1
|
Amjad A, Xian X. Optical sensors for transdermal biomarker detection: A review. Biosens Bioelectron 2025; 267:116844. [PMID: 39406072 DOI: 10.1016/j.bios.2024.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
This review has explored optical sensors and their important role in non-invasive transdermal biomarker detection. While electrochemical sensors have been thoroughly studied for biomarker tracking, optical sensors present a compelling alternative due to their high sensitivity and selectivity, multiplex capabilities, cost-efficiency, and small form factor. This review examines the latest advancements in optical sensing technologies for transdermal biomarker detection, such as colorimetry, fluorescence, surface plasmon resonance (SPR), fiber optics, photonic crystals, and Raman spectroscopy. These technologies have been applied in the analysis of biomarkers present in sweat and skin gases, which are essential for non-invasive health monitoring. Furthermore, the review has discussed the challenges and future perspectives of optical sensors in in transdermal biomarker detection. The analysis of various sensor types and their applications highlights the transformative potential of optical sensors in enhancing disease diagnostics and promoting proactive health management.
Collapse
Affiliation(s)
- Amirhossein Amjad
- McComish Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD, 57007, USA
| | - Xiaojun Xian
- McComish Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
2
|
Carrillo AE, Meade RD, Herry CL, Seely AJE, Kenny GP. An exploratory investigation of heart rate and heart rate variability responses to daylong heat exposure in young and older adults. Appl Physiol Nutr Metab 2024; 49:1783-1791. [PMID: 39255520 DOI: 10.1139/apnm-2024-0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Heart rate variability (HRV) has shown potential as a tool for monitoring thermal strain, but there is limited data to support its efficacy in older adults during prolonged heat exposures. We compared HRV between young (19-31 years, n = 20) and older (61-78 years, n = 39) adults during 9 h of heat exposure (40 °C, 9% RH). We also explored whether heart rate (HR) and/or HRV could be used to distinguish older adults who achieved elevated thermal strain, defined as either (1) an increase in core temperature >1.0 °C (occurring in 39%, 15/39) or (2) a reduction in systolic blood pressure >10 mm Hg (occurring in 67%, 26/39). Percentage of age-predicted maximal HR and percentage of heart rate reserve (HRR) were higher, whereas standard deviation of normal RR intervals, the square root of the mean of squared differences between successive RR intervals (RMSSD), high frequency power (HF), and cardiac vagal index (CVI) were lower in older compared to young adults during heat exposure (P ≤ 0.004). In older adults, increases in core temperature were correlated with percentage of age-predicted maximal HR, percentage of HRR, RMSSD, and CVI (P ≤ 0.031), whereas changes in systolic blood pressure were not significantly associated with HR or HRV indices (P ≥ 0.327). Receiver operating characteristic curve analysis indicated that HR and HRV indices had generally poor ability to identify older adults with elevated thermal strain (area under the curve ≤0.65). Age-related differences in HRV, consistent with vagal withdrawal among older adults, remained during daylong heat exposure, but marked heterogeneity of response likely contributed to HRV providing limited discriminatory value in identifying changes in core temperature or blood pressure in older adults.
Collapse
Affiliation(s)
- Andres E Carrillo
- Department of Exercise Science, School of Health Sciences, Chatham University, Pittsburgh, PA 15232, USA
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Christophe L Herry
- Acute Care Research Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Andrew J E Seely
- Acute Care Research Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Division of Thoracic Surgery and Department of Critical Care Medicine, Ottawa Hospital, Ottawa, ON, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- Acute Care Research Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
3
|
Maroli G, Rosati G, Suárez-García S, Bedmar-Romero D, Kobrin R, González-Laredo Á, Urban M, Alvárez-Diduk R, Ruiz-Molina D, Merkoçi A. Wearable, battery-free, wireless multiplexed printed sensors for heat stroke prevention with mussel-inspired bio-adhesive membranes. Biosens Bioelectron 2024; 260:116421. [PMID: 38838572 DOI: 10.1016/j.bios.2024.116421] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Wearable technologies are becoming pervasive in our society, and their development continues to accelerate the untapped potential of continuous and ubiquitous sensing, coupled with big data analysis and interpretation, has only just begun to unfold. However, existing wearable devices are still bulky (mainly due to batteries and electronics) and have suboptimal skin contact. In this work, we propose a novel approach based on a sensor network produced through inkjet printing of nanofunctional inks onto a semipermeable substrate. This network enables real-time monitoring of critical physiological parameters, including temperature, humidity, and muscle contraction. Remarkably, our system operates under battery-free and wireless near-field communication (NFC) technology for data readout via smartphones. Moreover, two of the three sensors were integrated onto a naturally adhesive bioinspired membrane. This membrane, developed using an eco-friendly, high-throughput process, draws inspiration from the remarkable adhesive properties of mussel-inspired molecules. The resulting ultra-conformable membrane adheres effortlessly to the skin, ensuring reliable and continuous data collection. The urgency of effective monitoring systems cannot be overstated, especially in the context of rising heat stroke incidents attributed to climate change and high-risk occupations. Heat stroke manifests as elevated skin temperature, lack of sweating, and seizures. Swift intervention is crucial to prevent progression to coma or fatality. Therefore, our proposed system holds immense promise for the monitoring of these parameters on the field, benefiting both the general population and high-risk workers, such as firefighters.
Collapse
Affiliation(s)
- Gabriel Maroli
- Catalan Institute of Nanoscience and Nanotechnology, BIST, and CSIC, Edifici ICN2 Campus UAB, 08193, Bellaterra, Barcelona, Spain; Instituto de Investigaciones en Ingeniería Eléctrica Alfredo Desages (IIIE), Universidad Nacional del Sur - CONICET, Argentina
| | - Giulio Rosati
- Catalan Institute of Nanoscience and Nanotechnology, BIST, and CSIC, Edifici ICN2 Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| | - Salvio Suárez-García
- Catalan Institute of Nanoscience and Nanotechnology, BIST, and CSIC, Edifici ICN2 Campus UAB, 08193, Bellaterra, Barcelona, Spain.
| | - Daniel Bedmar-Romero
- Catalan Institute of Nanoscience and Nanotechnology, BIST, and CSIC, Edifici ICN2 Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Robert Kobrin
- Catalan Institute of Nanoscience and Nanotechnology, BIST, and CSIC, Edifici ICN2 Campus UAB, 08193, Bellaterra, Barcelona, Spain; Joint Department of Biomedical Engineering, NC State & UNC Chapel Hill, USA
| | - Álvaro González-Laredo
- Catalan Institute of Nanoscience and Nanotechnology, BIST, and CSIC, Edifici ICN2 Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Massimo Urban
- Catalan Institute of Nanoscience and Nanotechnology, BIST, and CSIC, Edifici ICN2 Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Ruslan Alvárez-Diduk
- Catalan Institute of Nanoscience and Nanotechnology, BIST, and CSIC, Edifici ICN2 Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology, BIST, and CSIC, Edifici ICN2 Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology, BIST, and CSIC, Edifici ICN2 Campus UAB, 08193, Bellaterra, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain.
| |
Collapse
|
4
|
Kim KR, Kang TW, Kim H, Lee YJ, Lee SH, Yi H, Kim HS, Kim H, Min J, Ready J, Millard-Stafford M, Yeo WH. All-in-One, Wireless, Multi-Sensor Integrated Athlete Health Monitor for Real-Time Continuous Detection of Dehydration and Physiological Stress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403238. [PMID: 38950170 PMCID: PMC11434103 DOI: 10.1002/advs.202403238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/03/2024] [Indexed: 07/03/2024]
Abstract
Athletes are at high risk of dehydration, fatigue, and cardiac disorders due to extreme performance in often harsh environments. Despite advancements in sports training protocols, there is an urgent need for a non-invasive system capable of comprehensive health monitoring. Although a few existing wearables measure athlete's performance, they are limited by a single function, rigidity, bulkiness, and required straps and adhesives. Here, an all-in-one, multi-sensor integrated wearable system utilizing a set of nanomembrane soft sensors and electronics, enabling wireless, real-time, continuous monitoring of saliva osmolality, skin temperature, and heart functions is introduced. This system, using a soft patch and a sensor-integrated mouthguard, provides comprehensive monitoring of an athlete's hydration and physiological stress levels. A validation study in detecting real-time physiological levels shows the device's performance in capturing moments (400-500 s) of synchronized acute elevation in dehydration (350%) and physiological strain (175%) during field training sessions. Demonstration with a few human subjects highlights the system's capability to detect early signs of health abnormality, thus improving the healthcare of sports athletes.
