1
|
Ghosh J, Rupanty NS, Noor T, Asif TR, Islam T, Reukov V. Functional coatings for textiles: advancements in flame resistance, antimicrobial defense, and self-cleaning performance. RSC Adv 2025; 15:10984-11022. [PMID: 40201212 PMCID: PMC11976222 DOI: 10.1039/d5ra01429h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
The continuous evolution of textile technologies has led to innovative functional coatings that enhance protective textiles by integrating flame retardancy, antimicrobial efficacy, and self-cleaning properties. These multifunctional coatings address the growing demand for high-performance materials in healthcare, military, and industrial applications. This study reviews advancements in coating techniques, including dip-coating, spray-coating, sol-gel processes, and layer-by-layer assembly, highlighting their effectiveness in imparting durability, thermal stability, and biological activity to textile substrates. The incorporation of bioactive materials such as chitosan, silver nanoparticles, and plant-derived antimicrobials has demonstrated enhanced pathogen resistance and prolonged fabric functionality. Furthermore, recent developments in phosphorus-based flame retardants and photocatalytic self-cleaning agents, including titanium dioxide and silica nanoparticles, have contributed to the sustainability of functional textiles by reducing environmental impact. Challenges remain in achieving compatibility among diverse functional components while maintaining mechanical integrity and user comfort. Scalability and cost-efficiency also present barriers to commercialization, necessitating cross-disciplinary collaboration among material scientists, engineers, and regulatory experts. Future research should focus on biodegradable alternatives, smart-responsive coatings, and advanced nanomaterial integration to enhance the longevity and eco-friendliness of protective textiles. As industry standards shift towards sustainability, functional coatings are poised to redefine textile applications, offering tailored solutions that balance safety, performance, and environmental responsibility. This review underscores the transformative potential of multifunctional textile coatings and their role in advancing next-generation protective fabrics.
Collapse
Affiliation(s)
- Joyjit Ghosh
- Department of Textiles, Merchandising, and Interiors, University of Georgia Athens Georgia 30602 USA
| | - Nishat Sarmin Rupanty
- Department of Textile Engineering, Ahsanullah University of Science and Technology Dhaka 1208 Bangladesh
| | - Tasneem Noor
- Department of Textile Engineering, Ahsanullah University of Science and Technology Dhaka 1208 Bangladesh
| | - Tanvir Rahman Asif
- Department of Textile Engineering, Ahsanullah University of Science and Technology Dhaka 1208 Bangladesh
| | - Tarikul Islam
- Department of Textiles, Merchandising, and Interiors, University of Georgia Athens Georgia 30602 USA
- Department of Textile Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
| | - Vladimir Reukov
- Department of Textiles, Merchandising, and Interiors, University of Georgia Athens Georgia 30602 USA
| |
Collapse
|
2
|
Jain B, Jain R, Kabir A, Zughaibi T, Bajaj A, Sharma S. Exploiting the potential of fabric phase sorptive extraction for forensic food safety: Analysis of food samples in cases of drug facilitated crimes. Food Chem 2024; 432:137191. [PMID: 37643513 DOI: 10.1016/j.foodchem.2023.137191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Drug-facilitated crimes (DFCs) entail the use of a single drug or a mixture of drugs to render a victim unable. Traditionally, biological samples have been gathered from victims and conducting analysis to establish evidence of drug administration. Nevertheless, the rapid metabolism of various drugs and delays in analysis can impede the identification of such substances. For this, the present article describes a rapid, sustainable, highly efficient and miniaturized protocol for the identification and quantification of three sedative-hypnotic drugs namely diazepam, chlordiazepoxide and ketamine in alcoholic beverages and complex food samples (cream of biscuit, flavoured milk, juice, cake, tea, sweets and chocolate). The methodology involves utilizing fabric phase sorptive extraction (FPSE) to extract diazepam (DZ), chlordiazepoxide (CDP), and ketamine (KET), Subsequently, the extracted sample are subjected to analysis using gas chromatography-mass spectrometry (GC-MS). Several parameters, including type of membrane, pH, agitation time and speed, ionic strength, sample volume, elution volume and time, and type of elution solvent, were screened and thoroughly optimized. Sol-gel Carbowax 20M (CW-20M) has demonstrated most effective extraction efficiency for the target analytes among all evaluated membranes. Under optimal conditions, the method displayed linearity within the range of 0.3-10 µg mL-1 (or µg g-1), exhibiting a coefficient of determination (R2) ranging from 0.996 to 0.999. The limits of detection (LODs) and limits of quantification (LOQs) for liquid samples ranging between 0.020 and 0.069 µg mL-1 and 0.066-0.22 µg mL-1, respectively. Correspondingly, the LODs for solid samples ranged from 0.056 to 0.090 µg g-1, while the LOQs ranged from 0.18 to 0.29 µg g-1. Notably, the method showcased better precision, with repeatability and reproducibility both below 5% and 10%, respectively. Furthermore, the FPSE-GC-MS method proved effective in determining diazepam (DZ) in forensic food samples connected to drug-facilitated crimes (DFCs). Additionally, the proposed method underwent evaluation for its whiteness using the RGB12 algorithm.
