1
|
Kim MS, Chae E, Min HG, Kim JG. Applicability of Brassica juncea as a bioindicator for As contamination in soil near the abandoned mine area. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120805. [PMID: 38599085 DOI: 10.1016/j.jenvman.2024.120805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/19/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
Soil monitoring in abandoned mine areas is important from the perspective of ecological and human health risk. Arsenic (As) is a predominant metalloid contaminant in abandoned mine area and its behavior has been influenced by various soil characteristics. Bioindicator can be a useful tool in terms of testing the extent to which they are uptaken by plants bioavailability. Eighteen soils near the mine tailings dam were collected to investigate the effect of As contamination on As absorption by Brassica juncea. The pH range of the experimental soils was between 4.90 and 8.55, and the total As concentrations were between 34 mg kg-1 and 3017 mg kg-1. The bioavailability of As was evaluated by Olsen method, and B. juncea was cultivated in eighteen soils for 3 weeks. Principal component analysis, correlation, and multiple regression analysis were performed to estimate a significant factor affecting As uptake by B. juncea. All statistical results indicated that As bioavailability in soil is the main factor affecting As uptake in root and shoot of B. juncea. Although translocation process, the amount of As in shoot was exponentially explained by As bioavailability in soil. This result suggests that the contamination and bioavailability of As can be confirmed only by analyzing the shoot of B. juncea, which is be easily found in environmental ecosystem, and implies the applicability of B. juncea as a bioindicator for the monitoring of As contamination and its behavior in soil ecosystem.
Collapse
Affiliation(s)
- Min-Suk Kim
- Waste Resources Management Division, Ministry of Environment, Sejong, 30103, Republic of Korea
| | - Eunji Chae
- OJeong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun-Gi Min
- OJeong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Jeong-Gyu Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Strach A, Dulski M, Wasilkowski D, Matus K, Dudek K, Podwórny J, Rawicka P, Grebnevs V, Waloszczyk N, Nowak A, Poloczek P, Golba S. Multifaceted Assessment of Porous Silica Nanocomposites: Unraveling Physical, Structural, and Biological Transformations Induced by Microwave Field Modification. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:337. [PMID: 38392710 PMCID: PMC10893391 DOI: 10.3390/nano14040337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
In response to the persistent challenge of heavy and noble metal environmental contamination, our research explores a new idea to capture silver through porous spherical silica nanostructures. The aim was realized using microwave radiation at varying power (P = 150 or 800 W) and exposure times (t = 60 or 150 s). It led to the development of a silica surface with enhanced metal-capture capacity. The microwave-assisted silica surface modification influences the notable changes within the carrier but also enforces the crystallization process of silver nanoparticles with different morphology, structure, and chemical composition. Microwave treatment can also stimulate the formation of core-shell bioactive Ag/Ag2CO3 heterojunctions. Due to the silver nanoparticles' sphericity and silver carbonate's presence, the modified nanocomposites exhibited heightened toxicity against common microorganisms, such as E. coli and S. epidermidis. Toxicological assessments, including minimum inhibitory concentration (MIC) and half-maximal inhibitory concentration (IC50) determinations, underscored the efficacy of the nanocomposites. This research represents a significant stride in addressing pollution challenges. It shows the potential of microwave-modified silicas in the fight against environmental contamination. Microwave engineering underscores a sophisticated approach to pollution remediation and emphasizes the pivotal role of nanotechnology in shaping sustainable solutions for environmental stewardship.
Collapse
Affiliation(s)
- Aleksandra Strach
- Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland
| | - Mateusz Dulski
- Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland (S.G.)
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland; (D.W.); (A.N.)
| | - Krzysztof Matus
- Materials Research Laboratory, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland;
| | - Karolina Dudek
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8, 31-938 Cracow, Poland; (K.D.); (J.P.)
| | - Jacek Podwórny
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8, 31-938 Cracow, Poland; (K.D.); (J.P.)
| | - Patrycja Rawicka
- A. Chełkowski Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Vladlens Grebnevs
- Faculty of Chemistry, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice, Poland;
| | - Natalia Waloszczyk
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice, Poland;
| | - Anna Nowak
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland; (D.W.); (A.N.)
| | - Paulina Poloczek
- Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland (S.G.)
| | - Sylwia Golba
- Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland (S.G.)
| |
Collapse
|
3
|
Unar A, Sarfraz M, Ajarem JS, Allam AA, Bhatti U, Chanihoon GQ, Afridi HI. Mitigating marine hazardous contaminants: A sustainable management perspective. CHEMOSPHERE 2023; 338:139292. [PMID: 37437618 DOI: 10.1016/j.chemosphere.2023.139292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
Marine hazardous contaminants, such as cadmium (Cd) and lead (Pb), pose significant risks to both human health and aquatic organisms. Traditional methods may not remove contaminants to safe levels, leading to the release of hazardous materials into marine environments. This research proposes polymeric membrane bioreactors as a potential solution to this problem. We determined Cd and Pb levels in three freshwater fish species (Rita, Ompok bimaculatus, and Heteropneustes fossils) from two distinctive regions (Zone 1 and Zone 2). Additionally, Cd and Pb concentrations in feeding materials, water, and sediments were analyzed to estimate daily intake and potential hazardous effects of these contaminants on the fish species. These findings underscore the need for effective regulatory measures and policies to reduce the discharge of hazardous contaminants into freshwater and marine environments, protecting both human health and the environment. Implementing polymeric membrane bioreactors in wastewater treatment and industrial facilities could mitigate the risks associated with consuming contaminated fish species. Significantly, the Cd and Pb levels in all three fish species from both fishponds exceeded the Food and Agriculture Organization's (FAO) maximum permissible limits. These findings carry important implications for policymakers, regulators, and industries, urging them to act appropriately to ensure the safety of the environment and public health. This study suggests that polymeric membrane bioreactors are a promising technological approach to address marine contamination, emphasizing their potential role in safeguarding human health and aquatic ecosystems.
Collapse
Affiliation(s)
- Ahsanullah Unar
- Department of Translational Medicine, University of Campania 'L. Vanvitelli, Naples, Italy
| | - Muddassar Sarfraz
- School of Management, Zhejiang Shuren University, 310015, Hangzhou, PR China.
