1
|
Sarsenbayeva A, Sadak S, Kucuk I, Kudreyeva L, Bakytzhanovna AM, Uslu B. Molybdenum-Based Electrochemical Sensors for Breast Cancer Biomarker Detection: Advances and Challenges. Crit Rev Anal Chem 2025:1-21. [PMID: 40257753 DOI: 10.1080/10408347.2025.2487581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Breast cancer, which is considered the most common type of cancer among women worldwide, is estimated to reach 4.4 million cases in 2070. Early diagnosis has become very important to prevent this expected increase. Various traditional methods, such as mammography, biopsy, enzyme immunoassay (EI), liquid biopsy, immunohistochemistry (IGH), fluorescence in situ hybridization (FISH) are used to diagnose breast cancer, but the fact that these methods are very expensive, have low sensitivity, and cause mutations in tissues due to X-rays has led researchers to discover faster, more cost-effective, and easily detectable methods. In particular, increased levels of new blood-based biomarkers in the circulation can be detected sensitively and selectively by electrochemical methods to facilitate early disease screening and rapid diagnosis. This comprehensive review focuses on the prevalence and pathology of breast cancer, clinical diagnosis of breast cancer, and electrochemical sensors of molybdenum-based compounds for the detection of various breast cancer biomarkers in recent years. Electrochemical analysis studies carried out in the field in recent years are compiled and are considered as aptamer-based, nucleotide-based, and immunosensors. The chemical properties of molybdenum compounds are discussed, and the modifications of these compounds to the electrode surface are discussed under 4 headings: drop casting, electrodeposition, atomic layer deposition, and electrophoretic deposition.
Collapse
Affiliation(s)
- Aliya Sarsenbayeva
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Selenay Sadak
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- The Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Ipek Kucuk
- The Graduate School of Health Sciences, Ankara University, Ankara, Turkey
- Department of Analytical Chemistry, Faculty of Pharmacy, Başkent University, Ankara, Turkey
| | - Leila Kudreyeva
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Abu Moldir Bakytzhanovna
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
2
|
Li Z, Tian L, Wu W, Feng L, Khaniyev B, Mukhametkarimov Y, Ibraimov M, Zhou F, Liu W, Liu J. Colorimetric Fabry-Pérot Sensor with Hetero-Structured Dielectric for Humidity Monitoring. SMALL METHODS 2025; 9:e2401485. [PMID: 39478648 DOI: 10.1002/smtd.202401485] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/13/2024] [Indexed: 04/25/2025]
Abstract
A full-color colorimetric humidity sensor with high brightness is proposed by using a hetero-structured dielectric film in a metal-insulator-metal (MIM) resonator. A humidity-responsive polymer is designed to graft on top of a metal-organic frameworks (MOFs) thin film (MOFs-Polymer) as insulator layer in the resonator. Programmable tuning of reflected color is achieved by controlling the polymer thicknesses, and finite difference time domain simulation of light-matter interactions at subwavelength scales proves the dependence of the reflected wavelength on dielectric layer thickness of the resonator. Vivid full-color changing is realized during tracking humidity process due to swelling of the stimuli-responsive polymer. Ultrafast response (≈0.75 s) is achieved for tracking trace H2O from H2O/methanol mixture, which is ≈104 faster than that of the pure polymer-based MIM resonator. Meanwhile, the study observes significant spectral redshift because the porous MOFs film facilitates the preconcentration of external stimulus and improves the detection sensitivity of the resonator. Further, double-channel anti-counterfeiting multiplexing imaging is devised on the MIM resonator by photomask technology. Patterned encoding for security label is achieved on the MIM resonator by engineering humidity-tunable pixels of Au/MOFs-Polymer/Au and humidity-invalid pixels of Au/MOFs/Au.
Collapse
Affiliation(s)
- Zhihuan Li
- State Key Laboratory of Solidification Processing, MIIT Key Laboratory of Radiation Detection Materials and Devices, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lejie Tian
- State Key Laboratory of Solidification Processing, MIIT Key Laboratory of Radiation Detection Materials and Devices, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei Wu
- State Key Laboratory of Solidification Processing, MIIT Key Laboratory of Radiation Detection Materials and Devices, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Li Feng
- State Key Laboratory of Solidification Processing, MIIT Key Laboratory of Radiation Detection Materials and Devices, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Bakyt Khaniyev
- Department of Physics and Technology, Al-Farabi Kazakh National University, Al-Farabi av. 71, Almaty, 050040, Kazakhstan
| | - Yerzhan Mukhametkarimov
- Department of Physics and Technology, Al-Farabi Kazakh National University, Al-Farabi av. 71, Almaty, 050040, Kazakhstan
| | - Margulan Ibraimov
- Department of Physics and Technology, Al-Farabi Kazakh National University, Al-Farabi av. 71, Almaty, 050040, Kazakhstan
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, MIIT Key Laboratory of Radiation Detection Materials and Devices, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
3
|
Kudreyeva L, Kanysh F, Sarsenbayeva A, Abu M, Kamysbayev D, Kedelbayeva K. HER-2-Targeted Electrochemical Sensors for Breast Cancer Diagnosis: Basic Principles, Recent Advancements, and Challenges. BIOSENSORS 2025; 15:210. [PMID: 40277524 DOI: 10.3390/bios15040210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025]
Abstract
In this literature review, methods for the detection of breast cancer biomarkers and the operation of electrochemical sensors are considered. The work of sensors in the determination of breast cancer biomarkers was systematized, a comparative table with other methods was compiled, as was a classification of sensors depending on their intended use. The various traditional methods for the diagnosis of breast cancer biomarkers are described, including mammography, ultrasound, magnetic resonance imaging, positron emission computed tomography, computed tomography, single-photon emission computed tomography, and biopsy, and their advantages and disadvantages are presented. Key sensor parameters for the detection of breast cancer biomarkers are compared, such as the detection limit, linear detection range, response time, sensitivity, and other characteristics depending on the analyte being analyzed. Based on the reviewed scientific papers, the significance of electrochemical sensors in detecting the biomarkers of breast cancer is demonstrated. The types of tumor biomarkers identified by biosensors were analyzed, with a particular focus on HER2. Studies on HER2 detection using electrochemical methods are compared and systematized, and the features of electrochemical biosensors for determining this biomarker are characterized. Possible interfering agents affecting the accuracy of HER2 determination under experimental conditions are considered, their mechanisms of action are analyzed, and ways to eliminate them are proposed. This report provides a summary of the current aspects of scientific research on electrochemical sensors for the detection of breast cancer biomarkers. The development of electrochemical biosensors opens up new prospects for the early diagnosis and prognosis of breast cancer treatment.
Collapse
Affiliation(s)
- Leila Kudreyeva
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Fatima Kanysh
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Aliya Sarsenbayeva
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Moldir Abu
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Duisek Kamysbayev
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Kamilya Kedelbayeva
- Department of Cardiology Asfendiyarov, Kazakh National Medical University, Almaty 050012, Kazakhstan
| |
Collapse
|
4
|
Madadelahi M, Romero-Soto FO, Kumar R, Tlaxcala UB, Madou MJ. Electrochemical sensors: Types, applications, and the novel impacts of vibration and fluid flow for microfluidic integration. Biosens Bioelectron 2025; 272:117099. [PMID: 39764983 DOI: 10.1016/j.bios.2024.117099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/08/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
Electrochemical sensors are part of a diverse and evolving world of chemical sensors that are impacted by high demand and ongoing technological advancements. Electrochemical sensors offer benefits like cost-efficiency, short response time, ease of use, good limit of detection (LOD) and sensitivity, and ease of miniaturization while providing consistent analytical results. These sensors are employed in various fields-such as healthcare and diagnostics, environmental monitoring, and the food industry-to detect bacteria, viruses, heavy metals, pesticides, and more. In this review, we provide a comprehensive overview of electrochemical sensing techniques, with a focus on enhancing sensor performance through the integration of vibration and hydrodynamic flow in microfluidic systems. We present a structured comparison of these methods, utilizing tables to highlight the approaches most effective for performance enhancement. Additionally, we classify various electrochemical sensing applications, offering insights into the practical utilization of these two techniques for lowering the LOD. Finally, we present a comparative analysis of relevant studies, highlighting how hydrodynamic flow and vibration impact the sensing mechanism. We also explore the potential of these techniques to facilitate the development of automated, high-throughput microfluidic platforms, thereby optimizing their functionality and efficiency.