Collapse
Affiliation(s)
- Bharti Jain
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India; Central Forensic Science Laboratory, Directorate of Forensic Science Services, Ministry of Home Affairs, Govt. of India, Dakshin Marg, Sector - 36A, Chandigarh 160036, India
| | - Rajeev Jain
- Central Forensic Science Laboratory, Directorate of Forensic Science Services, Ministry of Home Affairs, Govt. of India, Dakshin Marg, Sector - 36A, Chandigarh 160036, India.
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
| | - Torki Zughaibi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Atul Bajaj
- Central Forensic Science Laboratory, Directorate of Forensic Science Services, Ministry of Home Affairs, Govt. of India, Dakshin Marg, Sector - 36A, Chandigarh 160036, India
| | - Shweta Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
3
|
Ferracane A, Manousi N, Kabir A, Furton KG, Mondello A, Tranchida PQ, Zachariadis GA, Samanidou VF, Mondello L, Rosenberg E. Dual sorbent coating based magnet-integrated fabric phase sorptive extraction as a front-end to gas chromatography-mass spectrometry for multi-class pesticide determination in water samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167353. [PMID: 37769739 DOI: 10.1016/j.scitotenv.2023.167353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/23/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Magnet-integrated fabric phase sorptive extraction (MI-FPSE) is a sample preparation technique that has proved to be a powerful tool for environmental analysis. The fabrication and application of magnet-integrated dual sorbent-based FPSE membrane prepared by combining two different sol-gel sorbent-coated disks of different polarities together with a magnetic bar inserted between the two membranes to allow the stirring, was examined as novel preparation technique that not required samples pretreatments. The dual sorbent-based sample preparation platforms (made up of poly(tetrahydrofuran) and Carbowax 20M) were used for the extraction of seven classes of pesticides from ambient surface water samples prior to their determination by gas chromatography-mass spectrometry. Initially, different single and dual sol-gel sorbent-based MI-FPSE membranes were evaluated in terms of their extraction efficiency. The MI-FPSE with dual sol-gel sorbents were found to be superior to the single-materials MI-FPSE devices in terms of extraction recovery. The main parameters affecting the MI-FPSE extraction protocol (e.g., adsorption time, sample volume, stirring rate, salt addition, eluent type, desorption time and elution volume) were investigated. The selected extraction protocol enabled detection limits in the range between 0.001 and 0.16 ng mL-1. Furthermore, good relative standard deviation values for the intra-day and inter-day repeatability studies were obtained and were lower than 5.9 and 9.9 %, respectively. The proposed method was successfully used for the multi-class analysis of environmental surface water samples.
