1
|
Bjegojević B, Pušica M, Gianini G, Gligorijević I, Cromie S, Leva MC. Neuroergonomic Attention Assessment in Safety-Critical Tasks: EEG Indices and Subjective Metrics Validation in a Novel Task-Embedded Reaction Time Paradigm. Brain Sci 2024; 14:1009. [PMID: 39452023 PMCID: PMC11506387 DOI: 10.3390/brainsci14101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: This study addresses the gap in methodological guidelines for neuroergonomic attention assessment in safety-critical tasks, focusing on validating EEG indices, including the engagement index (EI) and beta/alpha ratio, alongside subjective ratings. Methods: A novel task-embedded reaction time paradigm was developed to evaluate the sensitivity of these metrics to dynamic attentional demands in a more naturalistic multitasking context. By manipulating attention levels through varying secondary tasks in the NASA MATB-II task while maintaining a consistent primary reaction-time task, this study successfully demonstrated the effectiveness of the paradigm. Results: Results indicate that both the beta/alpha ratio and EI are sensitive to changes in attentional demands, with beta/alpha being more responsive to dynamic variations in attention, and EI reflecting more the overall effort required to sustain performance, especially in conditions where maintaining attention is challenging. Conclusions: The potential for predicting the attention lapses through integration of performance metrics, EEG measures, and subjective assessments was demonstrated, providing a more nuanced understanding of dynamic fluctuations of attention in multitasking scenarios, mimicking those in real-world safety-critical tasks. These findings provide a foundation for advancing methods to monitor attention fluctuations accurately and mitigate risks in critical scenarios, such as train-driving or automated vehicle operation, where maintaining a high attention level is crucial.
Collapse
Affiliation(s)
- Bojana Bjegojević
- Human Factors in Safety and Sustainability (HFISS), Technological University Dublin, D07 EWV4 Dublin, Ireland; (B.B.)
- Centre for Innovative Human Systems (CIHS), Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Miloš Pušica
- Human Factors in Safety and Sustainability (HFISS), Technological University Dublin, D07 EWV4 Dublin, Ireland; (B.B.)
- mBrainTrain LLC, 11000 Belgrade, Serbia;
| | - Gabriele Gianini
- Department of Informatics Systems and Communication (DISCo), Università degli Studi di Milano-Bicocca, 20126 Milan, Italy
| | | | - Sam Cromie
- Centre for Innovative Human Systems (CIHS), Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Maria Chiara Leva
- Human Factors in Safety and Sustainability (HFISS), Technological University Dublin, D07 EWV4 Dublin, Ireland; (B.B.)
| |
Collapse
|
2
|
Ferreira R, Silva AP, Nunes-Pereira J. Current On-Skin Flexible Sensors, Materials, Manufacturing Approaches, and Study Trends for Health Monitoring: A Review. ACS Sens 2024; 9:1104-1133. [PMID: 38394033 PMCID: PMC10964246 DOI: 10.1021/acssensors.3c02555] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Due to an ever-increasing amount of the population focusing more on their personal health, thanks to rising living standards, there is a pressing need to improve personal healthcare devices. These devices presently require laborious, time-consuming, and convoluted procedures that heavily rely on cumbersome equipment, causing discomfort and pain for the patients during invasive methods such as sample-gathering, blood sampling, and other traditional benchtop techniques. The solution lies in the development of new flexible sensors with temperature, humidity, strain, pressure, and sweat detection and monitoring capabilities, mimicking some of the sensory capabilities of the skin. In this review, a comprehensive presentation of the themes regarding flexible sensors, chosen materials, manufacturing processes, and trends was made. It was concluded that carbon-based composite materials, along with graphene and its derivates, have garnered significant interest due to their electromechanical stability, extraordinary electrical conductivity, high specific surface area, variety, and relatively low cost.
