1
|
Qian X, Chen Z, Zhang F, Yan Z. Electrochemically Active Materials for Tissue-Interfaced Soft Biochemical Sensing. ACS Sens 2025; 10:3274-3301. [PMID: 40256874 DOI: 10.1021/acssensors.5c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Tissue-interfaced soft biochemical sensing represents a crucial approach to personalized healthcare by employing electrochemically active materials to monitor biochemical signals at the tissue interface in real time, either noninvasively or through implantation. These soft biochemical sensors can be integrated with various biological tissues, such as neural, gastrointestinal, ocular, cardiac, skin, muscle, and bone, adapting to their unique mechanical and biochemical environments. Sensors employing materials like conductive polymers, composites, metals, metal oxides, and carbon-based nanomaterials have demonstrated capabilities in applications, such as continuous glucose monitoring, neural activity mapping, and real-time metabolite detection, enhancing diagnostics and treatment monitoring across a range of medical fields. Next-generation tissue-interfaced biosensors that enable multimodal and multiplexed measurement of biochemical markers and physiological parameters could be transformative for personalized medicine, allowing for high-resolution, time-resolved historical monitoring of an individual's health status. In this review, we summarize current trends in the field to provide insights into the challenges and future trajectory of tissue-interfaced soft biochemical sensors, highlighting their potential to revolutionize personalized medicine and improve patient outcomes.
Collapse
Affiliation(s)
- Xiaoyan Qian
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Zehua Chen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Feng Zhang
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Zheng Yan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
2
|
Khan H, Usama M, Khan MI, Wahab F, Ahmad I, Hamid A, Hussain S, Maqbool A. From pollutant to purifier: Leveraging plastic waste-derived activated carbon for sustainable water remediation solutions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124202. [PMID: 39884200 DOI: 10.1016/j.jenvman.2025.124202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/06/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025]
Abstract
The ubiquitous presence of plastic waste presents a significant environmental challenge, characterized by its persistence and detrimental impacts on ecosystems. The valorization of plastic waste through conversion into high-value carbon materials offers a promising circular economy approach. This review critically examines the potential of plastic waste-derived activated carbon (PAC) as a sustainable and effective adsorbent for water remediation. The manuscript commences with a concise overview of the multifaceted nature of plastic pollution, highlighting its classification, environmental implications, and the limitations of existing waste management frameworks. Subsequently, it delves into the intricacies of PAC production, critically analyzing various preparation methods and their associated challenges. A comprehensive exploration of modification strategies, including chemical activation and surface functionalization, is undertaken to elucidate their role in enhancing PAC's adsorption selectivity and capacity for diverse pollutants. The effectiveness of PAC in removing a diverse array of pollutants, including emerging contaminants and recalcitrant organic compounds, is thoroughly examined. While acknowledging the influence of key factors such as pollutant characteristics and solution chemistry on adsorption efficiency, the review also identifies critical challenges, including the high production costs associated with PAC synthesis, variability of plastic waste composition, the potential for leaching of residual monomers, and the complexities of multi-pollutant adsorption. Future research directions are outlined, emphasizing the need for advanced characterization techniques, computational modeling to optimize adsorbent design, and rigorous life cycle assessments to evaluate the environmental sustainability of PAC production. By addressing these challenges, PAC offers a promising pathway towards a circular economy, mitigating plastic pollution while providing a sustainable and effective solution for water remediation.
Collapse
Affiliation(s)
- Hammad Khan
- Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan.
| | - Muhammad Usama
- Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan
| | - Mohammad Ilyas Khan
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 62521, Saudi Arabia
| | - Fazal Wahab
- Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan
| | - Izhar Ahmad
- Department of Civil Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan
| | - Ali Hamid
- Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan
| | - Sajjad Hussain
- Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan
| | - Arslan Maqbool
- Faculty of Materials and Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan
| |
Collapse
|
3
|
Baziak A, Kusior A. Comparative Study of Polymer-Modified Copper Oxide Electrochemical Sensors: Stability and Performance Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:5290. [PMID: 39204984 PMCID: PMC11359257 DOI: 10.3390/s24165290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
The effectiveness of copper oxide-modified electrochemical sensors using different polymers is being studied. The commercial powder was sonicated in an isopropyl alcohol solution and distilled water with 5 wt% polymers (chitosan, Nafion, PVP, HPC, α-terpineol). It was observed that the chitosan and Nafion caused degradation of CuO, but Nafion formed a stable mixture when diluted. The modified electrodes were drop-casted and analyzed using cyclic voltammetry in 0.1 M KCl + 3 mM [Fe(CN)6]3-/4- solution to determine the electrochemically active surface area (EASA). The results showed that α-terpineol formed agglomerates, while HPC created uneven distributions, resulting in poor stability. On the other hand, Nafion and PVP formed homogeneous layers, with PVP showing the highest EASA of 0.317 cm2. In phosphate-buffered saline (PBS), HPC and PVP demonstrated stable signals. Nafion remained the most stable in various electrolytes, making it suitable for sensing applications. Testing in 0.1 M NaOH revealed HPC instability, partial dissolution of PVP, and Cu ion reduction. The type of polymer used significantly impacts the performance of CuO sensors. Nafion and PVP show the most promise due to their stability and effective dispersion of CuO. Further optimization of polymer-CuO combinations is necessary for enhanced sensor functionality.
Collapse
Affiliation(s)
- Andrzej Baziak
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland;
| | - Anna Kusior
- Faculty of Materials Sciences and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
4
|
Ferreira R, Silva AP, Nunes-Pereira J. Current On-Skin Flexible Sensors, Materials, Manufacturing Approaches, and Study Trends for Health Monitoring: A Review. ACS Sens 2024; 9:1104-1133. [PMID: 38394033 PMCID: PMC10964246 DOI: 10.1021/acssensors.3c02555] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Due to an ever-increasing amount of the population focusing more on their personal health, thanks to rising living standards, there is a pressing need to improve personal healthcare devices. These devices presently require laborious, time-consuming, and convoluted procedures that heavily rely on cumbersome equipment, causing discomfort and pain for the patients during invasive methods such as sample-gathering, blood sampling, and other traditional benchtop techniques. The solution lies in the development of new flexible sensors with temperature, humidity, strain, pressure, and sweat detection and monitoring capabilities, mimicking some of the sensory capabilities of the skin. In this review, a comprehensive presentation of the themes regarding flexible sensors, chosen materials, manufacturing processes, and trends was made. It was concluded that carbon-based composite materials, along with graphene and its derivates, have garnered significant interest due to their electromechanical stability, extraordinary electrical conductivity, high specific surface area, variety, and relatively low cost.
Collapse
Affiliation(s)
- Rodrigo
G. Ferreira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Abílio P. Silva
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - João Nunes-Pereira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
5
|
Taheri M. Advances in Nanohybrid Membranes for Dye Reduction: A Comprehensive Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300052. [PMID: 38223886 PMCID: PMC10784202 DOI: 10.1002/gch2.202300052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/18/2023] [Indexed: 01/16/2024]
Abstract
Separating valuable materials such as dyes from wastewater using membranes and returning them to the production line is a desirable environmental and economical procedure. However, sometimes, besides filtration, adsorption, and separation processes, pollutant destruction also can be suitable using photocatalytic membranes. The art of producing nanohybrid materials in contrast with nanocomposites encompasses nanomaterial synthesis as a new product with different properties from raw materials for nanohybrids versus the composition of nanomaterials for nanocomposites. According to the findings of this research, confirming proper synthesis of nanohybrid is one challenge that can be overcome by different analyses, other researchers' reports, and the theoretical assessment of physical or chemical reactions. The application of organic-inorganic nanomaterials and frameworks is another challenge that is discussed in the present work. According to the findings, Nanohybrid Membranes (NHMs) can achieve 100% decolorization, but cannot eliminate salts and dyes, although the removal efficiency is notable for some salts, especially divalent salts. Hydrophilicity, antifouling properties, flux, pressure, costs, usage frequency, and mechanical, chemical, and thermal stabilities of NHMs should be considered.
