The modified electrode demonstrated an amplified anodic stripping response of Zn2+ due to the electropolymerization of P(PhR), which enhanced analyte adsorption during the accumulation step of SWASV. Under optimized parameters, the developed sensor provided a linear range from 30 to 3000 μg L-1 with a detection limit of 14.5 μg L-1. The proposed electrode demonstrated good reproducibility and good anti-interference properties. The sensor detected zinc nutrition in rice grain samples with good accuracy and the results were consistent with the standard ICP-OES method.
Collapse
Affiliation(s)
- Natchaya Malarat
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Asamee Soleh
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kasrin Saisahas
- Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Krisada Samoson
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kiattisak Promsuwan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Jenjira Saichanapan
- Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Sangay Wangchuk
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Lingyin Meng
- Sensor and Actuator Systems, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden.
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
3
|
Milikić J, Savić M, Janošević Ležaić A, Šljukić B, Ćirić-Marjanović G. Electrochemical Sensing of Cadmium and Lead Ions in Water by MOF-5/PANI Composites. Polymers (Basel) 2024; 16:683. [PMID: 38475366 DOI: 10.3390/polym16050683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
For the first time, composites of metal-organic framework MOF-5 and conjugated polymer polyaniline (PANI), (MOF-5/PANI), prepared using PANI in its conducting (emeraldine salt, ES) or nonconducting form (emeraldine base, EB) at various MOF-5 and PANI mass ratios, were evaluated as electrode materials for the electrochemical detection of cadmium (Cd2+) and lead (Pb2+) ions in aqueous solutions. Testing of individual components of composites, PANI-ES, PANI-EB, and MOF-5, was also performed for comparison. Materials are characterized by Raman spectroscopy, scanning electron microscopy (SEM) and dynamic light scattering (DLS), and their electrochemical behavior was discussed in terms of their zeta potential, structural, morphology, and textural properties. All examined composites showed high electrocatalytic activity for the oxidation of Cd and Pb to Cd2+ and Pb2+, respectively. The MOF/EB-1 composite (71.0 wt.% MOF-5) gave the highest oxidation currents during both individual and simultaneous detection of two heavy metal ions. Current densities recorded with MOF/EB-1 were also higher than those of its individual components, reflecting the synergistic effect where MOF-5 offers high surface area for two heavy metals adsorption and PANI offers a network for electron transfer during metals' subsequent oxidation. Limits of detection using MOF/EB-1 electrode for Cd2+ and Pb2+ sensing were found to be as low as 0.077 ppm and 0.033 ppm, respectively. Moreover, the well-defined and intense peaks of Cd oxidation to Cd2+ and somewhat lower peaks of Pb oxidation to Pb2+ were observed at voltammograms obtained for the Danube River as a real sample with no pretreatment, which implies that herein tested MOF-5/PANI electrodes could be used as electrochemical sensors for the detection of heavy metal ions in the real water samples.
Collapse
Affiliation(s)
- Jadranka Milikić
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Marjetka Savić
- Vinča Institute of Nuclear Science, National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia
| | | | - Biljana Šljukić
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Gordana Ćirić-Marjanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia
| |
Collapse
|
4
|
Manikandan R, Yoon JH, Chang SC. Emerging Trends in nanostructured materials-coated screen printed electrodes for the electrochemical detection of hazardous heavy metals in environmental matrices. CHEMOSPHERE 2023; 344:140231. [PMID: 37775053 DOI: 10.1016/j.chemosphere.2023.140231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/18/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Heavy metal ions (HMIs) have become a significant contaminant in recent years. The increase in heavy metal pollution is a serious situation, requiring progressively robust, fast sensing, highly sensitive, and suitable techniques for heavy metal detection. Compared to other classical analytical methods, electroanalytical techniques, especially stripping voltammetric techniques with modified screen-printed electrodes (SPEs), have several advantages, such as fast sensing, great sensitivity, specificity, and long-time stability. Therefore, these techniques are more suitable for HMI detection. In this review, the nanostructured materials used to coat SPEs for the electrochemical determination of HMI are summarized. Additionally, the electrode fabrication method, modification steps, and electroanalytical study of these materials are systematically discussed. Hence, this review will support the researchers in precisely evaluating the electrochemical HMIs detection through highly sensitive stripping voltammetric techniques using SPE modified with nanostructured carbon and their allotropes, metal, metal oxides and their nanocomposites as sensor materials. Moreover, modified electrodes real time detection of HMIs in different food and environmental samples were briefly discussed.
Collapse
Affiliation(s)
- Ramalingam Manikandan
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jang-Hee Yoon
- Busan Centre, Korea Basic Science Institute, Busan, 46742, Republic of Korea
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
5
|
Tesfaye E, Chandravanshi BS, Negash N, Tessema M. Electrochemical determination of zinc(II) using N 1-hydroxy-N 1,N 2-diphenylbenzamidine and multi-walled carbon nanotubes modified carbon paste electrode. Heliyon 2023; 9:e17346. [PMID: 37383216 PMCID: PMC10293732 DOI: 10.1016/j.heliyon.2023.e17346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
In this study, a new carbon paste electrode modified with a laboratory-synthesized ligand, N1-hydroxy-N1,N2-diphenylbenzamidine (HDPBA) and multi-walled carbon nanotubes (MWCNTs) (HDPBA‒MWCNTs/CPE) has been developed. The modified electrode was applied for preconcentration and voltammetric determination of zinc ions (Zn(II)) by square wave anodic stripping voltammetry (SWASV). The preconcentration of Zn(II) on the electrode surface was performed in 0.1 M Brinton Robinson (B-R) buffer solution (pH 6) at an applied potential of -1.30 V versus Ag/AgCl for 120 s, followed by stripping in the positive potential scan of the SWASV after a quit time of 10 s. Under optimized experimental conditions, the proposed electrode exhibited a wider linear dynamic response for Zn(II) in a concentration range of 0.02-10.00 μM with a detection limit of 2.48 nM. This is due to the excellent metal-chelation property of the ligand, and the good conductivity and large surface area of MWCNTs which significantly improved the sensing performance of the nanocomposite modified electrode. The selectivity of the electrode was studied by evaluating the interference effects of various foreign ions on the peak current of Zn(II). The method exhibited high reproducibility with a relative standard deviation (RSD) of 3.1%. The present method was applied for the determination of zinc ions in water samples. The recovery values in the tested samples were found to be 98.50-106.0%, indicating a good accuracy of the proposed electrode. Furthermore, the electrochemical behavior of HDPBA in acetonitrile and aqueous solutions has been studied.