Collapse
Affiliation(s)
- Rodrigo
G. Ferreira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Abílio P. Silva
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - João Nunes-Pereira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
3
|
Meiser A, Lena Knoll A, Bleichner MG. High-density ear-EEG for understanding ear-centered EEG. J Neural Eng 2024; 21:016001. [PMID: 38118173 DOI: 10.1088/1741-2552/ad1783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/20/2023] [Indexed: 12/22/2023]
Abstract
Background. Mobile ear-EEG provides the opportunity to record EEG unobtrusively in everyday life. However, in real-life, the EEG data quickly becomes difficult to interpret, as the neural signal is contaminated by other, non-neural signal contributions. Due to the small number of electrodes in ear-EEG devices, the interpretation of the EEG becomes even more difficult. For meaningful and reliable ear-EEG, it is crucial that the brain signals we wish to record in real life are well-understood and that we make optimal use of the available electrodes. Their placement should be guided by prior knowledge about the characteristics of the signal of interest.Objective.We want to understand the signal we record with ear-EEG and make recommendations on how to optimally place a limited number of electrodes.Approach.We built a high-density ear-EEG with 31 channels spaced densely around one ear. We used it to record four auditory event-related potentials (ERPs): the mismatch negativity, the P300, the N100 and the N400. With this data, we gain an understanding of how different stages of auditory processing are reflected in ear-EEG. We investigate the electrode configurations that carry the most information and use a mass univariate ERP analysis to identify the optimal channel configuration. We additionally use a multivariate approach to investigate the added value of multi-channel recordings.Main results.We find significant condition differences for all ERPs. The different ERPs vary considerably in their spatial extent and different electrode positions are necessary to optimally capture each component. In the multivariate analysis, we find that the investigation of the ERPs benefits strongly from multi-channel ear-EEG.Significance.Our work emphasizes the importance of a strong theoretical and practical background when building and using ear-EEG. We provide recommendations on finding the optimal electrode positions. These results will guide future research employing ear-EEG in real-life scenarios.
Collapse
Affiliation(s)
- Arnd Meiser
- Neurophysiology of Everyday Life Group, Department of Psychology, University of Oldenburg, Oldenburg, Germany
- Faculty of Business Studies and Economics, University of Bremen, Bremen, Germany
| | - Anna Lena Knoll
- Neurophysiology of Everyday Life Group, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | - Martin G Bleichner
- Neurophysiology of Everyday Life Group, Department of Psychology, University of Oldenburg, Oldenburg, Germany
- Research Center for Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
4
|
Ulate-Campos A, Loddenkemper T. Review on the current long-term, limited lead electroencephalograms. Epilepsy Behav 2024; 150:109557. [PMID: 38070411 DOI: 10.1016/j.yebeh.2023.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 01/14/2024]
Abstract
In the last century, 10-20 lead EEG recordings became the gold standard of surface EEG recordings, and the 10-20 system provided comparability between international studies. With the emergence of advanced EEG sensors, that may be able to record and process signals in much more compact units, this additional sensor technology now opens up opportunities to revisit current ambulatory EEG recording practices and specific patient populations, and even electrodes that are embedded into the head surface. Here, we aim to provide an overview of current limited sensor long-term EEG systems. We performed a literature review using Pubmed as a database and included the relevant articles. The review identified several systems for recording long-term ambulatory EEGs. In general, EEGs recorded with these modalities can be acquired in ambulatory and home settings, achieve good sensitivity with low false detection rates, are used for automatic seizure detection as well as seizure forecasting, and are well tolerated by patients, but each of them has advantages and disadvantages. Subcutaneous, subgaleal, and subscalp electrodes are minimally invasive and provide stable signals that can record ultra--long-term EEG and are in general less noisy than scalp EEG, but they have limited spatial coverage and require anesthesia, a surgical procedure and a trained surgeon to be placed. Behind and in the ear electrodes are discrete, unobtrusive with a good sensitivity mainly for temporal seizures but might miss extratemporal seizures, recordings could be obscured by muscle artifacts and bilateral ictal patterns might be difficult to register. Finally, recording systems using electrodes in a headband can be easily and quickly placed by the patient or caregiver, but have less spatial coverage and are more prone to movement because electrodes are not attached. Overall, limited EEG recording systems offer a promising opportunity to potentially record targeted EEG with focused indications for prolonged periods, but further validation work is needed.