Collapse
Affiliation(s)
- Ka Ram Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Tae Woog Kang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hodam Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yoon Jae Lee
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Sung Hoon Lee
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hoon Yi
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hyeon Seok Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hojoong Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jihee Min
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Biology, College of Arts and Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Jud Ready
- Electro-Optical Systems Laboratory, Georgia Tech Research Institute, Atlanta, GA, 30332, USA
| | | | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
5
|
Payette J, Vaussenat F, Cloutier SG. Heart Rate Measurement Using the Built-In Triaxial Accelerometer from a Commercial Digital Writing Device. SENSORS (BASEL, SWITZERLAND) 2024; 24:2238. [PMID: 38610449 PMCID: PMC11014068 DOI: 10.3390/s24072238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Currently, wearable technology is an emerging trend that offers remarkable access to our data through smart devices like smartphones, watches, fitness trackers and textiles. As such, wearable devices can enable health monitoring without disrupting our daily routines. In clinical settings, electrocardiograms (ECGs) and photoplethysmographies (PPGs) are used to monitor heart and respiratory behaviors. In more practical settings, accelerometers can be used to estimate the heart rate when they are attached to the chest. They can also help filter out some noise in ECG signals from movement. In this work, we compare the heart rate data extracted from the built-in accelerometer of a commercial smart pen equipped with sensors (STABILO's DigiPen) to standard ECG monitor readouts. We demonstrate that it is possible to accurately predict the heart rate from the smart pencil. The data collection is carried out with eight volunteers writing the alphabet continuously for five minutes. The signal is processed with a Butterworth filter to cut off noise. We achieve a mean-squared error (MSE) better than 6.685 × 10-3 comparing the DigiPen's computed Δt (time between pulses) with the reference ECG data. The peaks' timestamps for both signals all maintain a correlation higher than 0.99. All computed heart rates (HR =60Δt) from the pen accurately correlate with the reference ECG signals.
Collapse
Affiliation(s)
| | | | - Sylvain G. Cloutier
- Department of Electrical Engineering, École de Technologie Supérieure, Montréal, QC H3C 1K3, Canada; (J.P.); (F.V.)
| |
Collapse
|
6
|
Cabanas AM, Fuentes-Guajardo M, Sáez N, Catalán DD, Collao-Caiconte PO, Martín-Escudero P. Exploring the Hidden Complexity: Entropy Analysis in Pulse Oximetry of Female Athletes. BIOSENSORS 2024; 14:52. [PMID: 38275305 PMCID: PMC11154467 DOI: 10.3390/bios14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
This study examines the relationship between physiological complexity, as measured by Approximate Entropy (ApEn) and Sample Entropy (SampEn), and fitness levels in female athletes. Our focus is on their association with maximal oxygen consumption (VO2,max). Our findings reveal a complex relationship between entropy metrics and fitness levels, indicating that higher fitness typically, though not invariably, correlates with greater entropy in physiological time series data; however, this is not consistent for all individuals. For Heart Rate (HR), entropy measures suggest stable patterns across fitness categories, while pulse oximetry (SpO2) data shows greater variability. For instance, the medium fitness group displayed an ApEn(HR) = 0.57±0.13 with a coefficient of variation (CV) of 22.17 and ApEn(SpO2) = 0.96±0.49 with a CV of 46.08%, compared to the excellent fitness group with ApEn(HR) = 0.60±0.09 with a CV of 15.19% and ApEn(SpO2) =0.85±0.42 with a CV of 49.46%, suggesting broader physiological responses among more fit individuals. The larger standard deviations and CVs for SpO2 entropy may indicate the body's proficient oxygen utilization at higher levels of physical demand. Our findings advocate for combining entropy metrics with wearable sensor technology for improved biomedical analysis and personalized healthcare.
Collapse
Affiliation(s)
- Ana M. Cabanas
- Departamento de Física, Universidad de Tarapacá, Arica 1010069, Chile; (N.S.); (D.D.C.)
| | | | - Nicolas Sáez
- Departamento de Física, Universidad de Tarapacá, Arica 1010069, Chile; (N.S.); (D.D.C.)
| | - Davidson D. Catalán
- Departamento de Física, Universidad de Tarapacá, Arica 1010069, Chile; (N.S.); (D.D.C.)
| | | | - Pilar Martín-Escudero
- Medical School of Sport Medicine, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| |
Collapse
|
7
|
Cheong SM, Gaynanova I. Sensing the impact of extreme heat on physical activity and sleep. Digit Health 2024; 10:20552076241241509. [PMID: 38528970 PMCID: PMC10962040 DOI: 10.1177/20552076241241509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction This study assesses the person-specific impact of extreme heat on low-income households using wearable sensors. The focus is on the intensive and longitudinal assessment of physical activity and sleep with the rising person-specific ambient temperature. Methods This study recruited 30 participants in a low-income and predominantly Black community in Houston, Texas in August and September of 2022. Each participant wore on his/her wrist an accelerometer that recorded person-specific ambient temperature, sedentary behavior, physical activity intensity (low and moderate to vigorous), and sleep efficiency 24 h over 14 days. Mixed effects models were used to analyze associations among physical activity, sleep, and person-specific ambient temperature. Results The main findings include increased sedentary time, sleep impairment with the rise of person-level ambient temperature, and the mitigating role of AC. Conclusions Extreme heat negatively affects physical activity and sleep. The negative consequences are especially critical for those with limited use of AC in lower-income neighborhoods of color. Staying home with a high indoor temperature during hot days can lead to various adverse health outcomes including accelerated cognitive decline, higher cancer risk, and social isolation.
