1
|
Manikandan R, Yoon JH, Chang SC. Emerging Trends in nanostructured materials-coated screen printed electrodes for the electrochemical detection of hazardous heavy metals in environmental matrices. CHEMOSPHERE 2023; 344:140231. [PMID: 37775053 DOI: 10.1016/j.chemosphere.2023.140231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/18/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Heavy metal ions (HMIs) have become a significant contaminant in recent years. The increase in heavy metal pollution is a serious situation, requiring progressively robust, fast sensing, highly sensitive, and suitable techniques for heavy metal detection. Compared to other classical analytical methods, electroanalytical techniques, especially stripping voltammetric techniques with modified screen-printed electrodes (SPEs), have several advantages, such as fast sensing, great sensitivity, specificity, and long-time stability. Therefore, these techniques are more suitable for HMI detection. In this review, the nanostructured materials used to coat SPEs for the electrochemical determination of HMI are summarized. Additionally, the electrode fabrication method, modification steps, and electroanalytical study of these materials are systematically discussed. Hence, this review will support the researchers in precisely evaluating the electrochemical HMIs detection through highly sensitive stripping voltammetric techniques using SPE modified with nanostructured carbon and their allotropes, metal, metal oxides and their nanocomposites as sensor materials. Moreover, modified electrodes real time detection of HMIs in different food and environmental samples were briefly discussed.
Collapse
Affiliation(s)
- Ramalingam Manikandan
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jang-Hee Yoon
- Busan Centre, Korea Basic Science Institute, Busan, 46742, Republic of Korea
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
2
|
Biasi ADLM, Takara EA, Scala-Benuzzi ML, Valverde AM, Gómez NN, Messina GA. Modification of electrodes with polymer nanocomposites: Application to the simultaneous determination of Zn(II), Cd(II), and Cu(II) in water samples. Anal Chim Acta 2023; 1273:341499. [PMID: 37423652 DOI: 10.1016/j.aca.2023.341499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
Currently, there is a need for fast and sensitive analytical methods for monitoring metals in water due to the progressive increase in the presence of metal ions in the environment. These metals reach the environment mainly from industrial activity and heavy metals are non-biodegradable. The present work evaluates different polymeric nanocomposites to carry out the simultaneous electrochemical determination of Cu, Cd, and Zn in water samples. Screen-printed carbon electrodes (SPCE) were modified with the nanocomposites, which were obtained by a mixture of graphene, graphite oxide, and polymers, such as polyethyleneimide, gelatin, and chitosan. These polymers have amino groups in their matrix, giving the nanocomposite the ability to retain divalent cations. However, the availability of these groups plays a fundamental role in the retention of these metals. The modified SPCEs were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. The electrode that presented the best performance was selected to determine the concentration of metal ions in water samples by square-wave anodic stripping voltammetry. The obtained detection limits were 0.23 μg L-1, 0.53 μg L-1, and 1.52 μg L-1 for Zn(II), Cd(II), and Cu(II), respectively, with a lineal range of 0.1-50 μg L-1. The obtained results made it possible to conclude that the method developed using the SPCE modified with the polymeric nanocomposite presented adequate LODs, reasonable sensitivity, selectivity, and reproducibility. Besides, this platform is an excellent tool for developing devices to simultaneously determine heavy metals in environmental samples.
Collapse
Affiliation(s)
- Antonella de Las M Biasi
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Departamento de Bioquímica, Universidad Nacional de San Luis, CONICET, Avenida Ejército de los Andes 950, D 5700 BWS, San Luis, Argentina
| | - Eduardo A Takara
- Instituto de Física Aplicada (INFAP), Departamento de Química, Universidad Nacional de San Luis. CONICET, Avenida Ejército de los Andes 950, D 5700 BWS, San Luis, Argentina.
| | - María L Scala-Benuzzi
- Instituto de Química de San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis, CONICET, Chacabuco 917, D5700BWS, San Luis, Argentina
| | - Agustina M Valverde
- Instituto de Química de San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis, CONICET, Chacabuco 917, D5700BWS, San Luis, Argentina
| | - Nidia N Gómez
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Departamento de Bioquímica, Universidad Nacional de San Luis, CONICET, Avenida Ejército de los Andes 950, D 5700 BWS, San Luis, Argentina
| | - German A Messina
- Instituto de Química de San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis, CONICET, Chacabuco 917, D5700BWS, San Luis, Argentina
| |
Collapse
|
3
|
Karapa A, Kokkinos C, Fielden PR, Baldock SJ, Goddard NJ, Economou A, Prodromidis MI. Eco-friendly voltammetric platform for trace metal determination using a conductive polymer sensor modified with bismuth nanoparticles generated by spark discharge. Mikrochim Acta 2023; 190:376. [PMID: 37659010 PMCID: PMC10474985 DOI: 10.1007/s00604-023-05929-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/22/2023] [Indexed: 09/05/2023]
Abstract
The fabrication of a low-cost eco-friendly sensor platform for the voltammetric determination of trace metals by electrochemical stripping analysis is reported. Plastic conductive electrodes were manufactured via injection moulding from polysterene reinforced with carbon fibres. The platform comprises a carbon counter electrode, a working electrode modified with bismuth nanoparticles generated by spark discharge and a reference electrode coated with AgCl. The sensor fabrication and modification procedures are simple, cost-effective and fast while the materials used are environment-friendly. The utility of the voltammetric platform is demonstrated for stripping analysis of Cd(II) and Pb(II); the limits of detection are 0.7 μg L-1 and 0.6 μg L-1, respectively (with a deposition time of 240 s) which are comparable to conventional Bi-modified sensors and are sufficient to determine the target metals in water and food samples. The scope of the analytical platform for multi-element assays and for the determination of other trace metals is discussed with representative examples. Therefore, this sustainable and economical platform holds great potential for electrochemical sensing of trace metals.
