1
|
Cui Y, Li X, Wang X, Liu Y, Hu X, Chen S, Qu X. One-Pot Preparation of Ratiometric Fluorescent Molecularly Imprinted Polymer Nanosensor for Sensitive and Selective Detection of 2,4-Dichlorophenoxyacetic Acid. SENSORS (BASEL, SWITZERLAND) 2024; 24:5039. [PMID: 39124086 PMCID: PMC11315029 DOI: 10.3390/s24155039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
The development of fluorescent molecular imprinting sensors for direct, rapid, and sensitive detection of small organic molecules in aqueous systems has always presented a significant challenge in the field of detection. In this study, we successfully prepared a hydrophilic colloidal molecular imprinted polymer (MIP) with 2,4-dichlorophenoxyacetic acid (2,4-D) using a one-pot approach that incorporated polyglycerol methacrylate (PGMMA-TTC), a hydrophilic macromolecular chain transfer agent, to mediate reversible addition-fragmentation chain transfer precipitation polymerization (RAFTPP). To simplify the polymerization process while achieving ratiometric fluorescence detection, red fluorescent CdTe quantum dots (QDs) and green fluorescent nitrobenzodiazole (NBD) were introduced as fluorophores (with NBD serving as an enhancer to the template and QDs being inert). This strategy effectively eliminated background noise and significantly improved detection accuracy. Uniform-sized MIP microspheres with high surface hydrophilicity and incorporated ratiometric fluorescent labels were successfully synthesized. In aqueous systems, the hydrophilic ratio fluorescent MIP exhibited a linear response range from 0 to 25 μM for the template molecule 2,4-D with a detection limit of 0.13 μM. These results demonstrate that the ratiometric fluorescent MIP possesses excellent recognition characteristics and selectivity towards 2,4-D, thus, making it suitable for selective detection of trace amounts of pesticide 2,4-D in aqueous systems.
Collapse
Affiliation(s)
- Yuhong Cui
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin 300401, China; (Y.C.); (X.L.); (X.H.)
| | - Xintai Li
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin 300401, China; (Y.C.); (X.L.); (X.H.)
| | - Xianhong Wang
- Tianjin Key Laboratory of New Materials and Systems for HVAC Plumbing, Tianjin 300400, China;
| | - Yingchun Liu
- Jinghua Plastics Co., Ltd., Langfang 065800, China;
| | - Xiuli Hu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin 300401, China; (Y.C.); (X.L.); (X.H.)
| | - Shengli Chen
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin 300401, China; (Y.C.); (X.L.); (X.H.)
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin 300401, China; (Y.C.); (X.L.); (X.H.)
| |
Collapse
|
2
|
Gagliani F, Di Giulio T, Asif MI, Malitesta C, Mazzotta E. Boosting Electrochemical Sensing Performances Using Molecularly Imprinted Nanoparticles. BIOSENSORS 2024; 14:358. [PMID: 39056634 PMCID: PMC11274585 DOI: 10.3390/bios14070358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Nanoparticles of molecularly imprinted polymers (nanoMIPs) combine the excellent recognition ability of imprinted polymers with specific properties related to the nanosize, such as a high surface-to-volume ratio, resulting in highly performing recognition elements with surface-exposed binding sites that promote the interaction with the target and, in turn, binding kinetics. Different synthetic strategies are currently available to produce nanoMIPs, with the possibility to select specific conditions in relation to the nature of monomers/templates and, importantly, to tune the nanoparticle size. The excellent sensing properties, combined with the size, tunability, and flexibility of synthetic protocols applicable to different targets, have enabled the widespread use of nanoMIPs in several applications, including sensors, imaging, and drug delivery. The present review summarizes nanoMIPs applications in sensors, specifically focusing on electrochemical detection, for which nanoMIPs have been mostly applied. After a general survey of the most widely adopted nanoMIP synthetic approaches, the integration of imprinted nanoparticles with electrochemical transducers will be discussed, representing a key step for enabling a reliable and stable sensor response. The mechanisms for electrochemical signal generation will also be compared, followed by an illustration of nanoMIP-based electrochemical sensor employment in several application fields. The high potentialities of nanoMIP-based electrochemical sensors are presented, and possible reasons that still limit their commercialization and issues to be resolved for coupling electrochemical sensing and nanoMIPs in an increasingly widespread daily-use technology are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Elisabetta Mazzotta
- Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Via Monteroni, 73100 Lecce, Italy; (F.G.); (T.D.G.); (M.I.A.); (C.M.)