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Urooj Bhatti
- Physiology Department, Liaquat University of Medical and Health Sciences, Jamshoro, 76090, Pakistan
| | - Ghulam Qadir Chanihoon
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76090, Pakistan
| | - Hassan Imran Afridi
- Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
| |
Collapse
|
4
|
Lam VP, Beomseon L, Anh VK, Loi DN, Kim S, Kwang-ya L, Park J. Effectiveness of silver nitrate application on plant growth and bioactive compounds in Agastache rugosa (Fisch. & C.A.Mey.) kuntze. Heliyon 2023; 9:e20205. [PMID: 37810151 PMCID: PMC10559964 DOI: 10.1016/j.heliyon.2023.e20205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The objective of this study was to determine the optimal dose of silver nitrate (AgNO3) for plant growth and to increase the main bioactive compounds in A. rugosa cultivated in a hydroponic system. The application of soaked diniconazole (120 μmol mol-1) to all plants at 7 days after transplanting (DAT) for dwarfing plant height, optimizing cultivation space in the plant factory. Subsequently, plants were soaked with 50, 100, 200, and 400 μmol mol-1 AgNO3 for 10 min at 25 DAT and harvested at 39 DAT. The results indicated that 200 and 400 μmol mol-1 treatments tended to severely decrease plant growth parameters compared to treatments with lower concentrations. The net photosynthetic rate was significantly reduced by the 200 and 400 μmol mol-1 treatments compared to treatments with other concentrations. The 400 μmol mol-1 treatment led to the lowest concentrations of chlorophyll a, chlorophyll a/b, total carotenoid, chlorophyll b, and the total chlorophyll. However, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was considerably increased in 50, 100, 200, and 400 μmol mol-1 compared to that of the control plants. A higher rosmarinic acid (RA) concentration in the whole plant was noticed with the 400 μmol mol-1 treatment compared with that of the untreated plants. The 100 μmol mol-1 treatment exhibited the highest concentration and content of tilianin in the whole plant. Concentration of acacetin 1 significantly increased in the whole plant with 100 and 200 μmol mol-1 treatments compared with that of the untreated plants. Concentrations of acacetin 2 and 3 in the whole plant were the highest with 100 and 200 μmol mol-1 treatments, respectively. The results demonstrated that 100 μmol mol-1 treatments can be used to increase bioactive compounds without severely limiting the plant growth and reducing chlorophyll concentrations of A. rugosa. Implementing this optimal dose can enable growers and researchers to cultivate A. rugosa more efficiently, enhancing bioactive compound content and overall plant performance, thus harnessing the potential health benefits of this valuable plant species.
Collapse
Affiliation(s)
- Vu Phong Lam
- Department of Horticultural Science, Chungnam National University, Daejeon, 34134, South Korea
- Department of Agronomy, Tay Bac University, Son La, 360000, Viet Nam
| | - Lee Beomseon
- Naru Agricultural Consultancy Company, Jisanmaeul-gil 19, Buk-gu, Gwangju city, 61014, South Korea
| | - Vu Ky Anh
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, 34134, South Korea
| | - Dao Nhan Loi
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, 34134, South Korea
- Department of Agronomy, Tay Bac University, Son La, 360000, Viet Nam
| | - Sunwoo Kim
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, 34134, South Korea
| | - Lee Kwang-ya
- Institude of Agriculture Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Jongseok Park
- Department of Horticultural Science, Chungnam National University, Daejeon, 34134, South Korea
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, 34134, South Korea
| |
Collapse
|
5
|
Anwar N, Mehmood A, Ahmad KS, Hussain K. Biosynthesized silver nanoparticles induce phytotoxicity in Vigna radiata L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2115-2126. [PMID: 34629782 PMCID: PMC8484397 DOI: 10.1007/s12298-021-01073-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED With the recent developments in the field of nanotechnology, the biosynthesis of nanoparticles has increased tremendously. Silver nanoparticles (SNPs) are among the most synthesized nanoparticles and this extensive synthesis can elevate the amounts of SNPs in the environment, which, consequently, pose a serious threat to the ecosystem and can bring unwanted environmental effects. As plants are an important part of ecosystem, investigation of toxic effects of SNPs on plants is particularly interesting. This study evaluates the potential risk of SNPs interaction with plants. For this, seeds of Vigna radiata L. were screened in presence of SNPs (20 mgL-1) using the germination, growth, and biochemical parameters as a phototoxicity criterion. The 19.57 nm average-sized SNPs were synthesized via the biosynthesis method. These biosynthesized SNPs were then applied on two varieties of V. radiata (Azri and High cross 404) and found to have variety dependent toxic effects on seed germination, growth, and biochemical parameters. Seed germination, root length, shoot length, fresh weight, chlorophyll, carotenoid, sugar content, and total proteins were reduced by 20, 46, 50, 18, 55, 62, 82, and 67%, respectively, in High cross 404, when compared with control (distilled water). The variety Azri was less sensitive than the variety High cross 404. In conclusion, the results demonstrated that SNPs affect seed germination and seedling growth when internalized and accumulated in plants, revealing that SNPs were responsible for the side effects. More in-depth research is required, in the form of different concentrations of SNPs or different plant species, to draw a logical conclusion and develop legislation about the safe use of biosynthesized SNPs. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01073-4.
Collapse
Affiliation(s)
- Najma Anwar
- Department of Botany, University of Poonch Rawalakot (UPR), Rawalakot, 12350 Pakistan
| | - Ansar Mehmood
- Department of Botany, University of Poonch Rawalakot (UPR), Rawalakot, 12350 Pakistan
| | | | - Karamit Hussain
- Department of Botany, The University of Azad Jammu And Kashmir (UAJK), Muzaffarabad, 13100 Pakistan
| |
Collapse
|
6
|
Physiological and Biochemical Responses of Pearl Millet ( Pennisetum glaucum L.) Seedlings Exposed to Silver Nitrate (AgNO 3) and Silver Nanoparticles (AgNPs). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16132261. [PMID: 31248040 PMCID: PMC6651700 DOI: 10.3390/ijerph16132261] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 01/24/2023]
Abstract
A rapid and continuous growth of silver nanoparticles (AgNPs) via their precursor “silver nitrate” (AgNO3) has increased their environmental risk because of their unsafe discharge into the surrounding environment. Both have damaging effects on plants and induce oxidative stress. In the present study, differential responses in the morpho-physiological and biochemical profiles of P. glaucum (L.) seedlings exposed to various doses of AgNPs and AgNO3 were studied. Both have forms of Ag accelerated the reactive oxygen species (ROS) production, which adversely affected the membrane stability as a result of their enhanced accumulation, and resulted in a significant reduction in growth, that is, root length, shoot length, fresh and dry biomass, and relative water content. AgNO3 possessed a higher degree of toxicity owing to its higher accumulation than AgNPs, and induced changes in the antioxidants’ enzyme activity: superoxide dismutase (SOD), peroxidase (POD), catalases (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), and glutathione reductase (GR) activity, as well as proline content, total phenolic, and total flavonoids contents (TFCs) under all tested treatments (mM). A decline in photosynthetic pigments such as total chlorophyll content and carotenoid content and alterations in quantum yield (Fv/Fm), photochemical (qP), and non-photochemical quenching (NPQ) indicated the blockage of the electron transport chain (ETC), which led to a significant inhibition of photosynthesis. Interestingly, seedlings exposed to AgNPs showed less damaging effects on P. glaucum (L.) seedlings, resulting in relatively lower oxidative stress in contrast to AgNO3. Our results revealed that AgNO3 and AgNPs possessed differential phytotoxic effects on P. glaucum (L.) seedlings, including their mechanism of uptake, translocation, and action. The present findings may be useful in phytotoxic research to design strategies that minimize the adverse effects of AgNPs and AgNO3 on crops, especially in the agriculture sector.