Collapse
|
6
|
Zanganeh AR, Tayebani M. Nanocrystals of COF-300 as physical and chemical recognition elements in silver(I) voltammetric sensor: experimental condition optimization by central composite design. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-023-03047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
7
|
Shalaby EA, Beltagi AM, Hathoot AA, Azzem MA. Simultaneous voltammetric sensing of Zn 2+, Cd 2+, and Pb 2+ using an electrodeposited Bi-Sb nanocomposite modified carbon paste electrode. RSC Adv 2023; 13:7118-7128. [PMID: 36875874 PMCID: PMC9978880 DOI: 10.1039/d3ra00168g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
A sensor for detecting Zn2+, Cd2+, and Pb2+ ions simultaneously based on the square wave anodic stripping response at a bismuth antimony (Bi-Sb) nanocomposite electrode was developed. The electrode was prepared in situ by electrodepositing bismuth and antimony on the surface of a carbon-paste electrode (CPE) while also reducing the analyte metal ions. The structure and performance of the Bi-Sb/CPE electrode were studied using scanning electron microscopy, X-ray diffraction, electrochemical impedance spectroscopy, and cyclic voltammetry. Operational conditions including the concentration of Sb and Bi, the type of electrolyte, pH, and preconcentration conditions were optimized. The linear ranges were determined to be 5-200 μg L-1 for Zn2+, 1-200 μg L-1 for Cd2+, and 1-150 μg L-1 for Pb2+ with the optimized parameters. The limits of detection were 1.46 μg L-1, 0.27 μg L-1, and 0.29 μg L-1 for Zn2+, Cd2+, and Pb2+, respectively. Furthermore, the Bi-Sb/CPE sensor is capable of selective determination of the target metals in the presence of the common cationic and anionic interfering species (Na+, K+, Ca2+, Mg2+, Fe3+, Mn2+, Co2+, Cl-, SO4 2- and HCO3 -). Finally, the sensor was successfully applied to the simultaneous determination of Zn2+, Cd2+, and Pb2+ in a variety of real-world water samples.
Collapse
Affiliation(s)
- E A Shalaby
- Electrochemistry Laboratory, Chemistry Department, Faculty of Science, Menoufia University Shebin El-Kom 32511 Egypt
| | - A M Beltagi
- Department of Chemistry, Faculty of Science, Kafrelsheikh University Kafrelsheikh 33516 Egypt
| | - A A Hathoot
- Electrochemistry Laboratory, Chemistry Department, Faculty of Science, Menoufia University Shebin El-Kom 32511 Egypt
| | - M Abdel Azzem
- Electrochemistry Laboratory, Chemistry Department, Faculty of Science, Menoufia University Shebin El-Kom 32511 Egypt
| |
Collapse
|
8
|
Tesfaye E, Chandravanshi BS, Negash N, Tessema M. Development of a new electrochemical method for the determination of copper(ii) at trace levels in environmental and food samples. RSC Adv 2022; 12:35367-35382. [PMID: 36540237 PMCID: PMC9742860 DOI: 10.1039/d2ra06941e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/03/2022] [Indexed: 09/10/2023] Open
Abstract
This paper presents the fabrication of a new modified carbon paste electrode (CPE) with N 1-hydroxy-N 1,N 2-diphenylbenzamidine (HDPBA) and functionalized multi-walled carbon nanotubes (MWCNTs) (HDPBA-MWCNTs/CPE) for highly sensitive and selective determination of Cu(ii) using the square wave anodic stripping voltammetry (SWASV) technique. The fabricated electrode was characterized using various spectroscopic techniques to study its morphological, structural, and electrochemical properties. The accumulation of Cu(ii) on the surface of HDPBA-MWCNTs/CPE was done in 0.1 M ammonium chloride (NH4Cl, pH 5) solution at an applied potential of -0.70 V versus Ag/AgCl for 180 s, followed by electrochemical stripping in the positive scan of the voltammetry after a resting time of 10 s. The developed HDPBA-MWCNTs/CPE was found to be highly selective, sensitive and reproducible. At optimal conditions of the experiment, the proposed method exhibited a very low limit of detection (0.0048 nM Cu(ii)), a wide linear dynamic range (0.00007-1.5000 μM Cu(ii)), and good reproducibility with relative standard deviation (RSD) value of 3.7%. The effect of various foreign ions on the voltammetric response of Cu(ii) was investigated and the electrode was found to be highly selective to Cu(ii). The practical applicability of the proposed HDPBA-MWCNTs/CPE was studied by applying the electrode for the quantification of Cu(ii) contents in environmental water (wastewater and tap water), soft drink (Fanta and Sprite), and food supplement (commercially available multi-mineral/vitamin tablets) samples. The present method was validated with atomic absorption spectrometry (AAS). The results found from the two methods are in good agreement with a 95% confidence level.
Collapse
Affiliation(s)
- Endale Tesfaye
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University P.O. Box 1176 Addis Ababa Ethiopia
| | - Bhagwan Singh Chandravanshi
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University P.O. Box 1176 Addis Ababa Ethiopia
| | - Negussie Negash
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University P.O. Box 1176 Addis Ababa Ethiopia
| | - Merid Tessema
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University P.O. Box 1176 Addis Ababa Ethiopia
| |
Collapse
|
9
|
Patella B, Narayan T, O'Sullivan B, Daly R, Zanca C, Lovera P, Inguanta R, O'Riordan A. Simultaneous detection of copper and mercury in water samples using in-situ pH control with electrochemical stripping techniques. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
10
|
Screen-printed electrochemical sensors for environmental monitoring of heavy metal ion detection. REV CHEM ENG 2022. [DOI: 10.1515/revce-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Heavy metal ions (HMIs) are known to cause severe damages to the human body and ecological environment. And considering the current alarming situation, it is crucial to develop a rapid, sensitive, robust, economical and convenient method for their detection. Screen printed electrochemical technology contributes greatly to this task, and has achieved global attention. It enabled the mass transmission rate and demonstrated ability to control the chemical nature of the measure media. Besides, the technique offers advantages like linear output, quick response, high selectivity, sensitivity and stability along with low power requirement and high signal-to-noise ratio. Recently, the performance of SPEs has been improved employing the most effective and promising method of the incorporation of different nanomaterials into SPEs. Especially, in electrochemical sensors, the incorporation of nanomaterials has gained extensive attention for HMIs detection as it exhibits outstanding features like broad electrochemical window, large surface area, high conductivity, selectivity and stability. The present review focuses on the recent progress in the field of screen-printed electrochemical sensors for HMIs detection using nanomaterials. Different fabrication methods of SPEs and their utilization for real sample analysis of HMIs using various nanomaterials have been extensively discussed. Additionally, advancement made in this field is also discussed taking help of the recent literature.