Collapse
Affiliation(s)
- Masoud Madadelahi
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada, NL, 2501, Sur, 64849, Monterrey, Mexico.
| | - Fabian O Romero-Soto
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada, NL, 2501, Sur, 64849, Monterrey, Mexico
| | - Rudra Kumar
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada, NL, 2501, Sur, 64849, Monterrey, Mexico
| | - Uriel Bonilla Tlaxcala
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada, NL, 2501, Sur, 64849, Monterrey, Mexico
| | - Marc J Madou
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada, NL, 2501, Sur, 64849, Monterrey, Mexico; Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
5
|
Lee JG, Hong J, Lee Y, Lee WJ, Jeong TY, Oh JW. Point-of-Care-Testing NO 3-N Detection Technology with Selected Transition-Metal-Based Colorimetric Sensor Arrays. ACS Sens 2025; 10:986-994. [PMID: 39893676 DOI: 10.1021/acssensors.4c02771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Nitrate-nitrogen (NO3-N) is a major contaminant in groundwater and seawater. Significant amounts of ammonia are oxidized to nitrate through nitrification, leading to an imbalance in the nitrogen cycle and causing nitrate pollution in water bodies. Controlling NO3-N levels is a significant challenge for both marine aquaculture and human health. Traditional measurement methods, such as ion chromatography and continuous flow analysis, require pretreatment steps to detect NO3-N in complex matrices, which is time-consuming. However, in this study, we developed a transition-metal-based sensor capable of measuring NO3-N concentrations on-site without the need for pretreatment. We analyzed the color change of transition-metal-based sensors over time and obtained color data by mixing transition metals (Mn, V, Fe, Co, Cr, Cu, and Ni) with solvents and additives at fixed ratios, and combining them with standard solutions of NO3-N at concentrations of 1, 2, 3, 5, 10, 20, 30, 40, 50, 75, and 100 ppm. We selected sensors that exhibited linearly increasing color velocity with increasing NO3-N concentrations and developed an array sensor using the selected sensors. The performance of the array was validated by comparing its results with those of hierarchical cluster analysis (HCA) based on color data and compositional analysis, confirming its ability to detect NO3-N in complex matrices. Additionally, by creating a large data set of color change patterns of the array sensor, we can develop selective array sensors for detecting specific substances, surpassing the capability of merely measuring the NO3-N concentration.
Collapse
Affiliation(s)
- Jung-Geun Lee
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea
| | - Jimin Hong
- Department of Marine Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yujin Lee
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea
| | | | - Tae-Young Jeong
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea
| | - Jin-Woo Oh
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea
- Department of Nano Fusion Technology, Pusan National University, Busan 46241, Republic of Korea
- Department of Nanoenergy Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
6
|
Mukendi MD, Salami OS, Mketo N. An In-Depth Review of Molecularly Imprinted Electrochemical Sensors as an Innovative Analytical Tool in Water Quality Monitoring: Architecture, Principles, Fabrication, and Applications. MICROMACHINES 2025; 16:251. [PMID: 40141862 PMCID: PMC11944250 DOI: 10.3390/mi16030251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025]
Abstract
Molecularly imprinted electrochemical sensors (MI-ECSs) are a significant advancement in analytical techniques, especially for water quality monitoring (WQM). These sensors utilize molecular imprinting to create polymer matrices that exhibit high specificity and affinity for target analytes. MI-ECSs integrate molecularly imprinted polymers (MIPs) with electrochemical transducers (ECTs), enabling the selective recognition and quantification of contaminants. Their design features template-shaped cavities in the polymer that mimic the functional groups, shapes, and sizes of target analytes, resulting in enhanced binding interactions and improved sensor performance in complex water environments. The fabrication of MI-ECSs involves selecting suitable monomeric units (monomers) and crosslinkers, using a target analyte as a template, polymerizing, and then removing the template to expose the imprinted sites. Advanced methodologies, such as electropolymerization and surface imprinting, are used to enhance their sensitivity and reproducibility. MI-ECSs offer considerable benefits, including high selectivity, low detection limits, rapid response times, and the potential for miniaturization and portability. They effectively assess and detect contaminants, like (toxic) heavy metals (HMs), pesticides, pharmaceuticals, and pathogens, in water systems. Their ability for real-time monitoring makes them essential for ensuring water safety and adhering to regulations. This paper reviews the architecture, principles, and fabrication processes of MI-ECSs as innovative strategies in WQM and their application in detecting emerging contaminants and toxicants (ECs and Ts) across various matrices. These ECs and Ts include organic, inorganic, and biological contaminants, which are mainly anthropogenic in origin and have the potential to pollute water systems. Regarding this, ongoing advancements in MI-ECS technology are expected to further enhance the analytical capabilities and performances of MI-ECSs to broaden their applications in real-time WQM and environmental monitoring.
Collapse
Affiliation(s)
| | | | - Nomvano Mketo
- Department of Chemistry, College of Science, Engineering and Technology (CSET), University of South Africa, The Science Campus, Florida Park, Corner Christian de Wet and Pioneer Avenue, Florida 1709, South Africa; (M.D.M.); (O.S.S.)
| |
Collapse
|
7
|
Lai M, Huang L, Wang C, Zuo R, Liu J. Preparation of Electrochemical Sensors Based on Graphene/Ionic Liquids and the Quantitative Detection and Toxicity Evaluation of Tetracycline. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:263. [PMID: 39997826 PMCID: PMC11858282 DOI: 10.3390/nano15040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
Tetracycline antibiotics, which are recognized as emerging environmental pollutants, are overused and retained in large quantities in terminal water bodies, seriously endangering the ecological environment and human health. Therefore, establishing a straightforward, rapid, and sensitive method for quantitatively detecting and evaluating the toxicity of tetracyclines is highly important. Compared with traditional detection methods, emerging electrochemical methods have many advantages, such as simplicity and rapidity. In this work, an electrochemical sensor-a graphene ionic liquid composite glass carbon electrode (Gr/IL/GCE) with excellent catalytic properties for both tetracycline and cellular purine bases-was prepared by modifying a glassy carbon electrode with graphene and an ionic liquid for the quantitative detection of tetracycline and evaluation of its toxicity to cells. Graphene and the ionic liquid were uniformly distributed on the surface of the electrode and increased the electrically active surface area. The linear range of detection of tetracycline by a Gr/IL/GCE was 10-500 μM, with a detection limit of up to 2.06 μM. The Gr/IL/GCE demonstrated remarkable electrocatalytic efficacy against purine bases within human hepatocellular carcinomas (HepG2) cells. To evaluate the cytotoxicity of tetracycline, the median inhibition concentration (IC50) was determined, which was 243.82 μM.
Collapse
Affiliation(s)
- Meidan Lai
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; (M.L.); (L.H.); (R.Z.)
- Guangdong-Hong Kong Joint Laboratory for Water Security, Engineering Research Center of Ministry of Education of Groundwater Pollution Control and Remediation, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Linzhe Huang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; (M.L.); (L.H.); (R.Z.)
- Guangdong-Hong Kong Joint Laboratory for Water Security, Engineering Research Center of Ministry of Education of Groundwater Pollution Control and Remediation, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Chengzhi Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; (M.L.); (L.H.); (R.Z.)
- Guangdong-Hong Kong Joint Laboratory for Water Security, Engineering Research Center of Ministry of Education of Groundwater Pollution Control and Remediation, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Rui Zuo
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; (M.L.); (L.H.); (R.Z.)
- Guangdong-Hong Kong Joint Laboratory for Water Security, Engineering Research Center of Ministry of Education of Groundwater Pollution Control and Remediation, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Jun Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; (M.L.); (L.H.); (R.Z.)
- Guangdong-Hong Kong Joint Laboratory for Water Security, Engineering Research Center of Ministry of Education of Groundwater Pollution Control and Remediation, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
8
|
Bashir K, Shikha S, Rattu G, Jan K, Krishna PM, Pattanayek SK. Pesticide residues and their detection techniques in foods using sensors- a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:221-239. [PMID: 39868385 PMCID: PMC11757846 DOI: 10.1007/s13197-024-06116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 01/28/2025]
Abstract
The use of pesticides in agricultural produce is continuously increasing and it raises the question of whether the food is safe or not. Only 0.1% of the sprayed pesticide reaches its target and the rest acts as a contaminant in soil and the environment, thus contaminating the future foods as well. The pesticide residue management is gaining attention as pesticide poisoning account for more than 3.5% of total deaths. The use of pesticides needs to be checked and applied in a controlled manner. Easy and rapid methods for the quantification of pesticides in foods need to be developed. In the present review, details about pesticides have been described in the first part. Secondly, the techniques and recent developments for the detection of pesticides have been summarized and finally, the emerging challenges and future perspectives for pesticide handling has been discussed with special emphasis on the use of Nano-sensors for pesticide detection. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06116-8.