Collapse
Affiliation(s)
- Antonio Ferracane
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1060 Vienna, Austria
| | - Natalia Manousi
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1060 Vienna, Austria; Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Kenneth G Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Alice Mondello
- Department of Economics, University of Messina, Messina, Italy
| | - Peter Q Tranchida
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - George A Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Victoria F Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1060 Vienna, Austria
| |
Collapse
|
4
|
Kechagia A, Manousi N, Kabir A, Furton KG, Zacharis CK. Fabricating a designer capsule phase microextraction platform based on sol-gel Carbowax 20M-zwitterionic ionic liquid composite sorbent for the extraction of lipid-lowering drugs from human urine samples. Mikrochim Acta 2023; 190:428. [PMID: 37796344 PMCID: PMC10556171 DOI: 10.1007/s00604-023-05998-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
A sol-gel Carbowax 20 M/3-[(3-Cholamidopropyl) dimethyl ammonio]-1-propanesulfonate composite sorbent-based capsule phase microextraction device has been fabricated and characterized for the determination of four statins (pravastatin, rosuvastatin, pitavastatin, and atorvastatin) in human urine. The presence of ionizable carboxyl functional groups in statins requires pH adjustment of the sample matrix to ensure that the target molecules are in their protonated form (pH should be 2 units below their pKa values) which not only is cumbersome but also risks unintended contamination of the sample. This challenge was addressed by introducing zwitterionic ionic liquid in addition to neutral, polar Carbowax 20 M polymer in the sol-gel-derived composite sorbent. As such, the composite zwitterionic multi-modal sorbent can simultaneously extract neutral, cationic, and anionic species. This particular attribute of the composite sorbent eliminates the necessity of the matrix pH adjustment and consequently simplifies the overall sample preparation workflow. Various experimental parameters such as the sample amount, extraction time, salt addition, stirring rate, and elution solvent type that may affect the extraction performance of the statins were investigated using a central composite design and the one-parameter-at-a-time approach. The analytes and the internal standard were separated on a C18 column with gradient elution using phosphate buffer (20 mM, pH 3) and acetonitrile as mobile phase. The analytes were detected at 237 nm. The method was validated, and linearity was observed in the range 0.10-2.0 μg mL-1 for all compounds. The method precision was better 9.9% and 10.4% for intra-day and inter-day, respectively, while the relative recoveries were acceptable, ranging between 83.4 and 116% in all cases. Method greenness was assessed using the ComplexGAPI index. Finally, the method's applicability was demonstrated in the determination of the statins in authentic human urine after oral administration of pitavastatin and rosuvastatin-containing tablets.
Collapse
Affiliation(s)
- Argyroula Kechagia
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Natalia Manousi
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, International Forensic Research Institute, Florida International University, Miami, FL, 33131, USA.
| | - Kenneth G Furton
- Department of Chemistry and Biochemistry, International Forensic Research Institute, Florida International University, Miami, FL, 33131, USA
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
5
|
Manousi N, Ferracane A, Kalogiouri NP, Kabir A, Furton KG, Tranchida PQ, Zachariadis GA, Mondello L, Samanidou VF, Rosenberg E. Design and development of second-generation fabric phase sorptive extraction membranes: Proof-of-concept for the extraction of organophosphorus pesticides from apple juice prior to GC-MS analysis. Food Chem 2023; 424:136423. [PMID: 37247598 DOI: 10.1016/j.foodchem.2023.136423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