Collapse
|
11
|
Okpara EC, Fayemi OE, Wojuola OB, Onwudiwe DC, Ebenso EE. Electrochemical detection of selected heavy metals in water: a case study of African experiences. RSC Adv 2022; 12:26319-26361. [PMID: 36275116 PMCID: PMC9475415 DOI: 10.1039/d2ra02733j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
The safety of water resources throughout the globe has been compromised by various human activities and climate change over the last decades. Consequently, the world is currently confronted with a severe shortage of water supply and a water safety crisis, amidst a growing population. With poor environmental regulations, indiscriminate budding of urban slums, poverty, and a lack of basic knowledge of hygiene and sanitation, the African water supply has been critically threatened by different organic and inorganic contaminants, which results in several health issues. Inorganic pollutants such as heavy metals are particularly of interest because they are mostly stable and non-biodegradable. Therefore, they are not easily removed from water. In different parts of the continent, the concentration of heavy metals in drinking water far exceeds the permissible level recommended by the World Health Organization (WHO). Worse still, this problem is expected to increase with growing population, industrialization, urbanization, and, of course, corruption of government and local officials. Most of the African population is ignorant of the standards of safe water. In addition, the populace lack access to affordable and reliable technologies and tools that could be used in the quantification of these pollutants. This problem is not only applicable to domestic, but also to commercial, communal, and industrial water sources. Hence, a global campaign has been launched to ensure constant assessment of the presence of these metals in the environment and to promote awareness of dangers associated with unsafe exposure to them. Various conventional spectroscopic heavy metal detection techniques have been used with great success across the world. However, such techniques suffer from some obvious setbacks, such as the cost of procurement and professionalism required to operate them, which have limited their applications. This paper, therefore, reviews the condition of African water sources, health implications of exposure to heavy metals, and the approaches explored by various indigenous electrochemists, to provide a fast, affordable, sensitive, selective, and stable electrochemical sensors for the quantification of the most significant heavy metals in our water bodies.
Collapse
Affiliation(s)
- Enyioma C Okpara
- Department of Physics, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus) Private Bag X2046 Mmabatho 2735 South Africa
| | - Omolola E Fayemi
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus) Private Bag X2046 Mmabatho 2735 South Africa
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus) Private Bag X2046 Mmabatho 2735 South Africa
| | - Olanrewaju B Wojuola
- Department of Physics, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus) Private Bag X2046 Mmabatho 2735 South Africa
| | - Damian C Onwudiwe
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus) Private Bag X2046 Mmabatho 2735 South Africa
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus) Private Bag X2046 Mmabatho 2735 South Africa
| | - Eno E Ebenso
- College of Science, Engineering and Technology, University of South Africa Johannesburg 1710 South Africa
| |
Collapse
|
12
|
Beenken A. Trace Metaluria as a Biomarker of Acute Kidney Injury. Kidney Int Rep 2022; 7:1461-1462. [PMID: 35812289 PMCID: PMC9263401 DOI: 10.1016/j.ekir.2022.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Andrew Beenken
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
13
|
RasulKhan B, Ponnaiah SK, Balasubramanian J, Periakaruppan P. Novel Carbon Quantum Dotted Reduced Graphene Oxide Nanosheets for Nano-molar Range Cadmium Quantification. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Huang B, Luo X, Pu Q, Guo J, Tong X, Lu X. Simultaneous Detection of Pb
2+
and Cu
2+
on β‐CD‐NH
2
‐Fe
3
O
4
Modified Electrode. ChemistrySelect 2022. [DOI: 10.1002/slct.202104443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Baomei Huang
- College of Chemistry & Chemical Engineering MianYang Normal University MianYang 621000 China
| | - Xi Luo
- College of Chemistry & Chemical Engineering MianYang Normal University MianYang 621000 China
| | - Qingmiao Pu
- College of Chemistry & Chemical Engineering MianYang Normal University MianYang 621000 China
| | - Junchun Guo
- College of Chemistry & Chemical Engineering MianYang Normal University MianYang 621000 China
| | - Xinyu Tong
- College of Chemistry & Chemical Engineering MianYang Normal University MianYang 621000 China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province Northwest Normal University Lanzhou 730070 China
| |
Collapse
|
15
|
Okpara EC, Fayemi OE, Sherif ESM, Ganesh PS, Swamy BK, Ebenso EE. Electrochemical evaluation of Cd2+ and Hg2+ ions in water using ZnO/Cu2ONPs/PANI modified SPCE electrode. SENSING AND BIO-SENSING RESEARCH 2022; 35:100476. [DOI: 10.1016/j.sbsr.2022.100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Tesfaye E, Singh Chandravanshi B, Negash N, Tessema M. A Novel Carbon Paste Electrode Modified with N 1-Hydroxy-N 1,N 2-Diphenylbenzamidine for the Electrochemical Determination of Cadmium(II) in Environmental Samples. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:3426575. [PMID: 36248055 PMCID: PMC9553701 DOI: 10.1155/2022/3426575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/01/2022] [Accepted: 08/31/2022] [Indexed: 05/14/2023]
Abstract
The present study introduces a novel electrode for rapid, highly sensitive, and selective electrochemical sensor for cadmium(II) using 5% N1-hydroxy-N1,N2-diphenylbenzamidine (HDPBA) modified carbon paste electrode (CPE) (HDPBA‒CPE). Surface characterizations and structural analysis of the proposed HDPBA‒CPE were performed using several analytical techniques. The voltammetric measurements of Cd(II) were conducted by cyclic voltammetry (CV) and square wave anodic stripping voltammetry (SWASV). Several experimental conditions such as composition and pH of buffer solutions, HDPBA composition, accumulation potential and time, and other voltammetric conditions were optimized. Cd(II) was preconcentrated on the modified electrode surface for 270 s using Britton Robinson (B-R) buffer (0.1 M, pH 4) at -1.0 V versus Ag/AgCl, followed by electrochemical oxidation of the accumulated Cd(II) in the positive scan of SWASV after a quiet time of 10 s. Under optimized parameters, the proposed method showed a linear range of 0.3-100 nM Cd(II) with a detection limit of 0.032 nM. The fabricated HDPBA-modified carbon paste electrode exhibited excellent sensitivity, selectivity, stability, and reproducibility (with RSD of 3.8%). The developed HDPBA‒CPE was used for the quantification of Cd(II) in tobacco and environmental water samples, and it was found to be applicable for the determination of different types of real samples.