Collapse
Affiliation(s)
- So-Min Cheong
- Department of Public Service & Administration, Texas A&M University, College Station, TX, USA
| | - Irina Gaynanova
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
You Y, Chen Y, Zhang Q, Hu X, Li X, Yang P, Zuo Q, Cao Q. Systematic and meta-based evaluation of the relationship between the built environment and physical activity behaviors among older adults. PeerJ 2023; 11:e16173. [PMID: 37780389 PMCID: PMC10538293 DOI: 10.7717/peerj.16173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/03/2023] [Indexed: 10/03/2023] Open
Abstract
OBJECTIVES Existing assertions about the relationship between various factors of the built environment and physical activity behaviors are inconsistent and warrant further exploration and analysis. METHODS This study systematically searched PubMed, Embase, Web of Science, Scopus, the Cochrane Library and Google Scholar for the effect of the built environment on the physical activity behaviors of older adults. R software was used to calculate the meta-estimated odds ratio with a 95% confidence interval. Simultaneously, the quality of included studies was evaluated using an observational study quality evaluation standard recommended by American health care quality and research institutions. RESULTS A total of 16 original researches were included in this meta-analysis and eight factors of the built environment were evaluated. These factors which ranked from high to low according to their impact were traffic safety (OR = 1.58, 95% CI [1.14-2.20]), destination accessibility (OR = 1.24, 95% CI [1.06-1.44]), aesthetics of sports venues (OR = 1.21, 95% CI [1.07-1.37]), virescence of sports venues (OR = 1.14, 95% CI [1.06-1.23]), building density (OR = 1.07, 95% CI [1.02-1.13]). Additionally, it seemed that there was no potential association between mixed land use (OR = 1.01, 95% CI [0.92-1.10]), the quality of pedestrian facilities (OR = 1.00, 95% CI [0.92-1.08]) or commercial facilities (OR = 0.94, 95% CI [0.88-1.00]) and physical activity behaviors of older adults. CONCLUSIONS The built environment has been found to exhibit a significant relationship with the physical activity behaviors of older adults. It is proposed that factors such as traffic safety, destination accessibility, aesthetics of sports venues, virescence of sports venues, and building density be given more consideration when aiming to promote physical activity levels among older adults.
Collapse
Affiliation(s)
- Yanwei You
- Division of Sports Science and Physical Education, Tsinghua University, Bejing, China
- School of Social Sciences, Tsinghua University, Beijing, China
| | - Yuquan Chen
- Institute of Medical Information/Medical Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qi Zhang
- Taishan University, Taian, China
| | - Xiaojie Hu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xingzhong Li
- Zhedong Orthopedic Hospital, Ningbo, China
- Current Affiliation: Orthopedics Department, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Ping Yang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Qun Zuo
- College of Public Health, Hebei University/Hebei Key Laboratory of Public Health Safety, Baoding, China
| | - Qiang Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
- School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
9
|
Doarn CR. The Heat Is On and the Dominoes Fall. Telemed J E Health 2023; 29:1273-1274. [PMID: 37669019 DOI: 10.1089/tmj.2023.29099.editorial] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
|
10
|
Liu Z, Cascioli V, McCarthy PW. Healthcare Monitoring Using Low-Cost Sensors to Supplement and Replace Human Sensation: Does It Have Potential to Increase Independent Living and Prevent Disease? SENSORS (BASEL, SWITZERLAND) 2023; 23:s23042139. [PMID: 36850736 PMCID: PMC9963454 DOI: 10.3390/s23042139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 05/17/2023]
Abstract
Continuous monitoring of health status has the potential to enhance the quality of life and life expectancy of people suffering from chronic illness and of the elderly. However, such systems can only come into widespread use if the cost of manufacturing is low. Advancements in material science and engineering technology have led to a significant decrease in the expense of developing healthcare monitoring devices. This review aims to investigate the progress of the use of low-cost sensors in healthcare monitoring and discusses the challenges faced when accomplishing continuous and real-time monitoring tasks. The major findings include (1) only a small number of publications (N = 50) have addressed the issue of healthcare monitoring applications using low-cost sensors over the past two decades; (2) the top three algorithms used to process sensor data include SA (Statistical Analysis, 30%), SVM (Support Vector Machine, 18%), and KNN (K-Nearest Neighbour, 12%); and (3) wireless communication techniques (Zigbee, Bluetooth, Wi-Fi, and RF) serve as the major data transmission tools (77%) followed by cable connection (13%) and SD card data storage (10%). Due to the small fraction (N = 50) of low-cost sensor-based studies among thousands of published articles about healthcare monitoring, this review not only summarises the progress of related research but calls for researchers to devote more effort to the consideration of cost reduction as well as the size of these components.
Collapse
Affiliation(s)
- Zhuofu Liu
- The Higher Educational Key Laboratory for Measuring and Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin 150080, China
- Correspondence: ; Tel.: +86-139-0451-2205
| | - Vincenzo Cascioli
- Murdoch University Chiropractic Clinic, Murdoch University, Murdoch 6150, Australia
| | - Peter W. McCarthy
- Faculty of Life Science and Education, University of South Wales, Treforest, Pontypridd CF37 1DL, UK
- Faculty of Health Sciences, Durban University of Technology, Durban 1334, South Africa
| |
Collapse
|
11
|
Kalasin S, Surareungchai W. Challenges of Emerging Wearable Sensors for Remote Monitoring toward Telemedicine Healthcare. Anal Chem 2023; 95:1773-1784. [PMID: 36629753 DOI: 10.1021/acs.analchem.2c02642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Digitized telemedicine tools with the Internet of Things (IoT) started advancing into our daily lives and have been incorporated with commercial wearable gadgets for noninvasive remote health monitoring. The newly established tools have been steered toward a new era of decentralized healthcare. The advancement of a telemedicine wearable monitoring system has attracted enormous interest in the multimodal big data acquisition of real-time physiological and biochemical information via noninvasive methods for any health-related industries. The expectation of telemedicine wearable creation has been focused on early diagnosis of multiple diseases and minimizing the cost of high-tech and invasive treatments. However, only limited progress has been directed toward the development of telemedicine wearable sensors. This Perspective addresses the advancement of these wearable sensors that encounter multiple challenges on the forefront and technological gaps hampering the realization of health monitoring at molecular levels related to smart materials mostly limited to single use, issues of selectivity to analytes, low sensitivity to targets, miniaturization, and lack of artificial intelligence to perform multiple tasks and secure big data transfer. Sensor stability with minimized signal drift, on-body sensor reusability, and long-term continuous health monitoring provides key analytical challenges. This Perspective also focuses on, promotes, and highlights wearable sensors with a distinct capability to interconnect with telemedicine healthcare for physical sensing and multiplex sensing at deeper levels. Moreover, it points out some critical challenges in different material aspects and promotes what it will take to advance the current state-of-art wearable sensors for telemedicine healthcare. Ultimately, this Perspective is to draw attention to some potential blind spots of wearable technology development and to inspire further development of this integrated technology in mitigating multimorbidity in aging societies through health monitoring at molecular levels to identify signs of diseases.