| |
Collapse
|
3
|
Di Y, Gu Z, Kang Y, Tian J, Hu C. Enhanced oxidation of organic pollutants by regulating the interior reaction region of reactive electrochemical membranes. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133584. [PMID: 38286047 DOI: 10.1016/j.jhazmat.2024.133584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/01/2024] [Accepted: 01/19/2024] [Indexed: 01/31/2024]
Abstract
Reactive electrochemical membrane (REM) emerges as an attractive strategy for the elimination of refractory organic pollutants that exist in wastewater. However, the limited reaction sites in traditional REMs greatly hinder its practical application. Herein, a feed-through coating methodology was developed to realize the uniform loading of SnO2-Sb catalysts on the interior surface of a REM. The uniformly coated REM (Unif-REM) exhibited 2.4 times higher reaction kinetics (0.29 min-1) than that of surface coated REM (Surf-REM) for the degradation of 2 mM 4-chlorophenol (4-CP), rendering an energy consumption as low as 0.016 kWh gTOC-1. The fast degradation of various emerging contaminants, e.g., sulfamethoxazole (SMX), ofloxacin (OFLX), and tetracycline (TC), also confirms its superior oxidation capability. Besides, the Unif-REM exhibited good performance in generating hydroxyl radicals (•OH) and a relatively long service lifetime. The simulation of spatial current distribution demonstrates that the interior reaction region in the Unif-REM channels can be drastically extended, thereby maximizing the surface coupling of mass diffusion and electron transfer. This study offers an in-depth look at the spatially confined reactions in REM and provides a reference for the design of electrochemical systems with economically efficient water purification.
Collapse
Affiliation(s)
- Yuting Di
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhenao Gu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China.
| | - Yuyang Kang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
4
|
Salem MAS, Khan AM, Manea YK, Qashqoosh MTA, Alahdal FAM. Highly efficient iodine capture and ultrafast fluorescent detection of heavy metals using PANI/LDH@CNT nanocomposite. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130732. [PMID: 36641846 DOI: 10.1016/j.jhazmat.2023.130732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Here, the hybrid material of polyaniline/layered double hydroxide@carbonnanotubes (PANI/LDH@CNT) is considered a multifunctional material. Instrumental methods, including FTIR, XRD, TEM, SEM, and TGA/DTA were utilized to characterize PANI/LDH@CNT. The polymerization method created PANI/LDH@CNT as an adsorbent to remove toxic iodine in hexane solution with a capture capacity of 303.20 mg g-1 during 9 h. It is 900 mg g-1 in the vapor phase within 24 h. After three cycles, the PANI/LDH@CNT could be regenerated while maintaining 91.90 % iodine adsorption efficiency. Due to the presence of free amine (-N) groups, OH-, CO2H, and π-π conjugated structures in the PANI/LDH@CNT, it is also explored for efficient iodine uptake. It was demonstrated that the pseudo-first-order (PFO) and Langmuir model had the optimum correlation with the kinetic and isotherm data, respectively. Moreover, the use of PANI/LDH@CNT is not only limited to iodine capture; it can also be utilized as a sensitive sensor that displays a fluorescence "turn-off" response for Mn7+ and Cr6+ ions and a fluorescence "turn-on" response in the case of Al3+ ions. The fluorescence intensity of the PANI/LDH@CNT was turned off in the presence of Mn7+ and Cr6+ because of the fluorescence inner filter effect (IFE) mechanism. In contrast, the fluorescence intensity was turned on in the case of Al3+, relying on the chelation-enhanced fluorescence (CHEF) effect mechanism. Under optimal conditions, the limit of detection (LOD) of 51, 59, and 81 nM for Mn7+, Cr6+, and Al3+, respectively. According to the literature, this is probably the first example based on PANI/LDH@CNT as a multifunctional hybrid material employed as an adsorbent for capturing radioactive iodine and as a chemosensor for detecting heavy metal ions in aqueous solutions.