Collapse
Affiliation(s)
- Endale Tesfaye
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| | - Bhagwan Singh Chandravanshi
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| | - Negussie Negash
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| | - Merid Tessema
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
17
|
Ali TA, Mohamed GG. Design and construction of an electrochemical sensor for the determination of cerium(iii) ions in petroleum water samples based on a Schiff base-carbon nanotube as an ionophore. RSC Adv 2021; 12:94-103. [PMID: 35424467 PMCID: PMC8978703 DOI: 10.1039/d1ra08337f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/11/2021] [Indexed: 12/19/2022] Open
Abstract
A carbon paste sensor (CPE) and screen-printed sensor (SPE) for Ce(iii)-selective determination were prepared using a 2,6-pyridine dicarbomethine-triethylene tetraamine macrocyclic Schiff base ligand (PDCTETA) and multi-walled carbon nanotubes (MWCNTs) as good sensing materials. With respect to most common cations, such as alkali, alkaline earth, transition, and heavy metal ions, the electrodes display high selectivity for the Ce(iii) ion. The sensors respond to Ce(iii) ions in a linear range of 1 × 10-7 to 1 × 10-1 and 1 × 10-8 to 1 × 10-1 mol L-1 with a slope of 18.96 ± 0.73 and 19.63 ± 0.51 mV per decade change in concentration with a detection limit of 1.10 × 10-8 and 5.24 × 10-9 mol L-1 for CPE (sensor IV) and SPE (sensor VIII), respectively. The sensors were found to have a lifetime of 102 and 200 days. The suggested electrodes performed well throughout the pH ranges of 3.5-8.0 and 3.0-8.5, with response times of 8 and 6 seconds for sensor IV and sensor VIII, respectively. The sensors have been used to measure Ce(iii) ions in water samples from several petroleum wells. They have also been utilized as indicator electrodes in Ce(iii) ion potentiometric titrations with EDTA. The results were quite similar to those obtained by employing atomic absorption spectrometry (AAS).
Collapse
Affiliation(s)
- Tamer Awad Ali
- Egyptian Petroleum Research Institute (EPRI) 11727 Cairo Egypt +20 10 06890640
| | - Gehad G Mohamed
- Chemistry Department, Faculty of Science, Cairo University 12613 Giza Egypt
| |
Collapse
|
18
|
Tajik S, Lohrasbi-Nejad A, Mohammadzadeh Jahani P, Askari MB, Salarizadeh P, Beitollahi H. Co-detection of carmoisine and tartrazine by carbon paste electrode modified with ionic liquid and MoO3/WO3 nanocomposite. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01201-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Mohamad Nor N, Ramli NH, Poobalan H, Qi Tan K, Abdul Razak K. Recent Advancement in Disposable Electrode Modified with Nanomaterials for Electrochemical Heavy Metal Sensors. Crit Rev Anal Chem 2021; 53:253-288. [PMID: 34565248 DOI: 10.1080/10408347.2021.1950521] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heavy metal pollution has gained global attention due to its high toxicity and non-biodegradability, even at a low level of exposure. Therefore, the development of a disposable electrode that is sensitive, simple, portable, rapid, and cost-effective as the sensor platform in electrochemical heavy metal detection is vital. Disposable electrodes have been modified with nanomaterials so that excellent electrochemical properties can be obtained. This review highlights the recent progress in the development of numerous types of disposable electrodes modified with nanomaterials for electrochemical heavy metal detection. The disposable electrodes made from carbon-based, glass-based, and paper-based electrodes are reviewed. In particular, the analytical performance, fabrication technique, and integration design of disposable electrodes modified with metal (such as gold, tin and bismuth), carbon (such as carbon nanotube and graphene), and metal oxide (such as iron oxide and zinc oxide) nanomaterials are summarized. In addition, the role of the nanomaterials in improving the electrochemical performance of the modified disposable electrodes is discussed. Finally, the current challenges and future prospect of the disposable electrode modified with nanomaterials are summarized.
Collapse
Affiliation(s)
- Noorhashimah Mohamad Nor
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Nurul Hidayah Ramli
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Hemalatha Poobalan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Kai Qi Tan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Khairunisak Abdul Razak
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia.,NanoBiotechnology Research & Innovation (NanoBRI), Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| |
Collapse
|
20
|
Amin NU, Kun‐Lin Y, Majeed N, Siddiqi HM. Fabrication of a Fluorophore/Liquid‐Crystal‐Based Oligopeptide Biosensor for the Detection of Cu (II) Ions. ChemistrySelect 2021. [DOI: 10.1002/slct.202100943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Noor ul Amin
- Department of Chemistry Quaid-i-Azam University Islamabad 45320 Pakistan
- Department of Chemical & Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore
| | - Yang Kun‐Lin
- Department of Chemical & Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore
| | - Nasir Majeed
- Department of Chemistry Quaid-i-Azam University Islamabad 45320 Pakistan
| | | |
Collapse
|
21
|
García‐Melendrez J, Warren‐Vega WM, Zárate‐Guzmán AI, Carrasco‐Marín F, González‐Gutiérrez LV, Romero‐Cano LA. Development of Bio‐inspired Composite Materials for the Detection of Traces of Silver Present in Water: Use of Taguchi Methodology to Design Low‐cost Carbon Paste Electrodes. ELECTROANAL 2021. [DOI: 10.1002/elan.202100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jaime García‐Melendrez
- Grupo de Investigación en Materiales y Fenómenos de Superficie. Departamento de Biotecnológicas y Ambientales Universidad Autónoma de Guadalajara Av. Patria 1201 C.P. 45129 Zapopan Jalisco. Mexico
| | - Walter M. Warren‐Vega
- Grupo de Investigación en Materiales y Fenómenos de Superficie. Departamento de Biotecnológicas y Ambientales Universidad Autónoma de Guadalajara Av. Patria 1201 C.P. 45129 Zapopan Jalisco. Mexico
| | - Ana I. Zárate‐Guzmán
- Grupo de Investigación en Materiales y Fenómenos de Superficie. Departamento de Biotecnológicas y Ambientales Universidad Autónoma de Guadalajara Av. Patria 1201 C.P. 45129 Zapopan Jalisco. Mexico
- Centro de Investigación y Estudios de Posgrado Facultad de Ciencias Químicas Universidad Autónoma de San Luis Potosí San Luis Potosí 78260 Mexico
| | - Francisco Carrasco‐Marín
- Grupo de Investigación en Materiales de Carbón Facultad de Ciencias Universidad de Granada Av. Fuente Nueva s/n Granada C.P. 18071 Spain
| | - Linda V. González‐Gutiérrez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ) S.C. Parque Tecnológico Sanfandila Pedro Escobedo Querétaro 760703 Mexico
| | - Luis A. Romero‐Cano