Collapse
|
7
|
Singh VK, Tripathi DK, Mao X, Russo RE, Zorba V. Elemental Mapping of Lithium Diffusion in Doped Plant Leaves Using Laser-Induced Breakdown Spectroscopy (LIBS). APPLIED SPECTROSCOPY 2019; 73:387-394. [PMID: 30700104 DOI: 10.1177/0003702819830394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mapping of element distributions and diffusion processes in plant tissue has great significance for understanding the systematic uptake, transport, and accumulation of nutrients and harmful elements in plants, and for studying the interaction between plants and the environment. In this work, we used laser-induced breakdown spectroscopy (LIBS) to study the elemental accumulation of Li and its diffusion in plant leaves. The spatially resolved information that LIBS offers, combined with its high sensitivity to light elements make this technology highly advantageous for the analysis of Li. Laser-induced breakdown spectroscopy mapping of Li-doped leaf samples is used to directly visualize the diffusion of Li in the plant leaf and study its distribution as a function of LiCl solution exposure time. Our findings demonstrate that diffusion of Li in plant leaves occurs though their veins (i.e., bundles of vascular tissue) and that Li concentration decreases as we move away from the LiCl exposure site. These results underline the importance of veins in transportation of toxic elements in plants, and mapping of their distribution can be instrumental in the development of possible remediation approaches for managing Li toxicity.
Collapse
Affiliation(s)
- Vivek K Singh
- 1 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- 2 School of Physics, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | | | - Xianglei Mao
- 1 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Vassilia Zorba
- 1 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
8
|
Cai L, Liu M, Liu Z, Yang H, Sun X, Chen J, Xiang S, Ding W. MgONPs Can Boost Plant Growth: Evidence from Increased Seedling Growth, Morpho-Physiological Activities, and Mg Uptake in Tobacco ( Nicotiana tabacum L.). Molecules 2018; 23:E3375. [PMID: 30572666 PMCID: PMC6321585 DOI: 10.3390/molecules23123375] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 11/16/2022] Open
Abstract
In this study, we documented the impact of magnesium oxide nanoparticles (MgONPs) on the various morpho-physiological changes by root irrigation in tobacco plants in the matrix media, as well as the uptake and accumulation of the NPs over a range of concentrations (50⁻250 μg/mL). Our results showed that the seed germination rate was not affected following exposure to MgONPs for 5 days. Enhanced plant growth together with increased peroxidase activity (39.63 U mg-1 protein in the 250 μg/mL MgONPs treatment, 36.63 U mg-1 protein in the control), superoxide dismutase activity (30.15 U mg-1 protein compared to 26.95 U mg-1 protein in the control), and chlorophyll content (the chlorophyll a and b contents in 0 and 250 μg/mL of MgONPs were 0.21, 0.12 μg/g to 1.21, 0.67 μg/g, respectively) were observed after 30 days of MgONP treatment. However, the malondialdehyde, protein, and relative water contents did not differ significantly, indicating that the NPs in the test concentrations had no phytotoxicity and even promoted plant growth. Scanning electron microscopy and paraffin section observations indicated that the MgONPs did not affect the plant tissue structures and cells. In addition, an elevated Mg content was detected in the plant tissues exposed to MgONPs, suggesting that the Mg was taken up by the tobacco roots and translocated to the shoots and leaves, which were probably the most important tools to cause an increase in the chlorophyll content and stimulate growth. In particular, compared with the controls, a substantially higher Mg content was observed in the leaves (12.93 mg/g in the MgONPs treatment, 9.30 mg/g in the control) exposed to 250 μg/mL MgONPs, especially in the lower and middle leaves. This result confirmed that the contents of plant Mg-element in the old leaves were increased by MgONPs. In summary, this study investigated increased Mg uptake and growth stimulation, as well as the induction of various positive morpho-physiological changes to tobacco plants when exposed to MgONPs. Results elucidate the promotional impact of the NPs on plant health and their implications for agricultural safety and security.
Collapse
Affiliation(s)
- Lin Cai
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Minghong Liu
- Zunyi Branch Company, Guizhou Tobacco Company, Zunyi 563000, China.
| | - Zhongwei Liu
- Guizhou Key Lab of Agro-Bioengineering, Guizhou University, Guiyang 550025, China.
| | - Huikuan Yang
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Juanni Chen
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Shunyu Xiang
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Wei Ding
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Busser B, Moncayo S, Coll JL, Sancey L, Motto-Ros V. Elemental imaging using laser-induced breakdown spectroscopy: A new and promising approach for biological and medical applications. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.12.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Comparative Study of the Detection of Chromium Content in Rice Leaves by 532 nm and 1064 nm Laser-Induced Breakdown Spectroscopy. SENSORS 2018; 18:s18020621. [PMID: 29463032 PMCID: PMC5855534 DOI: 10.3390/s18020621] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/04/2018] [Accepted: 02/13/2018] [Indexed: 11/17/2022]
Abstract
Fast detection of toxic metals in crops is important for monitoring pollution and ensuring food safety. In this study, laser-induced breakdown spectroscopy (LIBS) was used to detect the chromium content in rice leaves. We investigated the influence of laser wavelength (532 nm and 1064 nm excitation), along with the variations of delay time, pulse energy, and lens-to-sample distance (LTSD), on the signal (sensitivity and stability) and plasma features (temperature and electron density). With the optimized experimental parameters, univariate analysis was used for quantifying the chromium content, and several preprocessing methods (including background normalization, area normalization, multiplicative scatter correction (MSC) transformation and standardized normal variate (SNV) transformation were used to further improve the analytical performance. The results indicated that 532 nm excitation showed better sensitivity than 1064 nm excitation, with a detection limit around two times lower. However, the prediction accuracy for both excitation wavelengths was similar. The best result, with a correlation coefficient of 0.9849, root-mean-square error of 3.89 mg/kg and detection limit of 2.72 mg/kg, was obtained using the SNV transformed signal (Cr I 425.43 nm) induced by 532 nm excitation. The results indicate the inspiring capability of LIBS for toxic metals detection in plant materials.