Collapse
Affiliation(s)
- Mansour A S Salem
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India; Department of Chemistry, University of Aden, Aden, Yemen.
| | - Amjad Mumtaz Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | | | | | - Faiza A M Alahdal
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
5
|
Elamin MB, Ali SMA, Essousi H, Chrouda A, Alhaidari LM, Jaffrezic-Renault N, Barhoumi H. An Electrochemical Sensor for Sulfadiazine Determination Based on a Copper Nanoparticles/Molecularly Imprinted Overoxidized Polypyrrole Composite. SENSORS (BASEL, SWITZERLAND) 2023; 23:1270. [PMID: 36772311 PMCID: PMC9919664 DOI: 10.3390/s23031270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
To protect consumers from risks related to overexposure to sulfadiazine, total residues of this antibacterial agent in animal-origin foodstuffs not exceed international regulations. To this end, a new electrochemical sensor based on a molecularly imprinted polymer nanocomposite using overoxidized polypyrrole and copper nanoparticles for the detection of sulfadiazine is elaborated. After optimization of the preparation of the electrochemical sensors, their differential pulse voltammetric signal exhibits an excellent stability and reproducibility at 1.05 V, with a large linear range between 10-9 and 10-5 mol L-1 and a low detection limit of 3.1 × 10-10 mol L-1. The produced sulfadiazine sensor was successfully tested in real milk samples. The combination of the properties of the electrical conduction of copper nanoparticles with the properties of the preconcentration of the molecularly imprinted overoxidized polypyrrole allows for the highly sensitive detection of sulfadiazine, even in real milk samples. This strategy is new and leads to the lowest detection limit yet achieved, compared to those of the previously published sulfadiazine electrochemical sensors.
Collapse
Affiliation(s)
- Manahil Babiker Elamin
- Department of Chemistry, Faculty of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | | | - Houda Essousi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, Monastir University, Monastir 5000, Tunisia
| | - Amani Chrouda
- Department of Chemistry, Faculty of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Laila M. Alhaidari
- Department of Chemistry, Faculty of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | | | - Houcine Barhoumi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, Monastir University, Monastir 5000, Tunisia
| |
Collapse
|
6
|
Ghaani M, Büyüktaş D, Carullo D, Farris S. Development of a New Electrochemical Sensor Based on Molecularly Imprinted Biopolymer for Determination of 4,4'-Methylene Diphenyl Diamine. SENSORS (BASEL, SWITZERLAND) 2022; 23:s23010046. [PMID: 36616643 PMCID: PMC9824447 DOI: 10.3390/s23010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/12/2023]
Abstract
A new molecularly imprinted electrochemical sensor was proposed to determine 4,4'-methylene diphenyl diamine (MDA) using molecularly imprinted polymer-multiwalled carbon nanotubes modified glassy carbon electrode (MIP/MWCNTs/GCE). GCE was coated by MWCNTs (MWCNTs/GCE) because of their antifouling qualities and in order to improve the sensor sensitivity. To make the whole sensor, a polymeric film made up of chitosan nanoparticles was electrodeposited by the cyclic voltammetry method on the surface of MWCNTs/GCE in the presence of MDA as a template. Different parameters such as scan cycles, elution time, incubation time, molar ratio of template molecules to functional monomers, and pH were optimized to increase the performance of the MIP sensor. With a detection limit of 15 nM, a linear response to MDA was seen in the concentration range of 0.5-100 µM. The imprinting factor (IF) of the proposed sensor was also calculated at around 3.66, demonstrating the extremely high recognition performance of a MIP/MWCNT-modified electrode. Moreover, the sensor exhibited good reproducibility and selectivity. Finally, the proposed sensor was efficiently used to determine MDA in real samples with satisfactory recoveries ranging from 94.10% to 106.76%.