Collapse
Affiliation(s)
- Surachate Kalasin
- Faculty of Science and Nanoscience & Nanotechnology Graduate Program, King Mongkut's University of Technology Thonburi, 10140 Bangkok, Thailand
| | - Werasak Surareungchai
- Pilot Plant Research and Development Laboratory, King Mongkut's University of Technology Thonburi, 10150 Bangkok, Thailand
- School of Bioresource and Technology, King Mongkut's University of Technology Thonburi, 10150 Bangkok, Thailand
| |
Collapse
|
12
|
Schwebel DC, Hasan R, Weichelt BP. Could Wearables Protect Youth and Children on Farms? J Agromedicine 2023; 28:77-80. [PMID: 36284466 PMCID: PMC9805513 DOI: 10.1080/1059924x.2022.2140735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Ragib Hasan
- Department of Computer Science, University of Alabama at Birmingham
| | - Bryan P. Weichelt
- National Farm Medicine Center, Marshfield Clinic Research Institute, Marshfield, WI
- National Children’s Center for Rural and Agricultural Safety and Health, Marshfield, WI
| |
Collapse
|
13
|
Koch M, Matzke I, Huhn S, Gunga HC, Maggioni MA, Munga S, Obor D, Sié A, Boudo V, Bunker A, Dambach P, Bärnighausen T, Barteit S. Wearables for Measuring Health Effects of Climate Change-Induced Weather Extremes: Scoping Review. JMIR Mhealth Uhealth 2022; 10:e39532. [PMID: 36083624 PMCID: PMC9508665 DOI: 10.2196/39532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Although climate change is one of the biggest global health threats, individual-level and short-term data on direct exposure and health impacts are still scarce. Wearable electronic devices (wearables) present a potential solution to this research gap. Wearables have become widely accepted in various areas of health research for ecological momentary assessment, and some studies have used wearables in the field of climate change and health. However, these studies vary in study design, demographics, and outcome variables, and existing research has not been mapped. OBJECTIVE In this review, we aimed to map existing research on wearables used to detect direct health impacts and individual exposure during climate change-induced weather extremes, such as heat waves or wildfires. METHODS We conducted a scoping review according to the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) framework and systematically searched 6 databases (PubMed [MEDLINE], IEEE Xplore, CINAHL [EBSCOhost], WoS, Scopus, Ovid [MEDLINE], and Google Scholar). The search yielded 1871 results. Abstracts and full texts were screened by 2 reviewers (MK and IM) independently using the inclusion and exclusion criteria. The inclusion criteria comprised studies published since 2010 that used off-the-shelf wearables that were neither invasive nor obtrusive to the user in the setting of climate change-related weather extremes. Data were charted using a structured form, and the study outcomes were narratively synthesized. RESULTS The review included 55,284 study participants using wearables in 53 studies. Most studies were conducted in upper-middle-income and high-income countries (50/53, 94%) in urban environments (25/53, 47%) or in a climatic chamber (19/53, 36%) and assessed the health effects of heat exposure (52/53, 98%). The majority reported adverse health effects of heat exposure on sleep, physical activity, and heart rate. The remaining studies assessed occupational heat stress or compared individual- and area-level heat exposure. In total, 26% (14/53) of studies determined that all examined wearables were valid and reliable for measuring health parameters during heat exposure when compared with standard methods. CONCLUSIONS Wearables have been used successfully in large-scale research to measure the health implications of climate change-related weather extremes. More research is needed in low-income countries and vulnerable populations with pre-existing conditions. In addition, further research could focus on the health impacts of other climate change-related conditions and the effectiveness of adaptation measures at the individual level to such weather extremes.
Collapse
Affiliation(s)
- Mara Koch
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Ina Matzke
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Sophie Huhn
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Hanns-Christian Gunga
- Charité - Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environment Berlin, Berlin, Germany
| | - Martina Anna Maggioni
- Charité - Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environment Berlin, Berlin, Germany
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | | | - David Obor
- Kenya Medical Research Institute, Kisumu, Kenya
| | - Ali Sié
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
- Centre de Recherche en Santé, Nouna, Burkina Faso
| | | | - Aditi Bunker
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
- Center for Climate, Health, and the Global Environment, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Peter Dambach
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Till Bärnighausen
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Africa Health Research Institute, KwaZulu-Natal, South Africa
| | - Sandra Barteit
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
14
|
Choisy M, McBride A, Chambers M, Ho Quang C, Nguyen Quang H, Xuan Chau NT, Thi GN, Bonell A, Evans M, Ming D, Ngo-Duc T, Quang Thai P, Dang Giang DH, Dan Thanh HN, Ngoc Nhung H, Lowe R, Maude R, Elyazar I, Surendra H, Ashley EA, Thwaites L, van Doorn HR, Kestelyn E, Dondorp AM, Thwaites G, Vinh Chau NV, Yacoub S. Climate change and health in Southeast Asia - defining research priorities and the role of the Wellcome Trust Africa Asia Programmes. Wellcome Open Res 2022; 6:278. [PMID: 36176331 PMCID: PMC9493397 DOI: 10.12688/wellcomeopenres.17263.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
This article summarises a recent virtual meeting organised by the Oxford University Clinical Research Unit in Vietnam on the topic of climate change and health, bringing local partners, faculty and external collaborators together from across the Wellcome and Oxford networks. Attendees included invited local and global climate scientists, clinicians, modelers, epidemiologists and community engagement practitioners, with a view to setting priorities, identifying synergies and fostering collaborations to help define the regional climate and health research agenda. In this summary paper, we outline the major themes and topics that were identified and what will be needed to take forward this research for the next decade. We aim to take a broad, collaborative approach to including climate science in our current portfolio where it touches on infectious diseases now, and more broadly in our future research directions. We will focus on strengthening our research portfolio on climate-sensitive diseases, and supplement this with high quality data obtained from internal studies and external collaborations, obtained by multiple methods, ranging from traditional epidemiology to innovative technology and artificial intelligence and community-led research. Through timely agenda setting and involvement of local stakeholders, we aim to help support and shape research into global heating and health in the region.
Collapse
Affiliation(s)
- Marc Choisy
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Angela McBride
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Global Health and Infection, Brighton and Sussex Medical School, Brighton, UK
| | - Mary Chambers
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Chanh Ho Quang
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
| | - Huy Nguyen Quang
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
| | | | - Giang Nguyen Thi
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
| | - Ana Bonell
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Megan Evans
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
| | - Damien Ming
- Department of Infectious Disease, Imperial College London, London, UK
| | - Thanh Ngo-Duc
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Pham Quang Thai
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
- School of Preventative Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | | | - Ho Ngoc Dan Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
| | - Hoang Ngoc Nhung
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
| | - Rachel Lowe
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Barcelona Supercomputing Center, Barcelona, Spain
| | - Richard Maude
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Iqbal Elyazar
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Henry Surendra
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Elizabeth A. Ashley
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Lao People's Democratic Republic
| | - Louise Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - H. Rogier van Doorn
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Evelyne Kestelyn
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Arjen M. Dondorp
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | - Sophie Yacoub
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Choisy M, McBride A, Chambers M, Ho Quang C, Nguyen Quang H, Xuan Chau NT, Thi GN, Bonell A, Evans M, Ming D, Ngo-Duc T, Quang Thai P, Dang Giang DH, Dan Thanh HN, Ngoc Nhung H, Lowe R, Maude R, Elyazar I, Surendra H, Ashley EA, Thwaites L, van Doorn HR, Kestelyn E, Dondorp AM, Thwaites G, Vinh Chau NV, Yacoub S. Climate change and health in Southeast Asia - defining research priorities and the role of the Wellcome Trust Africa Asia Programmes. Wellcome Open Res 2022; 6:278. [PMID: 36176331 PMCID: PMC9493397 DOI: 10.12688/wellcomeopenres.17263.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 05/18/2024] Open
Abstract
This article summarises a recent virtual meeting organised by the Oxford University Clinical Research Unit in Vietnam on the topic of climate change and health, bringing local partners, faculty and external collaborators together from across the Wellcome and Oxford networks. Attendees included invited local and global climate scientists, clinicians, modelers, epidemiologists and community engagement practitioners, with a view to setting priorities, identifying synergies and fostering collaborations to help define the regional climate and health research agenda. In this summary paper, we outline the major themes and topics that were identified and what will be needed to take forward this research for the next decade. We aim to take a broad, collaborative approach to including climate science in our current portfolio where it touches on infectious diseases now, and more broadly in our future research directions. We will focus on strengthening our research portfolio on climate-sensitive diseases, and supplement this with high quality data obtained from internal studies and external collaborations, obtained by multiple methods, ranging from traditional epidemiology to innovative technology and artificial intelligence and community-led research. Through timely agenda setting and involvement of local stakeholders, we aim to help support and shape research into global heating and health in the region.