Collapse
Affiliation(s)
- Mahsa Taheri
- Civil and Environmental Engineering DepartmentAmirkabir University of Technology (AUT)Hafez Ave.Tehran15875‐4413Iran
| |
Collapse
|
6
|
Liu X, Zhou X, Li X, Wei Y, Wang T, Liu S, Yang H, Sun X. Saliva Analysis Based on Microfluidics: Focusing the Wide Spectrum of Target Analyte. Crit Rev Anal Chem 2023; 55:330-352. [PMID: 38039145 DOI: 10.1080/10408347.2023.2287656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Saliva is one of the most critical human body fluids that can reflect the state of the human body. The detection of saliva is of great significance for disease diagnosis and health monitoring. Microfluidics, characterized by microscale size and high integration, is an ideal platform for the development of rapid and low-cost disease diagnostic techniques and devices. Microfluidic-based saliva testing methods have aroused considerable interest due to the increasing need for noninvasive testing and frequent or long-term testing. This review briefly described the significance of saliva analysis and generally classified the targets in saliva detection into pathogenic microorganisms, inorganic substances, and organic substances. By using this classification as a benchmark, the state-of-the-art research results on microfluidic detection of various substances in saliva were summarized. This work also put forward the challenges and future development directions of microfluidic detection methods for saliva.
Collapse
Affiliation(s)
- Xin Liu
- Department of Respiratory Medicine, The Fourth Hospital of China Medical University, Shenyang, China
| | - Xinyue Zhou
- Department of Respiratory Medicine, The Fourth Hospital of China Medical University, Shenyang, China
| | - Xiaojia Li
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang, China
| | - Yixuan Wei
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang, China
| | - Tianlin Wang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Shuo Liu
- Department of Respiratory Medicine, The Fourth Hospital of China Medical University, Shenyang, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Nguyen TD, Roh S, Nguyen MTN, Lee JS. Structural Control of Nanofibers According to Electrospinning Process Conditions and Their Applications. MICROMACHINES 2023; 14:2022. [PMID: 38004879 PMCID: PMC10673317 DOI: 10.3390/mi14112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023]
Abstract
Nanofibers have gained much attention because of the large surface area they can provide. Thus, many fabrication methods that produce nanofiber materials have been proposed. Electrospinning is a spinning technique that can use an electric field to continuously and uniformly generate polymer and composite nanofibers. The structure of the electrospinning system can be modified, thus making changes to the structure, and also the alignment of nanofibers. Moreover, the nanofibers can also be treated, modifying the nanofiber structure. This paper thoroughly reviews the efforts to change the configuration of the electrospinning system and the effects of these configurations on the nanofibers. Excellent works in different fields of application that use electrospun nanofibers are also introduced. The studied materials functioned effectively in their application, thereby proving the potential for the future development of electrospinning nanofiber materials.
Collapse
Affiliation(s)
| | | | | | - Jun Seop Lee
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si 13120, Gyeonggi-Do, Republic of Korea; (T.D.N.); (S.R.); (M.T.N.N.)
| |
Collapse
|
8
|
Demir D, Bolgen N, Vaseashta A. Electrospun Nanofibers for Biomedical, Sensing, and Energy Harvesting Functions. Polymers (Basel) 2023; 15:4253. [PMID: 37959933 PMCID: PMC10648854 DOI: 10.3390/polym15214253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The process of electrospinning is over a century old, yet novel material and method achievements, and later the addition of nanomaterials in polymeric solutions, have spurred a significant increase in research innovations with several unique applications. Significant improvements have been achieved in the development of electrospun nanofibrous matrices, which include tailoring compositions of polymers with active agents, surface functionalization with nanoparticles, and encapsulation of functional materials within the nanofibers. Recently, sequentially combining fabrication of nanofibers with 3D printing was reported by our group and the synergistic process offers fiber membrane functionalities having the mechanical strength offered by 3D printed scaffolds. Recent developments in electrospun nanofibers are enumerated here with special emphasis on biomedical technologies, chemical and biological sensing, and energy harvesting aspects in the context of e-textile and tactile sensing. Energy harvesting offers significant advantages in many applications, such as biomedical technologies and critical infrastructure protection by using the concept of finite state machines and edge computing. Many other uses of devices using electrospun nanofibers, either as standalone or conjoined with 3D printed materials, are envisaged. The focus of this review is to highlight selected novel applications in biomedical technologies, chem.-bio sensing, and broadly in energy harvesting for use in internet of things (IoT) devices. The article concludes with a brief projection of the future direction of electrospun nanofibers, limitations, and how synergetic combination of the two processes will open pathways for future discoveries.
Collapse
Affiliation(s)
- Didem Demir
- Chemistry and Chemical Process Technologies Department, Mersin Tarsus Organized Industrial Zone Technical Sciences Vocational School, Tarsus University, Mersin 33100, Türkiye;
| | - Nimet Bolgen
- Chemical Engineering Department, Faculty of Engineering, Mersin University, Mersin 33110, Türkiye;
| | - Ashok Vaseashta
- Applied Research, International Clean Water Institute, Manassas, VA 20110, USA
- Institute of Biomedical Engineering and Nanotechnologies, Riga Technical University, LV 1048 Riga, Latvia
| |
Collapse
|
9
|
Shaker A, Khedewy AT, Hassan MA, El-Baky MAA. Thermo-mechanical characterization of electrospun polyurethane/carbon-nanotubes nanofibers: a comparative study. Sci Rep 2023; 13:17368. [PMID: 37833445 PMCID: PMC10575888 DOI: 10.1038/s41598-023-44020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Creating ultrathin, mountable fibers from a wide range of polymeric functional materials has made electrospinning an adequate approach to producing highly flexible and elastic materials. In this paper, electrospinning was utilized to produce thermoplastic polyurethane (TPU) nanofibrous membranes for the purpose of studying their thermal and mechanical properties. Towards a study of the effects of fiber orientation and multi-walled carbon nanotubes (MWCNTs) as a filler on both mechanical and thermal characteristics of electrospun TPU mats, an experimental comparison was held between unidirectional and randomly aligned TPU and TPU/MWCNTs nanofibrous structures. The incorporation of MWCNTs into randomly oriented TPU nanofibers resulted in a significant increase in Young's modulus (E), from 3.9 to 7.5 MPa. On the other hand, for unidirectionally spun fibers, Young's modulus increased from 17.1 to 18.4 MPa upon the addition of MWCNTs. However, dynamic mechanical analysis revealed a different behavior. The randomly oriented specimens exhibited a storage modulus with a significant increase from 180 to 614 MPa for TPU and TPU/MWCNTs mats, respectively, and a slight increase from 119 to 143 MPa for unidirectional TPU and TPU/MWCNTs mats, respectively. Meanwhile, the loss modulus increased with the addition of MWCNTs from 15.7 to 58.9 MPa and from 6.4 to 12 MPa for the random and aligned fibers, respectively. The glass transition values for all the mats fell in the temperature range of - 60 to - 20 °C. The thermal degradation of the membranes was not significantly affected by the addition of MWCNTs, indicating that the mixing of the two constituents did not change the TPU's polymer structure and that the TPU/MWCNTs nanocomposite exhibited stable thermal degradation properties.