Collapse
|
11
|
Vishwakarma K, Shweta, Upadhyay N, Singh J, Liu S, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S. Differential Phytotoxic Impact of Plant Mediated Silver Nanoparticles (AgNPs) and Silver Nitrate (AgNO 3) on Brassica sp. FRONTIERS IN PLANT SCIENCE 2017; 8:1501. [PMID: 29075270 PMCID: PMC5644052 DOI: 10.3389/fpls.2017.01501] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/14/2017] [Indexed: 08/23/2023]
Abstract
Continuous formation and utilization of nanoparticles (NPs) have resulted into significant discharge of nanosized particles into the environment. NPs find applications in numerous products and agriculture sector, and gaining importance in recent years. In the present study, silver nanoparticles (AgNPs) were biosynthesized from silver nitrate (AgNO3) by green synthesis approach using Aloe vera extract. Mustard (Brassica sp.) seedlings were grown hydroponically and toxicity of both AgNP and AgNO3 (as ionic Ag+) was assessed at various concentrations (1 and 3 mM) by analyzing shoot and root length, fresh mass, protein content, photosynthetic pigments and performance, cell viability, oxidative damage, DNA degradation and enzyme activities. The results revealed that both AgNPs and AgNO3 declined growth of Brassica seedlings due to enhanced accumulation of AgNPs and AgNO3 that subsequently caused severe inhibition in photosynthesis. Further, the results showed that both AgNPs and AgNO3 induced oxidative stress as indicated by histochemical staining of superoxide radical and hydrogen peroxide that was manifested in terms of DNA degradation and cell death. Activities of antioxidants, i.e., ascorbate peroxidase (APX) and catalase (CAT) were inhibited by AgNPs and AgNO3. Interestingly, damaging impact of AgNPs was lesser than AgNO3 on Brassica seedlings which was due to lesser accumulation of AgNPs and better activities of APX and CAT, which resulted in lesser oxidative stress, DNA degradation and cell death. The results of the present study showed differential impact of AgNPs and AgNO3 on Brassica seedlings, their mode of action, and reasons for their differential impact. The results of the present study could be implied in toxicological research for designing strategies to reduce adverse impact of AgNPs and AgNO3 on crop plants.
Collapse
Affiliation(s)
- Kanchan Vishwakarma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, India
| | - Shweta
- D D Pant Interdisciplinary Research Lab, Department of Botany, University of Allahabad, Allahabad, India
| | - Neha Upadhyay
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, India
| | - Jaspreet Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, India
| | - Shiliang Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
- College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Vijay P. Singh
- Government Ramanuj Pratap Singhdev Post Graduate College, Baikunthpur, India
| | - Sheo M. Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, India
| | - Devendra K. Chauhan
- D D Pant Interdisciplinary Research Lab, Department of Botany, University of Allahabad, Allahabad, India
| | - Durgesh K. Tripathi
- Centre for Medical Diagnostic and Research, Motilal Nehru National Institute of Technology Allahabad, Allahabad, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, India
- Centre for Medical Diagnostic and Research, Motilal Nehru National Institute of Technology Allahabad, Allahabad, India
| |
Collapse
|
12
|
Wang J, Xue S, Zheng P, Chen Y, Peng R. Determination of Lead and Copper in Ligusticum wallichii by Laser-Induced Breakdown Spectroscopy. ANAL LETT 2017. [DOI: 10.1080/00032719.2016.1254223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jinmei Wang
- Chongqing Municipal Level Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Shuwen Xue
- Chongqing Municipal Level Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Peichao Zheng
- Chongqing Municipal Level Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, China
| | - Yanying Chen
- Chongqing Municipal Level Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Rui Peng
- Institute of Traditional Chinese Medicine Planting, Chongqing Academy of Chinese Medicine, Chongqing, China
| |
Collapse
|
13
|
Krajcarová L, Novotný K, Kummerová M, Dubová J, Gloser V, Kaiser J. Mapping of the spatial distribution of silver nanoparticles in root tissues of Vicia faba by laser-induced breakdown spectroscopy (LIBS). Talanta 2017; 173:28-35. [PMID: 28602188 DOI: 10.1016/j.talanta.2017.05.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/16/2017] [Accepted: 05/20/2017] [Indexed: 01/24/2023]
Abstract
The manuscript presents a procedure for optimal sample preparation and the mapping of the spatial distribution of metal ions and nanoparticles in plant roots using laser-induced breakdown spectroscopy (LIBS) in a double-pulse configuration (DP LIBS) in orthogonal reheating mode. Two Nd:YAG lasers were used; the first one was an ablation laser (UP-266 MACRO, New Wave, USA) with a wavelength of 266nm, and the second one (Brilliant, Quantel, France), with a fundamental wavelength of 1064nm, was used to reheat the microplasma. Seedlings of Vicia faba were cultivated for 7 days in CuSO4 or AgNO3 solutions with a concentration of 10µmoll-1 or in a solution of silver nanoparticles (AgNPs) with a concentration of 10µmoll-1 of total Ag, and in distilled water as a control. The total contents of the examined metals in the roots after sample mineralization as well as changes in the concentrations of the metals in the cultivation solutions were monitored by ICP-OES. Root samples embedded in the TissueTek medium and cut into 40µm thick cross sections using the Cryo-Cut Microtome proved to be best suited for an accurate LIBS analysis with a 50µm spatial resolution. 2D raster maps of elemental distribution were created for the emission lines of Cu(I) at 324.754nm and Ag(I) at 328.068nm. The limits of detection of DP LIBS for the root cross sections were estimated to be 4pg for Cu, 18pg for Ag, and 3pg for AgNPs. The results of Ag spatial distribution mapping indicated that unlike Ag+ ions, AgNPs do not penetrate into the inner tissues of Vicia faba roots but stay in their outermost layers. The content of Ag in roots cultivated in the AgNP solution was one order of magnitude lower compared to roots cultivated in the metal ion solutions. The significantly smaller concentration of Ag in root tissues cultivated in the AgNP solution also supports the conclusion that the absorption and uptake of AgNPs by roots of Vicia faba is very slow. LIBS mapping of root sections represents a fast analytical method with sufficient precision and spatial resolution that can provide very important information for researchers, particularly in the fields of plant science and ecotoxicology.
Collapse
Affiliation(s)
- L Krajcarová
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - K Novotný
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - M Kummerová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - J Dubová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - V Gloser
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - J Kaiser
- Central European Institute of Technology, Brno University of Technology, Technická 3058/10, 616 00 Brno, Czech Republic
| |
Collapse
|
14
|
Bian W, Zhang H, Yu Q, Shi M, Shuang S, Cai Z, Choi MMF. Detection of Ag(+) using graphite carbon nitride nanosheets based on fluorescence quenching. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 169:122-127. [PMID: 27348047 DOI: 10.1016/j.saa.2016.06.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
The graphite carbon nitride (g-C3N4) nanosheets were synthesized and applied for the detection of Ag(+) ion in aqueous solutions. Transmission electron microscopy, Fourier infrared spectroscopy, x-ray diffraction, ultraviolet/visible and photoluminescence spectroscopy were used for characterization of g-C3N4 nanosheets. The fluorescence intensity of g-C3N4 nanosheets decreases with the increase in the concentration of Ag(+). The fluorescence probe can be applied for detection of Ag(+). The results show that it has high selectivity to Ag(+) and exhibits a good linearity over the concentration range 0.020-2.0μM with a detection limit of 27nM. Most cations do not have any interference on the detection of Ag(+). The quenching process is assessed and discussed. Finally, the g-C3N4 nanosheets have been successfully used for the detection of Ag(+) in real water samples. The recoveries of spiked water samples are >97%.