Collapse
|
5
|
de Beukelaar TT, Mantini D. Monitoring Resistance Training in Real Time with Wearable Technology: Current Applications and Future Directions. Bioengineering (Basel) 2023; 10:1085. [PMID: 37760187 PMCID: PMC10525173 DOI: 10.3390/bioengineering10091085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Resistance training is an exercise modality that involves using weights or resistance to strengthen and tone muscles. It has become popular in recent years, with numerous people including it in their fitness routines to ameliorate their strength, muscle mass, and overall health. Still, resistance training can be complex, requiring careful planning and execution to avoid injury and achieve satisfactory results. Wearable technology has emerged as a promising tool for resistance training, as it allows monitoring and adjusting training programs in real time. Several wearable devices are currently available, such as smart watches, fitness trackers, and other sensors that can yield detailed physiological and biomechanical information. In resistance training research, this information can be used to assess the effectiveness of training programs and identify areas for improvement. Wearable technology has the potential to revolutionize resistance training research, providing new insights and opportunities for developing optimized training programs. This review examines the types of wearables commonly used in resistance training research, their applications in monitoring and optimizing training programs, and the potential limitations and challenges associated with their use. Finally, it discusses future research directions, including the development of advanced wearable technologies and the integration of artificial intelligence in resistance training research.
Collapse
Affiliation(s)
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium;
| |
Collapse
|
6
|
Tseghai GB, Malengier B, Fante KA, Van Langenhove L. Hook Fabric Electroencephalography Electrode for Brain Activity Measurement without Shaving the Head. Polymers (Basel) 2023; 15:3673. [PMID: 37765526 PMCID: PMC10537404 DOI: 10.3390/polym15183673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
In this research, novel electroencephalogram (EEG) electrodes were developed to detect high-quality EEG signals without the requirement of conductive gels, skin treatments, or head shaving. These electrodes were created using electrically conductive hook fabric with a resistance of 1 Ω/sq. The pointed hooks of the conductive fabric establish direct contact with the skin and can penetrate through hair. To ensure excellent contact between the hook fabric electrode and the scalp, a knitted-net EEG bridge cap with a bridging effect was employed. The results showed that the hook fabric electrode exhibited lower skin-to-electrode impedance compared to the dry Ag/AgCl comb electrode. Additionally, it collected high-quality signals on par with the standard wet gold cups and commercial dry Ag/AgCl comb electrodes. Moreover, the hook fabric electrode displayed a higher signal-to-noise ratio (33.6 dB) with a 4.2% advantage over the standard wet gold cup electrode. This innovative electrode design eliminates the need for conductive gel and head shaving, offering enhanced flexibility and lightweight characteristics, making it ideal for integration into textile structures and facilitating convenient long-term monitoring.
Collapse
Affiliation(s)
- Granch Berhe Tseghai
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9000 Gent, Belgium; (B.M.); (L.V.L.)
- Jimma Institute of Technology, Jimma University, Jimma P.O. Box 307, Ethiopia;
| | - Benny Malengier
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9000 Gent, Belgium; (B.M.); (L.V.L.)
| | - Kinde Anlay Fante
- Jimma Institute of Technology, Jimma University, Jimma P.O. Box 307, Ethiopia;
| | - Lieva Van Langenhove
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9000 Gent, Belgium; (B.M.); (L.V.L.)