Collapse
Affiliation(s)
- A Shaker
- Mechanical Design and Production Engineering Department, Zagazig University, Zagazig, 44519, Egypt.
| | - Amira T Khedewy
- Mechanical Design and Production Engineering Department, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed A Hassan
- Mechanical Design and Production Engineering Department, Zagazig University, Zagazig, 44519, Egypt
| | - Marwa A Abd El-Baky
- Mechanical Design and Production Engineering Department, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
10
|
Shaker A, Khedewy A, Hassan M, El-baky MA. Thermo-Mechanical Characterization of Electrospun Polyurethane /Carbon- Nanotubes Nanofibers: A Comparative Study.. [DOI: 10.21203/rs.3.rs-2939166/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Creating ultrathin mountable fibers from a wide range of polymeric functional materials have made electrospinning an adequate approach to produce highly flexible and elastic materials. In this paper, electrospinning was utilized to produce thermoplastic polyurethane (TPU) nanofibrous membranes for the purpose of studying their thermal and mechanical properties. Towards a study of the effects of fiber orientation and multi-walled carbon nanotubes (MWCNTs) as a filler on both mechanical and thermal characteristics of electrospun TPU mats, an experimental comparison was held between a unidirectional and randomly aligned TPU and TPU/CNT nanofibrous structures. Incorporation of MWCNTs into randomly oriented TPU nanofibers resulted in a significant increase in Young's modulus (E), from 3.66 MPa to 5.68 MPa. Conversely, for unidirectionally spun fibers, Young's modulus decreased from 16.68 MPa to 11.63 MPa upon addition of MWCNTs. However, dynamic mechanical analysis (DMA) revealed a different behavior. The randomly oriented specimens exhibited a storage modulus with a significant increase from 180 MPa to 614 MPa for TPU and TPU/CNT mats, respectively, and a slight decrease from 157 MPa to 143 MPa for unidirectional TPU and TPU/CNT mats, respectively. Meanwhile, the loss modulus increased with the addition of MWCNTs from 15.7 MPa to 58.9 MPa and from 6.4 MPa to 12 MPa for the random and aligned fibers, respectively. Thermal degradation of the membranes was not significantly affected by the addition of MWCNTs, indicating that the mixing of the two constituents did not change the TPU’s polymer structure, and the TPU/CNT nanocomposite exhibited stable thermal degradation properties.
Collapse
|
11
|
Chen J, Rong F, Xie Y. Fabrication, Microstructures and Sensor Applications of Highly Ordered Electrospun Nanofibers: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093310. [PMID: 37176192 PMCID: PMC10179621 DOI: 10.3390/ma16093310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
The review summarizes the fabrication, microstructures, and sensor applications of highly ordered electrospun nanofibers. In the traditional electrospinning process, electrospun nanofibers usually have disordered or random microstructures due to the chaotic oscillation of the electrospinning jet. Different electrospinning methods can be formed by introducing external forces, such as magnetic, electric, or mechanical forces, and ordered nanofibers can be collected. The microstructures of highly ordered nanofibers can be divided into three categories: uniaxially ordered nanofibers, biaxially ordered nanofibers and ordered scaffolds. The three microstructures are each characterized by being ordered in different dimensions. The regulation and control of the ordered microstructures can promote electrospun nanofibers' mechanical and dielectric strength, surface area and chemical properties. Highly ordered electrospun nanofibers have more comprehensive applications than disordered nanofibers do in effect transistors, gas sensors, reinforced composite materials and tissue engineering. This review also intensively summarizes the applications of highly ordered nanofibers in the sensor field, such as pressure sensors, humidity sensors, strain sensors, gas sensors, and biosensors.
Collapse
Affiliation(s)
- Jing Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Southeast University-Monash University Joint Graduate School (Suzhou), Suzhou 215123, China
| | - Fei Rong
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Yibing Xie
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
12
|
Du Y, Yang Z, Kang S, Yu DG, Chen X, Shao J. A Sequential Electrospinning of a Coaxial and Blending Process for Creating Double-Layer Hybrid Films to Sense Glucose. SENSORS (BASEL, SWITZERLAND) 2023; 23:3685. [PMID: 37050745 PMCID: PMC10099372 DOI: 10.3390/s23073685] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 05/21/2023]
Abstract
This study presents a glucose biosensor based on electrospun core-sheath nanofibers. Two types of film were fabricated using different electrospinning procedures. Film F1 was composed solely of core-sheath nanofibers fabricated using a modified coaxial electrospinning process. Film F2 was a double-layer hybrid film fabricated through a sequential electrospinning and blending process. The bottom layer of F2 comprised core-sheath nanofibers fabricated using a modified process, in which pure polymethacrylate type A (Eudragit L100) was used as the core section and water-soluble lignin (WSL) and phenol were loaded as the sheath section. The top layer of F2 contained glucose oxidase (GOx) and gold nanoparticles, which were distributed throughout the polyvinylpyrrolidone K90 (PVP K90) nanofibers through a single-fluid blending electrospinning process. The study investigated the sequential electrospinning process in detail. The experimental results demonstrated that the F2 hybrid film had a higher degradation efficiency of β-D-glucose than F1, reaching a maximum of over 70% after 12 h within the concentration range of 10-40 mmol/L. The hybrid film F2 is used for colorimetric sensing of β-D-glucose in the range of 1-15 mmol/L. The solution exhibited a color that deepened gradually with an increase in β-D-glucose concentration. Electrospinning is flexible in creating structures for bio-cascade reactions, and the double-layer hybrid film can provide a simple template for developing other sensing nanomaterials.
Collapse
Affiliation(s)
- Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.D.); (Z.Y.)
| | - Zili Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.D.); (Z.Y.)
| | - Shixiong Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.D.); (Z.Y.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.D.); (Z.Y.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| | - Xiren Chen
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China
| | - Jun Shao
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China
| |
Collapse
|
13
|
Er Zeybekler S, Odaci D. Carbon Nanotube-Incorporated Nanofibers for Immunosensor Preparation against CD36. ACS OMEGA 2023; 8:5776-5786. [PMID: 36816687 PMCID: PMC9933220 DOI: 10.1021/acsomega.2c07458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The increased serum concentration of CD36 is significantly associated with atherosclerosis, insulin resistance, and diabetes mellitus. Currently, there is no sensor system used for the detection of CD36 in the clinical field. Therefore, there is a need to develop a sensor system for the detection of CD36. The large surface area/volume ratio and controllable surface conformation of electrospun nanofibers (ENs) make them highly attractive for immunosensor applications. In the present study, PS/MWCNT-PAMAM ENs were produced and used as an immobilization matrix of Anti-CD36. Thus, the electrochemical behavior of the developed nanocomposite-based ENs and their usage potential were investigated for immunosensor applications. First, an oxidized multiwall carbon nanotube (MWCNT-OH) was synthesized and modified with a polyamidoamine generation 3 (PAMAM G3) dendrimer. The synthesized MWCNT-PAMAM nanocomposite was mixed with polystyrene (PS) solutions at different ratios to produce bead-free, smooth, and uniform PS/MWCNT-PAMAM ENs. PS/MWCNT-PAMAM ENs were accumulated on a screen-printed carbon electrode (SPCE) using the electrospinning technique. A biofunctional surface on the PS/MWCNT-PAMAM EN-coated SPCE was created using carbodiimide chemistry by covalent immobilization of Anti-CD36. The analytic performance characteristics of the developed PS/MWCNT-PAMAM/Anti-CD36 immunosensor were determined by performing electrochemical measurements in the presence of the CD36 protein. The linear detection range was found to be from 5 to 40 ng/mL, and the limit of detection was calculated as 3.94 ng/mL for CD36. The developed PS/MWCNT-PAMAM/Anti-CD36 immunosensor also displayed high tolerance to interference substances, good repeatability, and high recovery percent (recovery%) for artificial blood serum analysis.
Collapse
|
14
|
Zhang K, Zhao W, Liu Q, Guo X, Yu M. Solution Evolution Knowledge Service Based on Design Iteration in Strain Sensor Design. SENSORS (BASEL, SWITZERLAND) 2023; 23:1931. [PMID: 36850529 PMCID: PMC9966420 DOI: 10.3390/s23041931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Product design is a process of repeated iteration and gradual improvement, and knowledge push is one of the bottlenecks that needs to be solved to improve the product design level. With the increase in design complexity and iteration rounds, the existing knowledge application methods can hardly meet the needs of product design solution iteration and evolution. In order to better assist designers in acquiring and applying knowledge in the process of product design solution evolution, a knowledge service method for product design solution evolution based on the problem-strategy-solution (PSS) interaction iteration is proposed. The mapping and feedback process between design problems, design strategies, and design solutions are analyzed, a model of the solution evolution process based on design iteration is proposed, and a PSS-based product design solution evolution mechanism is established. On this basis, the product design solution evolution knowledge service dimension is built, and the solution evolution knowledge service model based on design iteration is established. The corresponding solution evolution function module is developed based on the pre-developed computer-aided product innovation design platform. The validity of the iterated-based design was proved in the technical innovation of nanofiber preparation and further application of strain sensors.