Collapse
Affiliation(s)
- Wei Bian
- School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, PR China.
| | - Hao Zhang
- School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, PR China
| | - Qing Yu
- School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, PR China
| | - Meijuan Shi
- School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, PR China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR, PR China
| | - Martin M F Choi
- Acadia Divinity College, Acadia University, 15 University Avenue, Wolfville, Nova Scotia B4P 2R6, Canada
| |
Collapse
|
15
|
Challenging applications for multi-element analysis by laser-induced breakdown spectroscopy in agriculture: A review. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.08.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
|
17
|
Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Kishore Dubey N, Rai AK. Silicon-mediated alleviation of Cr(VI) toxicity in wheat seedlings as evidenced by chlorophyll florescence, laser induced breakdown spectroscopy and anatomical changes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 113:133-44. [PMID: 25497769 DOI: 10.1016/j.ecoenv.2014.09.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 05/03/2023]
Abstract
Silicon (Si)-mediated alleviation of Cr(VI) toxicity was examined in wheat seedlings using an in vivo approach that involves chlorophyll fluorescence, laser induced breakdown spectroscopy (LIBS) and anatomical changes. Exposure to Cr(VI) significantly reduced the growth and photosynthetic activities (chlorophyll fluorescence) in wheat which was accompanied by remarkable accumulation of this element in tissues. However, addition of Si to the growth medium alleviated the effects of Cr(VI). The LIBS spectra were used as a fingerprint of the elemental compositions in wheat seedlings, which showed a reduction in Cr accumulation following Si addition. Nutrient element levels (Ca, Mg, K and Na) declined in wheat following the addition of Cr (VI), as recorded by LIBS and inductively coupled plasma atomic emission spectroscopy (ICAP-AES). However, addition of Si along with Cr(VI) increased the contents of nutrient elements in wheat. LIBS, ICAP-AES and AAS showed a similar distribution pattern of elements measured in wheat. Anatomical observations of leaf and root revealed that Cr(VI) affected internal structures while Si played a role in protection from toxic effects. The results showed the suitability of chlorophyll fluorescence as a parameter and appropriateness of LIBS technique and anatomical procedures to elucidate Si-mediated alleviation of Cr(VI) toxicity. Furthermore, our results suggest that the measured parameters and techniques can be used non-invasively for monitoring the growth of crops under different environmental conditions.
Collapse
Affiliation(s)
- Durgesh Kumar Tripathi
- Center of Advance Studies, Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Vijay Pratap Singh
- Govt. RamanujPratap Singhdev Post Graduate College, Baikunthpur, Korea-497335, Chhattisgarh, India.
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India.
| | - Devendra Kumar Chauhan
- D.D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India.
| | - Nawal Kishore Dubey
- Center of Advance Studies, Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Awadhesh Kumar Rai
- Laser Spectroscopy Research Lab, Department of Physics, University of Allahabad, Allahabad, India.
| |
Collapse
|
18
|
Rapid elemental analysis and provenance study of Blumea balsamifera DC using laser-induced breakdown spectroscopy. SENSORS 2014; 15:642-55. [PMID: 25558999 PMCID: PMC4327040 DOI: 10.3390/s150100642] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/10/2014] [Indexed: 01/29/2023]
Abstract
Laser-induced breakdown spectroscopy (LIBS) was applied to perform a rapid elemental analysis and provenance study of Blumea balsamifera DC. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were implemented to exploit the multivariate nature of the LIBS data. Scores and loadings of computed principal components visually illustrated the differing spectral data. The PLS-DA algorithm showed good classification performance. The PLS-DA model using complete spectra as input variables had similar discrimination performance to using selected spectral lines as input variables. The down-selection of spectral lines was specifically focused on the major elements of B. balsamifera samples. Results indicated that LIBS could be used to rapidly analyze elements and to perform provenance study of B. balsamifera.
Collapse
|
19
|
Multari RA, Cremers DA, Dupre JAM, Gustafson JE. Detection of biological contaminants on foods and food surfaces using laser-induced breakdown spectroscopy (LIBS). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8687-94. [PMID: 23941554 DOI: 10.1021/jf4029317] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The rapid detection of biological contaminants, such as Escherichia coli O157:H7 and Salmonella enterica , on foods and food-processing surfaces is important to ensure food safety and streamline the food-monitoring process. Laser-induced breakdown spectroscopy (LIBS) is an ideal candidate technology for this application because sample preparation is minimal and results are available rapidly (seconds to minutes). Here, multivariate regression analysis of LIBS data is used to differentiate the live bacterial pathogens E. coli O157:H7 and S. enterica on various foods (eggshell, milk, bologna, ground beef, chicken, and lettuce) and surfaces (metal drain strainer and cutting board). The type (E. coli or S. enterica) of bacteria could be differentiated in all cases studied along with the metabolic state (viable or heat killed). This study provides data showing the potential of LIBS for the rapid identification of biological contaminants using spectra collected directly from foods and surfaces.
Collapse
Affiliation(s)
- Rosalie A Multari
- Applied Research Associates, Incorporated , 4300 San Mateo Boulevard Northeast, Suite A-220, Albuquerque, New Mexico 87110, United States
| | | | | | | |
Collapse
|
20
|
Fortes FJ, Moros J, Lucena P, Cabalín LM, Laserna JJ. Laser-induced breakdown spectroscopy. Anal Chem 2012; 85:640-69. [PMID: 23137185 DOI: 10.1021/ac303220r] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Francisco J Fortes
- Department of Analytical Chemistry, University of Málaga, 29071 Málaga, Spain
| | | | | | | | | |
Collapse
|
21
|
Skladanka J, Adam V, Zitka O, Krystofova O, Beklova M, Kizek R, Havlicek Z, Slama P, Nawrath A. Investigation into the effect of molds in grasses on their content of low molecular mass thiols. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012. [PMID: 23202817 PMCID: PMC3524598 DOI: 10.3390/ijerph9113789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of this study was to investigate the effect of molds on levels of low molecular mass thiols in grasses. For this purpose, the three grass species Lolium perenne, Festulolium pabulare and Festulolium braunii were cultivated and sampled during four months, from June to September. The same species were also grown under controlled conditions. High-performance liquid chromatography with electrochemical detection was used for quantification of cysteine, reduced (GSH) and oxidized (GSSG) glutathione, and phytochelatins (PC2, PC3, PC4 and PC5). Data were statistically processed and analyzed. Thiols were present in all examined grass species. The effect of fungicide treatments applied under field conditions on the content of the evaluated thiols was shown to be insignificant. Species influenced (p < 0.05) PC3 and GSSG content. F. pabulare, an intergeneric hybrid of drought- and fungi-resistant Festuca arundinacea, was comparable in PC3 content with L. perenne and F. braunii under field conditions. Under controlled conditions, however, F. pabulare had higher (p < 0.05) PC3 content than did L. perenne and F. braunii. Under field conditions, differences between the evaluated species were recorded only in GSSG content, but only sampling in June was significant. F. pabulare had higher (p < 0.05) GSSG content in June than did L. perenne and F. braunii.