Collapse
Affiliation(s)
- Alexandra Karapa
- Department of Chemistry, National and Kapodistrian University of Athens, 157 71, Athens, Greece
| | - Christos Kokkinos
- Department of Chemistry, National and Kapodistrian University of Athens, 157 71, Athens, Greece
| | - Peter R Fielden
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK
| | - Sara J Baldock
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK
| | | | - Anastasios Economou
- Department of Chemistry, National and Kapodistrian University of Athens, 157 71, Athens, Greece.
| | | |
Collapse
|
4
|
Rubino A, Queirós R. Electrochemical determination of heavy metal ions applying screen-printed electrodes based sensors. A review on water and environmental samples analysis. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
5
|
Keramari V, Karastogianni S, Girousi S. New Prospects in the Electroanalysis of Heavy Metal Ions (Cd, Pb, Zn, Cu): Development and Application of Novel Electrode Surfaces. Methods Protoc 2023; 6:60. [PMID: 37489427 PMCID: PMC10366748 DOI: 10.3390/mps6040060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/10/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
The detection of toxic heavy metal ions, especially cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu), is a global problem due to ongoing pollution incidents and continuous anthropogenic and industrial activities. Therefore, it is important to develop effective detection techniques to determine the levels of pollution from heavy metal ions in various media. Electrochemical techniques, more specifically voltammetry, due to its properties, is a promising method for the simultaneous detection of heavy metal ions. This review examines the current trends related to electrode formation and analysis techniques used. In addition, there is a reference to advanced detection methods based on the nanoparticles that have been developed so far, as well as formation with bismuth and the emerging technique of screen-printed electrodes. Finally, the advantages of using these methods are highlighted, while a discussion is presented on the benefits arising from nanotechnology, as it gives researchers new ideas for integrating these technologies into devices that can be used anywhere at any time. Reference is also made to the speciation of metals and how it affects their toxicity, as it is an important subject of research.
Collapse
Affiliation(s)
- Vasiliki Keramari
- Analytical Chemistry Laboratory, School of Chemistry, Faculty of Sciences, 54124 Thessaloniki, Greece
| | - Sophia Karastogianni
- Analytical Chemistry Laboratory, School of Chemistry, Faculty of Sciences, 54124 Thessaloniki, Greece
| | - Stella Girousi
- Analytical Chemistry Laboratory, School of Chemistry, Faculty of Sciences, 54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Mahmoudian N, Zamani A, Fashi A, Richter P, Abdolmohammad-Zadeh H. Ultra-trace determination of cadmium in water and food samples by a thin-film microextraction using a supported liquid membrane combined with smartphone-based colorimetric detection. Food Chem 2023; 421:136193. [PMID: 37094402 DOI: 10.1016/j.foodchem.2023.136193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
A mixture of n-octanol and dithizone was introduced as an effective and novel extraction agent in a thin-film microextraction technique for the pre-concentration of cadmium ions. The extraction agent was immobilized on small pieces of porous polypropylene flat membrane as a supported liquid membrane. The analyte extraction was performed by immersing the modified film in the sample solution, and via a complex formation between the immobilized dithizone on the film and cadmium ions. After the thin-film microextraction process, the colored cadmium-dithizone complex was directly measured by a smartphone colorimetric analysis. Under optimized conditions, the linear dynamic range, the limit of detection, and the limit of quantification were 0.5-300.0, 0.1, and 0.4 μg L-1, respectively. The developed technique was successfully employed to quantify cadmium ions in water and food samples. The high relative recovery values (95.0-103.0%) along with relative standard deviations of less than 2.5% were obtained for the spiked samples.
Collapse
Affiliation(s)
- Nastaran Mahmoudian
- Analytical Spectroscopy Research Lab., Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, 35 Km Tabriz-Maragheh Road, P.O. Box 53714-161, Tabriz 5375171379, Iran; Environmental Science Research Laboratory, Department of Environmental Science, Faculty of Sciences, University of Zanjan, Postal Code 45371-38791, Zanjan, Iran
| | - Abbasali Zamani
- Environmental Science Research Laboratory, Department of Environmental Science, Faculty of Sciences, University of Zanjan, Postal Code 45371-38791, Zanjan, Iran.
| | - Armin Fashi
- Environmental Science Research Laboratory, Department of Environmental Science, Faculty of Sciences, University of Zanjan, Postal Code 45371-38791, Zanjan, Iran
| | - Pablo Richter
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Postal Box 233, Santiago, Chile
| | - Hossein Abdolmohammad-Zadeh
- Analytical Spectroscopy Research Lab., Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, 35 Km Tabriz-Maragheh Road, P.O. Box 53714-161, Tabriz 5375171379, Iran.
| |
Collapse
|
7
|
Zhang C, Li C, Han X. Screen printed electrode containing bismuth for the detection of cadmium ion. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
8
|
Liu Z, Wang R, Xue Q, Chang C, Liu Y, He L. Highly efficient detection of Cd(Ⅱ) ions in water by graphitic carbon nitride and tin dioxide nanoparticles modified glassy carbon electrode. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Screen-printed electrochemical sensors for environmental monitoring of heavy metal ion detection. REV CHEM ENG 2022. [DOI: 10.1515/revce-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Heavy metal ions (HMIs) are known to cause severe damages to the human body and ecological environment. And considering the current alarming situation, it is crucial to develop a rapid, sensitive, robust, economical and convenient method for their detection. Screen printed electrochemical technology contributes greatly to this task, and has achieved global attention. It enabled the mass transmission rate and demonstrated ability to control the chemical nature of the measure media. Besides, the technique offers advantages like linear output, quick response, high selectivity, sensitivity and stability along with low power requirement and high signal-to-noise ratio. Recently, the performance of SPEs has been improved employing the most effective and promising method of the incorporation of different nanomaterials into SPEs. Especially, in electrochemical sensors, the incorporation of nanomaterials has gained extensive attention for HMIs detection as it exhibits outstanding features like broad electrochemical window, large surface area, high conductivity, selectivity and stability. The present review focuses on the recent progress in the field of screen-printed electrochemical sensors for HMIs detection using nanomaterials. Different fabrication methods of SPEs and their utilization for real sample analysis of HMIs using various nanomaterials have been extensively discussed. Additionally, advancement made in this field is also discussed taking help of the recent literature.