Collapse
Affiliation(s)
- Kai Zhang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- Innovation Method and Creative Design Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Wu Zhao
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- Innovation Method and Creative Design Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Qingjie Liu
- Department of Aircraft Manufacturing, Sichuan Aerospace Vocational College, Chengdu 610100, China
| | - Xin Guo
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- Innovation Method and Creative Design Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Miao Yu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- Innovation Method and Creative Design Key Laboratory of Sichuan Province, Chengdu 610065, China
| |
Collapse
|
15
|
Serrano-Garcia W, Bonadies I, Thomas SW, Guarino V. New Insights to Design Electrospun Fibers with Tunable Electrical Conductive-Semiconductive Properties. SENSORS (BASEL, SWITZERLAND) 2023; 23:1606. [PMID: 36772646 PMCID: PMC9919353 DOI: 10.3390/s23031606] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 05/14/2023]
Abstract
Fiber electronics, such as those produced by the electrospinning technique, have an extensive range of applications including electrode surfaces for batteries and sensors, energy storage, electromagnetic interference shielding, antistatic coatings, catalysts, drug delivery, tissue engineering, and smart textiles. New composite materials and blends from conductive-semiconductive polymers (C-SPs) offer high surface area-to-volume ratios with electrical tunability, making them suitable for use in fields including electronics, biofiltration, tissue engineering, biosensors, and "green polymers". These materials and structures show great potential for embedded-electronics tissue engineering, active drug delivery, and smart biosensing due to their electronic transport behavior and mechanical flexibility with effective biocompatibility. Doping, processing methods, and morphologies can significantly impact the properties and performance of C-SPs and their composites. This review provides an overview of the current literature on the processing of C-SPs as nanomaterials and nanofibrous structures, mainly emphasizing the electroactive properties that make these structures suitable for various applications.
Collapse
Affiliation(s)
- William Serrano-Garcia
- Advanced Materials Bio & Integration Research (AMBIR) Laboratory, Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Irene Bonadies
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Sylvia W Thomas
- Advanced Materials Bio & Integration Research (AMBIR) Laboratory, Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d'Oltremare, Pad.20, 80125 Naples, Italy
| |
Collapse
|
16
|
Song J, Lin X, Ee LY, Li SFY, Huang M. A Review on Electrospinning as Versatile Supports for Diverse Nanofibers and Their Applications in Environmental Sensing. ADVANCED FIBER MATERIALS 2022; 5:429-460. [PMID: 36530770 PMCID: PMC9734373 DOI: 10.1007/s42765-022-00237-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/13/2022] [Indexed: 05/26/2023]
Abstract
Rapid industrialization is accompanied by the deterioration of the natural environment. The deepening crisis associated with the ecological environment has garnered widespread attention toward strengthening environmental monitoring and protection. Environmental sensors are one of the key technologies for environmental monitoring, ultimately enabling environmental protection. In recent decades, micro/nanomaterials have been widely studied and applied in environmental sensing owing to their unique dimensional properties. Electrospinning has been developed and adopted as a facile, quick, and effective technology to produce continuous micro- and nanofiber materials. The technology has advanced rapidly and become one of the hotspots in the field of nanomaterials research. Environmental sensors made from electrospun nanofibers possess many advantages, such as having a porous structure and high specific surface area, which effectively improve their performance in environmental sensing. Furthermore, by introducing functional nanomaterials (carbon nanotubes, metal oxides, conjugated polymers, etc.) into electrospun fibers, synergistic effects between different materials can be utilized to improve the catalytic activity and sensitivity of the sensors. In this review, we aimed to outline the progress of research over the past decade on electrospinning nanofibers with different morphologies and functional characteristics in environmental sensors.
Collapse
Affiliation(s)
- Jialing Song
- College of Environmental Science and Engineering, Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620 People’s Republic of China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
| | - Xuanhao Lin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
| | - Liang Ying Ee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
- National University of Singapore Environmental Research Institute, T Lab Bldg, 5A Engineering Drive 1, Singapore, 117411 Singapore
| | - Manhong Huang
- College of Environmental Science and Engineering, Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620 People’s Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 People’s Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620 People’s Republic of China
| |
Collapse
|
17
|
Falina S, Anuar K, Shafiee SA, Juan JC, Manaf AA, Kawarada H, Syamsul M. Two-Dimensional Non-Carbon Materials-Based Electrochemical Printed Sensors: An Updated Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239358. [PMID: 36502059 PMCID: PMC9735910 DOI: 10.3390/s22239358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 05/28/2023]
Abstract
Recently, there has been increasing interest in electrochemical printed sensors for a wide range of applications such as biomedical, pharmaceutical, food safety, and environmental fields. A major challenge is to obtain selective, sensitive, and reliable sensing platforms that can meet the stringent performance requirements of these application areas. Two-dimensional (2D) nanomaterials advances have accelerated the performance of electrochemical sensors towards more practical approaches. This review discusses the recent development of electrochemical printed sensors, with emphasis on the integration of non-carbon 2D materials as sensing platforms. A brief introduction to printed electrochemical sensors and electrochemical technique analysis are presented in the first section of this review. Subsequently, sensor surface functionalization and modification techniques including drop-casting, electrodeposition, and printing of functional ink are discussed. In the next section, we review recent insights into novel fabrication methodologies, electrochemical techniques, and sensors' performances of the most used transition metal dichalcogenides materials (such as MoS2, MoSe2, and WS2), MXenes, and hexagonal boron-nitride (hBN). Finally, the challenges that are faced by electrochemical printed sensors are highlighted in the conclusion. This review is not only useful to provide insights for researchers that are currently working in the related area, but also instructive to the ones new to this field.
Collapse
Affiliation(s)
- Shaili Falina
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Khairu Anuar
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
| | - Saiful Arifin Shafiee
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Joon Ching Juan
- Nanotechnology & Catalyst Research Centre (NANOCAT), Institute of Postgraduate Studies, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
| | - Hiroshi Kawarada
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- The Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051, Japan
| | - Mohd Syamsul
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Institute of Nano Optoelectronics Research and Technology (INOR), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
| |
Collapse
|
18
|
Nachev N, Spasova M, Manolova N, Rashkov I, Naydenov M. Electrospun Polymer Materials with Fungicidal Activity: A Review. Molecules 2022; 27:5738. [PMID: 36080503 PMCID: PMC9457848 DOI: 10.3390/molecules27175738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, there has been special interest in innovative technologies such as polymer melt or solution electrospinning, electrospraying, centrifugal electrospinning, coaxial electrospinning, and others. Applying these electrokinetic methods, micro- or nanofibrous materials with high specific surface area, high porosity, and various designs for diverse applications could be created. By using these techniques it is possible to obtain fibrous materials from both synthetic and natural biocompatible and biodegradable polymers, harmless to the environment. Incorporation of low-molecular substances with biological activity (e.g., antimicrobial, antifungal) is easily feasible. Moreover, biocontrol agents, able to suppress the development and growth of plant pathogens, have been embedded in the fibrous materials as well. The application of such nanotechnologies for the creation of plant protection products is an extremely promising new direction. This review emphasizes the recent progress in the development of electrospun fungicidal dressings and their potential to be applied in modern agriculture.