Collapse
Affiliation(s)
- Khalid Bashir
- Department of Food Technology, Jamia Hamdard, New Delhi, 110062 India
| | - Shalini Shikha
- Department of Chemical Engineering, Indian Institute of Technology, New Delhi, 110062 India
| | - Gurdeep Rattu
- Department of Biotechnology, School of Applied Sciences, Reva University, Bengaluru, Karnataka 560064 India
| | - Kulsum Jan
- Department of Food Technology, Jamia Hamdard, New Delhi, 110062 India
| | - P. Murali Krishna
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana 131028 India
| | - Sudip K. Pattanayek
- Department of Chemical Engineering, Indian Institute of Technology, New Delhi, 110062 India
| |
Collapse
|
9
|
Mbuyazi TB, Ajibade PA. Magnetic iron oxides nanocomposites: synthetic techniques and environmental applications for wastewater treatment. DISCOVER NANO 2024; 19:158. [PMID: 39342049 PMCID: PMC11438764 DOI: 10.1186/s11671-024-04102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Nanomaterials are an emerging class of compounds with potential to advance technology for wastewater treatment. There are many toxic substances in industrial wastewater that are dangerous to the aquatic ecosystem and public health. These pollutants require the development of novel techniques to remove them from the environment. Iron oxide nanoparticles are being studied and develop as new technology to address the problem of environmental pollution due to their unique properties and effectiveness against different kind of pollutants. A variety of modified iron oxide nanoparticles have been developed through extensive research that mitigates the shortcomings of aggregation or oxidation and enhances their efficiency as novel remediator against environmental pollutants. In this review, we present synthetic approaches used for the preparation of iron oxide nanoparticles and their corresponding nanocomposites, along with the processes in which the materials are used as adsorbent/photocatalysts for environmental remediation. Applications explored includes adsorption of dyes, photocatalytic degradation of dyes, and adsorption of heavy metal ions. The use of iron oxides nanocomposite in real wastewater samples and recyclability of adsorbents and photocatalysts were also explored.
Collapse
Affiliation(s)
- Thandi B Mbuyazi
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa
| | - Peter A Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
10
|
Razzaque S, Abubakar M, Farid MA, Zia R, Nazir S, Razzaque H, Ali A, Ali Z, Mahmood A, Al-Masry W, Akhter T, Hassan SU. Detection of toxic cypermethrin pesticides in drinking water by simple graphitic electrode modified with Kraft lignin@Ni@g-C 3N 4 nano-composite. J Mater Chem B 2024; 12:9364-9374. [PMID: 39188219 DOI: 10.1039/d4tb00951g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The detrimental effects of widespread pesticide application on the health of living organisms highlight the urgent need for technological advancements in monitoring pesticide residues at trace levels. This study involves the synthesis of a distinctive sensing material, KL@Ni@g-C3N4, which comprises nanocomposites of graphitic carbon nitride with Kraft lignin and nickel. The prepared samples were characterized using FT-IR, PXRD, TEM, SEM, and EDX techniques. The KL@Ni@g-C3N4 nanocomposite was drop-cast on a graphite electrode. Subsequently, this fabricated electrode was used to detect cypermethrin (CYP) residues in drinking water. The redox properties of the fabricated sensors were evaluated using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The limit of detection (LOD) of the fabricated sensor was determined to be 0.026 μg mL-1, which is below the maximum residual limits of CYP in the environment (0.5 μg mL-1) and within the acceptable range for food products (∼0.05 to 0.2 μg mL-1). Therefore, this study proposes a promising alternative to conventional methods for detecting pesticides in drinking water.
Collapse
Affiliation(s)
- Shumaila Razzaque
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka, 44/51, 01-224, Warszawa, Poland
| | - Muhammad Abubakar
- Department of Chemistry, University of Management and Technology, C-II, Johar Town, Lahore 54770, Pakistan
| | - Muhammad Asim Farid
- Department of Chemistry, Division of Science and Technology, University of Education Lahore, Lahore 54770, Pakistan
| | - Rehana Zia
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore 54000, Pakistan.
| | - Shahid Nazir
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore 54000, Pakistan.
| | | | - Abid Ali
- Department of Chemistry, The University of Lahore, 1-km Defense road, Lahore, 54000, Pakistan
| | - Zulfiqar Ali
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore 54000, Pakistan.
| | - Asif Mahmood
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Waheed Al-Masry
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Toheed Akhter
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 13120, Republic of Korea.
| | - Sadaf Ul Hassan
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore 54000, Pakistan.
| |
Collapse
|
11
|
Cheng C, Chen H, Chen X, Lu M. A Simultaneous Calibration and Detection Strategy for Electrochemical Sensing with High Accuracy in Complex Water. ACS Sens 2024; 9:3986-3993. [PMID: 39078137 DOI: 10.1021/acssensors.4c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The electrochemical sensors loaded with nanomaterials have exhibited a great sensitivity. Nonetheless, the field detection for complex waterbodies can be affected by cross-sensitivity, environmental conditions such as temperature and pH value, as well as the relatively low reproducibility and stability of nanomaterials. In this paper, a simultaneous calibration and detection (SCD) strategy is proposed to introduce a simultaneous and precise calibration during field electrochemical detection, which is composed of a linear regression algorithm and a compact electrochemical sensor containing a series of identical sensing cells. This design can significantly mitigate cross-sensitivity in complex water and the inconsistency of sensing materials. Applied in the NO2- detection for practical waterbodies, the SCD strategy has exhibited a relative error of no more than 9.6% for the measurement compared to the results obtained by the standard Griess method and higher accuracy than the normal electrochemical method. The SCD strategy is independent of sensing materials, indicating that it can be widely applied to various detections by just switching the corresponding sensing material.
Collapse
Affiliation(s)
- Chu Cheng
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, China
| | - Hongyu Chen
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, China
| | - Xinyi Chen
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, China
| | - Miao Lu
- Pen-Tung Sah Research Institute of Micro-Nano Science & Technology, Xiamen University, Xiamen 361005, China
| |
Collapse
|
12
|
Gagliani F, Di Giulio T, Asif MI, Malitesta C, Mazzotta E. Boosting Electrochemical Sensing Performances Using Molecularly Imprinted Nanoparticles. BIOSENSORS 2024; 14:358. [PMID: 39056634 PMCID: PMC11274585 DOI: 10.3390/bios14070358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Nanoparticles of molecularly imprinted polymers (nanoMIPs) combine the excellent recognition ability of imprinted polymers with specific properties related to the nanosize, such as a high surface-to-volume ratio, resulting in highly performing recognition elements with surface-exposed binding sites that promote the interaction with the target and, in turn, binding kinetics. Different synthetic strategies are currently available to produce nanoMIPs, with the possibility to select specific conditions in relation to the nature of monomers/templates and, importantly, to tune the nanoparticle size. The excellent sensing properties, combined with the size, tunability, and flexibility of synthetic protocols applicable to different targets, have enabled the widespread use of nanoMIPs in several applications, including sensors, imaging, and drug delivery. The present review summarizes nanoMIPs applications in sensors, specifically focusing on electrochemical detection, for which nanoMIPs have been mostly applied. After a general survey of the most widely adopted nanoMIP synthetic approaches, the integration of imprinted nanoparticles with electrochemical transducers will be discussed, representing a key step for enabling a reliable and stable sensor response. The mechanisms for electrochemical signal generation will also be compared, followed by an illustration of nanoMIP-based electrochemical sensor employment in several application fields. The high potentialities of nanoMIP-based electrochemical sensors are presented, and possible reasons that still limit their commercialization and issues to be resolved for coupling electrochemical sensing and nanoMIPs in an increasingly widespread daily-use technology are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Elisabetta Mazzotta
- Laboratorio di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, Via Monteroni, 73100 Lecce, Italy; (F.G.); (T.D.G.); (M.I.A.); (C.M.)
| |
Collapse
|
13
|
Robby AI, Jiang S, Jin EJ, Park SY. Coenzyme-A-Responsive Nanogel-Coated Electrochemical Sensor for Osteoarthritis-Detection-Based Genetic Models. Gels 2024; 10:451. [PMID: 39057474 PMCID: PMC11276253 DOI: 10.3390/gels10070451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
An electrochemical sensor sensitive to coenzyme A (CoA) was designed using a CoA-responsive polyallylamine-manganese oxide-polymer dot nanogel coated on the electrode surface to detect various genetic models of osteoarthritis (OA). The CoA-responsive nanogel sensor responded to the abundance of CoA in OA, causing the breakage of MnO2 in the nanogel, thereby changing the electroconductivity and fluorescence of the sensor. The CoA-responsive nanogel sensor was capable of detecting CoA depending on the treatment time and distinguishing the response towards different OA genetic models that contained different levels of CoA (wild type/WT, NudT7 knockout/N7KO, and Acot12 knockout/A12KO). The WT, N7KO, and A12KO had distinct resistances, which further increased as the incubation time were changed from 12 h (R12h = 2.11, 2.40, and 2.68 MΩ, respectively) to 24 h (R24h = 2.27, 2.59, and 2.92 MΩ, respectively) compared to the sensor without treatment (Rcontrol = 1.63 MΩ). To simplify its application, the nanogel sensor was combined with a wireless monitoring device to allow the sensing data to be directly transmitted to a smartphone. Furthermore, OA-indicated anabolic (Acan) and catabolic (Adamts5) factor transcription levels in chondrocytes provided evidence regarding CoA and nanogel interactions. Thus, this sensor offers potential usage in simple and sensitive OA diagnostics.