Collapse
|
10
|
Beitollahi H, Tajik S, Dourandish Z, Garkani Nejad F. Simple Preparation and Characterization of Hierarchical Flower-like NiCo 2O 4 Nanoplates: Applications for Sunset Yellow Electrochemical Analysis. BIOSENSORS 2022; 12:bios12110912. [PMID: 36354421 PMCID: PMC9688067 DOI: 10.3390/bios12110912] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 06/12/2023]
Abstract
The current work was performed to construct a novel electrochemical sensing system for determination of sunset yellow via the modification of screen-printed graphite electrode modified with hierarchical flower-like NiCo2O4 nanoplates (NiCo2O4/SPGE). The prepared material (hierarchical flower-like NiCo2O4 nanoplates) was analyzed by diverse microscopic and spectroscopic approaches for the crystallinity, composition, and morphology. Chronoamperometry, differential pulse voltammetry, linear sweep voltammetry, and cyclic voltammetry were used for determination of the electrochemical behavior of sunset yellow. The as-fabricated sensor had appreciable electro-catalytic performance and current sensitivity in detecting the sunset yellow. There were some advantages for NiCo2O4/SPGE under the optimized circumstances of sunset yellow determination, including a broad dynamic linear between 0.02 and 145.0 µM, high sensitivity of 0.67 μA/(μM.cm2), and a narrow limit of detection of 0.008 μM. The practical applicability of the proposed sensor was verified by determining the sunset yellow in real matrices, with satisfactory recoveries.
Collapse
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman P.O. Box 76318-85356, Iran
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran
| | - Zahra Dourandish
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman P.O. Box 76318-85356, Iran
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman P.O. Box 76318-85356, Iran
| |
Collapse
|
11
|
Sun M, Ma B, Yuan S, Xin L, Zhao C, Liu H. Mercury thermometer-inspired test strip for concentration cell-based potentiometric detection of salivary α-amylase. Anal Chim Acta 2022; 1206:339770. [DOI: 10.1016/j.aca.2022.339770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
|
12
|
Mohamad Nor N, Ramli NH, Poobalan H, Qi Tan K, Abdul Razak K. Recent Advancement in Disposable Electrode Modified with Nanomaterials for Electrochemical Heavy Metal Sensors. Crit Rev Anal Chem 2021; 53:253-288. [PMID: 34565248 DOI: 10.1080/10408347.2021.1950521] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heavy metal pollution has gained global attention due to its high toxicity and non-biodegradability, even at a low level of exposure. Therefore, the development of a disposable electrode that is sensitive, simple, portable, rapid, and cost-effective as the sensor platform in electrochemical heavy metal detection is vital. Disposable electrodes have been modified with nanomaterials so that excellent electrochemical properties can be obtained. This review highlights the recent progress in the development of numerous types of disposable electrodes modified with nanomaterials for electrochemical heavy metal detection. The disposable electrodes made from carbon-based, glass-based, and paper-based electrodes are reviewed. In particular, the analytical performance, fabrication technique, and integration design of disposable electrodes modified with metal (such as gold, tin and bismuth), carbon (such as carbon nanotube and graphene), and metal oxide (such as iron oxide and zinc oxide) nanomaterials are summarized. In addition, the role of the nanomaterials in improving the electrochemical performance of the modified disposable electrodes is discussed. Finally, the current challenges and future prospect of the disposable electrode modified with nanomaterials are summarized.
Collapse
Affiliation(s)
- Noorhashimah Mohamad Nor
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Nurul Hidayah Ramli
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Hemalatha Poobalan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Kai Qi Tan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Khairunisak Abdul Razak
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia.,NanoBiotechnology Research & Innovation (NanoBRI), Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| |
Collapse
|
13
|
Ahamed A, Ge L, Zhao K, Veksha A, Bobacka J, Lisak G. Environmental footprint of voltammetric sensors based on screen-printed electrodes: An assessment towards "green" sensor manufacturing. CHEMOSPHERE 2021; 278:130462. [PMID: 33845436 DOI: 10.1016/j.chemosphere.2021.130462] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Voltammetric sensors based on screen-printed electrodes (SPEs) await diverse applications in environmental monitoring, food, agricultural and biomedical analysis. However, due to the single-use and disposable characteristics of SPEs and the scale of measurements performed, their environmental impacts should be considered. A life cycle assessment was conducted to evaluate the environmental footprint of SPEs manufactured using various substrate materials (SMs: cotton textile, HDPE plastic, Kraft paper, graphic paper, glass, and ceramic) and electrode materials (EMs: platinum, gold, silver, copper, carbon black, and carbon nanotubes (CNTs)). The greatest environmental impact was observed when cotton textile was used as SM. HDPE plastic demonstrated the least impact (13 out of 19 categories), followed by ceramic, glass and paper. However, considering the end-of-life scenarios and release of microplastics into the environment, ceramic, glass or paper could be the most suitable options for SMs. Amongst the EMs, the replacement of metals, especially noble metals, by carbon-based EMs greatly reduces the environmental footprint of SPEs. Compared with other materials, carbon black was the least impactful on the environment. On the other hand, copper and waste-derived CNTs (WCNTs) showed low impacts except for terrestrial ecotoxicity and human toxicity (non-cancer) potentials. In comparison to commercial CNTs (CCNTs), WCNTs demonstrated lower environmental footprint and comparable voltammetric performance in heavy metal detections, justifying the substitution of CCNTs with WCNTs in commercial applications. In conclusion, a combination of carbon black or WCNTs EMs with ceramic, glass or paper SMs represents the most environmentally friendly SPE configurations for voltammetric sensor arrangement.