Collapse
Affiliation(s)
- Jiri Skladanka
- Department of Animal Nutrition and Forage Production, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic;
- Author to whom correspondence should be addressed; ; Tel.: +420-5-4513-3079; Fax: +420-5-4521-2044
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (V.A.); (O.Z.); (O.K.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (V.A.); (O.Z.); (O.K.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho 1–3, CZ-612 42 Brno, Czech Republic; (M.B.)
| | - Olga Krystofova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (V.A.); (O.Z.); (O.K.); (R.K.)
| | - Miroslava Beklova
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho 1–3, CZ-612 42 Brno, Czech Republic; (M.B.)
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (V.A.); (O.Z.); (O.K.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Zdenek Havlicek
- Department of Animal Morphology, Physiology and Genetics, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (Z.H.); (P.S.)
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (Z.H.); (P.S.)
| | - Adam Nawrath
- Department of Animal Nutrition and Forage Production, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic;
| |
Collapse
|
22
|
Krishnaraj C, Jagan E, Ramachandran R, Abirami S, Mohan N, Kalaichelvan P. Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.01.006] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
References. Anal Chem 2012. [DOI: 10.1201/b11478-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Sochor J, Zitka O, Hynek D, Jilkova E, Krejcova L, Trnkova L, Adam V, Hubalek J, Kynicky J, Vrba R, Kizek R. Bio-sensing of cadmium(II) ions using Staphylococcus aureus. SENSORS 2011; 11:10638-63. [PMID: 22346664 PMCID: PMC3274306 DOI: 10.3390/s111110638] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 10/31/2011] [Accepted: 11/07/2011] [Indexed: 12/17/2022]
Abstract
Cadmium, as a hazardous pollutant commonly present in the living environment, represents an important risk to human health due to its undesirable effects (oxidative stress, changes in activities of many enzymes, interactions with biomolecules including DNA and RNA) and consequent potential risk, making its detection very important. New and unique technological and biotechnological approaches for solving this problems are intensely sought. In this study, we used the commonly occurring potential pathogenic microorganism Staphylococcus aureus for the determination of markers which could be used for sensing of cadmium(II) ions. We were focused on monitoring the effects of different cadmium(II) ion concentrations (0, 1.25, 2.5, 5, 10, 15, 25 and 50 μg mL(-1)) on the growth and energetic metabolism of Staphylococcus aureus. Highly significant changes have been detected in the metabolism of thiol compounds-specifically the protein metallothionein (0.79-26.82 mmol/mg of protein), the enzyme glutathione S-transferase (190-5,827 μmol/min/mg of protein), and sulfhydryl groups (9.6-274.3 μmol cysteine/mg of protein). The ratio of reduced and oxidized glutathione indicated marked oxidative stress. In addition, dramatic changes in urease activity, which is connected with resistance of bacteria, were determined. Further, the effects of cadmium(II) ions on the metabolic pathways of arginine, β-glucosidase, phosphatase, N-acetyl β-d-glucosamine, sucrose, trehalose, mannitol, maltose, lactose, fructose and total proteins were demonstrated. A metabolomic profile of Staphylococcus aureus under cadmium(II) ion treatment conditions was completed seeking data about the possibility of cadmium(II) ion accumulation in cells. The results demonstrate potential in the application of microorganisms as modern biosensor systems based on biological components.
Collapse
Affiliation(s)
- Jiri Sochor
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - David Hynek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Eva Jilkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
| | - Ludmila Krejcova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Libuse Trnkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, CZ-611 37 Brno, Czech Republic
- Research Centre for Environmental Chemistry and Ecotoxicology, Faculty of Science, Masaryk University, Kotlarska 2, CZ-611 37 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Jaromir Hubalek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 10, CZ-616 00 Brno, Czech Republic
| | - Jindrich Kynicky
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mail: (J.K.)
| | - Radimir Vrba
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Research Centre for Environmental Chemistry and Ecotoxicology, Faculty of Science, Masaryk University, Kotlarska 2, CZ-611 37 Brno, Czech Republic
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +420-545-133-350; Fax: +420-545-212-044
| |
Collapse
|
25
|
Krizkova S, Huska D, Beklova M, Hubalek J, Adam V, Trnkova L, Kizek R. Protein-based electrochemical biosensor for detection of silver(I) ions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:492-496. [PMID: 20821469 DOI: 10.1002/etc.77] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Silver(I) ions are extremely toxic to aquatic animals. Hence, monitoring of these ions in the environment is needed. The aim of the present study was to suggest a simple biosensor for silver(I) ions detection. The suggested biosensor is based on the modification of a hanging mercury drop electrode (HMDE) by the heavy metal binding protein metallothionein (MT) for silver(I) ions detection. Metallothionein accumulated for 120 s onto the HMDE surface. After rinsing the electrode, the biosensor (MT modified HMDE) was prepared prior to detection of silver(I) ions. The biosensor was immersed in a solution containing silver(I) ions. These ions were bound to the MT structure. Furthermore, the electrode was rinsed and transferred to a pure supporting electrolyte solution, in which no interference was present. Under these experimental conditions, other signals relating to heavy metals naturally occurring in MT were not detected. This phenomenon confirms the strong affinity of silver(I) ions for MT. The suggested biosensor responded well to higher silver(I) ion concentrations. The relative standard deviation for measurements of concentrations higher than 50 microM was approximately 2% (n = 8). In the case of concentrations lower than 10 microM, the relative standard deviation increased to 10% (n = 8). The detection limit (3 signal/noise) for silver(I) ions was estimated as 500 nM.
Collapse
Affiliation(s)
- Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University of Agriculture and Forestry, Zemedelska 1, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
AbstractIn this review (with 500 refs), both electrochemistry and electroanalysis with carbon paste-based electrodes, sensors, and detectors are of interest, when attention is focused on the research activities in the years of new millennium. Concerned are all important aspects of the field, from fundamental investigations with carbon paste as the electrode material, via laboratory examination of the first electrode prototypes, basic and advanced studies of various electrode processes and other phenomena, up to practical applications to the determination of inorganic ions, complexes, and molecules. The latter is presented in a series of extensive tables, offering a nearly complete survey of methods published within the period of 2001–2008. Finally, the latest trends and outstanding achievements are also outlined and future prospects given.