Collapse
Affiliation(s)
- Akhmad Irhas Robby
- Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Chungcheongbuk-do, Republic of Korea;
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27469, Chungcheongbuk-do, Republic of Korea
| | - Songling Jiang
- Integrated Omics Institute, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
| | - Eun-Jung Jin
- Integrated Omics Institute, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
- Department of Biological Sciences, College of Health Sciences, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea
| | - Sung Young Park
- Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Chungcheongbuk-do, Republic of Korea;
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27469, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
14
|
Lipovka A, Fatkullin M, Averkiev A, Pavlova M, Adiraju A, Weheabby S, Al-Hamry A, Kanoun O, Pašti I, Lazarevic-Pasti T, Rodriguez RD, Sheremet E. Surface-Enhanced Raman Spectroscopy and Electrochemistry: The Ultimate Chemical Sensing and Manipulation Combination. Crit Rev Anal Chem 2024; 54:110-134. [PMID: 35435777 DOI: 10.1080/10408347.2022.2063683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
One of the lessons we learned from the COVID-19 pandemic is that the need for ultrasensitive detection systems is now more critical than ever. While sensors' sensitivity, portability, selectivity, and low cost are crucial, new ways to couple synergistic methods enable the highest performance levels. This review article critically discusses the synergetic combinations of optical and electrochemical methods. We also discuss three key application fields-energy, biomedicine, and environment. Finally, we selected the most promising approaches and examples, the open challenges in sensing, and ways to overcome them. We expect this work to set a clear reference for developing and understanding strategies, pros and cons of different combinations of electrochemical and optical sensors integrated into a single device.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Olfa Kanoun
- Technische Universität Chemnitz, Chemnitz, Germany
| | - Igor Pašti
- Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Tamara Lazarevic-Pasti
- Department of Physical Chemistry, "VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Vinca, Serbia
| | | | | |
Collapse
|
15
|
Nguyen VBC, Reut J, Rappich J, Hinrichs K, Syritski V. Molecularly Imprinted Polymer-Based Electrochemical Sensor for the Detection of Azoxystrobin in Aqueous Media. Polymers (Basel) 2024; 16:1394. [PMID: 38794587 PMCID: PMC11125202 DOI: 10.3390/polym16101394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
This work presents an electrochemical sensor detecting a fungicide-azoxystrobin (AZO) in aqueous environments. This AZO sensor utilizes a thin-film metal electrode (TFME) combined with an AZO-selective molecularly imprinted polymer (AZO-MIP). The AZO-MIP was directly generated on TFME through electrochemical polymerization from the solution containing two functional monomers: aniline (Ani) and m-phenylenediamine (mPD), and the template: AZO, which was afterwards removed to form AZO-selective cavities in the polymer matrix. The AZO-MIP preparation was characterized by electrochemical and ellipsometry measurements. Optimization of the synthesis parameters, including the charge density applied during electrodeposition, the monomer-to-template ratio, was performed to enhance the sensor's performance. The results demonstrated that the AZO sensor achieved a low limit of detection (LOD) of 3.6 nM and a limit of quantification (LOQ) of 11.8 nM in tap water, indicating its sensitivity in a complex aqueous environment. The sensor also exhibited satisfactory selectivity for AZO in both ultrapure and tap-water samples and achieved a good recovery (94-119%) for the target analyte. This study highlights the potential of MIP-based electrochemical sensors for the rapid and accurate detection of fungicide contaminants in water, contributing to the advancement of analytical tools for water-quality monitoring and risk assessment.
Collapse
Affiliation(s)
- Vu Bao Chau Nguyen
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; (V.B.C.N.)
| | - Jekaterina Reut
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; (V.B.C.N.)
| | - Jörg Rappich
- Young Investigator Group Nanoscale Solid-Liquid Interfaces, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstr. 8, 12489 Berlin, Germany;
| | - Karsten Hinrichs
- Application Laboratories Berlin, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Schwarzschildstraße 8, 12489 Berlin, Germany;
| | - Vitali Syritski
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; (V.B.C.N.)
| |
Collapse
|
16
|
Jjagwe J, Olupot PW, Kulabako R, Carrara S. Electrochemical sensors modified with iron oxide nanoparticles/nanocomposites for voltammetric detection of Pb (II) in water: A review. Heliyon 2024; 10:e29743. [PMID: 38665564 PMCID: PMC11044046 DOI: 10.1016/j.heliyon.2024.e29743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Permissible limits of Pb2+ in drinking water are being reduced from 10 μgL-1 to 5 μgL-1, which calls for rapid, and highly reliable detection techniques. Electrochemical sensors have garnered attention in detection of heavy metal ions in environmental samples due to their ease of operation, low cost, and rapid detection responses. Selectivity, sensitivity and detection capabilities of these sensors, can be enhanced by modifying their working electrodes (WEs) with iron oxide nanoparticles (IONPs) and/or their composites. Therefore, this review is an in-depth analysis of the deployment of IONPs/nanocomposites in modification of electrochemical sensors for detection of Pb2+ in drinking water over the past decade. From the analyzed studies (n = 23), the optimal solution pH, deposition potential, and deposition time ranged between 3 and 5.6, -0.7 to -1.4 V vs Ag/AgCl, and 100-400 s, respectively. Majority of the studies employed square wave anodic stripping voltammetry (n = 16), in 0.1 M acetate buffer solution (n = 19) for detection of Pb2+. Limits of detection obtained (2.5 x 10-9 - 4.5 μg/L) were below the permissible levels which indicated good sensitivities of the modified electrodes. Despite the great performance of these modified electrodes, the primary source of IONPs has always been commercial iron-based salts in addition to the use of so many materials as modifying agents of these IONPs. This may limit reproducibility and sustainability of the WEs due to lengthy and costly preparation protocols. Steel and/or iron industrial wastes can be alternatively employed in generation of IONPs for modification of electrochemical sensors. Additionally, biomass-based activated carbons enriched with surface functional groups are also used in modification of bare IONPs, and subsequently bare electrodes. However, these two areas still need to be fully explored.
Collapse
Affiliation(s)
- Joseph Jjagwe
- Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Peter Wilberforce Olupot
- Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Robinah Kulabako
- Department of Civil and Environmental Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Sandro Carrara
- Bio/CMOS Interfaces Laboratory, School of Engineering, Institute of Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| |
Collapse
|
17
|
Dhahi TS, Dafhalla AKY, Saad SA, Zayan DMI, Ahmed AET, Elobaid ME, Adam T, Gopinath SCB. The importance, benefits, and future of nanobiosensors for infectious diseases. Biotechnol Appl Biochem 2024; 71:429-445. [PMID: 38238920 DOI: 10.1002/bab.2550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/19/2023] [Indexed: 04/11/2024]
Abstract
Infectious diseases, caused by pathogenic microorganisms such as bacteria, viruses, parasites, or fungi, are crucial for efficient disease management, reducing morbidity and mortality rates and controlling disease spread. Traditional laboratory-based diagnostic methods face challenges such as high costs, time consumption, and a lack of trained personnel in resource-poor settings. Diagnostic biosensors have gained momentum as a potential solution, offering advantages such as low cost, high sensitivity, ease of use, and portability. Nanobiosensors are a promising tool for detecting and diagnosing infectious diseases such as coronavirus disease, human immunodeficiency virus, and hepatitis. These sensors use nanostructured carbon nanotubes, graphene, and nanoparticles to detect specific biomarkers or pathogens. They operate through mechanisms like the lateral flow test platform, where a sample containing the biomarker or pathogen is applied to a test strip. If present, the sample binds to specific recognition probes on the strip, indicating a positive result. This binding event is visualized through a colored line. This review discusses the importance, benefits, and potential of nanobiosensors in detecting infectious diseases.