Collapse
Affiliation(s)
- Nasko Nachev
- Laboratory of Bioactive Polymers (LBAP), Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria
| | - Mariya Spasova
- Laboratory of Bioactive Polymers (LBAP), Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria
| | - Nevena Manolova
- Laboratory of Bioactive Polymers (LBAP), Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria
| | - Iliya Rashkov
- Laboratory of Bioactive Polymers (LBAP), Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria
| | - Mladen Naydenov
- Department of Microbiology, Agricultural University, BG-4000 Plovdiv, Bulgaria
| |
Collapse
|
19
|
Malik R, Joshi N, Tomer VK. Functional graphitic carbon (IV) nitride: A versatile sensing material. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Kianfar P, Nguyen Trieu H, Dalle Vacche S, Tsantilis L, Bongiovanni R, Vitale A. Solvent-free electrospinning of liquid polybutadienes and their in-situ photocuring. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Spasova M, Manolova N, Rashkov I, Naydenov M. Eco-Friendly Hybrid PLLA/Chitosan/ Trichoderma asperellum Nanomaterials as Biocontrol Dressings against Esca Disease in Grapevines. Polymers (Basel) 2022; 14:polym14122356. [PMID: 35745931 PMCID: PMC9228446 DOI: 10.3390/polym14122356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023] Open
Abstract
Fungi constitute the largest number of plant pathogens and are responsible for a range of serious plant diseases. Phaeomoniella chlamydospora (P. chlamydospora) and Phaeoacremonium aleophilum (P. aleophilum) are the main fungal pathogens causing esca disease in grapevines. On the other hand, there are beneficial microorganisms such as Trichoderma spp., which are able to control the growth of many phytopathogens. In the present study, innovative, eco-friendly hybrid nanomaterials were created by electrospinning PLLA, followed by the formation of a film of chitosan/Trichoderma asperellum (T. asperellum) spores on the fibers. The polymer carrier used in this study plays an active role in ensuring the viability of the biological agent during storage and, when placed in contact with moisture, ensures the agent’s normal development. Oligochitosan, as well as low molecular weight and high molecular weight chitosan, were used. The effects of chitosan molecular weight on the dynamic viscosity of chitosan solutions, film formation, mechanical properties, spore incorporation and growth were studied. The morphology of the prepared nanomaterials, and the presence of a film based on the formation of chitosan/T. asperellum spores on the PLLA fibers, were examined using scanning electron microscopy (SEM). The surface chemical compositions of the fibrous materials were studied using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). The mechanical properties of the obtained materials were also tested. The microbiological screening that was performed revealed that the eco-friendly hybrid nanomaterials incorporated with the beneficial microorganism, T. asperellum, to hamper the growth of the pathogenic P. chlamydospora and P. aleophilum fungi. The suppression rate depended on the viscosity of the chitosan solution used for the film formation. The use of oligochitosan resulted in the most effective infection of the material with T. asperellum spores. The environmentally friendly hybrid nanomaterials obtained in this study—in which the bioagent was embedded—are promising bioactive dressings for protecting grapevines against esca disease.
Collapse
Affiliation(s)
- Mariya Spasova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria; (N.M.); (I.R.)
- Correspondence:
| | - Nevena Manolova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria; (N.M.); (I.R.)
| | - Iliya Rashkov
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 103A, BG-1113 Sofia, Bulgaria; (N.M.); (I.R.)
| | - Mladen Naydenov
- Department of Microbiology, Agricultural University, BG-4000 Plovdiv, Bulgaria;
| |
Collapse
|
22
|
Moldovan R, Vereshchagina E, Milenko K, Iacob BC, Bodoki AE, Falamas A, Tosa N, Muntean CM, Farcău C, Bodoki E. Review on combining surface-enhanced Raman spectroscopy and electrochemistry for analytical applications. Anal Chim Acta 2022; 1209:339250. [PMID: 35569862 DOI: 10.1016/j.aca.2021.339250] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
The discovery of surface enhanced Raman scattering (SERS) from an electrochemical (EC)-SERS experiment is known as a historic breakthrough. Five decades have passed and Raman spectroelectrochemistry (SEC) has developed into a common characterization tool that provides information about the electrode-electrolyte interface. Recently, this technique has been successfully explored for analytical purposes. EC was found to highly improve the performances of SERS sensors, providing, among others, controlled adsorption of analytes and increased reproducibility. In this review, we highlight the potential of EC-SERS sensors to be implemented for point-of-need (PON) analyses as miniaturized devices, and their ability to revolutionize fields like quality control, diagnosis or environmental and food safety. Important developments have been achieved in Raman spectroelectrochemistry, which now represents a promising alternative to conventional analytical methods and interests more and more researchers. The studies included in this review open endless possibilities for real-life EC-SERS analytical applications.
Collapse
Affiliation(s)
- Rebeca Moldovan
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349, Cluj-Napoca, Romania
| | - Elizaveta Vereshchagina
- Department of Microsystems and Nanotechnology (MiNaLab), SINTEF Digital, Gaustadalléen 23C, 0373, Oslo, Norway
| | - Karolina Milenko
- Department of Microsystems and Nanotechnology (MiNaLab), SINTEF Digital, Gaustadalléen 23C, 0373, Oslo, Norway
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349, Cluj-Napoca, Romania
| | - Andreea Elena Bodoki
- General and Inorganic Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, 12, Ion Creangă, 400010, Cluj-Napoca, Romania
| | - Alexandra Falamas
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Nicoleta Tosa
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Cristina M Muntean
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Cosmin Farcău
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania.
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349, Cluj-Napoca, Romania.
| |
Collapse
|
23
|
Li X, Peng Y, Deng Y, Ye F, Zhang C, Hu X, Liu Y, Zhang D. Recycling and Reutilizing Polymer Waste via Electrospun Micro/Nanofibers: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1663. [PMID: 35630885 PMCID: PMC9146546 DOI: 10.3390/nano12101663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/30/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023]
Abstract
The accumulation of plastic waste resulting from the increasing demand for non-degradable plastics has led to a global environmental crisis. The severe environmental and economic drawbacks of inefficient, expensive, and impractical traditional waste disposal methods, such as landfills, incineration, plastic recycling, and energy production, limit the expansion of their applications to solving the plastic waste problem. Finding novel ways to manage the large amount of disposed plastic waste is urgent. Until now, one of the most valuable strategies for the handling of plastic waste has been to reutilize the waste as raw material for the preparation of functional and high-value products. Electrospun micro/nanofibers have drawn much attention in recent years due to their advantages of small diameter, large specific area, and excellent physicochemical features. Thus, electrospinning recycled plastic waste into micro/nanofibers creates diverse opportunities to deal with the environmental issue caused by the growing accumulation of plastic waste. This paper presents a review of recycling and reutilizing polymer waste via electrospinning. Firstly, the advantages of the electrospinning approach to recycling plastic waste are summarized. Then, the studies of electrospun recycled plastic waste are concluded. Finally, the challenges and future perspectives of electrospun recycled plastic waste are provided. In conclusion, this paper aims to provide a comprehensive overview of electrospun recycled plastic waste for researchers to develop further studies.
Collapse
Affiliation(s)
- Xiuhong Li
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (X.L.); (Y.P.); (Y.D.); (F.Y.); (D.Z.)
| | - Yujie Peng
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (X.L.); (Y.P.); (Y.D.); (F.Y.); (D.Z.)
| | - Yichen Deng
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (X.L.); (Y.P.); (Y.D.); (F.Y.); (D.Z.)
| | - Fangping Ye
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (X.L.); (Y.P.); (Y.D.); (F.Y.); (D.Z.)
| | - Chupeng Zhang
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (X.L.); (Y.P.); (Y.D.); (F.Y.); (D.Z.)
| | - Xinyu Hu
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (X.L.); (Y.P.); (Y.D.); (F.Y.); (D.Z.)
| | - Yong Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Daode Zhang
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (X.L.); (Y.P.); (Y.D.); (F.Y.); (D.Z.)
| |
Collapse
|
24
|
Li X, Chen S, Peng Y, Zheng Z, Li J, Zhong F. Materials, Preparation Strategies, and Wearable Sensor Applications of Conductive Fibers: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:3028. [PMID: 35459012 PMCID: PMC9032468 DOI: 10.3390/s22083028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 05/07/2023]
Abstract
The recent advances in wearable sensors and intelligent human-machine interfaces have sparked a great many interests in conductive fibers owing to their high conductivity, light weight, good flexibility, and durability. As one of the most impressive materials for wearable sensors, conductive fibers can be made from a variety of raw sources via diverse preparation strategies. Herein, to offer a comprehensive understanding of conductive fibers, we present an overview of the recent progress in the materials, the preparation strategies, and the wearable sensor applications related. Firstly, the three types of conductive fibers, including metal-based, carbon-based, and polymer-based, are summarized in terms of their principal material composition. Then, various preparation strategies of conductive fibers are established. Next, the primary wearable sensors made of conductive fibers are illustrated in detail. Finally, a robust outlook on conductive fibers and their wearable sensor applications are addressed.