Collapse
Affiliation(s)
- Ashiq Ahamed
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore; Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500, Turku/Åbo, Finland
| | - Liya Ge
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Ke Zhao
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Andrei Veksha
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Johan Bobacka
- Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500, Turku/Åbo, Finland
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
14
|
Ivanov R, Czibula C, Teichert C, Bojinov M, Tsakova V. Carbon screen-printed electrodes for substrate-assisted electroless deposition of palladium. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Królicka A, Zarębski J, Bobrowski A. Catalytic Adsorptive Stripping Voltammetric Determination of Germanium Employing the Oxidizing Properties of V(IV)-HEDTA Complex and Bismuth-Modified Carbon-Based Electrodes. MEMBRANES 2021; 11:524. [PMID: 34357176 PMCID: PMC8308015 DOI: 10.3390/membranes11070524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022]
Abstract
An efficient procedure that may be used to determine germanium traces and combines the advantages of catalytic adsorptive stripping voltammetry (CAdSV) with the convenience of screen-printed electrodes was developed. To induce the CAdSV response of the germanium(IV)-catechol complex, the vanadium(IV)-HEDTA compound was employed in combination with various bismuth-modified homogeneous (glassy carbon, gold coated with a bismuth layer via physical vapor deposition) and heterogeneous (screen-printed carbon, mesoporous carbon, graphene and reduced graphene oxide, polymer-encapsuled carbon fiber) electrodes. This solution had never before been implemented for this purpose. To achieve the most favorable performance of the working electrode, the parameters of bismuth deposition were optimized using a central composite design methodology. SEM imaging and contact angle measurements confirmed the long-term stability and high chemical resistance of the electrodes against the oxidizing action of V(IV)-HEDTA. Under optimized conditions, the method made it possible to detect nanomolar concentrations of germanium with favorable detection limits, high sensitivity, and a wide linear range of 5-90 nM of Ge(IV).
Collapse
Affiliation(s)
- Agnieszka Królicka
- Department of Building Materials Technology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland; (J.Z.); (A.B.)
| | | | | |
Collapse
|
16
|
Torres-Rivero K, Florido A, Bastos-Arrieta J. Recent Trends in the Improvement of the Electrochemical Response of Screen-Printed Electrodes by Their Modification with Shaped Metal Nanoparticles. SENSORS 2021; 21:s21082596. [PMID: 33917220 PMCID: PMC8067965 DOI: 10.3390/s21082596] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/04/2022]
Abstract
Novel sensing technologies proposed must fulfill the demands of wastewater treatment plants, the food industry, and environmental control agencies: simple, fast, inexpensive, and reliable methodologies for onsite screening, monitoring, and analysis. These represent alternatives to conventional analytical methods (ICP-MS and LC-MS) that require expensive and non-portable instrumentation. This needs to be controlled by qualified technicians, resulting moreover in a long delay between sampling and high-cost analysis. Electrochemical analysis based on screen-printed electrodes (SPEs) represents an excellent miniaturized and portable alternative due to their disposable character, good reproducibility, and low-cost commercial availability. SPEs application is widely extended, which makes it important to design functionalization strategies to improve their analytical response. In this sense, different types of nanoparticles (NPs) have been used to enhance the electrochemical features of SPEs. NPs size (1–100 nm) provides them with unique optical, mechanical, electrical, and chemical properties that give the modified SPEs increased electrode surface area, increased mass-transport rate, and faster electron transfer. Recent progress in nanoscale material science has led to the creation of reproducible, customizable, and simple synthetic procedures to obtain a wide variety of shaped NPs. This mini-review attempts to present an overview of the enhancement of the electrochemical response of SPEs when NPs with different morphologies are used for their surface modification
Collapse
Affiliation(s)
- Karina Torres-Rivero
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, BarcelonaTEch (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; (K.T.-R.); (A.F.)
- Barcelona Research Center for Multiscale Science and Engineering, Av. Eduard Maristany 16, 08019 Barcelona, Spain
| | - Antonio Florido
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, BarcelonaTEch (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; (K.T.-R.); (A.F.)
- Barcelona Research Center for Multiscale Science and Engineering, Av. Eduard Maristany 16, 08019 Barcelona, Spain
| | - Julio Bastos-Arrieta
- Grup de Biotecnologia Molecular i Industrial, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Edifici Gaia TR14, 08222 Terrassa, Spain
- Correspondence:
| |
Collapse
|
17
|
Research Progress of Electrochemical Detection of Heavy Metal Ions. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60083-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Kondori T, Tajik S, Akbarzadeh-T N, Beitollahi H, Graiff C, Jang HW, Shokouhimehr M. Synthesis and characterization of bipyridine cobalt(ii) complex modified graphite screen printed electrode: an electrochemical sensor for simultaneous detection of acetaminophen and naproxen. RSC Adv 2021; 11:3049-3057. [PMID: 35424218 PMCID: PMC8693888 DOI: 10.1039/d0ra08126d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/27/2020] [Indexed: 11/25/2022] Open
Abstract
The new Co(ii) compound [Co(5,5'-dmbpy)2(NCS)2] (a1) was prepared by reacting Co(NO3)2·6H2O, 5,5'-dimethyl-2,2'-bipyridine ligand, and Na(SCN). The nano-scale size of [Co(5,5'-dmbpy)2(NCS)2] (a1) was synthesized using sonochemical process. The size of the nanoparticles (a2) was ∼13 ± 2 nm. We have also provided a new platform of electrochemical sensing for simultaneous detection of acetaminophen and naproxen using (a2) surface modified graphite screen printed electrode (SPE) in 0.1 M phosphate buffer solution (PBS, pH 7.0). In contrast to bare SPE, the modified SPE could significantly improve the electrooxidation activity of acetaminophen along with the rise in the current of an anodic peak. The peak currents acquired using differential pulse voltammetry (DPV) raised linearly with the raising of acetaminophen concentration and the sensor had a detection range over the concentration range of 0.009-325.0 μM, with a detection limit of 5.0 nM (S/N = 3). In the case of naproxen peak, currents of naproxen oxidation at the modified SPE were linearly dependent on the naproxen amounts in the range of 1.0-500.0 μM. The detection limit (S/N = 3) was calculated to be 0.03 μM. The DPV responses show that the peaks of acetaminophen and naproxen oxidation were vividly separated from one other with a potential difference of 410 mV between them. The low detection limit, high sensitivity, and stability made the relevant electrode applicable for the analysis of acetaminophen and naproxen in real samples. Further, its practical applicability was reliable and desirable in the analysis of pharmaceutical compounds and biological fluids. The benefits of using this modified electrode for the determination of analytes are compared with other works in the manuscript.