In this work, different sol-gel sorbent-coated second-generation fabric phase sorptive extraction (FPSE) membranes were synthesized using titania-based sol-gel precursors. The proposed membranes were tested for their efficiency to extract eleven selected organophosphorus pesticides (OPPs) from apple juice samples. Among the examined materials, sol-gel C18 coated titania-based FPSE membranes showed the highest extraction efficiency. These membranes were used for the optimization and validation of an FPSE method prior to analysis by gas chromatography-mass spectrometry. The detection limits for OPPs ranged between 0.03 and 0.08 ng mL-1. Moreover, the relative standard deviation was < 8.2% and 8.4% for intra-day and inter-day studies, respectively. The relative recoveries were 91-110% (intra-day study) and 90-106% (inter-day study) for all the target analytes, demonstrating good overall method accuracy. Moreover, the novel membranes were reusable at least 5 times. The titania-based membranes were compared to the conventional silica-based membranes and their utilization resulted in higher extraction recoveries.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Laboratory of Pharmaceutical Analysis, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Antonio Ferracane
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Natasa P Kalogiouri
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
| | - Kenneth G Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Peter Q Tranchida
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - George A Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Victoria F Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1060 Vienna, Austria
| |
Collapse
|
6
|
Manousi N, Kabir A, Furton KG, Anthemidis A. Sol-Gel Graphene Oxide-Coated Fabric Disks as Sorbents for the Automatic Sequential-Injection Column Preconcentration for Toxic Metal Determination in Distilled Spirit Drinks. Molecules 2023; 28:molecules28052103. [PMID: 36903348 PMCID: PMC10004266 DOI: 10.3390/molecules28052103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Sol-gel graphene oxide-coated polyester fabric platforms were synthesized and used for the on-line sequential injection fabric disk sorptive extraction (SI-FDSE) of toxic (i.e., Cd(II), Cu(II) and Pb(II)) metals in different distilled spirit drinks prior to their determination by electrothermal atomic absorption spectrometry (ETAAS). The main parameters that could potentially influence the extraction efficiency of the automatic on-line column preconcentration system were optimized and the SI-FDSE-ETAAS method was validated. Under optimum conditions, enhancement factors of 38, 120 and 85 were achieved for Cd(II), Cu(II) and Pb(II), respectively. Method precision (in terms of relative standard deviation) was lower than 2.9% for all analytes. The limits of detection for Cd(II), Cu(II) and Pb(II) were 1.9, 7.1 and 17.3 ng L-1, respectively. As a proof of concept, the proposed protocol was employed for the monitoring of Cd(II), Cu(II), and Pb(II) in distilled spirit drinks of different types.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33131, USA
| | - Kenneth G. Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33131, USA
| | - Aristidis Anthemidis
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33131, USA
- Correspondence:
| |
Collapse
|
7
|
Magnet Integrated Fabric Phase Sorptive Extraction (MI-FPSE): A Powerful Green(er) Alternative for Sample Preparation. ANALYTICA 2022. [DOI: 10.3390/analytica3040030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Green(er) sample preparation technologies still dominate as the anticipated improvement in all analytical protocols. Separation scientists all over the world continuously strive to comply with the Green Analytical Chemistry (GAC) demands. To follow this trend, microextraction techniques are constantly evolving to bridge the gap between Green Analytical Chemistry and sample pretreatment. A research group from Florida International University, Miami, Florida has introduced fabric phase sorptive extraction (FPSE) in 2014 that was considered as a new milestone in microextraction technologies at that time. Two years later, the same research group introduced an advantageous innovative configuration that combines the stirring and extraction mechanism into a single sample preparation device, keeping all the benefits originally offered by classical FPSE. Magnet integrated fabric phase sorptive extraction (MI-FPSE) was eventually introduced as a new, advantageous implementation of FPSE. This device exhibits the advantageous role of the increase in extraction kinetics through sample diffusion, resulting in improved extraction efficiency of the microextraction device and supports the need for combining processes for better promotion and implementation of the principles of Green Analytical Chemistry. The applications of MI-FPSE are presented herein, showing the essential role that this technique can play in analytical and bioanalytical sample preparation.