Collapse
Affiliation(s)
| | | | | | | | | | - Fei Zhong
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (X.L.); (S.C.); (Y.P.); (Z.Z.); (J.L.)
| |
Collapse
|
25
|
Kasaai MR. Bio-nano-composites containing at least two components, chitosan and zein, for food packaging applications: A review of the nano-composites in comparison with the conventional counterparts. Carbohydr Polym 2022; 280:119027. [PMID: 35027129 DOI: 10.1016/j.carbpol.2021.119027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022]
Abstract
Both chitosan and zein are safe industrial biopolymers for the 21St century, respecting environmentally concerns. This review mainly is focused on preparations, properties and applications of a promising food packaging material, chitosan-zein nano-composite (NC). The properties and applications of the NCs were compared with their conventional counterparts. The structure of chitosan- zein composites was proposed. A procedure for preparations of conventional and nano zein-chitosan composites was proposed. The sizes of composites depend on molecular weight of chitosan and zein, the ratio of chitosan/zein, and pH of chitosan-zein solutions. The NCs had superior mechanical, antimicrobial, antioxidant, and barrier properties compared with the conventional ones. The properties of the composites were further improved by introduction of bioactive compounds, fillers or plasticizers. The composites have potential to employ as coatings/packaging materials to protect mushroom, meats, and fresh fruits and vegetables.
Collapse
Affiliation(s)
- Mohammad Reza Kasaai
- Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Khazar Abad Road, Km. 9, P.O. Box, 578, Sari, Mazandaran, Iran.
| |
Collapse
|
26
|
Hamnca S, Chamier J, Grant S, Glass T, Iwuoha E, Baker P. Spectroscopy, Morphology, and Electrochemistry of Electrospun Polyamic Acid Nanofibers. Front Chem 2022; 9:782813. [PMID: 35252124 PMCID: PMC8889449 DOI: 10.3389/fchem.2021.782813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
Polyamic acid (PAA) nanofibers produced by using the electrospinning method were fully characterized in terms of morphology and spectroscopy. A PAA nanofiber–modified screen-printed carbon electrode was applied to the detection of selected sulfonamides by following an electroanalytical protocol. The polyamic acid (PAA) nanofibers were characterized using Fourier transform infrared (FTIR) spectroscopy to study the integrity of polyamic acid functional groups as nanofibers by comparing them to chemically synthesized polyamic acid. A scanning electron microscope (SEM) was used to confirm the morphology of the produced nanofibers and 3D arrangement at the electrode interface. The Brunauer–Emmett–Teller (BET) method was used to determine the surface area of the nanofibers. Atomic force microscopy (AFM) was used to study the porosity and surface roughness of the nanofibers. Electrochemical evaluation based on diffusion-controlled kinetics was applied to determine the number of electrons transferred in the system, the surface concentration of the deposited PAA thin film (2.14 × 10−6 mol/cm2), and the diffusion coefficient (De) for the PAA nanofiber–modified screen-printed carbon electrode (9.43 × 10−7 cm−2/s). The reported LODs for sulfadiazine and sulfamethazine detection are consistent with requirements for trace-level monitoring by early warning diagnostic systems.
Collapse
Affiliation(s)
- Siyabulela Hamnca
- SensorLab, Chemistry Department, University of the Western Cape, Bellville, South Africa
- *Correspondence: Siyabulela Hamnca, ; Priscilla Baker,
| | - Jessica Chamier
- HySA Catalysis, Department of Chemical Engineering, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Sheila Grant
- Chemistry Department, University of Missouri, Columbia, MO, United states
| | - Timothy Glass
- Chemistry Department, University of Missouri, Columbia, MO, United states
| | - Emmanuel Iwuoha
- SensorLab, Chemistry Department, University of the Western Cape, Bellville, South Africa
| | - Priscilla Baker
- SensorLab, Chemistry Department, University of the Western Cape, Bellville, South Africa
- *Correspondence: Siyabulela Hamnca, ; Priscilla Baker,
| |
Collapse
|
27
|
Tabish TA, Hayat H, Abbas A, Narayan RJ. Graphene Quantum Dots-Based Electrochemical Biosensing Platform for Early Detection of Acute Myocardial Infarction. BIOSENSORS 2022; 12:77. [PMID: 35200338 PMCID: PMC8869523 DOI: 10.3390/bios12020077] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 05/15/2023]
Abstract
Heart failure resulting from acute myocardial infarction (AMI) is an important global health problem. Treatments of heart failure and AMI have improved significantly over the past two decades; however, the available diagnostic tests only give limited insights into these heterogeneous conditions at a reversible stage and are not precise enough to evaluate the status of the tissue at high risk. Innovative diagnostic tools for more accurate, more reliable, and early diagnosis of AMI are urgently needed. A promising solution is the timely identification of prognostic biomarkers, which is crucial for patients with AMI, as myocardial dysfunction and infarction lead to more severe and irreversible changes in the cardiovascular system over time. The currently available biomarkers for AMI detection include cardiac troponin I (cTnI), cardiac troponin T (cTnT), myoglobin, lactate dehydrogenase, C-reactive protein, and creatine kinase and myoglobin. Most recently, electrochemical biosensing technologies coupled with graphene quantum dots (GQDs) have emerged as a promising platform for the identification of troponin and myoglobin. The results suggest that GQDs-integrated electrochemical biosensors can provide useful prognostic information about AMI at an early, reversible, and potentially curable stage. GQDs offer several advantages over other nanomaterials that are used for the electrochemical detection of AMI such as strong interactions between cTnI and GQDs, low biomarker consumption, and reusability of the electrode; graphene-modified electrodes demonstrate excellent electrochemical responses due to the conductive nature of graphene and other features of GQDs (e.g., high specific surface area, π-π interactions with the analyte, facile electron-transfer mechanisms, size-dependent optical features, interplay between bandgap and photoluminescence, electrochemical luminescence emission capability, biocompatibility, and ease of functionalization). Other advantages include the presence of functional groups such as hydroxyl, carboxyl, carbonyl, and epoxide groups, which enhance the solubility and dispersibility of GQDs in a wide variety of solvents and biological media. In this perspective article, we consider the emerging knowledge regarding the early detection of AMI using GQDs-based electrochemical sensors and address the potential role of this sensing technology which might lead to more efficient care of patients with AMI.
Collapse
Affiliation(s)
- Tanveer A. Tabish
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, UK;
| | - Hasan Hayat
- College of Engineering, Swansea University, Wales SA1 8EN, UK;
| | - Aumber Abbas
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Roger J. Narayan
- Joint Department of Biomedical Engineering, North Carolina and North Carolina State University, Raleigh, NC 27695-7907, USA
| |
Collapse
|
28
|
Mummareddy S, Pradhan S, Narasimhan AK, Natarajan A. On Demand Biosensors for Early Diagnosis of Cancer and Immune Checkpoints Blockade Therapy Monitoring from Liquid Biopsy. BIOSENSORS 2021; 11:bios11120500. [PMID: 34940257 PMCID: PMC8699359 DOI: 10.3390/bios11120500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
Recently, considerable interest has emerged in the development of biosensors to detect biomarkers and immune checkpoints to identify and measure cancer through liquid biopsies. The detection of cancer biomarkers from a small volume of blood is relatively fast compared to the gold standard of tissue biopsies. Traditional immuno-histochemistry (IHC) requires tissue samples obtained using invasive procedures and specific expertise as well as sophisticated instruments. Furthermore, the turnaround for IHC assays is usually several days. To overcome these challenges, on-demand biosensor-based assays were developed to provide more immediate prognostic information for clinicians. Novel rapid, highly precise, and sensitive approaches have been under investigation using physical and biochemical methods to sense biomarkers. Additionally, interest in understanding immune checkpoints has facilitated the rapid detection of cancer prognosis from liquid biopsies. Typically, these devices combine various classes of detectors with digital outputs for the measurement of soluble cancer or immune checkpoint (IC) markers from liquid biopsy samples. These sensor devices have two key advantages: (a) a small volume of blood drawn from the patient is sufficient for analysis, and (b) it could aid physicians in quickly selecting and deciding the appropriate therapy regime for the patients (e.g., immune checkpoint blockade (ICB) therapy). In this review, we will provide updates on potential cancer markers, various biosensors in cancer diagnosis, and the corresponding limits of detection, while focusing on biosensor development for IC marker detection.