Collapse
Affiliation(s)
- Tahere Kondori
- Department of Chemistry, University of Sistan and Baluchestan P.O. Box 98135-674 Zahedan Iran
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences Kerman Iran
| | - Niloufar Akbarzadeh-T
- Department of Chemistry, University of Sistan and Baluchestan P.O. Box 98135-674 Zahedan Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology Kerman Iran
| | - Cloudia Graiff
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma Parco Area delleScienze 17/A 43124 Parma Italy
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materias, Seoul National University Seoul 08826 Republic of Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materias, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
19
|
Lin WF, Zhai WY, Yan Y, Liu YQ. Highly sensitive Pb2+ sensor based on rod-like poly-tyrosine/Bi modified glassy carbon electrode combined with electrodeposition to eliminate Cu2+ interference. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Baile P, Vidal L, Canals A. Magnetic dispersive solid-phase extraction using ZSM-5 zeolite/Fe 2O 3 composite coupled with screen-printed electrodes based electrochemical detector for determination of cadmium in urine samples. Talanta 2020; 220:121394. [PMID: 32928414 DOI: 10.1016/j.talanta.2020.121394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
A novel, simple, fast, sensitive and environmentally friendly approach is presented to determine cadmium in urine samples, combining magnetic dispersive solid-phase extraction (MDSPE) for sample preparation and screen-printed carbon electrodes (SPCEs) for square-wave anodic stripping voltammetry. This association involves the miniaturization of sample preparation and measurement process. Firstly, cadmium was extracted directly from urine samples employing a ZSM-5/Fe2O3, then, the composite enriched with cadmium was deposited onto the SPCE and finally covered with a suitable electrolyte for electrochemical detection. Thereby, the elution and detection of cadmium were carried out in a single step. To optimize experimental parameters affecting MDSPE, a two-step multivariate strategy has been employed. The method has been evaluated under optimized extraction/elution conditions (i.e., type of sorbent, ZSM-5/Fe2O3; amount of sorbent, 10 mg; sample pH, 6.8; extraction time, 5.5 min; and HCl concentration, 0.5 M) using standard addition calibration. Standard addition calibration curves gave a good linearity in the range from 0 to 30 μg L-1 with correlation coefficients ranging from 0.997 to 0.998 (N = 7). The limit of detection, evaluated empirically and statistically, ranged from 0.5 to 1.0 μg L-1 and from 0.4 to 0.8 μg L-1, respectively, which are lower than the threshold level established by the Ministry of Labour and Social Affairs (Spain) and World Health Organization for normal cadmium content in urine (i.e., 3.4 and 4.0 μg L-1, respectively). The repeatability of the proposed method was evaluated at 5 and 20 μg L-1 spiking levels obtaining coefficients of variation ranged between 12 and 15% (n = 6). A certified reference material (REC-8848/Level II) was analyzed to assess method accuracy finding 92% and 1.3 μg L-1 as the recovery (trueness) and standard deviation values, respectively. Finally, the method was applied to spiked urine samples, obtaining good agreement between spiked and found concentrations (recovery ranged from 89 to 98% and CV values ranged from 7% to 14%). Therefore, this is a new and successful contribution to the portable total analytical systems.
Collapse
Affiliation(s)
- Paola Baile
- Departamento de Química Analítica, Nutrición y Bromatología e Instituto Universitario de Materiales, Universidad de Alicante, P.O. Box 99, E-03080, Alicante, Spain
| | - Lorena Vidal
- Departamento de Química Analítica, Nutrición y Bromatología e Instituto Universitario de Materiales, Universidad de Alicante, P.O. Box 99, E-03080, Alicante, Spain.
| | - Antonio Canals
- Departamento de Química Analítica, Nutrición y Bromatología e Instituto Universitario de Materiales, Universidad de Alicante, P.O. Box 99, E-03080, Alicante, Spain.
| |
Collapse
|
21
|
Dossi C, Binda G, Monticelli D, Pozzi A, Recchia S, Spanu D. Exploiting Laser-Ablation ICP-MS for the Characterization of Salt-Derived Bismuth Films on Screen-Printed Electrodes: A Preliminary Investigation. BIOSENSORS 2020; 10:E119. [PMID: 32916940 PMCID: PMC7558652 DOI: 10.3390/bios10090119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 12/29/2022]
Abstract
The use of insoluble bismuth salts, typically BiPO4, is known to be a viable alternative to classical Bi3+ ion electrochemical reduction for the preparation of bismuth film electrodes (BiFE) on screen-printed electrodes. The freshly prepared electrodes are indefinitely stable, and the active bismuth film is simply formed by in situ reduction. Two aspects are still to be investigated, namely the bismuth distribution on the working electrode and the possible residual presence of the counteranion, namely phosphate. High-vacuum techniques such as electron microscopy or spectroscopy, which are commonly employed for this purpose, cannot be safely used: the bismuth surface is well-known to reconstruct and recrystallize under the electron beam in vacuum. Here, we demonstrate the suitability and the effectiveness of laser ablation ICP-MS (LA-ICP-MS, a technique that vaporizes and analyzes the surface material under flowing helium at atmospheric pressure) for the characterization of BiFE. Fast and stable measurements of bismuth and phosphorous distribution are achieved with the advantage of a minimum alteration of the sample surface, avoiding possible interferences. This investigation evidenced how, upon reductive activation, the bismuth film is distributed with a radial symmetry and the phosphate counteranion is completely absent on the working electrode surface.
Collapse
Affiliation(s)
- Carlo Dossi
- Dipartimento di Scienze Teoriche ed Applicate, Università degli Studi dell’Insubria, Via Dunant, 3, 22100 Varese, Italy;
| | - Gilberto Binda
- Dipartimento di Scienze Teoriche ed Applicate, Università degli Studi dell’Insubria, Via Dunant, 3, 22100 Varese, Italy;
| | - Damiano Monticelli
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio, 11, 21100 Como, Italy; (D.M.); (A.P.); (S.R.); (D.S.)
| | - Andrea Pozzi
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio, 11, 21100 Como, Italy; (D.M.); (A.P.); (S.R.); (D.S.)
| | - Sandro Recchia
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio, 11, 21100 Como, Italy; (D.M.); (A.P.); (S.R.); (D.S.)
| | - Davide Spanu
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio, 11, 21100 Como, Italy; (D.M.); (A.P.); (S.R.); (D.S.)