Collapse
Affiliation(s)
- Masoud Ghaani
- DeFENS, Department of Food, Environmental, and Nutritional Sciences, Food Packaging Lab., University of Milan, via Celoria 2—I, 20133 Milan, Italy
| | - Duygu Büyüktaş
- Department of Food Engineering, Faculty of Engineering, Izmir Institute of Technology, Gülbahçe Köyü, Urla, Izmir 35430, Turkey
| | - Daniele Carullo
- DeFENS, Department of Food, Environmental, and Nutritional Sciences, Food Packaging Lab., University of Milan, via Celoria 2—I, 20133 Milan, Italy
| | - Stefano Farris
- DeFENS, Department of Food, Environmental, and Nutritional Sciences, Food Packaging Lab., University of Milan, via Celoria 2—I, 20133 Milan, Italy
- INSTM, National Consortium of Materials Science and Technology, Local Unit University of Milan, Via Celoria 2—I, 20133 Milan, Italy
| |
Collapse
|
7
|
Mazzotta E, Di Giulio T, Malitesta C. Electrochemical sensing of macromolecules based on molecularly imprinted polymers: challenges, successful strategies, and opportunities. Anal Bioanal Chem 2022; 414:5165-5200. [PMID: 35277740 PMCID: PMC8916950 DOI: 10.1007/s00216-022-03981-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/21/2022]
Abstract
Looking at the literature focused on molecularly imprinted polymers (MIPs) for protein, it soon becomes apparent that a remarkable increase in scientific interest and exploration of new applications has been recorded in the last several years, from 42 documents in 2011 to 128 just 10 years later, in 2021 (Scopus, December 2021). Such a rapid threefold increase in the number of works in this field is evidence that the imprinting of macromolecules no longer represents a distant dream of optimistic imprinters, as it was perceived until only a few years ago, but is rapidly becoming an ever more promising and reliable technology, due to the significant achievements in the field. The present critical review aims to summarize some of them, evidencing the aspects that have contributed to the success of the most widely used strategies in the field. At the same time, limitations and drawbacks of less frequently used approaches are critically discussed. Particular focus is given to the use of a MIP for protein in the assembly of electrochemical sensors. Sensor design indeed represents one of the most active application fields of imprinting technology, with electrochemical MIP sensors providing the broadest spectrum of protein analytes among the different sensor configurations.
Collapse
Affiliation(s)
- Elisabetta Mazzotta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy.
| | - Tiziano Di Giulio
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy
| | - Cosimino Malitesta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
8
|
Arsenic(III) and Arsenic(V) Removal from Water Sources by Molecularly Imprinted Polymers (MIPs): A Mini Review of Recent Developments. SUSTAINABILITY 2022. [DOI: 10.3390/su14095222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The present review article summarizes the recent findings reported in the literature with regard to the use of molecularly imprinted polymers for the removal of arsenic from water and wastewater. MIPs are polymers in which a template is employed in order to enable the formation of recognition sites during the covalent assembly of the bulk phase, via a polymerization or polycondensation process. The efficiency of both arsenic species and the mechanism of removal are highlighted. The results have shown that under certain conditions, MIPs demonstrated arsenic sorption capacities of up to 130 mg/g for As(V) and 151 mg/g for As(III), while the regeneration ability was found to reach up to more than 20 cycles. The overall results showed that further development of MIPs could result in the formation of promising adsorbents for arsenic removal from waters. The use of MIPs for the removal not only of arsenic but also other inorganic contaminants is considered a very important topic, with great potential in terms of future applications in water treatment. The main advantage of these materials is that they are very selective toward the contaminant of interest. This enhanced selectivity is attributed to the incorporation of specific templates, which can then adsorb the contaminant of interest almost exclusively. Therefore, the main problem in adsorption processes is the competition for adsorption sites by other water components, for example, phosphates, nitrates, carbonates, and sulfates, which can be circumvented by the use of MI-type adsorbents.