- Grupo de Investigación en Materiales y Fenómenos de Superficie. Departamento de Biotecnológicas y Ambientales Universidad Autónoma de Guadalajara Av. Patria 1201 C.P. 45129 Zapopan Jalisco. Mexico
| |
Collapse
|
22
|
Okpara EC, Nde SC, Fayemi OE, Ebenso EE. Electrochemical Characterization and Detection of Lead in Water Using SPCE Modified with BiONPs/PANI. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1294. [PMID: 34069149 PMCID: PMC8156766 DOI: 10.3390/nano11051294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022]
Abstract
The need for constant assessment of river water qualities for both aquatic and other biological survival has emerged a top priority, due to increasing exposure to industrial pollutants. A disposable screen print carbon electrode was modified with a conductive polymer (PANI) and Zn and/or Cu oxides NPs, obtained through bioreduction in citrus peel extracts (lemon and orange), for ultra-sensitive detection of PB2+, in the Crocodile River water sample. The synthesized materials were characterized with Fourier-transform infra-red spectroscopy (FTIR), ultra-violet visible spectroscopy (UV-Vis), and scanning electron microscopy (SEM). The SPC-modified electrodes designated as SPCE/LPE/BiONPs/PANI and SPCE/OPE/BiONPs/PANI were characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) and eventually deployed in the electrochemical detection of PB2+ in water using square wave voltammetry (SWV) technique. The electrochemical responses of the modified electrodes for both CV and EIS in 0.1 M HCl demonstrated enhanced performance relative to the bare SPCE. A detection and quantification limit of 0.494 ppb and 1.647 were obtained at SPCE/LPE/BiONPs/PANI, respectively, while a detection and quantification limit of 2.79 ppb and 8.91 ppb, respectively, were derived from SPCE/OPE/BiONPs/PANI. The relative standard deviations (RSD) for SPC electrode at a 6.04 µM PB2+ analyte concentration was 4.76% and 0.98% at SPCE/LPE/BiONPs/PANI and SPCE/LPE/BiONPs/PANI, respectively. The effect of copper, zinc, iron, cobalt, nickel, and magnesium on the stripping peaks of PB2+ at SPCE/OPE/BiONPs/PANI, showed no significant change except for cobalt, with about 17.67% peak current drop. The sensors were assessed for possible determination of PB2+ in spiked river water samples. The average percentage recovery and RSD calculated were 94.25% and 3.74% (n = 3) at SPCE/LPE/BiONPs/PANI and, 96.70% and 3.71% (n = 3) at SPCE/OPE/BiONPs/PANI, respectively. Therefore, the fabricated sensor material could be used for environmental assessment of this highly toxic heavy metal in the aquatic system.
Collapse
Affiliation(s)
- Enyioma C. Okpara
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa;
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa
| | - Samuel Che Nde
- Department of Geography and Environmental Sciences, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa;
| | - Omolola E. Fayemi
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa;
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa
| | - Eno E. Ebenso
- Institute of Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa;
| |
Collapse
|
23
|
Aguilera ÁY, Krepper G, Di Nezio MS. Simple One-Step Synthesis of Bismuth Nanoparticles for Voltammetric Sensing of Metal Ions. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02068-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
|
25
|
Antunovic V, Tripkovic T, TomaŠevic B, BaoŠic R, Jelic D, Lolic A. Voltammetric Determination of Lead and Copper in Wine by Modified Glassy Carbon Electrode. ANAL SCI 2021; 37:353-358. [PMID: 33012759 DOI: 10.2116/analsci.20p302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This paper describes the determination of Pb and Cu with a Nafion-modified glassy carbon electrode and MnCo2O4 nanoparticles as working electrode for anodic stripping voltammetry. Pb and Cu were accumulated in HCl/KCl (0.1 mol dm-3) at a potential of -1.4 V (vs. Ag/AgCl electrode) for 480 s, followed by a linear sweep anodic stripping voltammetry (ASV) scan from -1.0 to +0.5 V. Under optimum conditions, the calibration curves were linear in the range of 0.01 - 8 and 0.01 - 5 mg dm-3 for Pb and Cu, respectively. Effect of sample dilution, accumulation time and potential were optimized. A study of interfering substances was performed. A significant increase in current was obtained at the modified electrode in comparison with the bare glassy carbon electrode. The modified electrode was successfully applied for determination of Pb and Cu in wine samples after a simple preparation procedure. Pb and Cu content in wine was used for estimation of the target hazard quotient (THQ) values for minimal and maximal levels of the metals.
Collapse
Affiliation(s)
- Vesna Antunovic
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka
| | - Tatjana Tripkovic
- Republic Institute for the Protection of Cultural Monuments of Serbia
| | - Biljana TomaŠevic
- Department of Analytical Chemistry, University of Belgrade-Faculty of Chemistry
| | - Rada BaoŠic
- Department of Analytical Chemistry, University of Belgrade-Faculty of Chemistry
| | - Dijana Jelic
- Department of Chemistry, Faculty of Natural Sciences and Mathematics, University of Banja Luka
| | - Aleksandar Lolic
- Department of Analytical Chemistry, University of Belgrade-Faculty of Chemistry
| |
Collapse
|
26
|
Recent progress on electrochemical sensing strategies as comprehensive point-care method. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-020-02732-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Girija S, Sankar SS, Thenrajan T, Kundu S, Wilson J. Bi-metallic zeolite imidazole framework nanofibers for the selective determination of Cd 2+ ions. J Mater Chem B 2021; 9:5656-5663. [PMID: 34190309 DOI: 10.1039/d1tb01170g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cobalt zinc-zeolite imidazole framework (Co/Zn-ZIF) nanofibers are made via an electrospinning (ES) approach and tested for the detection of heavy metal cadmium ions. Electrostatically attracted cobalt and zinc ions are bound regularly on the surface of the ZIF network. The cobalt and zinc ions are organized with the ZIF network, which provides the sturdily bonded tetrahedral structure of Co/Zn-ZIF, giving essential steadiness to the composite material. Cyclic voltammetry revealed that the observed profile is reversible, and the catalytic behavior of the electrodes provided evidence of interfacial electron transfer between the nanofiber-modified GCE surface and the metal ions. Interestingly, a careful determination of Cd2+ ions within the range of 100 nM to 1 mM with a low limit detection of 27.27 nM was undertaken. The established heavy metal ion detector shows excellent anti-interference abilities toward the observed electroactive species, and it was successfully employed using a tap water sample for Cd2+ ion detection, where good results were observed.