Collapse
|
27
|
Krizkova S, Krystofova O, Trnkova L, Hubalek J, Adam V, Beklova M, Horna A, Havel L, Kizek R. Silver(I) ions ultrasensitive detection at carbon electrodes-analysis of waters, tobacco cells and fish tissues. SENSORS 2009; 9:6934-50. [PMID: 22399980 PMCID: PMC3290483 DOI: 10.3390/s90906934] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 08/12/2009] [Accepted: 08/24/2009] [Indexed: 11/22/2022]
Abstract
We used carbon paste electrodes and a standard potentiostat to detect silver ions. The detection limit (3 Signal/Noise ratio) was estimated as 0.5 μM. A standard electrochemical instrument microanalysis of silver(I) ions was suggested. As a working electrode a carbon tip (1 mL) or carbon pencil was used. Limits of detection estimated by dilution of a standard were 1 (carbon tip) or 10 nM (carbon pencil). Further we employed flow injection analysis coupled with carbon tip to detect silver(I) ions released in various beverages and mineral waters. During first, second and third week the amount of silver(I) ions releasing into water samples was under the detection limit of the technique used for their quantification. At the end of a thirteen weeks long experiment the content of silver(I) ions was several times higher compared to the beginning of release detected in the third week and was on the order of tens of nanomoles. In subsequent experiments the influence of silver(I) ions (0, 5 and 10 μM) on a plant model system (tobacco BY-2 cells) during a four-day exposition was investigated. Silver(I) ions were highly toxic to the cells, which was revealed by a double staining viability assay. Moreover we investigated the effect of silver(I) ions (0, 0.3, 0.6, 1.2 and 2.5 μM) on guppies (Poecilia reticulata). Content of Ag(I) increased with increasing time of the treatment and applied concentrations in fish tissues. It can be concluded that a carbon tip or carbon pencil coupled with a miniaturized potentiostat can be used for detection of silver(I) ions in environmental samples and thus represents a small, portable, low cost and easy-to-use instrument for such purposes.
Collapse
Affiliation(s)
- Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Olga Krystofova
- Department of Chemistry and Biochemistry, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Libuse Trnkova
- Department Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, CZ-611 37 Brno, Czech Republic
- Research Centre for Environmental Chemistry and Ecotoxicology, Faculty of Science, Masaryk University, Kotlarska 2, CZ-611 37 Brno, Czech Republic
| | - Jaromir Hubalek
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Udolni 53, CZ-602 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Department of Animal Nutrition and Forage Production, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Miroslava Beklova
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho 1-3, CZ-612 42 Brno, Czech Republic
| | - Ales Horna
- Tomas Bata University, T.G. Masaryka 275, CZ-762 72 Zlin, Czech Republic
| | - Ladislav Havel
- Department of Plant Biology Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Author to whom correspondence should be addressed; E-Mail:
| |
Collapse
|
28
|
Sunflower Plants as Bioindicators of Environmental Pollution with Lead (II) Ions. SENSORS 2009; 9:5040-58. [PMID: 22346686 PMCID: PMC3274165 DOI: 10.3390/s90705040] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 06/22/2009] [Accepted: 06/24/2009] [Indexed: 11/17/2022]
Abstract
In this study, the influence of lead (II) ions on sunflower growth and biochemistry was investigated from various points of view. Sunflower plants were treated with 0, 10, 50, 100 and/or 500 μM Pb-EDTA for eight days. We observed alterations in growth in all experimental groups compared with non-treated control plants. Further we determined total content of proteins by a Bradford protein assay. By the eighth day of the experiment, total protein contents in all treated plants were much lower compared to control. Particularly noticeable was the loss of approx. 8 μg/mL or 15 μg/mL in shoots or roots of plants treated with 100 mM Pb-EDTA. We also focused our attention on the activity of alanine transaminase (ALT), aspartate transaminase (AST) and urease. Activity of the enzymes increased with increasing length of the treatment and applied concentration of lead (II) ions. This increase corresponds well with a higher metabolic activity of treated plants. Contents of cysteine, reduced glutathione (GSH), oxidized glutathione (GSSG) and phytochelatin 2 (PC2) were determined by high performance liquid chromatography with electrochemical detection. Cysteine content declined in roots of plants with the increasing time of treatment of plants with Pb-EDTA and the concentration of toxic substance. Moreover, we observed ten times higher content of cysteine in roots in comparison with shoots. The observed reduction of cysteine content probably relates with its utilization for biosynthesis of GSH and phytochelatins, because the content of GSH and PC2 was similar in roots and shoots and increased with increased treatment time and concentration of Pb-EDTA. Moreover, we observed oxidative stress caused by Pb-EDTA in roots where the GSSG/GSH ratio was about 0.66. In shoots, the oxidative stress was less distinctive, with a GSSG/GSH ratio 0.14. We also estimated the rate of phytochelatin biosynthesis from the slope of linear equations plotted with data measured in the particular experimental group. The highest rate was detected in roots treated with 100 μM of Pb-EDTA. To determine heavy metal ions many analytical instruments can be used, however, most of them are only able to quantify total content of the metals. This problem can be overcome using laser induced breakdown spectroscopy, because it is able to provide a high spatial-distribution of metal ions in different types of materials, including plant tissues. Data obtained were used to assemble 3D maps of Pb and Mg distribution. Distribution of these elements is concentrated around main vascular bundle of leaf, which means around midrib.
Collapse
|
29
|
Pohanka M, Novotný L, Misík J, Kuca K, Zdarova-Karasova J, Hrabinova M. Evaluation of cholinesterase activities during in vivo intoxication using an electrochemical sensor strip - correlation with intoxication symptoms. SENSORS (BASEL, SWITZERLAND) 2009; 9:3627-34. [PMID: 22412329 PMCID: PMC3297120 DOI: 10.3390/s90503627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/10/2009] [Accepted: 05/13/2009] [Indexed: 11/16/2022]
Abstract
Cholinesterase activity in blood of laboratory rats was monitored. Rats were intoxicated with paraoxon at dosis of 0 - 65 - 125 - 170 - 250 - 500 nmol. The 250 nmol dose was found to be the LD(50). An electrochemical sensor was found useful to provide information about cholinesterase activity. The decrease of cholinesterase activity was correlated to intoxication symptoms and mortality level. It was found that the symptoms of intoxication are not observed while at least 50% of cholinesterase activity in blood remains. The minimal cholinesterase activity essential to survival is around 10%, when compared with the initial state. No changes in levels of low moleculary weight antioxidants were observed.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Centre of Advanced Studies, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic; E-Mail: (L.N.)
- Department of Toxicology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic; E-Mail: (J.M.); (K.K.)
| | - Ladislav Novotný
- Centre of Advanced Studies, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic; E-Mail: (L.N.)
| | - Jan Misík
- Department of Toxicology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic; E-Mail: (J.M.); (K.K.)
| | - Kamil Kuca
- Centre of Advanced Studies, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic; E-Mail: (L.N.)