Collapse
Affiliation(s)
- Marc Choisy
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Angela McBride
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Global Health and Infection, Brighton and Sussex Medical School, Brighton, UK
| | - Mary Chambers
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Chanh Ho Quang
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
| | - Huy Nguyen Quang
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
| | | | - Giang Nguyen Thi
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
| | - Ana Bonell
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Megan Evans
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
| | - Damien Ming
- Department of Infectious Disease, Imperial College London, London, UK
| | - Thanh Ngo-Duc
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Pham Quang Thai
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
- School of Preventative Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | | | - Ho Ngoc Dan Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
| | - Hoang Ngoc Nhung
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
| | - Rachel Lowe
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Barcelona Supercomputing Center, Barcelona, Spain
| | - Richard Maude
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Iqbal Elyazar
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Henry Surendra
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Elizabeth A. Ashley
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Lao People's Democratic Republic
| | - Louise Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - H. Rogier van Doorn
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Evelyne Kestelyn
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Arjen M. Dondorp
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | - Sophie Yacoub
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Sun X, Fu JH, Teng C, Zhang M, Liu T, Guo M, Qin P, Zhan F, Ren Y, Zhao H, Wang L, Liu J. Superhydrophobic E-textile with an Ag-EGaIn Conductive Layer for Motion Detection and Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33650-33661. [PMID: 35839288 DOI: 10.1021/acsami.2c09554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As as emerging innovation, electronic textiles have shown promising potential in health monitoring, energy harvesting, temperature regulation, and human-computer interactions. To access broader application scenarios, numerous e-textiles have been designed with a superhydrophobic surface to steer clear of interference from humidity or chemical decay. Nevertheless, even the cutting-edge electronic textiles (e-textiles) still have difficulty in realizing superior conductivity and satisfactory water repellency simultaneously. Herein, a facile and efficient approach to integrate a hierarchical elastic e-textile is proposed by electroless silver plating on GaIn alloy liquid metal coated textiles. The continuous uneven surface of AgNPs and deposition of FAS-17 endow the textile with exceptional and robust superhydrophobic performance, in which the conductivity and the contact angle of the as-made textile could reach 2145 ± 122 S/cm and 161.5 ± 2.1°, respectively. On the basis of such excellent conductivity, the electromagnetic interference (EMI) shielding function is excavated and the average shielding efficiency (SE) reaches about 87.56 dB within frequencies of 8.2-12.4 GHz. Furthermore, due to its high elasticity and low modulus, the textile can serve as a wearable strain sensor for motion detection, health monitoring, and underwater message transmission. This work provides a novel route to fabricate high-performance hydrophobic e-textiles, in which the encapsulation strategy could be referenced for the further development of conductive textiles.
Collapse
Affiliation(s)
- Xinlong Sun
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, People's Republic of China
| | - Jun-Heng Fu
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chao Teng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - MingKuan Zhang
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - TianYing Liu
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - MingHui Guo
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Peng Qin
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Fei Zhan
- School of Electrical and Electronic Engineering, Shijiazhuang Railway University, Shijiazhuang, Hebei 050043, People's Republic of China
| | - Yan Ren
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, People's Republic of China
| | - Hongbin Zhao
- State Key Laboratory of Advanced Materials for Smart Sensing, General Research Institute for Nonferrous Metals, Beijing 100088, People's Republic of China
| | - Lei Wang
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jing Liu
- Beijing Key Lab of Cryo-biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
17
|
Wearable Sensors for Vital Signs Measurement: A Survey. JOURNAL OF SENSOR AND ACTUATOR NETWORKS 2022. [DOI: 10.3390/jsan11010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
With the outbreak of coronavirus disease-2019 (COVID-19) worldwide, developments in the medical field have aroused concerns within society. As science and technology develop, wearable medical sensors have become the main means of medical data acquisition. To analyze the intelligent development status of wearable medical sensors, the current work classifies and prospects the application status and functions of wireless communication wearable medical sensors, based on human physiological data acquisition in the medical field. By understanding its working principles, data acquisition modes and action modes, the work chiefly analyzes the application of wearable medical sensors in vascular infarction, respiratory intensity, body temperature, blood oxygen concentration, and sleep detection, and reflects the key role of wearable medical sensors in human physiological data acquisition. Further exploration and prospecting are made by investigating the improvement of information security performance of wearable medical sensors, the improvement of biological adaptability and biodegradability of new materials, and the integration of wearable medical sensors and intelligence-assisted rehabilitation. The research expects to provide a reference for the intelligent development of wearable medical sensors and real-time monitoring of human health in the follow-up medical field.
Collapse
|
18
|
Revolution in Flexible Wearable Electronics for Temperature and Pressure Monitoring—A Review. ELECTRONICS 2022. [DOI: 10.3390/electronics11050716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the last few decades, technology innovation has had a huge influence on our lives and well-being. Various factors of observing our physiological characteristics are taken into account. Wearable sensing tools are one of the most imperative sectors that are now trending and are expected to grow significantly in the coming days. Externally utilized tools connected to any human to assess physiological characteristics of interest are known as wearable sensors. Wearable sensors range in size from tiny to large tools that are physically affixed to the user and operate on wired or wireless terms. With increasing technological capabilities and a greater grasp of current research procedures, the usage of wearable sensors has a brighter future. In this review paper, the recent developments of two important types of wearable electronics apparatuses have been discussed for temperature and pressure sensing (Psensing) applications. Temperature sensing (Tsensing) is one of the most important physiological factors for determining human body temperature, with a focus on patients with long-term chronic conditions, normally healthy, unconscious, and injured patients receiving surgical treatment, as well as the health of medical personnel. Flexile Psensing devices are classified into three categories established on their transduction mechanisms: piezoresistive, capacitive, and piezoelectric. Many efforts have been made to enhance the characteristics of the flexible Psensing devices established on these mechanisms.
Collapse
|
19
|
Recent Advances in Wearable Optical Sensor Automation Powered by Battery versus Skin-like Battery-Free Devices for Personal Healthcare-A Review. NANOMATERIALS 2022; 12:nano12030334. [PMID: 35159679 PMCID: PMC8838083 DOI: 10.3390/nano12030334] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022]
Abstract
Currently, old-style personal Medicare techniques rely mostly on traditional methods, such as cumbersome tools and complicated processes, which can be time consuming and inconvenient in some circumstances. Furthermore, such old methods need the use of heavy equipment, blood draws, and traditional bench-top testing procedures. Invasive ways of acquiring test samples can potentially cause patient discomfort and anguish. Wearable sensors, on the other hand, may be attached to numerous body areas to capture diverse biochemical and physiological characteristics as a developing analytical tool. Physical, chemical, and biological data transferred via the skin are used to monitor health in various circumstances. Wearable sensors can assess the aberrant conditions of the physical or chemical components of the human body in real time, exposing the body state in time, thanks to unintrusive sampling and high accuracy. Most commercially available wearable gadgets are mechanically hard components attached to bands and worn on the wrist, with form factors ultimately constrained by the size and weight of the batteries required for the power supply. Basic physiological signals comprise a lot of health-related data. The estimation of critical physiological characteristics, such as pulse inconstancy or variability using photoplethysmography (PPG) and oxygen saturation in arterial blood using pulse oximetry, is possible by utilizing an analysis of the pulsatile component of the bloodstream. Wearable gadgets with “skin-like” qualities are a new type of automation that is only starting to make its way out of research labs and into pre-commercial prototypes. Flexible skin-like sensing devices have accomplished several functionalities previously inaccessible for typical sensing devices due to their deformability, lightness, portability, and flexibility. In this paper, we studied the recent advancement in battery-powered wearable sensors established on optical phenomena and skin-like battery-free sensors, which brings a breakthrough in wearable sensing automation.