| |
Collapse
|
22
|
Electrochemical determination of capsaicin in pepper samples using sustainable paper-based screen-printed bulk modified with carbon black. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136628] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Scandurra A, Ruffino F, Urso M, Grimaldi MG, Mirabella S. Disposable and Low-Cost Electrode Based on Graphene Paper-Nafion-Bi Nanostructures for Ultra-Trace Determination of Pb(II) and Cd(II). NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1620. [PMID: 32824875 PMCID: PMC7466693 DOI: 10.3390/nano10081620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 02/01/2023]
Abstract
There is a huge demand for rapid, reliable and low-cost methods for the analysis of heavy metals in drinking water, particularly in the range of sub-part per billion (ppb). In the present work, we describe the preparation, characterization and analytical performance of the disposable sensor to be employed in Square Wave Anodic Stripping Voltammetry (SWASV) for ultra-trace simultaneous determination of cadmium and lead. The electrode consists of graphene paper-perfluorosulfonic ionomer-bismuth nano-composite material. The electrode preparation implies a key step aimed to enhance the Bi3+ adsorption into nafion film, prior to the bismuth electro-deposition. Finely dispersed bismuth nanoparticles embedded in the ionomer film are obtained. The electrode was characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS) and Electrochemical Impedance Spectroscopy (EIS). The electrode shows a linear response in the 5-100 ppb range, a time-stability tested up to almost three months, and detection limits up to 0.1 ppb for both Pb2+ and Cd2+. The electrode preparation method is simple and low in cost and the obtained analytical performance is very competitive with the state of art for the SWASV determination of Pb2+ and Cd2+ in solution.
Collapse
Affiliation(s)
- Antonino Scandurra
- Department of Physics and Astronomy Ettore Majorana of University of Catania, via S. Sofia 64, 95123 Catania, Italy; (F.R.); (M.U.); (M.G.G.); (S.M.)
| | - Francesco Ruffino
- Department of Physics and Astronomy Ettore Majorana of University of Catania, via S. Sofia 64, 95123 Catania, Italy; (F.R.); (M.U.); (M.G.G.); (S.M.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), via S. Sofia 64, 95123 Catania, Italy
| | - Mario Urso
- Department of Physics and Astronomy Ettore Majorana of University of Catania, via S. Sofia 64, 95123 Catania, Italy; (F.R.); (M.U.); (M.G.G.); (S.M.)
| | - Maria Grazia Grimaldi
- Department of Physics and Astronomy Ettore Majorana of University of Catania, via S. Sofia 64, 95123 Catania, Italy; (F.R.); (M.U.); (M.G.G.); (S.M.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), via S. Sofia 64, 95123 Catania, Italy
| | - Salvo Mirabella
- Department of Physics and Astronomy Ettore Majorana of University of Catania, via S. Sofia 64, 95123 Catania, Italy; (F.R.); (M.U.); (M.G.G.); (S.M.)
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), via S. Sofia 64, 95123 Catania, Italy
| |
Collapse
|
24
|
Bismuth as Smart Material and Its Application in the Ninth Principle of Sustainable Chemistry. J CHEM-NY 2020. [DOI: 10.1155/2020/9802934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This paper reports an overview of Green Chemistry and the concept of its twelve principles. This study focusses on the ninth principle of Green Chemistry, that is, catalysis. A report on catalysis, in line with its definition, background, classification, properties, and applications, is provided. The study also entails a green element called bismuth. Bismuth’s low toxicity and low cost have made researchers focus on its wide applications in catalysis. It exhibits smartness in all the catalytic activities with the highest catalytic performance among other metals.
Collapse
|
25
|
Challenges in Design and Fabrication of Flexible/Stretchable Carbon- and Textile-Based Wearable Sensors for Health Monitoring: A Critical Review. SENSORS 2020; 20:s20143927. [PMID: 32679666 PMCID: PMC7412463 DOI: 10.3390/s20143927] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 01/01/2023]
Abstract
To demonstrate the wearable flexible/stretchable health-monitoring sensor, it is necessary to develop advanced functional materials and fabrication technologies. Among the various developed materials and fabrication processes for wearable sensors, carbon-based materials and textile-based configurations are considered as promising approaches due to their outstanding characteristics such as high conductivity, lightweight, high mechanical properties, wearability, and biocompatibility. Despite these advantages, in order to realize practical wearable applications, electrical and mechanical performances such as sensitivity, stability, and long-term use are still not satisfied. Accordingly, in this review, we describe recent advances in process technologies to fabricate advanced carbon-based materials and textile-based sensors, followed by their applications such as human activity and electrophysiological sensors. Furthermore, we discuss the remaining challenges for both carbon- and textile-based wearable sensors and then suggest effective strategies to realize the wearable sensors in health monitoring.
Collapse
|
26
|
Hou X, Xiong B, Wang Y, Wang L, Wang H. Determination of Trace Lead and Cadmium in Decorative Material Using Disposable Screen-Printed Electrode Electrically Modified with Reduced Graphene Oxide/L-Cysteine/Bi-Film. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1322. [PMID: 32121301 PMCID: PMC7085703 DOI: 10.3390/s20051322] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022]
Abstract
* Correspondence: wanghui_lunwen@163 [...].
Collapse
Affiliation(s)
- Xiaopeng Hou
- Research Institute of Forestry New Technology and Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China;
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (Y.W.)
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (Y.W.)
| | - Li Wang
- Geographic Information Center of Yulin City, Shannxi 719000, China;
| | - Hui Wang
- Research Institute of Forestry New Technology and Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China;
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (Y.W.)
| |
Collapse
|
27
|
Antuña-Jiménez D, González-García MB, Hernández-Santos D, Fanjul-Bolado P. Screen-Printed Electrodes Modified with Metal Nanoparticles for Small Molecule Sensing. BIOSENSORS 2020; 10:E9. [PMID: 32024126 PMCID: PMC7167755 DOI: 10.3390/bios10020009] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 01/24/2023]
Abstract
Recent progress in the field of electroanalysis with metal nanoparticle (NP)-based screen-printed electrodes (SPEs) is discussed, focusing on the methods employed to perform the electrode surface functionalization, and the final application achieved with different types of metallic NPs. The ink mixing approach, electrochemical deposition, and drop casting are the usual methodologies used for SPEs' modification purposes to obtain nanoparticulated sensing phases with suitable tailor-made functionalities. Among these, applications on inorganic and organic molecule sensing with several NPs of transition metals, bimetallic alloys, and metal oxides should be highlighted.