- Department of Toxicology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic; E-Mail: (J.M.); (K.K.)
| | - Jana Zdarova-Karasova
- Department of Toxicology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic; E-Mail: (J.M.); (K.K.)
| | - Martina Hrabinova
- Centre of Advanced Studies, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic; E-Mail: (L.N.)
| |
Collapse
|
30
|
Determination of Vitamin C (Ascorbic Acid) Using High Performance Liquid Chromatography Coupled with Electrochemical Detection. SENSORS 2008; 8:7097-7112. [PMID: 27873917 PMCID: PMC3787433 DOI: 10.3390/s8117097] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 11/04/2008] [Accepted: 11/06/2008] [Indexed: 11/16/2022]
Abstract
Vitamin C (ascorbic acid, ascorbate, AA) is a water soluble organic compound that participates in many biological processes. The main aim of this paper was to utilize two electrochemical detectors (amperometric - Coulouchem III and coulometric - CoulArray) coupled with flow injection analysis for the detection of ascorbic acid. Primarily, we optimized the experimental conditions. The optimized conditions were as follows: detector potential 100 mV, temperature 25 °C, mobile phase 0.09% TFA:ACN, 3:97 (v/v) and flow rate 0.13 mL·min-1. The tangents of the calibration curves were 0.3788 for the coulometric method and 0.0136 for the amperometric one. The tangent of the calibration curve measured by the coulometric detector was almost 30 times higher than the tangent measured by the amperometric detector. Consequently, we coupled a CoulArray electrochemical detector with high performance liquid chromatography and estimated the detection limit for AA as 90 nM (450 fmol per 5 μL injection). The method was used for the determination of vitamin C in a pharmaceutical preparations (98 ± 2 mg per tablet), in oranges (Citrus aurantium) (varied from 30 to 56 mg/100 g fresh weight), in apples (Malus sp.) (varied from 11 to 19 mg/100 g fresh weight), and in human blood serum (varied from 38 to 78 μM). The recoveries were also determined.
Collapse
|
31
|
Adam V, Kizek R. Utilization of Electrochemical Sensors and Biosensors in Biochemistry and Molecular Biology. SENSORS 2008; 8:6125-6131. [PMID: 27873861 PMCID: PMC3707441 DOI: 10.3390/s8106125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 09/26/2008] [Indexed: 11/16/2022]
Abstract
A special issue of Sensors entitled “Utilization of Electrochemical Sensors and Biosensors in Biochemistry and Molecular Biology” has been prepared over a period of three years. In this Editorial Note we would like to highlight one of the possible directions for electrochemical sensor and biosensor research resulting from the ideas of Czechoslovakian Nobel Prize winner Jaroslav Heyrovsky and his colleague Rudolf Brdicka.
Collapse
Affiliation(s)
- Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Department of Animal Nutrition and Forage Production, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Mendel University of Agriculture and Forestry, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
32
|
Amperometric Sensor for Detection of Chloride Ions. SENSORS 2008; 8:5619-5636. [PMID: 27873832 PMCID: PMC3705522 DOI: 10.3390/s8095619] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/09/2008] [Accepted: 09/11/2008] [Indexed: 11/16/2022]
Abstract
Chloride ion sensing is important in many fields such as clinical diagnosis, environmental monitoring and industrial applications. We have measured chloride ions at a carbon paste electrode (CPE) and at a CPE modified with solid AgNO3, a solution of AgNO3 and/or solid silver particles. Detection limits (3 S/N) for chloride ions were 100 μM, 100 μM and 10 μM for solid AgNO3, solution of AgNO3 and/or solid silver particles, respectively. The CPE modified with silver particles is the most sensitive to the presence chloride ions. After that we approached to the miniaturization of the whole electrochemical instrument. Measurements were carried out on miniaturized instrument consisting of a potentiostat with dimensions 35 × 166 × 125 mm, screen printed electrodes, a peristaltic pump and a PC with control software. Under the most suitable experimental conditions (Britton-Robinson buffer, pH 1.8 and working electrode potential 550 mV) we estimated the limit of detection (3 S/N) as 500 nM.
Collapse
|
33
|
Diagnosis of Intoxication by the Organophosphate VX: Comparison Between an Electrochemical Sensor and Ellman´s Photometric Method. SENSORS 2008; 8:5229-5237. [PMID: 27873811 PMCID: PMC3705501 DOI: 10.3390/s8095229] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 08/27/2008] [Accepted: 08/28/2008] [Indexed: 11/17/2022]
Abstract
An electrochemical sensor is introduced as a tool applicable for diagnosis of intoxication by cholinesterase inhibitors caused by the well-known nerve agent VX. The traditional Ellman method was chosen for comparison with the sensor's analytical parameters. Both methods are based on estimation of blood cholinesterase inhibition as a marker of intoxication. While Ellman´s method provided a limit of detection of 5.2´10-7 M for blood containing VX, the electrochemical sensor was able to detect 4.0´10-7 M. Good correlation between both methods was observed (R = 0.92). The electrochemical sensor could be considered a convenient tool for a fast yet accurate method, easily available for field as well as laboratory use. Time and cost savings are key features of the sensor-based assay.
Collapse
|
34
|
Biomarkers of Contaminant Exposure in Chub (Leuciscus cephalus L.) - Biomonitoring of Major Rivers in the Czech Republic. SENSORS 2008; 8:2589-2603. [PMID: 27879837 PMCID: PMC3673433 DOI: 10.3390/s8042589] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 04/10/2008] [Indexed: 01/23/2023]
Abstract
Biochemical analysis of organisms to assess exposure to environmental contaminants is of great potential use. Biochemical markers, specifically liver enzymes of the first and the second phase of xenobiotic transformation - cytochrome P450 (CYP 450), ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST) and tripeptide reduced glutathione (GSH) - were used to assess contamination of the aquatic environment at 12 locations near the mouths of major rivers in the Czech Republic. These rivers were the Lužnice, Otava, Sázava, Berounka, Vltava, Labe, Ohře, Svratka, Dyje, Morava and Odra. The indicator species selected was the Chub (Leuciscus cephalus L.). The highest levels of CYP 450 and EROD catalytic activity were found in livers of fish from the Labe (Obříství; (0.32±0.10 nmol mg−1 protein and 1061.38±545.51 pmol min−1 mg−1 protein, respectively). The highest levels of GST catalytic activity and GSH content were found in fish from the Otava (35.39±13.35 nmol min−1 mg−1 protein and 4.29±2.10 nmol GSH mg−1 protein, respectively). They were compared with levels of specific inductors of these biochemical markers in muscle. The results confirmed contamination of some river locations (Labe Obříství, Svratka;.
Collapse
|