Collapse
Affiliation(s)
- S Girija
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - S Sam Sankar
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India.
| | - T Thenrajan
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - Subrata Kundu
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India.
| | - J Wilson
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
28
|
Wahab R, Khan F, Ahmad N, Alam M, Ahmad J, Al-Khedhairy AA. Rapid sensing response for phenol with CuO nanoparticles. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Ravi PV, Thangadurai DT, Nehru K, Lee YI, Nataraj D, Thomas S, Kalarikkal N, Jose J. Surface and morphology analyses, and voltammetry studies for electrochemical determination of cerium(iii) using a graphene nanobud-modified-carbon felt electrode in acidic buffer solution (pH 4.0 ± 0.05). RSC Adv 2020; 10:37409-37418. [PMID: 35521276 PMCID: PMC9057166 DOI: 10.1039/d0ra07555h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/25/2020] [Indexed: 12/25/2022] Open
Abstract
Trace determination of radioactive waste, especially Ce3+, by electrochemical methods has rarely been attempted. Ce3+ is (i) a fluorescence quencher, (ii) an antiferromagnet, and (iii) a superconductor, and it has been incorporated into fast scintillators, LED phosphors, and fluorescent lamps. Although Ce3+ has been utilized in many industries due to its specific properties, it causes severe health problems to human beings because of its toxicity. Nanomaterials with fascinating electrical properties can play a vital role in the fabrication of a sensor device to detect the analyte of interest. In the present study, surfactant-free 1,8-diaminonaphthalene (DAN)-functionalized graphene quantum dots (DAN-GQDs) with nanobud (NB) morphology were utilized for the determination of Ce3+ through electrochemical studies. The working electrode, graphene nanobud (GNB)-modified-carbon felt (CF), was developed by a simple drop-coating method for the sensitive detection of Ce3+ in acetate buffer solution (ABS, pH 4.0 ± 0.05) at a scan rate of 50 mV s-1 using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. CV and DPV studies validated the existence of distinctive peaks at approximately +0.20 and +0.93 V (vs. SCE), respectively, with a limit of detection of approximately 2.60 μM. Furthermore, electrochemical studies revealed that the GNB-modified-CF electrode was (i) stable even after fifteen cycles, (ii) reproducible, (iii) selective towards Ce3+, (iv) strongly pH-dependent, and (v) favored Ce3+ sensing only at pH 4.0 ± 0.05. Impedance spectroscopy results indicated that the GNB-modified-CF electrode was more conductive (1.38 × 10-4 S m-1) and exhibited more rapid electron transfer than bare CF, which agrees with the attained Randles equivalent circuit. Microscopy (AFM, FE-SEM, and HR-TEM), spectroscopy (XPS and Raman), XRD, and energy-dispersive X-ray (EDX) analyses of the GNB-modified-CF electrode confirmed the adsorption of Ce3+ onto the electrode surface and the size of the electrode material. Ce3+ nanobuds increased from 35-40 to 50-55 nm without changing their morphology. The obtained results provide an insight into the determination of Ce3+ to develop an electrochemical device with low sensitivity.
Collapse
Affiliation(s)
- Pavithra V Ravi
- Department of Nanoscience and Technology, Sri Ramakrishana Engineering College, Affiliated to Anna University Coimbatore - 641 022 Tamilnadu India
| | - Daniel T Thangadurai
- Department of Nanoscience and Technology, Sri Ramakrishana Engineering College, Affiliated to Anna University Coimbatore - 641 022 Tamilnadu India
| | - Kasi Nehru
- Department of Chemistry, Anna University - Bharathidasan Institute of Technology Tiruchirappalli - 620 024 Tamilnadu India
| | - Yong Ill Lee
- Department of Chemistry, Changwon National University Changwon 641-773 South Korea
| | - Devaraj Nataraj
- Department of Physics, Bharathiar University Coimbatore - 641 046 Tamilnadu India
| | - Sabu Thomas
- International and Inter-University Centre for Nanoscience and Nontechnology, Mahatma Gandhi University Kottayam - 686 560 Kerala India
| | - Nandakumar Kalarikkal
- International and Inter-University Centre for Nanoscience and Nontechnology, Mahatma Gandhi University Kottayam - 686 560 Kerala India
| | - Jiya Jose
- International and Inter-University Centre for Nanoscience and Nontechnology, Mahatma Gandhi University Kottayam - 686 560 Kerala India
| |
Collapse
|
30
|
Silva RR, Raymundo-Pereira PA, Campos AM, Wilson D, Otoni CG, Barud HS, Costa CA, Domeneguetti RR, Balogh DT, Ribeiro SJ, Oliveira Jr. ON. Microbial nanocellulose adherent to human skin used in electrochemical sensors to detect metal ions and biomarkers in sweat. Talanta 2020; 218:121153. [DOI: 10.1016/j.talanta.2020.121153] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 02/04/2023]
|
31
|
Ehzari H, Amiri M, Safari M. Enzyme-free sandwich-type electrochemical immunosensor for highly sensitive prostate specific antigen based on conjugation of quantum dots and antibody on surface of modified glassy carbon electrode with core–shell magnetic metal-organic frameworks. Talanta 2020; 210:120641. [DOI: 10.1016/j.talanta.2019.120641] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 11/30/2022]
|
32
|
Pudza MY, Abidin ZZ, Abdul-Rashid S, Yasin FM, Noor ASM, Abdullah J. Selective and simultaneous detection of cadmium, lead and copper by tapioca-derived carbon dot-modified electrode. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13315-13324. [PMID: 32020456 DOI: 10.1007/s11356-020-07695-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
The need for the sensing of environmental pollutants cannot be overemphasized in the twenty-first century. Herein, a sensor has been developed for the sensitive and selective detection of copper (Cu2+), lead (Pb2+) and cadmium (Cd2+) as major heavy metals polluting water environment. A screen-printed carbon electrode (SPCE) modified by fluorescent carbon dots (CDs) and gold nanoparticles (AuNPs) was successfully fabricated for sensing Cu2+, Pb2+ and Cd2+. Differential pulse voltammetry (DPV) and cyclic voltammetry (CV) were deployed for the analysis of ternary analytes. CV was set at a potential range of - 0.8 to + 0.2 V at a scan rate of 100 mV/s, and DPV at a potential range of - 0.8 to + 0.1 V, scan rate of 50 mV/s, pulse rate of 0.2 V and pulse width of 50 ms. DPV technique was applied through the modified electrode for sensitive and selective determination of Cu2+, Pb2+ and Cd2+ at a concentration range of 0.01 to 0.27 ppm for Cu2+, Pb2+ and Cd2+. Tolerance for the highest possible concentration of foreign substances such as Mg2+, K+, Na+, NO3-, and SO42- was observed with a relative error less than ± 3%. The sensitivity of the modified electrode was at 0.17, 0.42 and 0.18 ppm for Cd2+, Pb2+ and Cu2+, respectively, while the limits of detection (LOD) achieved for cadmium, lead and copper were 0.0028, 0.0042 and 0.014 ppm, respectively. The quality of the modified electrode for sensing Cu2+, Pb2+ and Cd2+ at trace levels is in accordance with the World Health Organization (WHO) and Environmental Protection Agency (EPA) water regulation standard. The modified SPCE provides a cost-effective, dependable and stable means of detecting heavy metal ions (Cu2+, Pb2+ and Cd2+) in an aqueous solution. Graphical abstract .