Collapse
Affiliation(s)
| | | | | | - Pablo Fanjul-Bolado
- Metrohm DropSens S.L., Edificio CEEI-Parque Tecnológico de Asturias, 33428 Llanera, Spain; (D.A.-J.); (M.B.G.-G.); (D.H.-S.)
| |
Collapse
|
28
|
A novel all-3D-printed cell-on-a-chip device as a useful electroanalytical tool: Application to the simultaneous voltammetric determination of caffeine and paracetamol. Talanta 2020; 208:120388. [DOI: 10.1016/j.talanta.2019.120388] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 01/09/2023]
|
29
|
Voltammetric detection of gliclazide and glibenclamide with graphite screen-printed electrode modified with nanopetal-structured MoWS2. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-019-03993-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Cervini P, Mattioli IA, Cavalheiro ÉTG. Developing a screen-printed graphite-polyurethane composite electrode modified with gold nanoparticles for the voltammetric determination of dopamine. RSC Adv 2019; 9:42306-42315. [PMID: 35542837 PMCID: PMC9076564 DOI: 10.1039/c9ra09046k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/04/2019] [Indexed: 11/21/2022] Open
Abstract
A screen-printed electrode (SPGPUE) was prepared with graphite-polyurethane composite ink containing gold nanoparticles (AuNPs), resulting in a screen-printed graphite-polyurethane composite electrode modified with gold nanoparticles (SPGPUE-AuNPs). Gold nanoparticles were prepared by the citrate method and extracted from the water medium since polyurethane is not compatible with humidity. After extraction to chloroform, they were characterized via transmission electron microscopy (TEM). The presence of gold on the SPGPUE-AuNP surface was confirmed via SEM and EDX analyses, while thermogravimetry revealed the presence of approximately 3.0% (m/m) gold in the composite. An electrochemical pretreatment in 0.10 mol L-1 phosphate buffer (pH 7.0) with successive cycling between -1.0 V and 1.0 V (vs. pseudo-Ag/AgCl) under a scan rate of 200 mV s-1 and 150 cycles was required in order to provide a suitable electrochemical response for the voltammetric determination of dopamine. After the optimization of the parameters of differential pulse voltammetry (DPV), an analytical curve was obtained within a linear dynamic range of 0.40-60.0 μmol L-1 and detection limit (LOD) of 1.55 ×10-8 mol L-1 for dopamine at the SPGPUE-AuNP. A non-modified SPGPUE was used for comparison and a linear range was obtained between 2.0 and 10 μmol L-1 with an LOD of 2.94 × 10-7 mol L-1. During the dopamine determination in cerebrospinal synthetic fluid (CSF), recoveries between 89.3 and 103% were achieved. There were no significant interferences from ascorbic acid and uric acid, but some from epinephrine due to the structural similarity.
Collapse
Affiliation(s)
- Priscila Cervini
- Instituto de Química de São Carlos, Universidade de São Paulo Av. Trabalhador São-carlense, 400 CEP 13566-590 São Carlos SP Brazil +55 16 33738054 +55 16 33738054
| | - Isabela A Mattioli
- Instituto de Química de São Carlos, Universidade de São Paulo Av. Trabalhador São-carlense, 400 CEP 13566-590 São Carlos SP Brazil +55 16 33738054 +55 16 33738054
| | - Éder T G Cavalheiro
- Instituto de Química de São Carlos, Universidade de São Paulo Av. Trabalhador São-carlense, 400 CEP 13566-590 São Carlos SP Brazil +55 16 33738054 +55 16 33738054
| |
Collapse
|
31
|
Using Electrode Made of Carbon Nanotubes and Bismuth Oxide for the Determination of Metal Concentration by Anodic Stripping Voltammetry. J CHEM-NY 2019. [DOI: 10.1155/2019/6170967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have successfully manufactured a new electrode modified with bismuth oxide (Bi2O3) using carbon nanotubes (CNTs). The electrode was fabricated to detect cadmium (Cd), lead (Pb), and indium (In) by differential pulse anodic stripping voltammetry (DP-ASV). The electrode surface was studied by scanning electron microscopy (SEM), and the reduction and oxidation processes were studied by cyclic voltammetry (CV) techniques. Operational parameters such as electrode size, bismuth concentration, and electrolytic background were optimized. The DP-ASV method used fabricated electrodes with a linear response range from 1.5–20 μg·L−1 with Cd(II) and Pb(II) and 2.5–20 μg·L−1 with In(III); low detection limit (LOD) of 0.22 μg·L−1 with Cd(II), 0.65 μg·L−1 with In(III), and 0.26 μg·L−1 with Pb(II); and good repeatability with relative standard deviations (RSD) of 2.65%, 2.51%, and 3.34% with Cd(II), Pb(II), and In(III), respectively (n = 8). The electrode can be used to test the content of Cd(II), In(III), and Pb(II) in water.
Collapse
|
32
|
A new modified screen-printed sensor for monitoring of ultratrace concentrations of Mo(VI). J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Martín-Yerga D. Electrochemical Detection and Characterization of Nanoparticles with Printed Devices. BIOSENSORS 2019; 9:E47. [PMID: 30925772 PMCID: PMC6627282 DOI: 10.3390/bios9020047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022]
Abstract
Innovative methods to achieve the user-friendly, quick, and highly sensitive detection of nanomaterials are urgently needed. Nanomaterials have increased importance in commercial products, and there are concerns about the potential risk that they entail for the environment. In addition, detection of nanomaterials can be a highly valuable tool in many applications, such as biosensing. Electrochemical methods using disposable, low-cost, printed electrodes provide excellent analytical performance for the detection of a wide set of nanomaterials. In this review, the foundations and latest advances of several electrochemical strategies for the detection of nanoparticles using cost-effective printed devices are introduced. These strategies will equip the experimentalist with an extensive toolbox for the detection of nanoparticles of different chemical nature and possible applications ranging from quality control to environmental analysis and biosensing.