| |
Collapse
|
7
|
Petrossian G, Kateb P, Miquet-Westphal F, Cicoira F. Advances in Electrode Materials for Scalp, Forehead, and Ear EEG: A Mini-Review. ACS APPLIED BIO MATERIALS 2023; 6:3019-3032. [PMID: 37493408 DOI: 10.1021/acsabm.3c00322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Electroencephalogram (EEG) records the electrical activity of neurons in the cerebral cortex and is used extensively to diagnose, treat, and monitor psychiatric and neurological conditions. Reliable contact between the skin and the electrodes is essential for achieving consistency and for obtaining electroencephalographic information. There has been an increasing demand for effective equipment and electrodes to overcome the time-consuming and cumbersome application of traditional systems. Recently, ear-centered EEG has met with growing interest since it can provide good signal quality due to the proximity of the ear to the brain. In addition, it can facilitate mobile and unobtrusive usage due to its smaller size and ease of use, since it can be used without interfering with the patient's daily activities. The purpose of this mini-review is to first introduce the broad range of electrodes used in conventional (scalp) EEG and subsequently discuss the state-of-the-art literature about around- and in-the-ear EEG.
Collapse
Affiliation(s)
- Gayaneh Petrossian
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Pierre Kateb
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | | | - Fabio Cicoira
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| |
Collapse
|
8
|
Peksa J, Mamchur D. State-of-the-Art on Brain-Computer Interface Technology. SENSORS (BASEL, SWITZERLAND) 2023; 23:6001. [PMID: 37447849 DOI: 10.3390/s23136001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
This paper provides a comprehensive overview of the state-of-the-art in brain-computer interfaces (BCI). It begins by providing an introduction to BCIs, describing their main operation principles and most widely used platforms. The paper then examines the various components of a BCI system, such as hardware, software, and signal processing algorithms. Finally, it looks at current trends in research related to BCI use for medical, educational, and other purposes, as well as potential future applications of this technology. The paper concludes by highlighting some key challenges that still need to be addressed before widespread adoption can occur. By presenting an up-to-date assessment of the state-of-the-art in BCI technology, this paper will provide valuable insight into where this field is heading in terms of progress and innovation.
Collapse
Affiliation(s)
- Janis Peksa
- Department of Information Technologies, Turiba University, Graudu Street 68, LV-1058 Riga, Latvia
- Institute of Information Technology, Riga Technical University, Kalku Street 1, LV-1658 Riga, Latvia
| | - Dmytro Mamchur
- Department of Information Technologies, Turiba University, Graudu Street 68, LV-1058 Riga, Latvia
- Computer Engineering and Electronics Department, Kremenchuk Mykhailo Ostrohradskyi National University, Pershotravneva 20, 39600 Kremenchuk, Ukraine
| |
Collapse
|
9
|
Yin J, Xu J, Ren TL. Recent Progress in Long-Term Sleep Monitoring Technology. BIOSENSORS 2023; 13:395. [PMID: 36979607 PMCID: PMC10046225 DOI: 10.3390/bios13030395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Sleep is an essential physiological activity, accounting for about one-third of our lives, which significantly impacts our memory, mood, health, and children's growth. Especially after the COVID-19 epidemic, sleep health issues have attracted more attention. In recent years, with the development of wearable electronic devices, there have been more and more studies, products, or solutions related to sleep monitoring. Many mature technologies, such as polysomnography, have been applied to clinical practice. However, it is urgent to develop wearable or non-contacting electronic devices suitable for household continuous sleep monitoring. This paper first introduces the basic knowledge of sleep and the significance of sleep monitoring. Then, according to the types of physiological signals monitored, this paper describes the research progress of bioelectrical signals, biomechanical signals, and biochemical signals used for sleep monitoring. However, it is not ideal to monitor the sleep quality for the whole night based on only one signal. Therefore, this paper reviews the research on multi-signal monitoring and introduces systematic sleep monitoring schemes. Finally, a conclusion and discussion of sleep monitoring are presented to propose potential future directions and prospects for sleep monitoring.
Collapse
Affiliation(s)
- Jiaju Yin
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jiandong Xu
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tian-Ling Ren
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|