Collapse
Affiliation(s)
- Musa Yahaya Pudza
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Zurina Zainal Abidin
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Suraya Abdul-Rashid
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Faizah Md Yasin
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ahmad Shukri Muhammad Noor
- Department of Computer and Communication Systems Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
33
|
Khan MMR, Mitra T, Sahoo D. Metal oxide QD based ultrasensitive microsphere fluorescent sensor for copper, chromium and iron ions in water. RSC Adv 2020; 10:9512-9524. [PMID: 35497206 PMCID: PMC9050156 DOI: 10.1039/c9ra09985a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Herein we developed a rapid, cheap, and water-soluble ultra-sensitive ZnO quantum dot (QD) based metal sensor for detecting different hazardous metal ions up to the picomolar range in water. Various spectroscopic and microscopic techniques confirmed the formation of 2.15 ± 0.46 μm of ZnO QD conjugated CMC microspheres (ZCM microspheres) which contain 5.5 ± 0.5 nm fluorescent zinc oxide (ZnO) QDs. Our system, as a promising sensor, exhibited excellent photostability and affinity towards various heavy metal ions. The detection limits were calculated to be 16 pM for Cu2+ and 0.18 nM for Cr6+ ions which are better than previously reported values. The simple fluorescence 'turn off' property of our ZCM microsphere sensor system can serve a two-in-one purpose by not only detecting the heavy metals but also quantifying them. Nonetheless, pattern recognition for different heavy metals helped us to detect and identify multiple heavy metal ions. Finally, their practical applications on real samples also demonstrated that the ZCM sensor can be effectively utilized for detection of Cr6+, Fe3+, Cu2+ present in the real water samples. This study may inspire future research and design of target fluorescent metal oxide QDs with specific functions.
Collapse
Affiliation(s)
- Md Motiar R Khan
- Department of Biochemistry, University of Calcutta Kolkata-700019 India
| | - Tapas Mitra
- Department of Biochemistry, University of Calcutta Kolkata-700019 India
| | - Dibakar Sahoo
- School of Physics, Sambalpur University Jyoti Vihar Burla Odisha 768019 India
| |
Collapse
|
34
|
Hai TL, Hung LC, Phuong TTB, Ha BTT, Nguyen BS, Hai TD, Nguyen VH. Multiwall carbon nanotube modified by antimony oxide (Sb2O3/MWCNTs) paste electrode for the simultaneous electrochemical detection of cadmium and lead ions. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104456] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Rocha DP, Squissato AL, da Silva SM, Richter EM, Munoz RA. Improved electrochemical detection of metals in biological samples using 3D-printed electrode: Chemical/electrochemical treatment exposes carbon-black conductive sites. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135688] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Ning J, Luo X, Wang F, Huang S, Wang J, Liu D, Liu D, Chen D, Wei J, Liu Y. Synergetic Sensing Effect of Sodium Carboxymethyl Cellulose and Bismuth on Cadmium Detection by Differential Pulse Anodic Stripping Voltammetry. SENSORS 2019; 19:s19245482. [PMID: 31842415 PMCID: PMC6960847 DOI: 10.3390/s19245482] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 12/29/2022]
Abstract
In the present work, a novel electrochemical sensor was developed for the detection of trace cadmium with high sensitivity and selectivity in an easy and eco-friendly way. Firstly, a glassy carbon electrode (GCE) was modified with nontoxic sodium carboxymethyl cellulose (CMC) by a simple drop-casting method, which was applied to detect cadmium by differential pulse anodic stripping voltammetry (DPASV) in a solution containing both target cadmium and eco-friendly bismuth ions, based on a quick electro-codeposition of these two metal ions on the surface of the modified electrode (CMC-GCE). Investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FT-IR), both CMC (with good film-forming ability) and bismuth (with well-defined stripping signal) were found to be well complexed with target cadmium, leading to vital signal amplification for cadmium detection at a sub-nanomolar level. Under the optimal conditions, the proposed sensor exhibited a good linear stripping signal response to cadmium (Ⅱ) ion, in a concentration range of 0.001 μmol/L–1 μmol/L with a limit of detection of 0.75 nmol/L (S/N = 3). Meanwhile, the results demonstrate that this novel electrochemical sensor has excellent sensitivity and reproducibility, which can be used as a promising detection technique for testing natural samples such as tap water.
Collapse
|
37
|
Hwang JH, Pathak P, Wang X, Rodriguez KL, Cho HJ, Lee WH. A Novel Bismuth-Chitosan Nanocomposite Sensor for Simultaneous Detection of Pb(II), Cd(II) and Zn(II) in Wastewater. MICROMACHINES 2019; 10:mi10080511. [PMID: 31370277 PMCID: PMC6723456 DOI: 10.3390/mi10080511] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 11/16/2022]
Abstract
A novel bismuth (Bi)-biopolymer (chitosan) nanocomposite screen-printed carbon electrode was developed using a Bi and chitosan co-electrodepositing technique for detecting multiple heavy metal ions. The developed sensor was fabricated with environmentally benign materials and processes. In real wastewater, heavy metal detection was evaluated by the developed sensor using square wave anodic stripping voltammetry (SWASV). The nanocomposite sensor showed the detection limit of 0.1 ppb Zn2+, 0.1 ppb Cd2+ and 0.2 ppb Pb2+ in stock solutions. The improved sensitivity of the Bi-chitosan nanocomposite sensor over previously reported Bi nanocomposite sensors was attributed to the role of chitosan. When used for real wastewater samples collected from a mining site and soil leachate, similar detection limit values with 0.4 ppb Cd2+ and 0.3 ppb Pb2+ were obtained with relative standard deviations (RSD) ranging from 1.3% to 5.6% (n = 8). Temperature changes (4 and 23 °C) showed no significant impact on sensor performance. Although Zn2+ in stock solutions was well measured by the sensor, the interference observed while detecting Zn2+ in the presence of Cu2+ was possibly due to the presence of Cu-Zn intermetallic species in mining wastewater. Overall, the developed sensor has the capability of monitoring multiple heavy metals in contaminated water samples without the need for complicated sample preparation or transportation of samples to a laboratory.