Collapse
|
8
|
Monolithic capsule phase microextraction prior to gas chromatography-mass spectrometry for the determination of organochlorine pesticides in environmental water samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Expanding the applicability of magnet integrated fabric phase sorptive extraction in food analysis: Extraction of triazine herbicides from herbal infusion samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Gouma V, Pournara AD, Manos MJ, Giokas DL. Fabric phase sorpitive extraction and passive sampling of ultraviolet filters from natural waters using a zirconium metal organic framework-cotton composite. J Chromatogr A 2022; 1670:462945. [DOI: 10.1016/j.chroma.2022.462945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022]
|
11
|
Kalogiouri NP, Kabir A, Olayanju B, Furton KG, Samanidou VF. Development of highly hydrophobic fabric phase sorptive extraction membranes and exploring their applications for the rapid determination of tocopherols in edible oils analyzed by high pressure liquid chromatography-diode array detection. J Chromatogr A 2021; 1664:462785. [PMID: 34992043 DOI: 10.1016/j.chroma.2021.462785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022]
Abstract
Α novel, green, and facile fabric phase sorptive extraction (FPSE) prior to high pressure liquid chromatography with diode array detection (HPLC-DAD) methodology was developed for the efficient extraction and quantitative determination of tocopherols (α-, sum of (β+γ), and δ-) in edible oils. Among several highly hydrophobic FPSE membranes, sol-gel polycaprolactone-polydimethylsiloxane-polycaprolactone (sol-gel PCAP-PDMS-PCAP) coated polyester FPSE membrane was found as the most efficient in extracting tocopherol homologues from edible oil samples. To maximize the extraction efficiency of FPSE membrane, major parameters of FPSE including the membrane size, sample loading time, the choice of the appropriate elution solvent and the elution solvent volume, desorption time, and the influence of stirring were systematically optimized. The developed FPSE-HPLC-DAD methodology was validated and presented adequately low limits of detection (LODs) and limits of quantification (LOQs) over the ranges 0.05-0.10 μg/g, and 0.17-0.33 μg/g, respectively. The RSD% of the within-day and between-day assays were lower than 1.3, and 11.8, respectively, demonstrating good method precision. The trueness of the method was assessed by means of relative percentage of recovery and ranged between 90.8 and 95.1% for within-day assay, and between 88.7-92.8% for between-day assay. The developed methodology was applied in the analysis of edible oils.
Collapse
Affiliation(s)
- Natasa P Kalogiouri
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA; Department of Pharmacy, Faculty of Allied Health Science, Daffodil International University, Dhaka-1207, Bangladesh
| | - Basit Olayanju
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Kenneth G Furton
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Victoria F Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
12
|
Ghorbani M, Mohammadi P, Keshavarzi M, Ziroohi A, Mohammadi M, Aghamohammadhasan M, Pakseresht M. Developments of Microextraction (Extraction) Procedures for Sample Preparation of Antidepressants in Biological and Water Samples, a Review. Crit Rev Anal Chem 2021; 53:1285-1312. [PMID: 34955046 DOI: 10.1080/10408347.2021.2018648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Antidepressants are an important class of drugs to treat various types of depression. The determination of antidepressants is crucial in biological samples to control adverse effects in humans and study pharmacokinetics and bioavailability. Direct measurement of antidepressants in biological and water samples is a considerable challenge for analysts due to their low concentration, the high matrix effects of real samples, and the presence of metabolites of these drugs in biological samples. The challenge leads to using sample preparation processes as a critical step in determining antidepressants. Extraction and microextraction procedures have been widely utilized as sample preparation procedures for these drugs. The purposes of extraction or microextraction methods for antidepressant medications are to preconcentrate the analyte, reduce the matrix effects, increase the selectivity of the procedures, and convert the sample to a suitable format for introducing it into detection systems. In the review, the various extraction and microextraction methods of these drugs in biological, real water, and wastewater samples were investigated. The theory of each technique was briefly addressed to understand the features and factors affecting each method. The extraction and microextraction methods were classified based on their application for antidepressants, and the advantages and disadvantages of each technique were reviewed. The new developments to overcome the limitations of each procedure were discussed. The investigation indicated the number of applications of liquid-phase microextraction for extracting antidepressants has been almost equal to that of solid-phase microextraction.