Collapse
|
20
|
Choisy M, McBride A, Chambers M, Ho Quang C, Nguyen Quang H, Xuan Chau NT, Thi GN, Bonell A, Evans M, Ming D, Ngo-Duc T, Quang Thai P, Dang Giang DH, Dan Thanh HN, Ngoc Nhung H, Lowe R, Maude R, Elyazar I, Surendra H, Ashley EA, Thwaites L, van Doorn HR, Kestelyn E, Dondorp AM, Thwaites G, Vinh Chau NV, Yacoub S. Climate change and health in Southeast Asia - defining research priorities and the role of the Wellcome Trust Africa Asia Programmes. Wellcome Open Res 2021; 6:278. [PMID: 36176331 PMCID: PMC9493397 DOI: 10.12688/wellcomeopenres.17263.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 02/26/2024] Open
Abstract
This article summarises a recent virtual meeting organised by the Oxford University Clinical Research Unit in Vietnam on the topic of climate change and health, bringing local partners, faculty and external collaborators together from across the Wellcome and Oxford networks. Attendees included invited local and global climate scientists, clinicians, modelers, epidemiologists and community engagement practitioners, with a view to setting priorities, identifying synergies and fostering collaborations to help define the regional climate and health research agenda. In this summary paper, we outline the major themes and topics that were identified and what will be needed to take forward this research for the next decade. We aim to take a broad, collaborative approach to including climate science in our current portfolio where it touches on infectious diseases now, and more broadly in our future research directions. We will focus on strengthening our research portfolio on climate-sensitive diseases, and supplement this with high quality data obtained from internal studies and external collaborations, obtained by multiple methods, ranging from traditional epidemiology to innovative technology and artificial intelligence and community-led research. Through timely agenda setting and involvement of local stakeholders, we aim to help support and shape research into global heating and health in the region.
Collapse
Affiliation(s)
- Marc Choisy
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Angela McBride
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Global Health and Infection, Brighton and Sussex Medical School, Brighton, UK
| | - Mary Chambers
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Chanh Ho Quang
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
| | - Huy Nguyen Quang
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
| | | | - Giang Nguyen Thi
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
| | - Ana Bonell
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Megan Evans
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
| | - Damien Ming
- Department of Infectious Disease, Imperial College London, London, UK
| | - Thanh Ngo-Duc
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Pham Quang Thai
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
- School of Preventative Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | | | - Ho Ngoc Dan Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
| | - Hoang Ngoc Nhung
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
| | - Rachel Lowe
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Barcelona Supercomputing Center, Barcelona, Spain
| | - Richard Maude
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Iqbal Elyazar
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Henry Surendra
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Elizabeth A. Ashley
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Lao People's Democratic Republic
| | - Louise Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - H. Rogier van Doorn
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Evelyne Kestelyn
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Arjen M. Dondorp
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | - Sophie Yacoub
- Oxford University Clinical Research Unit, Ho Chi Minh City and Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Martín-Escudero P, Cabanas AM, Fuentes-Ferrer M, Galindo-Canales M. Oxygen Saturation Behavior by Pulse Oximetry in Female Athletes: Breaking Myths. BIOSENSORS-BASEL 2021; 11:bios11100391. [PMID: 34677347 PMCID: PMC8534025 DOI: 10.3390/bios11100391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022]
Abstract
The myths surrounding women’s participation in sport have been reflected in respiratory physiology. This study aims to demonstrate that continuous monitoring of blood oxygen saturation during a maximal exercise test in female athletes is highly correlated with the determination of the second ventilatory threshold (VT2) or anaerobic threshold (AnT). The measurements were performed using a pulse oximeter during a maximum effort test on a treadmill on a population of 27 healthy female athletes. A common behavior of the oxygen saturation evolution during the incremental exercise test characterized by a decrease in saturation before the aerobic threshold (AeT) followed by a second significant drop was observed. Decreases in peripheral oxygen saturation during physical exertion have been related to the athlete’s physical fitness condition. However, this drop should not be a limiting factor in women’s physical performance. We found statistically significant correlations between the maximum oxygen uptake and the appearance of the ventilatory thresholds (VT1 and VT2), the desaturation time, the total test time, and between the desaturation time and the VT2. We observed a relationship between the desaturation time and the VT2 appearance. Indeed, a linear regression model between the desaturation time and the VT2 appearance can predict 80% of the values in our sample. Besides, we suggest that pulse oximetry is a simple, fairly accurate, and non-invasive technique for studying the physical condition of athletes who perform physical exertion.
Collapse
Affiliation(s)
- Pilar Martín-Escudero
- Professional Medical School of Physical Education and Sport, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.M.-E.); (M.G.-C.)
| | - Ana María Cabanas
- Departamento de Física, Universidad de Tarapacá, Arica 1010064, Chile
- Correspondence:
| | - Manuel Fuentes-Ferrer
- Unit of Clinical Management (UGC), Department of Preventive Medicine, Hospital Clínico San Carlos, 28040 Madrid, Spain;
| | - Mercedes Galindo-Canales
- Professional Medical School of Physical Education and Sport, Faculty of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.M.-E.); (M.G.-C.)
| |
Collapse
|
22
|
Multimodal biometric monitoring technologies drive the development of clinical assessments in the home environment. Maturitas 2021; 151:41-47. [PMID: 34446278 DOI: 10.1016/j.maturitas.2021.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 01/23/2023]
Abstract
Biometric monitoring technologies (BioMeTs) have attracted the attention of the health care community because of their user-friendly form factor and multi-sensor data-collection capabilities. The potential benefits of remote monitoring for collecting comprehensive, longitudinal, and contextual datasets span therapeutic areas, and both chronic and acute disease settings. Importantly, multimodal BioMeTs unlock the ability to generate rich contextual data to augment digital measures. Currently, the availability of devices is no longer the main factor limiting adoption but rather the ability to integrate fit-for-purpose BioMeTs reliably and safely into clinical care. We provide a critical review of the state of art for multimodal BioMeTs in clinical care and identify three unmet clinical needs: 1) expand the abilities of existing ambulatory unimodal BioMeTs; 2) adapt standardized clinical test protocols ("spot checks'') for use under free living conditions; and 3) develop novel applications to manage rehabilitation and chronic diseases. As the field is still in an early and quickly evolving state, we make practical recommendations: 1) to select appropriate BioMeTs; 2) to develop composite digital measures; and 3) to design interoperable software to ingest, process, delegate, and visualize the data when deploying novel clinical applications. Multimodal BioMeTs will drive the evolution from in-clinic assessments to at-home data collection with a focus on prevention, personalization, and long-term outcomes by empowering health care providers with knowledge, delivering convenience, and an improved standard of care to patients.