Collapse
Affiliation(s)
- Jae-Hoon Hwang
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Pawan Pathak
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Xiaochen Wang
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Kelsey L Rodriguez
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Hyoung J Cho
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Woo Hyoung Lee
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
38
|
Liu X, Yao Y, Ying Y, Ping J. Recent advances in nanomaterial-enabled screen-printed electrochemical sensors for heavy metal detection. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.021] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Ghorbani M, Pedramrad T, Aghamohammadhasan M, Seyedin O, Akhlaghi H, Afshar Lahoori N. Simultaneous clean-up and determination of Cu(II), Pb(II) and Cr(III) in real water and food samples using a magnetic dispersive solid phase microextraction and differential pulse voltammetry with a green and novel modified glassy carbon electrode. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Antunović V, Ilić M, Baošić R, Jelić D, Lolić A. Synthesis of MnCo2O4 nanoparticles as modifiers for simultaneous determination of Pb(II) and Cd(II). PLoS One 2019; 14:e0210904. [PMID: 30726233 PMCID: PMC6364896 DOI: 10.1371/journal.pone.0210904] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/03/2019] [Indexed: 12/03/2022] Open
Abstract
The porous spinel oxide nanoparticles, MnCo2O4, were synthesized by citrate gel combustion technique. Morphology, crystallinity and Co/Mn content of modified electrode was characterized and determined by Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction pattern analysis (XRD), simultaneous thermogravimetry and differential thermal analysis (TG/DTA). Nanoparticles were used for modification of glassy carbon electrode (GCE) and new sensor was applied for simultaneous determination of Pb(II) and Cd(II) ions in water samples with the linear sweep anodic stripping voltammetry (LSASV).The factors such as pH, deposition potential and deposition time are optimized. Under optimal conditions the wide linear concentration range from 0.05 to 40 μmol/dm3was obtained for Pb(II), with limit of detection (LOD) of 8.06 nmol/dm3 and two linear concentration ranges were obtained for Cd(II), from 0.05 to 1.6 μmol/dm3 and from 1.6 to 40 μmol/dm3, with calculated LOD of 7.02 nmol/dm3. The selectivity of the new sensor was investigated in the presence of interfering ions. The sensor is stable and it gave reproducible results. The new sensor was succesfully applied on determination of heavy metals in natural waters.
Collapse
Affiliation(s)
- Vesna Antunović
- Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Marija Ilić
- University of Belgrade—Faculty of Mining and Geology, Belgrade, Serbia
| | - Rada Baošić
- Department of Analytical Chemistry, University of Belgrade—Faculty of Chemistry, Belgrade, Serbia
| | - Dijana Jelić
- Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Aleksandar Lolić
- Department of Analytical Chemistry, University of Belgrade—Faculty of Chemistry, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
41
|
Hernández D, Cepriá G, Laborda F, Castillo JR. Detection and Determination of Released Ions in the Presence of Nanoparticles: Selectivity or Strategy? ELECTROANAL 2019. [DOI: 10.1002/elan.201800597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Deamelys Hernández
- Group of Analytical Spectroscopy and Sensors (GEAS); Institute of Environmental Sciences (IUCA); University of Zaragoza; Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Gemma Cepriá
- Group of Analytical Spectroscopy and Sensors (GEAS); Institute of Environmental Sciences (IUCA); University of Zaragoza; Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Francisco Laborda
- Group of Analytical Spectroscopy and Sensors (GEAS); Institute of Environmental Sciences (IUCA); University of Zaragoza; Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Juan R. Castillo
- Group of Analytical Spectroscopy and Sensors (GEAS); Institute of Environmental Sciences (IUCA); University of Zaragoza; Pedro Cerbuna 12 50009 Zaragoza Spain
| |
Collapse
|
42
|
A carbon paste electrode modified with poly(methylene disulfide) nanoparticles for anodic stripping voltammetric determination of silver(I). Mikrochim Acta 2019; 186:60. [DOI: 10.1007/s00604-018-3156-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/07/2018] [Indexed: 12/31/2022]
|
43
|
Zhang T, Gao C, Huang W, Chen Y, Wang Y, Wang J. Covalent organic framework as a novel electrochemical platform for highly sensitive and stable detection of lead. Talanta 2018; 188:578-583. [DOI: 10.1016/j.talanta.2018.06.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/03/2018] [Accepted: 06/09/2018] [Indexed: 10/14/2022]
|
44
|
Electroanalytical detection of heavy metals using metallophthalocyanine and silica-coated iron oxide composites. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0545-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
45
|
Ly NH, Nguyen TD, Zoh KD, Joo SW. Interaction between Diethyldithiocarbamate and Cu(II) on Gold in Non-Cyanide Wastewater. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2628. [PMID: 29140287 PMCID: PMC5713075 DOI: 10.3390/s17112628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 01/12/2023]
Abstract
A surface-enhanced Raman scattering (SERS) detection method for environmental copper ions (Cu2+) was developed according to the vibrational spectral change of diethyldithiocarbamate (DDTC) on gold nanoparticles (AuNPs). The ultraviolet-visible (UV-Vis) absorption spectra indicated that DDTC formed a complex with Cu2+, showing a prominent peak at ~450 nm. We found Raman spectral changes in DDTC from ~1490 cm-1 to ~1504 cm-1 on AuNPs at a high concentration of Cu2+ above 1 μM. The other ions of Zn2+, Pb2+, Ni2+, NH₄⁺, Mn2+, Mg2+, K⁺, Hg2+, Fe2+, Fe3+, Cr3+, Co2+, Cd2+, and Ca2+ did not produce such spectral changes, even after they reacted with DDTC. The electroplating industrial wastewater samples were tested under the interference of highly concentrated ions of Fe3+, Ni2+, and Zn2+. The Raman spectroscopy-based quantification of Cu2+ ions was able to be achieved for the wastewater after treatment with alkaline chlorination, whereas the cyanide-containing water did not show any spectral changes, due to the complexation of the cyanide with the Cu2+ ions. A micromolar range detection limit of Cu2+ ions could be achieved by analyzing the Raman spectra of DDTC in the cyanide-removed water.
Collapse
Affiliation(s)
- Nguyễn Hoàng Ly
- Department of Chemistry, Soongsil University, Seoul 156-743, Korea.
| | - Thanh Danh Nguyen
- Department of Chemistry, Soongsil University, Seoul 156-743, Korea.
- Department of Information Communication, Materials, Chemistry Convergence Technology, Soongsil University, Seoul 156-743, Korea.
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul 08826, Korea.
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul 156-743, Korea.
- Department of Information Communication, Materials, Chemistry Convergence Technology, Soongsil University, Seoul 156-743, Korea.
| |
Collapse
|