Collapse
Affiliation(s)
- Mahdi Ghorbani
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Parisa Mohammadi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Faculty of Health, Sabzevar, Iran
| | - Majid Keshavarzi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Faculty of Health, Sabzevar, Iran
| | - Aliakbar Ziroohi
- Department of biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Morteza Mohammadi
- School of Medicine, Sechenov University of Medical Sciences, Moscow, Russia
| | | | - Maryam Pakseresht
- Department of Chemistry, Faculty of Arts and Sciences, Near East University, Nicosia, Cyprus
| |
Collapse
|
13
|
Manousi N, Alampanos V, Priovolos I, Kabir A, Furton KG, Rosenberg E, Zachariadis GA, Samanidou VF. Exploring sol-gel zwitterionic fabric phase sorptive extraction sorbent as a new multi-mode platform for the extraction and preconcentration of triazine herbicides from juice samples. Food Chem 2021; 373:131517. [PMID: 34772569 DOI: 10.1016/j.foodchem.2021.131517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/10/2021] [Accepted: 10/31/2021] [Indexed: 11/18/2022]
Abstract
Triazine herbicides are a class of common pesticides which are widely used to control the weeds in many agricultural crops. Although many studies have described methodologies for the determination of triazine herbicides in aqueous samples, the attention given to agricultural crops and their products is far more limited. In this study, a novel sol-gel zwitterionic multi-mode fabric phase sorptive extraction (FPSE) platform was developed for the matrix clean-up, extraction and preconcentration of five triazine herbicides from fruit juice samples prior to their determination by high performance liquid chromatography-diode array detection (HPLC-DAD). The novel zwitterionic multi-mode sorbent was characterized and its performance for fruit juice analysis was evaluated. Compared to other sol-gel sorbents, the novel zwitterionic sorbent helped cleaning all the acidic interferences from fruit juices. The herein reported FPSE protocol was optimized and validated. Under optimum conditions, the FPSE method showed good accuracy, precision and sensitivity. The limits of detection and limits of quantification for all analytes were 0.15 ng mL-1 and 0.50 ng mL-1, respectively. The enhancement factors of this method ranged between 36.7 and 51.8. The relative standard deviation for intra-day precision was below 5.6% and for inter-day precision was below 8.8%. Finally, the proposed FPSE-HPLC-DAD method was successfully employed for the analysis of various fruit juice samples.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Vasileios Alampanos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Ioannis Priovolos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Kenneth G Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1060 Vienna, Austria
| | - George A Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Victoria F Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
14
|
Ubeda S, Aznar M, Nerín C, Kabir A. Fabric phase sorptive extraction for specific migration analysis of oligomers from biopolymers. Talanta 2021; 233:122603. [PMID: 34215091 DOI: 10.1016/j.talanta.2021.122603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/29/2022]
Abstract
Oligomers are potential migrants from polymers or biopolymers intended to food packaging and they have to be under control. In order to comply with European regulation 10/2011, their concentration in migration must be below 0.01 μg g-1. In this work, fabric phase sorptive extraction (FPSE) was explored as an effective method for extraction and pre-concentration of oligomers migrated from a blend PLA-polyester material. Both food simulant B (3% acetic acid) and juice, as real food, were used for migration experiments. The parameters of FPSE were optimized and the analysis was done by UHPLC-QTOF and UHPLC-QqQ. A total of 21 oligomers were identified, 9 of them coming from PLA and 12 oligomers from the polyester part. These oligomers were formed by adipic acid (AA), phthalic acid (PA) and/or butanediol (BD), ten were cyclic and 11 were linear molecules. Using the optimized FPSE procedure in 3% acetic acid as food simulant, it was possible to identify 3 new compounds that were not detected by direct injection of the simulant into UHPLC-QTOF. In addition, 2 extra compounds, cyclic PA-BD4-AA3 and cyclic PA2-BD3-AA, were only identified in juice samples after FPSE extraction. Besides, in order to quantify the compounds identified, an isolation procedure for PLA oligomers was carried out. Two oligomers were isolated: cyclic (LA)6 and linear HO-(LA)4-H, both with a purity higher than 90% (LA: lactic acid). The highest concentration value was found for the cyclic oligomer [AA-BD]2, that showed 22.63 μg g-1 in 3% acetic acid and 19.64 μg g-1 in juice. The concentration of the total amount of remaining oligomers was below 7.56 μg g-1 in 3% acetic acid as well as in juice.