Collapse
Affiliation(s)
- Sai Mummareddy
- Department of Biology and Chemistry, Emory University, Atlanta, GA 30322, USA;
| | - Stuti Pradhan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA;
| | - Ashwin Kumar Narasimhan
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Chennai 603203, India;
| | - Arutselvan Natarajan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Correspondence: ; Tel.: +1-650-736-9822
| |
Collapse
|
29
|
Tyubaeva P, Varyan I, Lobanov A, Olkhov A, Popov A. Effect of the Hemin Molecular Complexes on the Structure and Properties of the Composite Electrospun Materials Based on Poly(3-hydroxybutyrate). Polymers (Basel) 2021; 13:4024. [PMID: 34833324 PMCID: PMC8622405 DOI: 10.3390/polym13224024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
The creation of innovative fibrous materials based on biodegradable semicrystalline polymers and modifying additives is an urgent scientific problem. In particular, the development of biomedical materials based on molecular complexes and biopolymers with controlled properties is of great interest. The paper suggests an approach to modifying the structure and properties of the composite materials based on poly(3-hydroxybutyrate) (PHB) obtained by the electrospinning method using molecular complexes of hemin. The introduction of 1-5 wt. % of hemin has a significant effect on the supramolecular structure, morphology and properties of PHB-based fibers. Changes in the supramolecular structure intensified with the increasing hemin concentration. On the one hand, a decrease in the fraction of the crystalline phase by 8-10% was observed. At the same time, there is a decrease in the density of the amorphous phase by 15-70%. Moreover, the addition of hemin leads to an improvement in the strength characteristics of the material: the elongation at break increased by 1.5 times, and in the tensile strength, it increased by 3 times. The antimicrobial activity of the hemin-containing composite materials against Escherichia coli and Staphylococcus aureus was confirmed. The obtained materials are proposed to be used in the creation of composite systems for regenerative medicine.
Collapse
Affiliation(s)
- Polina Tyubaeva
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia; (I.V.); (A.L.); (A.O.); (A.P.)
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Ivetta Varyan
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia; (I.V.); (A.L.); (A.O.); (A.P.)
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Anton Lobanov
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia; (I.V.); (A.L.); (A.O.); (A.P.)
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Anatoly Olkhov
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia; (I.V.); (A.L.); (A.O.); (A.P.)
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| | - Anatoly Popov
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia; (I.V.); (A.L.); (A.O.); (A.P.)
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia
| |
Collapse
|
30
|
Sharma D, Saha S, Satapathy BK. Recent advances in polymer scaffolds for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:342-408. [PMID: 34606739 DOI: 10.1080/09205063.2021.1989569] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The review provides insights into current advancements in electrospinning-assisted manufacturing for optimally designing biomedical devices for their prospective applications in tissue engineering, wound healing, drug delivery, sensing, and enzyme immobilization, and others. Further, the evolution of electrospinning-based hybrid biomedical devices using a combined approach of 3 D printing and/or film casting/molding, to design dimensionally stable membranes/micro-nanofibrous assemblies/patches/porous surfaces, etc. is reported. The influence of various electrospinning parameters, polymeric material, testing environment, and other allied factors on the morphological and physico-mechanical properties of electrospun (nano-/micro-fibrous) mats (EMs) and fibrous assemblies have been compiled and critically discussed. The spectrum of operational research and statistical approaches that are now being adopted for efficient optimization of electrospinning process parameters so as to obtain the desired response (physical and structural attributes) has prospectively been looked into. Further, the present review summarizes some current limitations and future perspectives for modeling architecturally novel hybrid 3 D/selectively textured structural assemblies, such as biocompatible, non-toxic, and bioresorbable mats/scaffolds/membranes/patches with apt mechanical stability, as biological substrates for various regenerative and non-regenerative therapeutic devices.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
31
|
Jin J, Li L, Zhang L, Luan Z, Xin S, Song K. Progress in the Application of Carbon Dots-Based Nanozymes. Front Chem 2021; 9:748044. [PMID: 34631669 PMCID: PMC8497709 DOI: 10.3389/fchem.2021.748044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
As functional nanomaterials with simulating enzyme-like properties, nanozymes can not only overcome the inherent limitations of natural enzymes in terms of stability and preparation cost but also possess design, versatility, maneuverability, and applicability of nanomaterials. Therefore, they can be combined with other materials to form composite nanomaterials with superior performance, which has garnered considerable attention. Carbon dots (CDs) are an ideal choice for these composite materials due to their unique physical and chemical properties, such as excellent water dispersion, stable chemical inertness, high photobleaching resistance, and superior surface engineering. With the continuous emergence of various CDs-based nanozymes, it is vital to thoroughly understand their working principle, performance evaluation, and application scope. This review comprehensively discusses the recent advantages and disadvantages of CDs-based nanozymes in biomedicine, catalysis, sensing, detection aspects. It is expected to provide valuable insights into developing novel CDs-based nanozymes.
Collapse
Affiliation(s)
| | | | | | | | - Shuquan Xin
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Kai Song
- School of Life Sciences, Changchun Normal University, Changchun, China
| |
Collapse
|
32
|
Yang W, Guo H, Xue R, Zhao X, Guan Q, Fan T, Zhang L, Yang F, Yang W. 0.2CNT/NiSex composite derived from CNT/MOF-74 as electrode material for electrochemical capacitor and electrochemical sensor. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Alkali metal–lanthanide co-encapsulated 19-tungsto-2-selenate derivative and its electrochemical detection of uric acid. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Halicka K, Cabaj J. Electrospun Nanofibers for Sensing and Biosensing Applications-A Review. Int J Mol Sci 2021; 22:6357. [PMID: 34198611 PMCID: PMC8232165 DOI: 10.3390/ijms22126357] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
Sensors and biosensors have found applications in many areas, e.g., in medicine and clinical diagnostics, or in environmental monitoring. To expand this field, nanotechnology has been employed in the construction of sensing platforms. Because of their properties, such as high surface area to volume ratio, nanofibers (NFs) have been studied and used to develop sensors with higher loading capacity, better sensitivity, and faster response time. They also allow to miniaturize designed platforms. One of the most commonly used techniques of the fabrication of NFs is electrospinning. Electrospun NFs can be used in different types of sensors and biosensors. This review presents recent studies concerning electrospun nanofiber-based electrochemical and optical sensing platforms for the detection of various medically and environmentally relevant compounds, including glucose, drugs, microorganisms, and toxic metal ions.
Collapse
Affiliation(s)
| | - Joanna Cabaj
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;
| |
Collapse
|
35
|
Electrospun Metal Oxide Nanofibers and Their Conductometric Gas Sensor Application. Part 1: Nanofibers and Features of Their Forming. NANOMATERIALS 2021; 11:nano11061544. [PMID: 34208104 PMCID: PMC8230756 DOI: 10.3390/nano11061544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022]
Abstract
Electrospun metal oxide nanofibers, due to their unique structural and electrical properties, are now being considered as materials with great potential for gas sensor applications. This critical review attempts to assess the feasibility of these perspectives. The article in Part 1 discusses the basic principles of electrospinning and the features of the formation of metal oxide nanofibers using this method. Approaches to optimization of nanofibers’ parameters important for gas sensor application are also considered.