Collapse
|
23
|
Schmid W, Fan Y, Chi T, Golanov E, Regnier-Golanov AS, Austerman RJ, Podell K, Cherukuri P, Bentley T, Steele CT, Schodrof S, Aazhang B, Britz GW. Review of wearable technologies and machine learning methodologies for systematic detection of mild traumatic brain injuries. J Neural Eng 2021; 18. [PMID: 34330120 DOI: 10.1088/1741-2552/ac1982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022]
Abstract
Mild traumatic brain injuries (mTBIs) are the most common type of brain injury. Timely diagnosis of mTBI is crucial in making 'go/no-go' decision in order to prevent repeated injury, avoid strenuous activities which may prolong recovery, and assure capabilities of high-level performance of the subject. If undiagnosed, mTBI may lead to various short- and long-term abnormalities, which include, but are not limited to impaired cognitive function, fatigue, depression, irritability, and headaches. Existing screening and diagnostic tools to detect acute andearly-stagemTBIs have insufficient sensitivity and specificity. This results in uncertainty in clinical decision-making regarding diagnosis and returning to activity or requiring further medical treatment. Therefore, it is important to identify relevant physiological biomarkers that can be integrated into a mutually complementary set and provide a combination of data modalities for improved on-site diagnostic sensitivity of mTBI. In recent years, the processing power, signal fidelity, and the number of recording channels and modalities of wearable healthcare devices have improved tremendously and generated an enormous amount of data. During the same period, there have been incredible advances in machine learning tools and data processing methodologies. These achievements are enabling clinicians and engineers to develop and implement multiparametric high-precision diagnostic tools for mTBI. In this review, we first assess clinical challenges in the diagnosis of acute mTBI, and then consider recording modalities and hardware implementation of various sensing technologies used to assess physiological biomarkers that may be related to mTBI. Finally, we discuss the state of the art in machine learning-based detection of mTBI and consider how a more diverse list of quantitative physiological biomarker features may improve current data-driven approaches in providing mTBI patients timely diagnosis and treatment.
Collapse
Affiliation(s)
- William Schmid
- Department of Electrical and Computer Engineering and Neuroengineering Initiative (NEI), Rice University, Houston, TX 77005, United States of America
| | - Yingying Fan
- Department of Electrical and Computer Engineering and Neuroengineering Initiative (NEI), Rice University, Houston, TX 77005, United States of America
| | - Taiyun Chi
- Department of Electrical and Computer Engineering and Neuroengineering Initiative (NEI), Rice University, Houston, TX 77005, United States of America
| | - Eugene Golanov
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
| | | | - Ryan J Austerman
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
| | - Kenneth Podell
- Department of Neurology, Houston Methodist Hospital, Houston, TX 77030, United States of America
| | - Paul Cherukuri
- Institute of Biosciences and Bioengineering (IBB), Rice University, Houston, TX 77005, United States of America
| | - Timothy Bentley
- Office of Naval Research, Arlington, VA 22203, United States of America
| | - Christopher T Steele
- Military Operational Medicine Research Program, US Army Medical Research and Development Command, Fort Detrick, MD 21702, United States of America
| | - Sarah Schodrof
- Department of Athletics-Sports Medicine, Rice University, Houston, TX 77005, United States of America
| | - Behnaam Aazhang
- Department of Electrical and Computer Engineering and Neuroengineering Initiative (NEI), Rice University, Houston, TX 77005, United States of America
| | - Gavin W Britz
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
| |
Collapse
|
24
|
Abstract
Nowadays, we are assisting in the exceptional growth in research relating to the development of wearable devices for sweat analysis. Sweat is a biofluid that contains useful health information and allows a non-invasive, continuous and comfortable collection. For this reason, it is an excellent biofluid for the detection of different analytes. In this work, electrochemical sensors based on polyaniline thin films deposited on the flexible substrate polyethylene terephthalate coated with indium tin oxide were studied. Polyaniline thin films were abstained by the potentiostatic deposition technique, applying a potential of +2 V vs. SCE for 90 s. To improve the sensor performance, the electronic substrate was modified with reduced graphene oxide, obtained at a constant potential of −0.8 V vs. SCE for 200 s, and then polyaniline thin films were electrodeposited on top of the as-deposited substrate. All samples were characterized by XRD, SEM, EDS, static contact angle and FT-IR/ATR analysis to correlate the physical-chemical features with the performance of the sensors. The obtained electrodes were tested as pH sensors in the range from 2 to 8, showing good behavior, with a sensitivity of 62.3 mV/pH, very close to a Nernstian response, and a reproducibility of 3.8%. Interference tests, in the presence of competing ions, aimed to verify the selectivity, were also performed. Finally, a real sweat sample was collected, and the sweat pH was quantified with both the proposed sensor and a commercial pH meter, showing an excellent concordance.
Collapse
|
25
|
Sun Z, Kadry SN, Krishnamoorthy S. Internet of things-assisted advanced dynamic information processing system for physical education system. Technol Health Care 2021; 29:1263-1275. [PMID: 34092675 DOI: 10.3233/thc-213005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In recent years the Internet of Things (IoT) has become a popular technological culture in the physical education system. Though several technologies have grown in the physical education system domain, IoT plays a significant role due to its optimized health information processing framework for students during workouts. OBJECTIVE In this paper, an advanced dynamic information processing system (ADIPS) has been proposed with IoT assistance to explore the traditional design architecture for physical activity tracking. METHOD To track and evaluate human physical activity in day-to-day living, a new paradigm has been integrated with wearable IoT devices for effective information processing during physical workouts. Continuous observation and review of the condition and operations of various students by ADIPS helps to evaluate the sensed information to analyze the health condition of the students. RESULTS The result of ADIPS has been implemented based on the performance factor correlation with the traditional system.
Collapse
Affiliation(s)
- Zhijun Sun
- Department of Physical Education Teaching, Tianjin University of Commerce, Tianjin, China
| | | | | |
Collapse
|
26
|
Ajčević M, Furlanis G, Naccarato M, Caruso P, Polverino P, Marsich A, Accardo A, Manganotti P. e-Health solution for home patient telemonitoring in early post-acute TIA/Minor stroke during COVID-19 pandemic. Int J Med Inform 2021; 152:104442. [PMID: 34058641 PMCID: PMC9045782 DOI: 10.1016/j.ijmedinf.2021.104442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/24/2021] [Accepted: 03/15/2021] [Indexed: 12/28/2022]
Abstract
Background When it comes to critical early post-acute TIA/stroke phase, there is a lack of a comprehensive multi-parametric telemonitoring system. The COVID-19 emergency, its related global mobility restrictions and fear of hospitalization further highlighted the need of a comprehensive solution. Objective We aimed to design and test a pragmatic e-Health system based on multiparametric telemonitoring to support of TIA/stroke patients in sub-acute phase during the COVID-19 pandemic. Methods We proposed a telemonitoring system and protocol for TIA/minor stroke patients during COVID-19 pandemic for patients at risk of stroke recurrence. This system involves the use of portable devices for BP/HR/SpO2/temperature sensing, panic-button, gateway, and a dedicated ICT platform. The protocol is a 14-day multiparametric telemonitoring, therapy, and emergency intervention based on vital sign alteration notifications. We conducted a proof-of-concept validation test on 8 TIA/minor stroke patients in the early post-acute phase (< 14 days from ischemic event). Results The proposed solution allowed to promptly and remotely identify vital sign alterations at home during the early post-acute phase, allowing therapy and behavioral intervention adjustments. Also, we observed a significant improvement of quality of life, as well as a significant reduction of anxiety and depression status. TUQ showed ease of use, good interface quality and high user satisfaction of the proposed solution. The 3-month follow-up showed total adherence of prescribed therapy and no stroke/TIA recurrence or other emergency department admissions. Conclusion The proposed e-Health solution and telemonitoring protocol may be highly useful for early post-acute remote patient management, thus supporting constant monitoring and patient adherence to the treatment pathway, especially during the COVID-19 emergency.