Collapse
Affiliation(s)
- Th S Dhahi
- Electronics Technical Department, Southern Technical University, Basra, Iraq
| | - Alaa Kamal Yousif Dafhalla
- Department of Computer Engineering, College of Computer Science and engineering, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Sawsan Ali Saad
- Department of Computer Engineering, College of Computer Science and engineering, University of Hail, Hail, Kingdom of Saudi Arabia
| | | | | | - Mohamed Elshaikh Elobaid
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
| | - Tijjani Adam
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
- Advanced Communication Engineering, Centre of Excellence (ACE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
| | - Subash C B Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, Malaysia
| |
Collapse
|
18
|
Serrano Valera M, Vela N, Piuvezam G, Mateo-Ramírez F, Santiago Fernandes Pimenta ID, Martínez-Alcalá I. Prevalence and concentration of pesticides in European waters: A protocol for systematic review and meta-analysis. PLoS One 2024; 19:e0282386. [PMID: 38530775 PMCID: PMC10965048 DOI: 10.1371/journal.pone.0282386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/15/2023] [Indexed: 03/28/2024] Open
Abstract
There is currently a growing interest in the so-called emerging pollutants, such as pesticides, pharmaceuticals, personal hygiene care products, drugs, etc., whose presence in natural ecosystems is not necessarily recent, but the development in latest years of new and more sensitive methods of analysis has allowed their detection. They can be present in the natural environment, food, and many products of everyday origin, which suggests that human exposure to them is massive and universal. Therefore, the study of this type of substances is becoming one of the priority lines of research of the main agencies dedicated to the protection of public and environmental health, such as the World Health Organization (WHO), United States Environmental Protection Agency (USEPA) or European Union (EU). In this sense, it is of vital importance to know the nature and quantity of this type of contaminants, to establish preventive mechanisms that minimize its presence in aquatic systems, with special requirements for human consumption. This study aimed to describe a protocol for a systematic review and meta-analysis to assess the status of pesticides in European waters. We will search for original studies in the PubMed/Medline, Scopus, Web of Science, EMBASE, ScienceDirect databases. Prevalence studies of emerging contaminants (pesticides) in water resources (watersheds, aquifers, rivers, marine and springs), wastewaters (influent and effluent), and drinking water should be included. Two reviewers will independently screen and assess the included studies, with any disagreements being resolved by a third reviewer. We will summarize the findings using a narrative approach and, if possible, conduct a quantitative synthesis (meta-analysis). We will conduct the protocol following the Preferred Reporting Items for Systematic Review and Meta-Analyses Protocols (PRISMA-P) guidelines. The review will summarize the current evidence on the presence of pesticides in European waters such as glyphosate, chlorpyrifos, pyrethroid pesticides, neonicotinoid pesticides, and/or fungicides, in samples of different water resources like wastewaters and drinking water. We expect that this systematic review will establish preventive mechanisms that minimize the presence of pesticides in water in the environment.
Collapse
Affiliation(s)
| | - Nuria Vela
- Catholic University of Murcia, Murcia, Spain
| | - Grasiela Piuvezam
- Systematic Review and Meta-Analysis Laboratory (LabSys-CNPQ), Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Public Health, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Isac Davidson Santiago Fernandes Pimenta
- Systematic Review and Meta-Analysis Laboratory (LabSys-CNPQ), Federal University of Rio Grande do Norte, Natal, Brazil
- Post-Graduation Program in Public Health, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
19
|
Wang G, Zhou G, Zhang Q, He D, Zhao C, Suo H. Sensitive Electrochemical Detection of Ammonia Nitrogen via a Platinum-Zinc Alloy Nanoflower-Modified Carbon Cloth Electrode. SENSORS (BASEL, SWITZERLAND) 2024; 24:915. [PMID: 38339633 PMCID: PMC10857239 DOI: 10.3390/s24030915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
As a common water pollutant, ammonia nitrogen poses a serious risk to human health and the ecological environment. Therefore, it is important to develop a simple and efficient sensing scheme to achieve accurate detection of ammonia nitrogen. Here, we report a simple fabrication electrode for the electrochemical synthesis of platinum-zinc alloy nanoflowers (PtZn NFs) on the surface of carbon cloth. The obtained PtZn NFs/CC electrode was applied to the electrochemical detection of ammonia nitrogen by differential pulse voltammetry (DPV). The enhanced electrocatalytic activity of PtZn NFs and the larger electrochemical active area of the self-supported PtZn NFs/CC electrode are conducive to improving the ammonia nitrogen detection performance of the sensitive electrode. Under optimized conditions, the PtZn NFs/CC electrode exhibits excellent electrochemical performance with a wide linear range from 1 to 1000 µM, a sensitivity of 21.5 μA μM-1 (from 1 μM to 100 μM) and a lower detection limit of 27.81 nM, respectively. PtZn NFs/CC electrodes show excellent stability and anti-interference. In addition, the fabricated electrochemical sensor can be used to detect ammonia nitrogen in tap water and lake water samples.
Collapse
Affiliation(s)
| | | | | | | | - Chun Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (G.W.); (G.Z.); (Q.Z.); (D.H.); (H.S.)
| | | |
Collapse
|
20
|
Wahyuni WT, Putra BR, Rahman HA, Anindya W, Hardi J, Rustami E, Ahmad SN. Electrochemical Sensors based on Gold-Silver Core-Shell Nanoparticles Combined with a Graphene/PEDOT:PSS Composite Modified Glassy Carbon Electrode for Paraoxon-ethyl Detection. ACS OMEGA 2024; 9:2896-2910. [PMID: 38250352 PMCID: PMC10795144 DOI: 10.1021/acsomega.3c08349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
Herein, a nonenzymatic detection of paraoxon-ethyl was developed by modifying a glassy carbon electrode (GCE) with gold-silver core-shell (Au-Ag) nanoparticles combined with the composite of graphene with poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS). These core-shell nanoparticles (Au-Ag) were synthesized using a seed-growth method and characterized using UV-vis spectroscopy and high-resolution transmission electron microscopy (HR-TEM) techniques. Meanwhile, the structural properties, surface morphology and topography, and electrochemical characterization of the composite of Au-Ag core-shell/graphene/PEDOT:PSS were analyzed using infrared spectroscopy, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and electrochemical impedance spectroscopy (EIS) techniques. Moreover, the proposed sensor for paraoxon-ethyl detection based on Au-Ag core-shell/graphene/PEDOT:PSS modified GCE demonstrates good electrochemical and electroanalytical performance when investigated with cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry techniques. It was found that the synergistic effect between Au-Ag core-shell nanoparticles and the composite of graphene/PEDOT:PSS provides a higher conductivity and enhanced electrocatalytic activity for paraoxon-ethyl detection at an optimum pH of 7. At pH 7, the proposed sensor for paraoxon-ethyl detection shows a linear range of concentrations from 0.2 to 100 μM with a limit of detection of 10 nM and high sensitivity of 3.24 μA μM-1 cm-2. In addition, the proposed sensor for paraoxon-ethyl confirmed good reproducibility, with the possibility of being further developed as a disposable electrode. This sensor also displayed good selectivity in the presence of several interfering species such as diazinon, carbaryl, ascorbic acid, glucose, nitrite, sodium bicarbonate, and magnesium sulfate. For practical applications, this proposed sensor was employed for the determination of paraoxon-ethyl in real samples (fruits and vegetables) and showed no significant difference from the standard spectrophotometric technique. In conclusion, this proposed sensor might have a potential to be developed as a platform of electrochemical sensors for pesticide detection.