Collapse
Affiliation(s)
- Sara Ubeda
- Department of Analytical Chemistry, I3A, EINA, University of Zaragoza, Madre de Lune 3, 50018, Zaragoza, Spain
| | - Margarita Aznar
- Department of Analytical Chemistry, I3A, EINA, University of Zaragoza, Madre de Lune 3, 50018, Zaragoza, Spain
| | - Cristina Nerín
- Department of Analytical Chemistry, I3A, EINA, University of Zaragoza, Madre de Lune 3, 50018, Zaragoza, Spain.
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, Fl, 33199, USA
| |
Collapse
|
15
|
Alampanos V, Kabir A, Furton K, Samanidou V. Magnet integrated fabric phase sorptive extraction of selected endocrine disrupting chemicals from human urine followed by high-performance liquid chromatography - photodiode array analysis. J Chromatogr A 2021; 1654:462459. [PMID: 34407470 DOI: 10.1016/j.chroma.2021.462459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 12/11/2022]
Abstract
In current paper, a new advanced modification of fabric phase sorptive extraction is introduced for the first time. This advantageous configuration that integrates the stirring and extraction mechanism into a single sample preparation device was originated by equally considering the beneficial role of the increase of extraction kinetics and more specifically of diffusion on the extraction efficiency of the equilibrium based microextraction techniques and the need for integrating and unite processes for better promotion and implementation of the principles of Green Analytical Chemistry. The resulted magnet integrated fabric phase sorptive extraction (MI-FPSE) device was the spearhead to develop a new analytical methodology for the determination of selected very common endocrine disrupting chemicals as model analytes in human urine by high-performance liquid chromatography-photodiode array analysis. More specifically, the sol-gel Carbowax 20 M coated on hydrophilic cellulose fabric substrate, MI-FPSE device was efficiently employed for the establishment of a new extraction protocol before the chromatographic determination. The sample preparation workflow was methodically optimized in terms of the elution solvent mixture, the volume of the sample, the extraction and the elution time, the stirring speed during the extraction, the ionic strength, and the pH of the sample matrix. The chromatographic separation was performed on a Spherisorb C18 column and a gradient elution program within 14 minutes. Mobile phase consisted of 0.05 ammonium acetate aqueous solution and acetonitrile. The method was validated towards linearity, sensitivity, selectivity, precision, accuracy, and stability. LOD and LOQ ranged between 1.05-1.80 and 3.5-6.0 ng/mL, while %RSD values were found lower than 9.0% in all cases. The method was efficiently applied to the bioanalysis of real samples. All the chosen EDCs were measured at high detection levels. The new MI-FPSE device has demonstrated its performance superiority as a magnet integrated stand-alone extraction device and could be considered as a significant improvement in the field of analytical/bioanalytical sample preparation.
Collapse
Affiliation(s)
- Vasileios Alampanos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Kenneth Furton
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Victoria Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
16
|
Automated Solid Phase Extraction of Cd(II), Co(II), Cu(II) and Pb(II) Coupled with Flame Atomic Absorption Spectrometry Utilizing a New Sol-Gel Functionalized Silica Sorbent. SEPARATIONS 2021. [DOI: 10.3390/separations8070100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this study a simple and sensitive on-line sorbent extraction platform coupled with flame atomic absorption spectrometry for trace metals determination was developed. The system utilized for the first time a novel sol-gel thiocyanatopropyl functionalized silica as adsorbent for metal’s separation and preconcentration. The main factors affecting the performance of the on-line system were investigated and optimized. The effect of potential interfering species that occur naturally in environmental and biological samples, as well as some toxic elements, was evaluated. Under optimum conditions the enhancement factors ranged between 73 and 152 for the target analytes. The LODs of the proposed methods were 0.15 μg L−1 for Cd(II), 0.5 μg L−1 for Co(II), 0.5 μg L−1 for Cu(II) and 1.9 μg L−1 for Pb(II) for 120 s preconcentration time. The relative standard deviation values for all elements were less than 3.8%, indicating good method precision. Moreover, the sol-gel thiocyanatopropyl functionalized silica-packed microcolumns exhibited limited flow resistance and excellent packing reproducibility. Finally, the proposed method was utilized for the analysis of environmental and biological samples.