Collapse
Affiliation(s)
- Miloš Ajčević
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio, 10 - 34127, Trieste, Italy
| | - Giovanni Furlanis
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste - ASUGI, University of Trieste, Strada di Fiume, 447 - 34149, Trieste, Italy
| | - Marcello Naccarato
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste - ASUGI, University of Trieste, Strada di Fiume, 447 - 34149, Trieste, Italy
| | - Paola Caruso
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste - ASUGI, University of Trieste, Strada di Fiume, 447 - 34149, Trieste, Italy
| | - Paola Polverino
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste - ASUGI, University of Trieste, Strada di Fiume, 447 - 34149, Trieste, Italy
| | | | - Agostino Accardo
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio, 10 - 34127, Trieste, Italy
| | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, University Hospital and Health Services of Trieste - ASUGI, University of Trieste, Strada di Fiume, 447 - 34149, Trieste, Italy.
| |
Collapse
|
27
|
Ashworth ET, Cotter JD, Kilding AE. Methods for improving thermal tolerance in military personnel prior to deployment. Mil Med Res 2020; 7:58. [PMID: 33248459 PMCID: PMC7700709 DOI: 10.1186/s40779-020-00287-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Acute exposure to heat, such as that experienced by people arriving into a hotter or more humid environment, can compromise physical and cognitive performance as well as health. In military contexts heat stress is exacerbated by the combination of protective clothing, carried loads, and unique activity profiles, making them susceptible to heat illnesses. As the operational environment is dynamic and unpredictable, strategies to minimize the effects of heat should be planned and conducted prior to deployment. This review explores how heat acclimation (HA) prior to deployment may attenuate the effects of heat by initiating physiological and behavioural adaptations to more efficiently and effectively protect thermal homeostasis, thereby improving performance and reducing heat illness risk. HA usually requires access to heat chamber facilities and takes weeks to conduct, which can often make it impractical and infeasible, especially if there are other training requirements and expectations. Recent research in athletic populations has produced protocols that are more feasible and accessible by reducing the time taken to induce adaptations, as well as exploring new methods such as passive HA. These protocols use shorter HA periods or minimise additional training requirements respectively, while still invoking key physiological adaptations, such as lowered core temperature, reduced heart rate and increased sweat rate at a given intensity. For deployments of special units at short notice (< 1 day) it might be optimal to use heat re-acclimation to maintain an elevated baseline of heat tolerance for long periods in anticipation of such an event. Methods practical for military groups are yet to be fully understood, therefore further investigation into the effectiveness of HA methods is required to establish the most effective and feasible approach to implement them within military groups.
Collapse
Affiliation(s)
- Edward Tom Ashworth
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632 New Zealand
| | - James David Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, Otago 9016 New Zealand
| | - Andrew Edward Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632 New Zealand
| |
Collapse
|
28
|
Masè M, Micarelli A, Strapazzon G. Hearables: New Perspectives and Pitfalls of In-Ear Devices for Physiological Monitoring. A Scoping Review. Front Physiol 2020; 11:568886. [PMID: 33178038 PMCID: PMC7596679 DOI: 10.3389/fphys.2020.568886] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/02/2020] [Indexed: 12/31/2022] Open
Abstract
Technological advancements are opening the possibility of prolonged monitoring of physiological parameters under daily-life conditions, with potential applications in sport science and medicine, and in extreme environments. Among emerging wearable technologies, in-ear devices or hearables possess technical advantages for long-term monitoring, such as non-invasivity, unobtrusivity, good fixing, and reduced motion artifacts, as well as physiological advantages related to the proximity of the ear to the body trunk and the shared vasculature between the ear and the brain. The present scoping review was aimed at identifying and synthesizing the available evidence on the use and performance of in-ear monitoring of physiological parameters, with focus on applications in sport science, sport medicine, occupational medicine, and extreme environment settings. Pubmed, Scopus, and Web of Science electronic databases were systematically searched to identify studies conducted in the last 10 years and addressing the measurement of three main physiological parameters (temperature, heart rate, and oxygen saturation) in healthy subjects. Thirty-nine studies were identified, 24 performing temperature measurement, 12 studies on heart/pulse rate, and three studies on oxygen saturation. The collected evidence supports the premise of in-ear sensors as an innovative and unobtrusive way for physiological monitoring during daily-life and physical activity, but further research and technological advancement are necessary to ameliorate measurement accuracy especially in more challenging scenarios.
Collapse
Affiliation(s)
- Michela Masè
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Healthcare Research and Innovation Program, IRCS-HTA, Bruno Kessler Foundation, Trento, Italy
| | - Alessandro Micarelli
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- ITER Center for Balance and Rehabilitation Research (ICBRR), Rome, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| |
Collapse
|
29
|
Bartolomé-Tomás A, Sánchez-Reolid R, Fernández-Sotos A, Latorre JM, Fernández-Caballero A. Arousal Detection in Elderly People from Electrodermal Activity Using Musical Stimuli. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4788. [PMID: 32854302 PMCID: PMC7506973 DOI: 10.3390/s20174788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/07/2020] [Accepted: 08/22/2020] [Indexed: 12/30/2022]
Abstract
The detection of emotions is fundamental in many areas related to health and well-being. This paper presents the identification of the level of arousal in older people by monitoring their electrodermal activity (EDA) through a commercial device. The objective was to recognize arousal changes to create future therapies that help them to improve their mood, contributing to reduce possible situations of depression and anxiety. To this end, some elderly people in the region of Murcia were exposed to listening to various musical genres (flamenco, Spanish folklore, Cuban genre and rock/jazz) that they heard in their youth. Using methods based on the process of deconvolution of the EDA signal, two different studies were carried out. The first, of a purely statistical nature, was based on the search for statistically significant differences for a series of temporal, morphological, statistical and frequency features of the processed signals. It was found that Flamenco and Spanish Folklore presented the highest number of statistically significant parameters. In the second study, a wide range of classifiers was used to analyze the possible correlations between the detection of the EDA-based arousal level compared to the participants' responses to the level of arousal subjectively felt. In this case, it was obtained that the best classifiers are support vector machines, with 87% accuracy for flamenco and 83.1% for Spanish Folklore, followed by K-nearest neighbors with 81.4% and 81.5% for Flamenco and Spanish Folklore again. These results reinforce the notion of familiarity with a musical genre on emotional induction.
Collapse
Affiliation(s)
- Almudena Bartolomé-Tomás
- Instituto de Investigación en Informática de Albacete, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; (A.B.-T.); (R.S.-R.)
- Conservatorio de Música de Cieza “Maestro Gómez Villa”, Calle Cadenas, 6, 30530 Cieza, Spain
| | - Roberto Sánchez-Reolid
- Instituto de Investigación en Informática de Albacete, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; (A.B.-T.); (R.S.-R.)
- Departamento de Sistemas Informáticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | | | - José Miguel Latorre
- Departamento de Psicología, Universidad de Castilla-La Mancha, 02071 Albacete, Spain;
| | - Antonio Fernández-Caballero
- Instituto de Investigación en Informática de Albacete, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; (A.B.-T.); (R.S.-R.)
- Departamento de Sistemas Informáticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
- CIBERSAM (Biomedical Research Networking Centre in Mental Health), 28029 Madrid, Spain
| |
Collapse
|
30
|
Validity of a wearable sweat rate monitor and routine sweat analysis techniques using heat acclimation. J Therm Biol 2020; 90:102577. [DOI: 10.1016/j.jtherbio.2020.102577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 01/24/2023]
|