Collapse
Affiliation(s)
- Wulan Tri Wahyuni
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, 16680Bogor,Indonesia
- Tropical
Biopharma Research Center, Institute of Research and Community Empowerment, IPB University, 16680 Bogor,Indonesia
| | - Budi Riza Putra
- Research
Center for Metallurgy, National Research and Innovation Agency, South Tangerang 15315, Banten, Indonesia
| | - Hemas Arif Rahman
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, 16680Bogor,Indonesia
| | - Weni Anindya
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, 16680Bogor,Indonesia
| | - Jaya Hardi
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Tadulako University, 94148 Kota Palu,Indonesia
| | - Erus Rustami
- Department
of Physics, Faculty of Mathematics and Natural Sciences, IPB University, 16680 Bogor,Indonesia
| | - Shahrul Nizam Ahmad
- School
of
Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia
| |
Collapse
|
21
|
Mofijur M, Hasan MM, Ahmed SF, Djavanroodi F, Fattah IMR, Silitonga AS, Kalam MA, Zhou JL, Khan TMY. Advances in identifying and managing emerging contaminants in aquatic ecosystems: Analytical approaches, toxicity assessment, transformation pathways, environmental fate, and remediation strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122889. [PMID: 37972679 DOI: 10.1016/j.envpol.2023.122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Emerging contaminants (ECs) are increasingly recognized as threats to human health and ecosystems. This review evaluates advanced analytical methods, particularly mass spectrometry, for detecting ECs and understanding their toxicity, transformation pathways, and environmental distribution. Our findings underscore the reliability of current techniques and the potential of upcoming methods. The adverse effects of ECs on aquatic life necessitate both in vitro and in vivo toxicity assessments. Evaluating the distribution and degradation of ECs reveals that they undergo physical, chemical, and biological transformations. Remediation strategies such as advanced oxidation, adsorption, and membrane bioreactors effectively treat EC-contaminated waters, with combinations of these techniques showing the highest efficacy. To minimize the impact of ECs, a proactive approach involving monitoring, regulations, and public education is vital. Future research should prioritize the refining of detection methods and formulation of robust policies for EC management.
Collapse
Affiliation(s)
- M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - M M Hasan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - F Djavanroodi
- Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - I M R Fattah
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - A S Silitonga
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - M A Kalam
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - John L Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - T M Yunus Khan
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
22
|
Wang G, Ma G, Gao J, He D, Zhao C, Suo H. Enhanced Sensitivity of Electrochemical Sensors for Ammonia-Nitrogen via In-Situ Synthesis PtNi Nanoleaves on Carbon Cloth. SENSORS (BASEL, SWITZERLAND) 2024; 24:387. [PMID: 38257480 PMCID: PMC10820371 DOI: 10.3390/s24020387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/27/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
Pt-based electrochemical ammonia-nitrogen sensors played a significance role in real-time monitoring the ammonia-nitrogen concentration. The alloying of Pt and transition metals was one of the effective ways to increase the detectability of the sensitive electrode. In this paper, a self-supported electrochemical electrode for the detection of ammonia nitrogen was obtained by the electrodeposition of PtNi alloy nanoleaves on a carbon cloth (PtNi-CC). Experimental results showed that the PtNi-CC electrode exhibited enhanced detection performance with a wide linear range from 0.5 to 500 µM, high sensitivity (7.83 µA µM-1 cm-2 from 0.5 to 150 μM and 0.945 µA µM-1 cm-2 from 150 to 500 μM) and lower detection limit (24 nM). The synergistic effect between Pt and Ni and the smaller lattice spacing of the PtNi alloy were the main reasons for the excellent performance of the electrode. This work showed the great potential of Pt-based alloy electrodes for the detection of ammonia-nitrogen.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui Suo
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (G.W.); (G.M.); (J.G.); (D.H.); (C.Z.)
| |
Collapse
|
23
|
Ezzat N, Hefnawy MA, Medany SS, El-Sherif RM, Fadlallah SA. Green synthesis of Ag nanoparticle supported on graphene oxide for efficient nitrite sensing in a water sample. Sci Rep 2023; 13:19441. [PMID: 37945582 PMCID: PMC10636149 DOI: 10.1038/s41598-023-46409-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Water is essential for conserving biodiversity, ecology, and human health, but because of population growth and declining clean water supplies, wastewater must be treated to meet demand. Nitrite is one of the contaminants in wastewater that is well-known. It is crucial to identify nitrite since it can be fatal to humans in excessive doses. Utilizing a straightforward and effective electrochemical sensor, nitrite in actual water samples may be determined electrochemically. The sensor is created by coating the surface of a GC electrode with a thin layer of graphene oxide (GO), followed by a coating of silver nanoparticles. The modified electrode reached a linear detection range of 1-400 µM. thus, the activity of the electrode was investigated at different pH values ranging from 4 to 10 to cover acidic to highly basic environments. However, the electrode recorded limit of detection (LOD) is equal to 0.084, 0.090, and 0.055 µM for pH 4, 7, and 10, respectively. Additionally, the electrode activity was utilized in tap water and wastewater that the LOD reported as 0.16 and 0.157 µM for tape water and wastewater, respectively.
Collapse
Affiliation(s)
- Nourhan Ezzat
- Bio-Nanotechnology Department, Faculty of Nanotechnology, Cairo University, Giza, 12613, Egypt
| | - Mahmoud A Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Shymaa S Medany
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Rabab M El-Sherif
- Bio-Nanotechnology Department, Faculty of Nanotechnology, Cairo University, Giza, 12613, Egypt
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sahar A Fadlallah
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
- Biotechnology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
24
|
Kitaw SL, Birhan YS, Tsai HC. Plasmonic surface-enhanced Raman scattering nano-substrates for detection of anionic environmental contaminants: Current progress and future perspectives. ENVIRONMENTAL RESEARCH 2023; 221:115247. [PMID: 36640935 DOI: 10.1016/j.envres.2023.115247] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering spectroscopy (SERS) is a powerful technique of vibrational spectroscopy based on the inelastic scattering of incident photons by molecular species. It has unique properties such as ultra-sensitivity, selectivity, non-destructivity, speed, and fingerprinting properties for analytical and sensing applications. This enables SERS to be widely used in real-world sample analysis and basic plasmonic mechanistic studies. However, the desirable properties of SERS are compromised by the high cost and low reproducibility of the signals. The development of multifunctional, stable and reusable nano-engineered SERS substrates is a viable solution to circumvent these drawbacks. Recently, plasmonic SERS active nano-substrates with various morphologies have attracted the attention of researchers due to promising properties such as the formation of dense hot spots, additional stability, tunable and controlled morphology, and surface functionalization. This comprehensive review focused on the current advances in the field of SERS active nanosubstrates suitable for the detection and quantification of anionic environmental pollutants. The common fabrication methods, including the techniques for morphological adjustments and surface modification, substrate categories, and the design of nanotechnologically fabricated plasmonic SERS substrates for anion detection are systematically presented. Here, the need for the design, synthesis, and functionalization of SERS nano-substrates for anions of great environmental importance is explained in detail. In addition, the broad categories of SERS nano-substrates, namely colloid-based SERS substrates and solid-support SERS substrates are discussed. Moreover, a brief discussion of SERS detection of certain anionic pollutants in the environment is presented. Finally, the prospects in the fabrication and commercialization of pilot-scale handheld SERS sensors and the construction of smart nanosubstrates integrated with novel amplifying materials for the detection of anions of environmental and health concern are proposed.
Collapse
Affiliation(s)
- Sintayehu Leshe Kitaw
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, ROC
| | - Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan, 320, Taiwan, ROC.
| |
Collapse
|
25
|
Zhang T, Cao Y, Chen M, Xie L. Recent advances in CNTs-based sensors for detecting the quality and safety of food and agro-product. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
26
|
PEDOT: PSS/AuNPs-Based Composite as Voltammetric Sensor for the Detection of Pirimicarb. Polymers (Basel) 2023; 15:polym15030739. [PMID: 36772040 PMCID: PMC9919558 DOI: 10.3390/polym15030739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
An electrochemical sensor for the pesticide Pirimicarb (PMC) has been developed. A screen-printed electrode (SPCE) was used and modified with the conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) and gold nanoparticles (AuNPs) to enhance electrochemical proprieties. Electrode characterizations were performed using scattering electron microscopy (SEM) and cyclic voltammetry (CV). With the SPCE/PEDOT:PSS/AuNPs modified electrode, a new peak at 1.0 V appeared in the presence of PMC related to the PMC oxidation. To elucidate the mechanism of PMC oxidation, Gas Chromatography-Mass Spectrometry (GC-MS), where two major peaks were identified, evidencing that the device can both detect and degrade PMC by an electro-oxidation process. Exploring this peak signal, it was possible the sensor development, performing detection from 93.81-750 µmol L-1, limits of quantification (LOQ) and detection (LOD) of 93.91 µmol L-1 and 28.34 µmol L-1, respectively. Thus, it was possible to study and optimization of PMC degradation, moreover, to perform detection at low concentrations and with good selectivity against different interferents using a low-cost printed electrode based on graphite modified with conductive polymer and AuNPs.