Collapse
Affiliation(s)
- Daniel Martín-Yerga
- Department of Chemical Engineering, KTH Royal Institute of Technology, 100-44 Stockholm, Sweden.
| |
Collapse
|
34
|
Holmes J, Pathirathna P, Hashemi P. Novel frontiers in voltammetric trace metal analysis: Towards real time, on-site, in situ measurements. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Bobrowski A, Królicka A, Śliwa J, Zarębski J. Catalytic voltammetric determination of Mo(VI) ultratraces at the tellurium film electrode using the Mo(VI)-mandelic acid-chlorate system. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Ghalkhani M, Maghsoudi S, Saeedi R, Khaloo SS. Ultrasensitive quantification of paraquat using a newly developed sensor based on silver nanoparticle-decorated carbon nanotubes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01605-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
37
|
Nafion-Protected Sputtered-Bismuth Screen-Printed Electrode for On-site Voltammetric Measurements of Cd(II) and Pb(II) in Natural Water Samples. SENSORS 2019; 19:s19020279. [PMID: 30641983 PMCID: PMC6359193 DOI: 10.3390/s19020279] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 02/05/2023]
Abstract
In this work, we explore the protection with Nafion of commercial sputtered-bismuth screen-printed electrodes (BiSPSPEs), to improve its ability for on-site determination of Cd(II) and Pb(II) ions in ambient water samples. The modified screen-printed platform was coupled with a miniaturized cell, in combination with a battery-operated stirring system and a portable potentiostat operated by a laptop for decentralized electrochemical measurements using Square-Wave Anodic Stripping Voltammetry (SWASV). We also describe a detailed electrode surface characterization by microscopy and surface analysis techniques, before and after the modification with Nafion, to get insight about modification effect on signal size and stability. Optimization of the chemical composition of the medium including the optimization of pH, and instrumental parameters, resulted in a method with detection limits in the low ng/mL range (3.62 and 3.83 ng·mL−1 for Cd and Pb respectively). Our results show an improvement of the sensitivity and stability for Nafion-protected BiSPSPEs in pH = 4.4 medium, and similar or lower detection limits than comparable methods on commercial BiSPSPEs. The values obtained for Pb(II) and Cd(II) in natural water samples agreed well with those obtained by the much more costly Inductively Coupled Plasma Mass Spectrometry, ICP-MS, technique as a reference method (recoveries from 75% to 111%).
Collapse
|
38
|
Borrill AJ, Reily NE, Macpherson JV. Addressing the practicalities of anodic stripping voltammetry for heavy metal detection: a tutorial review. Analyst 2019; 144:6834-6849. [DOI: 10.1039/c9an01437c] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We highlight the fundamentals and challenges involved with anodic stripping voltammetry (ASV) using solid electrodes providing a practical guide to anyone wishing to undertake analytical ASV.
Collapse
Affiliation(s)
- Alexandra J. Borrill
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- Diamond Science and Technology Centre for Doctoral Training
| | - Nicole E. Reily
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- Natural Environment Research Council
| | | |
Collapse
|
39
|
Green Synthesis of Ag Nanoparticles Using Grape Stalk Waste Extract for the Modification of Screen-Printed Electrodes. NANOMATERIALS 2018; 8:nano8110946. [PMID: 30453600 PMCID: PMC6266962 DOI: 10.3390/nano8110946] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 11/24/2022]
Abstract
The chemical synthesis of silver nanoparticles (Ag-NPs) by using an environmentally friendly methodology for their preparation is presented. Thus, considering that plants possess components that can act as reducing agents and stabilizers in nanoparticles’ production, the synthesis of Ag-NPs by using an extract aqueous solution of grape stalk waste as a reducing and capping agent is studied. First, the total polyphenols and reducing sugars contained in the produced extracts at different conditions are characterized. After that, Ag-NPs are synthesized regarding the interaction of Ag ions (from silver nitrate) and the grape stalk extract. The effect of temperature, contact time, extract/metal solution volume ratio and pH solution in the synthesis of metal nanoparticles are also studied. Different sets of nanoparticle samples are characterized by means of Electron Microscopy coupled with Energy Dispersive X-Ray for qualitative chemical identification. Ag-NPs with an average diameter of 27.7 ± 0.6 nm are selected to proof their suitability for sensing purposes. Finally, screen-printed electrodes modified with Ag-NPs are tested for the simultaneous stripping voltammetric determination of Pb(II) and Cd(II). Results indicate good reproducibility, sensitivity and limits of detection around 2.7 µg L−1 for both metal ions.
Collapse
|
40
|
Squissato AL, Almeida ES, Silva SG, Richter EM, Batista AD, Munoz RA. Screen-printed electrodes for quality control of liquid (Bio)fuels. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Ghalkhani M, Ghelichkhania F, Ghorbani-Bidkorbeh F. Study and Optimization of The Necessary Conditions for The Sensitive Determination of The Lead Ion by a Modified Carbon Paste Electrode in Environmental Water Samples. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:44-53. [PMID: 31011341 PMCID: PMC6447868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Rapid and facile preparation of the cheap modified electrode materials is an important parameter in development of the efficient electrochemical sensor for industrial scale production and mass-market usage. In the present work, the carbon paste electrode modified with multi-walled carbon nanotubes (MWCNTs) was prepared for sensitive determination of lead (Pb) ion in the presence of bismuth (Bi) ion due to synergetic effect of carbon nano-materials and Bi on the voltammetric response. Investigations showed that in presence of Bi ion degassing of the test solution is not needed. Supporting electrolyte, required Bi concentration and accumulation time and potential were optimized for differential pulsed anodic stripping voltammetric tests. Under optimized conditions, modified carbon paste electrode showed sensitive voltammetric response in the range of 0.1-10 μM toward Pb ion. Moreover, efficiency of the developed method was evaluated for the determination of Pb ion in several water samples. The obtained recovery results of 92-97 % revealed good agreement between responses of this sensor and common spectroscopies techniques for the Pb ion analysis. The optimized system has high efficiency in reproducibility and repeatability of the results and applicability for the analysis of the various environmental water samples.
Collapse
Affiliation(s)
- Masoumeh Ghalkhani
- Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, Tehran, Iran.,Corresponding author: E-mail: ;
| | - Fatemeh Ghelichkhania
- Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, Tehran, Iran.
| | - Fatemeh Ghorbani-Bidkorbeh
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|