Collapse
|
36
|
Banitaba SN, Ehrmann A. Application of Electrospun Nanofibers for Fabrication of Versatile and Highly Efficient Electrochemical Devices: A Review. Polymers (Basel) 2021; 13:1741. [PMID: 34073391 PMCID: PMC8197972 DOI: 10.3390/polym13111741] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Electrochemical devices convert chemical reactions into electrical energy or, vice versa, electricity into a chemical reaction. While batteries, fuel cells, supercapacitors, solar cells, and sensors belong to the galvanic cells based on the first reaction, electrolytic cells are based on the reversed process and used to decompose chemical compounds by electrolysis. Especially fuel cells, using an electrochemical reaction of hydrogen with an oxidizing agent to produce electricity, and electrolytic cells, e.g., used to split water into hydrogen and oxygen, are of high interest in the ongoing search for production and storage of renewable energies. This review sheds light on recent developments in the area of electrospun electrochemical devices, new materials, techniques, and applications. Starting with a brief introduction into electrospinning, recent research dealing with electrolytic cells, batteries, fuel cells, supercapacitors, electrochemical solar cells, and electrochemical sensors is presented. The paper concentrates on the advantages of electrospun nanofiber mats for these applications which are mostly based on their high specific surface area and the possibility to tailor morphology and material properties during the spinning and post-treatment processes. It is shown that several research areas dealing with electrospun parts of electrochemical devices have already reached a broad state-of-the-art, while other research areas have large space for future investigations.
Collapse
Affiliation(s)
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| |
Collapse
|
37
|
Rayappa MK, Viswanathan PA, Rattu G, Krishna PM. Nanomaterials Enabled and Bio/Chemical Analytical Sensors for Acrylamide Detection in Thermally Processed Foods: Advances and Outlook. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4578-4603. [PMID: 33851531 DOI: 10.1021/acs.jafc.0c07956] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Acrylamide, a food processing contaminant with demonstrated genotoxicity, carcinogenicity, and reproductive toxicity, is largely present in numerous prominent and commonly consumed food products that are produced by thermal processing methods. Food regulatory bodies such as the U.S. Food and Drug Administration (U.S. FDA) and European Union Commission regulations have disseminated various acrylamide mitigation strategies in food processing practices. Hence, in the wake of such food and public health safety efforts, there is a rising demand for economic, rapid, and portable detection and quantification methods for these contaminants. Since conventional quantification techniques like liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) methods are expensive and have many drawbacks, sensing platforms with various transduction systems have become an efficient alternative tool for quantifying various target molecules in a wide variety of food samples. Therefore, this present review discusses in detail the state of robust, nanomaterials-based and other bio/chemical sensor fabrication techniques, the sensing mechanism, and the selective qualitative and quantitative measurement of acrylamide in various food materials. The discussed sensors use analytical measurements ranging from diverse and disparate optical, electrochemical, as well as piezoelectric methods. Further, discussions about challenges and also the potential development of the lab-on-chip applications for acrylamide detection and quantification are entailed at the end of this review.
Collapse
Affiliation(s)
- Mirinal Kumar Rayappa
- Physics Research Group, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM) (Deemed to be University, Under MOFPI, Government of India), Sonipat, Haryana, India, 131028
| | - Priyanka A Viswanathan
- Physics Research Group, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM) (Deemed to be University, Under MOFPI, Government of India), Sonipat, Haryana, India, 131028
| | - Gurdeep Rattu
- Physics Research Group, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM) (Deemed to be University, Under MOFPI, Government of India), Sonipat, Haryana, India, 131028
| | - P Murali Krishna
- Physics Research Group, Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM) (Deemed to be University, Under MOFPI, Government of India), Sonipat, Haryana, India, 131028
| |
Collapse
|
38
|
Ghorbani-Choghamarani A, Taherinia Z, Heidarnezhad Z, Moradi Z. Application of Nanofibers Based on Natural Materials as Catalyst in Organic Reactions. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
State of the Art on Biomaterials for Soft Tissue Augmentation in the Oral Cavity. Part II: Synthetic Polymers-Based Biomaterials. Polymers (Basel) 2020; 12:polym12081845. [PMID: 32824577 PMCID: PMC7465038 DOI: 10.3390/polym12081845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 01/10/2023] Open
Abstract
Most of the polymers used as biomaterials for scaffolds are naturally occurring, synthetic biodegradable, and synthetic non-biodegradable polymers. Since synthetic polymers can be adapted for obtaining singular desired characteristics by applying various fabrication techniques, their use has increased in the biomedical field, in dentistry in particular. The manufacturing methods of these new structures include many processes, such as electrospinning, 3D printing, or the use of computer-aided design/computer-aided manufacturing (CAD/CAM). Synthetic polymers show several drawbacks that can limit their use in clinical applications, such as the lack of cellular recognition, biodegradability, and biocompatibility. Moreover, concerning biodegradable polymers, the time for matrix resorption is not predictable, and non-resorbable matrices are preferred for soft tissue augmentation in the oral cavity. This review aimed to determine a new biomaterial to offset the present shortcomings in the oral environment. Researchers have recently proposed a novel non-resorbable composite membrane manufactured via electrospinning that has allowed obtaining remarkable in vivo outcomes concerning angiogenesis and immunomodulation throughout the polarization of macrophages. A prototype of the protocol for in vitro and in vivo experimentation with hydrogels is explained in order to encourage innovation into the development of promising biomaterials for soft tissue augmentation in the near future.
Collapse
|
40
|
Goodge K, Frey M. Biotin-Conjugated Cellulose Nanofibers Prepared via Copper-Catalyzed Alkyne-Azide Cycloaddition (CuAAC) "Click" Chemistry. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1172. [PMID: 32560117 PMCID: PMC7353318 DOI: 10.3390/nano10061172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 02/02/2023]
Abstract
As potential high surface area for selective capture in diagnostic or filtration devices, biotin-cellulose nanofiber membranes were fabricated to demonstrate the potential for specific and bio-orthogonal attachment of biomolecules onto nanofiber surfaces. Cellulose acetate was electrospun and substituted with alkyne groups in either a one- or two-step process. The alkyne reaction, confirmed by FTIR and Raman spectroscopy, was dependent on solvent ratio, time, and temperature. The two-step process maximized alkyne substitution in 10/90 volume per volume ratio (v/v) water to isopropanol at 50 °C after 6 h compared to the one-step process in 80/20 (v/v) at 50 °C after 48 h. Azide-biotin conjugate "clicked" with the alkyne-cellulose via copper-catalyzed alkyne-azide cycloaddition (CuAAC). The biotin-cellulose membranes, characterized by FTIR, SEM, Energy Dispersive X-ray spectroscopy (EDX), and XPS, were used in proof-of-concept assays (HABA (4'-hydroxyazobenzene-2-carboxylic acid) colorimetric assay and fluorescently tagged streptavidin assay) where streptavidin selectively bound to the pendant biotin. The click reaction was specific to alkyne-azide coupling and dependent on pH, ratio of ascorbic acid to copper sulfate, and time. Copper (II) reduction to copper (I) was successful without ascorbic acid, increasing the viability of the click conjugation with biomolecules. The surface-available biotin was dependent on storage medium and time: Decreasing with immersion in water and increasing with storage in air.
Collapse
Affiliation(s)
| | - Margaret Frey
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
41
|
Wang L, Wang L, Yang G, Xie Q, Zhong S, Su X, Hou Y, Zhang B. Improvement of Sensing Properties for Copper Phthalocyanine Sensors Based on Polymer Nanofibers Scaffolds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4532-4539. [PMID: 32272836 DOI: 10.1021/acs.langmuir.9b03636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An effectual and understandable route for the fabrication techniques of stereoscopic NO2 sensor is provided in this work. As the gas-sensing layer of the sensor, copper phthalocyanine (CuPc) grew on the top of poly(vinyl alcohol) (PVA) nanofibers (NFs). The sensitivity of the CuPc/PVA NFs stereoscopic sensors to NO2 was over 829%/ppm, while the sensitivity of the continuous CuPc films sensors was 2 orders of magnitude lower than that of the stereoscopic ones. To the responsivities at 25 ppm of NO2, the CuPc/PVA NFs stereoscopic sensors were about four times stronger than that of the continuous CuPc films sensors. For the recovery time, the CuPc/PVA NFs stereoscopic sensors were over eight times faster than the continuous CuPc films sensors. This general tactic can be used to prepare various toxic gas sensors to improve the overall performance of the devices.
Collapse
Affiliation(s)
- Lu Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| | - Lijuan Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| | - Guocheng Yang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| | - Qiang Xie
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| | - Sai Zhong
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| | - Xin Su
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| | - Yuhang Hou
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| | - Bo Zhang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| |
Collapse
|