Collapse
|
27
|
Al-Hamry A, Lu T, Bai J, Adiraju A, Ega TK, Pašti IA, Kanoun O. Layer-by-Layer Deposited Multi-Modal PDAC/rGO Composite-Based Sensors. Foods 2023; 12:foods12020268. [PMID: 36673364 PMCID: PMC9857774 DOI: 10.3390/foods12020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Different environmental parameters, such as temperature and humidity, aggravate food spoilage, and different volatile organic compounds (VOCs) are released based on the extent of spoilage. In addition, a lack of efficient monitoring of the dosage of pesticides leads to crop failure. This could lead to the loss of food resources and food production with harmful contaminants and a short lifetime. For this reason, precise monitoring of different environmental parameters and contaminations during food processing and storage is a key factor for maintaining its safety and nutritional value. Thus, developing reliable, efficient, cost-effective sensor devices for these purposes is of utmost importance. This paper shows that Poly-(diallyl-dimethyl ammonium chloride)/reduced Graphene oxide (PDAC/rGO) films produced by a simple Layer-by-Layer deposition can be effectively used to monitor temperature, relative humidity, and the presence of volatile organic compounds as indicators for spoilage odors. At the same time, they show potential for electrochemical detection of organophosphate pesticide dimethoate. By monitoring the resistance/impedance changes during temperature and relative humidity variations or upon the exposure of PDAC/rGO films to methanol, good linear responses were obtained in the temperature range of 10-100 °C, 15-95% relative humidity, and 35 ppm-55 ppm of methanol. Moreover, linearity in the electrochemical detection of dimethoate is shown for the concentrations in the order of 102 µmol dm-3. The analytical response to different external stimuli and analytes depends on the number of layers deposited, affecting sensors' sensitivity, response and recovery time, and long-term stability. The presented results could serve as a starting point for developing advanced multi-modal sensors and sensor arrays with high potential for analytical applications in food safety and quality monitoring.
Collapse
Affiliation(s)
- Ammar Al-Hamry
- Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Tianqi Lu
- Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Jing Bai
- Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Anurag Adiraju
- Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Tharun K. Ega
- Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Igor A. Pašti
- University of Belgrade—Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Olfa Kanoun
- Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Correspondence:
| |
Collapse
|
28
|
Portable Wireless Intelligent Electrochemical Sensor for the Ultrasensitive Detection of Rutin Using Functionalized Black Phosphorene Nanocomposite. Molecules 2022; 27:molecules27196603. [PMID: 36235140 PMCID: PMC9571638 DOI: 10.3390/molecules27196603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/04/2022] Open
Abstract
To build a portable and sensitive method for monitoring the concentration of the flavonoid rutin, a new electrochemical sensing procedure was established. By using nitrogen-doped carbonized polymer dots (N-CPDs) anchoring few-layer black phosphorene (N-CPDs@FLBP) 0D-2D heterostructure and gold nanoparticles (AuNPs) as the modifiers, a carbon ionic liquid electrode and a screen-printed electrode (SPE) were used as the substrate electrodes to construct a conventional electrochemical sensor and a portable wireless intelligent electrochemical sensor, respectively. The electrochemical behavior of rutin on the fabricated electrochemical sensors was explored in detail, with the analytical performances investigated. Due to the electroactive groups of rutin, and the specific π-π stacking and cation-π interaction between the nanocomposite with rutin, the electrochemical responses of rutin were greatly enhanced on the AuNPs/N-CPDs@FLBP-modified electrodes. Under the optimal conditions, ultra-sensitive detection of rutin could be realized on AuNPs/N-CPDs@FLBP/SPE with the detection range of 1.0 nmol L-1 to 220.0 μmol L-1 and the detection limit of 0.33 nmol L-1 (S/N = 3). Finally, two kinds of sensors were applied to test the real samples with satisfactory results.
Collapse
|
29
|
Stability Enhancement of Laser-Scribed Reduced Graphene Oxide Electrodes Functionalized by Iron Oxide/Reduced Graphene Oxide Nanocomposites for Nitrite Sensors. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6080221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An iron oxide/reduced graphene oxide (ION-RGO) nanocomposite has been fabricated to functionalize a low-cost electrochemical nitrite sensor realized by light-scribed reduced graphene oxide (LRGO) electrodes on a PET substrate. To enhance the stability and adhesion of the electrode, the PET substrate was modified by RF oxygen plasma, and a thin layer of the cationic poly (diallyl dimethyl ammonium chloride) was deposited. Raman spectroscopy and scanning electron microscopy coupled to energy-dispersive X-ray spectroscopy (SEM-EDX) reveal that the light-scribing process successfully reduces graphene oxide while forming a porous multilayered structure. As confirmed by cyclic voltammetry, the LRGO electrochemical response to ferri-ferrocyanide and nitrite is significantly improved after functionalization with the ION-RGO nanocomposite film. Under optimized differential pulse voltammetry conditions, the LRGO/ION-RGO electrode responds linearly (R2 = 0.97) to nitrite in the range of 10–400 µM, achieving a limit of detection of 7.2 μM and sensitivity of 0.14 µA/µM. A single LRGO/ION-RGO electrode stands for 11 consecutive runs. The novel fabrication process leads to highly stable and reproducible electrodes for electrochemical sensors and thus offers a low-cost option for the rapid and sensitive detection of nitrite.
Collapse
|
30
|
Margiana R, Hammid AT, Ahmad I, Alsaikhan F, Turki Jalil A, Tursunbaev F, Umar F, Romero Parra RM, Fakri Mustafa Y. Current Progress in Aptasensor for Ultra-Low Level Monitoring of Parkinson's Disease Biomarkers. Crit Rev Anal Chem 2022; 54:617-632. [PMID: 35754381 DOI: 10.1080/10408347.2022.2091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In today's world, Parkinson's disease (PD) has been introduced as a long-term degenerative disorder of the central nervous system which mainly affects approximately more than ten million people worldwide. The vast majority of diagnostic methods for PD have operated based on conventional sensing platforms, while the traditional laboratory tests are not efficient for diagnosis of PD in the early stage due to symptoms of this common neurodegenerative syndrome starting slowly. The advent of the aptasensor has revolutionized the early-stage diagnosis of PD by measuring related biomarkers due to the myriad advantages of originating from aptamers which can be able to sensitive and selective capture various types of related biomarkers. The progress of numerous sensing platforms and methodologies in terms of biosensors based on aptamer application for PD diagnosis has revealed promising results. In this review, we present the latest developments in myriad types of aptasensors for the determination of related PD biomarkers. Working strategies, advantages and limitations of these sensing approaches are also mentioned, followed by prospects and challenges.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Dr. Soetomo General Academic Hospital, Indonesia Surabaya
| | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | - Farkhod Tursunbaev
- Independent Researcher, "Medcloud" Educational Centre, Tashkent, Uzbekistan
- Research Scholar, Department of Science and Innovation, Akfa University, Tashkent, Uzbekistan
| | - Fadilah Umar
- Department of Sports Science, Faculty of Sports, Sebelas Maret University, Surakarta, Indonesia
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
31
|
Luo YS, Chen Z, Hsieh NH, Lin TE. Chemical and biological assessments of environmental mixtures: A review of current trends, advances, and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128658. [PMID: 35290896 DOI: 10.1016/j.jhazmat.2022.128658] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 05/28/2023]
Abstract
Considering the chemical complexity and toxicity data gaps of environmental mixtures, most studies evaluate the chemical risk individually. However, humans are usually exposed to a cocktail of chemicals in real life. Mixture health assessment remains to be a research area having significant knowledge gaps. Characterization of chemical composition and bioactivity/toxicity are the two critical aspects of mixture health assessments. This review seeks to introduce the recent progress and tools for the chemical and biological characterization of environmental mixtures. The state-of-the-art techniques include the sampling, extraction, rapid detection methods, and the in vitro, in vivo, and in silico approaches to generate the toxicity data of an environmental mixture. Application of these novel methods, or new approach methodologies (NAMs), has increased the throughput of generating chemical and toxicity data for mixtures and thus refined the mixture health assessment. Combined with computational methods, the chemical and biological information would shed light on identifying the bioactive/toxic components in an environmental mixture.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan.
| | - Zunwei Chen
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nan-Hung Hsieh
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Tzu-En Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
32
|
Sensitive Biosensor Based on Shape-Controlled ZnO Nanostructures Grown on Flexible Porous Substrate for Pesticide Detection. SENSORS 2022; 22:s22093522. [PMID: 35591210 PMCID: PMC9104612 DOI: 10.3390/s22093522] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 02/04/2023]
Abstract
Developing an inexpensive, sensitive, and point-of-use biosensor for pesticide detection is becoming an important area in sensing. Such sensors can be used in food packaging, agricultural fields, and environmental monitoring of pesticides. The present investigation has developed a zinc oxide (ZnO)-based biosensor on porous, flexible substrates such as carbon paper and carbon cloth to detect organophosphates such as paraoxon (OP). Here, the influence of morphology and underlying substrate on biosensor performance was studied. The biosensors were fabricated by immobilizing the acetylcholinesterase (AChE) enzyme on ZnO, which is directly grown on the flexible substrates. The ZnO biosensors fabricated on the carbon cloth demonstrated good performance with the detection limit of OP in the range of 0.5 nM–5 µM, higher sensitivity, and greater stability.