Collapse
|
9
|
Recent Advances in Quartz Crystal Microbalance Biosensors Based on the Molecular Imprinting Technique for Disease-Related Biomarkers. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The molecular imprinting technique is a quickly developing field of interest regarding the synthesis of artificial recognition elements that enable the specific determination of target molecule/analyte from a matrix. Recently, these smart materials can be successfully applied to biomolecule detection in biomimetic biosensors. These biosensors contain a biorecognition element (a bioreceptor) and a transducer, like their biosensor analogs. Here, the basic difference is that molecular imprinting-based biosensors use a synthetic recognition element. Molecular imprinting polymers used as the artificial recognition elements in biosensor platforms are complementary in shape, size, specific binding sites, and functionality to their template analytes. Recent progress in biomolecular recognition has supplied extra diagnostic and treatment methods for various diseases. Cost-effective, more robust, and high-throughput assays are needed for monitoring biomarkers in clinical settings. Quartz crystal microbalance (QCM) biosensors are promising tools for the real-time and quick detection of biomolecules in the past two decades A quick, simple-to-use, and cheap biomarkers detection technology based on biosensors has been developed. This critical review presents current applications in molecular imprinting-based quartz crystal microbalance biosensors for the quantification of biomarkers for disease monitoring and diagnostic results.
Collapse
|
10
|
Novel Electrochemical Sensor Based on Molecularly Imprinted Polymers with MWCNTs-SiO2 for Selective and Sensitive Detecting 2,4-D. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02154-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Ofoegbu O, Ike DC, Batiha GES, Fouad H, Srichana RS, Nicholls I. Molecularly Imprinted Chitosan-Based Thin Films with Selectivity for Nicotine Derivatives for Application as a Bio-Sensor and Filter. Polymers (Basel) 2021; 13:3363. [PMID: 34641180 PMCID: PMC8512477 DOI: 10.3390/polym13193363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
This study reports the feasible use of chitosan as a thin film biosensor on the very sensitive quartz crystal micro balance system for detection of blends of multiple templates within a single matrix. The development of chitosan-based thin film materials with selectivity for nicotine derivatives is described. The molecular imprinting of a combination of nicotine derivatives in N-diacryloyl pipiradine-chitosan-methacrylic acid copolymer films on quartz crystal resonators was used to generate thin films with selectivity for nicotine and a range of nicotine analogues, particularly 3-phenylpyridine. The polymers were characterized by spectroscopic and microscopic evaluations; surface area, pore size, pore volume using Breuner-Emmet-Teller method. Temperature characteristics were also studied. The swelling and structure consistency of the Chitosan was achieved by grafting with methylmethacrylic acid and cross-linking with N-diacrylol pipiradine. A blend of 0.002 g (0.04 mmol) of Chitosan, 8.5 μL Methylmethacrylic Acid and 1.0 mg N-diacrylol pipradine (BAP) presented the best blend formulation. Detections were made within a time interval of 99 s, and blend templates were detected at a concentration of 0.5 mM from the Quartz crystal microbalance resonator analysis. The successful crosslinking of the biopolymers ensured successful control of the swelling and agglomeration of the chitosan, giving it the utility potential for use as thin film sensor. This successful crosslinking also created successful dual multiple templating on the chitosan matrix, even for aerosolized templates. The products can be used in environments with temperature ranges between 60 °C and 250 °C.
Collapse
Affiliation(s)
- Obinna Ofoegbu
- Organic, Polymer, Nano Materials and Molecular Recognition Research Group, Department of Chemistry, Joseph Sarwuan Tarka University, Makurdi 970101, Nigeria;
| | - David Chukwuebuka Ike
- Organic, Polymer, Nano Materials and Molecular Recognition Research Group, Department of Chemistry, Joseph Sarwuan Tarka University, Makurdi 970101, Nigeria;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Hassan Fouad
- Applied Medical Science Department, Community College, King Saudi University, P.O. Box 10219, Riyadh 11433, Saudi Arabia;
| | - Roongnapa S. Srichana
- Molecular Recognition Materials Research Unit, Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90112, Thailand;
| | - Ian Nicholls
- Centre for Biomaterials Chemistry, Linnaeus University, 39782 Kalmar, Sweden;
| |
Collapse
|