Collapse
|
33
|
Sivaranjanee R, Senthil Kumar P, Saravanan R, Govarthanan M. Electrochemical sensing system for the analysis of emerging contaminants in aquatic environment: A review. CHEMOSPHERE 2022; 294:133779. [PMID: 35114262 DOI: 10.1016/j.chemosphere.2022.133779] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
This survey distinguishes understudied spaces of arising impurity research in wastewaters and the habitat, and suggests bearing for future checking. Thinking about the impeding effect of toxins on human wellbeing and biological system, their discovery in various media including water is fundamental. This review sums up and assesses the latest advances in the electrochemical detecting of emerging contaminants (ECs). This survey is expected to add to the advancement in electrochemical applications towards the ECs. Different electrochemical insightful procedures like Amperometry, Voltammetry has been examined in this overview. The improvement of cutting edge nanomaterial-based electrochemical sensors and biosensors for the discovery of drug compounds has accumulated monstrous consideration because of their benefits, like high affectability and selectivity, continuous observing, and convenience has been reviewed in this survey. This survey likewise features the diverse electrochemical treatment procedures accessible for the removal of ECs.
Collapse
Affiliation(s)
- R Sivaranjanee
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai, 600119, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - R Saravanan
- Department of Mechanical Engineering, Universidad de Tarapacá, Arica, Chile
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
34
|
Adam T, Gopinath SC. Nanosensors: Recent Perspectives on Attainments and Future Promise of Downstream Applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
|
36
|
Nethravathi PC, V Manjula M, Devaraja S, Suresh D. Ag and BiVO4 decorated reduced Graphene oxide: A potential nano hybrid material for photocatalytic, sensing and biomedical applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214305] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Enhanced Nitrite Detection by a Carbon Screen Printed Electrode Modified with Photochemically-Made AuNPs. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Excessive nitrite amounts harm the environment and put public health at high risk. Therefore, accurate and sensitive detection of nitrite in surface and groundwater is mandatory for mitigating its adverse effects. Herein, a highly sensitive electrochemical sensor based on carbon screen-printed electrodes (CSPE) surface-modified with photochemically-made gold nanoparticles (AuNPs, ~12 nm) is proposed for nitrite detection. Scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy show that AuNPs uniformly coat the CSPE, increase its surface area, and contribute to oxidizing nitrite to much lower potential (+0.5 V vs. Ag/AgCl) and faster rate. Under optimized differential pulse voltammetry conditions, the CSPE/AuNPs-PEI electrode responds linearly (R2 > 0.99) to nitrite within a wide concentration range (0.01–4.0 µM), showing a sensitivity of 0.85 µA·µM−1·cm−2 and limit of detection as low as 2.5 nM. The CSPE/AuNPs-PEI electrode successfully detects nitrite in tap water and canned water of olives, showing no influence of those matrices. In addition, the electrode’s response is highly reproducible since a relative standard deviation lower than 10% is observed when the same electrode is operated in five consecutive measurements or when electrodes of different fabrication batches are evaluated.
Collapse
|
39
|
Yaqub A, Gilani SR, Bilal S, Hayat A, Asif A, Siddique SA. Efficient Preparation of a Nonenzymatic Nanoassembly Based on Cobalt-Substituted Polyoxometalate and Polyethylene Imine-Capped Silver Nanoparticles for the Electrochemical Sensing of Carbofuran. ACS OMEGA 2022; 7:149-159. [PMID: 35036686 PMCID: PMC8757336 DOI: 10.1021/acsomega.1c04198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/17/2021] [Indexed: 05/13/2023]
Abstract
The ever-growing exploitation of pesticides and their lethal effects on living beings have made it a dire need of the day to develop an accurate and reliable approach for their monitoring at trace levels. The designing of an enzyme-free electrocatalyst to electrochemically detect the pesticide residues is currently gaining much importance. In this study, a novel redox-sensing film was constructed successfully based on cobalt-substituted Dawson-type polyoxometalate [P2W17O61 (Co2+·OH2)]7- (Co-POM) and polyethylene imine (PEI)-capped silver nanoparticles (AgNPs). A nanohybrid assembly was fabricated on a glassy carbon electrode's surface by alternately depositing Co-POM and PEI-AgNPs using the layer-by-layer self-assembly method. The surface morphology of the immobilized CoPOM/AgNP multilayer nanoassembly was analyzed through scanning electron microscopy along with energy-dispersive spectroscopy for elemental analysis. The redox properties and surface morphologies of fabricated assemblies were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The practicability and feasibility of the proposed sensing layer was tested for the detection of a highly toxic insecticide, that is, carbofuran. The fabricated sensor exhibited a limit of detection of 0.1 mM with a sensitivity of 13.11 μA mM-1 for carbofuran. The results depicted that the fabricated nonenzymatic hybrid film showed excellent electrocatalytic efficiency for the carbofuran oxidation. Furthermore, the obtained value of "apparent Km", that is, 0.4 mM, illustrates a good electro-oxidation activity of the sensor for the detection of carbofuran. The exceptionally stable redox activity of Co-POM, high surface area and greater conductivity of AgNPs, and the synergistic effect of all components of the film resulted in an excellent analytical performance of the proposed sensing assembly. This work provides a new direction to the progress and designing of nonenzymatic electrochemical sensors for pesticide determination in real samples.
Collapse
Affiliation(s)
- Amna Yaqub
- University
of Engineering and Technology, Lahore 54000, Pakistan
- . Phone: +92 321 8810508
| | | | - Sehrish Bilal
- Interdisciplinary
Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Akhtar Hayat
- Interdisciplinary
Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Anila Asif
- Interdisciplinary
Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Saadat Anwar Siddique
- Interdisciplinary
Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
40
|
Feng X, Han G, Cai J, Wang X. Au@Carbon quantum Dots-MXene nanocomposite as an electrochemical sensor for sensitive detection of nitrite. J Colloid Interface Sci 2021; 607:1313-1322. [PMID: 34583036 DOI: 10.1016/j.jcis.2021.09.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022]
Abstract
A highly sensitive electrochemical sensor was developed through a one-pot green synthesis method for nitrite detection based on the electrochemical technique. Xylan-based carbon quantum dots (CQDs) were used as green in situ reducing agent to prepare CQDs capped gold nanoparticles (Au@CQDs). MXene of good electrical conductivity was used as the immobilized matrix to fabricate Au@CQDs-MXene nanocomposites with the advantages of good electrical conductivity and electrocatalysis. An electrochemical sensor for nitrite monitor was obtained by loading the Au@CQDs-MXene on a glassy carbon electrode. The sensor presents high sensitivity, good stability, wide linear range, and excellent selectivity due to the high catalytic activity of AuNPs and CQDs, the large specific surface area of MXene, and exceptional electrical conductivity of AuNPs and MXene. Under the optimal condition, the linear detection range of the sensor was from 1 μM to 3200 μM with a detection limit of 0.078 μM (S/N = 3), which was superior to most reported sensors using differential pulse voltammetry (DPV) method. Furthermore, this sensor was successfully applied to detect nitrite in tap water and salted vegetables with satisfactory recoveries. This modified electrocatalytic sensor shows a new pathway to fabricate nitrite detection sensor with feasibility for practical application.
Collapse
Affiliation(s)
- Xiwen Feng
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Guangda Han
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Jihai Cai
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Wushan Road, Tianhe District, Guangzhou 510640, China.
| |
Collapse
|
41
|
Editorial to the Special Issue SELSA: "Sensors for Environmental and Life Science Applications". SENSORS 2021; 21:s21165353. [PMID: 34450795 PMCID: PMC8399639 DOI: 10.3390/s21165353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022]
|