Collapse
|
17
|
Alampanos V, Kabir A, Furton KG, Samanidou V. Rapid exposure monitoring of six bisphenols and diethylstilbestrol in human urine using fabric phase sorptive extraction followed by high performance liquid chromatography - photodiode array analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1177:122760. [PMID: 34052754 DOI: 10.1016/j.jchromb.2021.122760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022]
Abstract
A novel fabric phase sorptive extraction protocol is developed for rapid exposure monitoring of six bisphenol analogues, including bisphenol A, bisphenol S, bisphenol F, bisphenol E, bisphenol B, bisphenol C, and diethylstilbestrol (DES) from human urine prior to high-performance liquid chromatography-photodiode array analysis. FPSE sample pretreatment protocol ensures the harmonization of the proposed method with the principles of Green Analytical Chemistry (GAC). Among eighteen evaluated FPSE membranes, sol-gel poly (ethylene glycol) (PEG) coated cellulose FPSE membrane resulted in the most efficient extraction. This polar FPSE membrane effectively exploits a number of advantageous features inherent to FPSE including sponge-like porous architecture of the sol-gel sorbent coating, favorable surface chemistry, flexibility and built-in permeability of cellulose fabric substrate, high primary contact surface area for rapid sorbent-analyte interaction, expanded pH, solvent and thermal stability as well as reusability of the FPSE membrane. Optimization was centered on the evaluation of critical parameters, namely the size of the FPSE membrane, the elution solvent mixture, the volume of the sample, the extraction time, the elution time, the kind of the external agitation mechanical stimulus, the ionic strength and the pH of the sample. The chromatographic separation was achieved on a Spherisorb C18 column and a gradient elution program with mobile phase consisted of 0.05 ammonium acetate solution and acetonitrile. The total analysis time was 17.4 min. The developed method was validated in terms of linearity, sensitivity, selectivity, precision, accuracy, stability, and ruggedness. The limits of detection and quantification varied from 0.26-0.62 ng/mL and 0.8-1.9 ng/mL, respectively. The relative recoveries were calculated between 90.6 and 108.8%, while the RSD values were <10% in all cases. The effectiveness of the proposed method was confirmed by its successful implementation in the bioanalysis of real urine samples.
Collapse
Affiliation(s)
- V Alampanos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - A Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - K G Furton
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - V Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
18
|
Salve S, Bahiram Y, Jadhav A, Rathod R, Tekade RK. Nanoplatform-Integrated Miniaturized Solid-Phase Extraction Techniques: A Critical Review. Crit Rev Anal Chem 2021; 53:46-68. [PMID: 34096402 DOI: 10.1080/10408347.2021.1934651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Preparation of the biological samples is one of the most critical steps in sample analysis. In past decades, the liquid-liquid extraction technique has been used to extract the desired analytes from complex biological matrices. However, solid-phase extraction (SPE) gained popularity due to versatility, simplicity, selectivity, reproducibility, high sample recovery %, solvent economy, and time-saving nature. The superior extraction efficiency of SPE can be attributed to the development of advanced techniques, including the nanosorbents technology. The nanosorbent technology significantly simplified the sample preparation, improved the selectivity, diversified the application, and accelerated the sample analysis. This review critically expands on the to-date advancements reported in SPE with particular regards to the nanosorbent technology.
Collapse
Affiliation(s)
- Sushmita Salve
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Yogita Bahiram
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Amol Jadhav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Rajeshwari Rathod
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| |
Collapse
|
19
|
Manousi N, Plastiras OE, Deliyanni EA, Zachariadis GA. Green Bioanalytical Applications of Graphene Oxide for the Extraction of Small Organic Molecules. Molecules 2021; 26:molecules26092790. [PMID: 34065150 PMCID: PMC8126010 DOI: 10.3390/molecules26092790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Bioanalysis is the scientific field of the quantitative determination of xenobiotics (e.g., drugs and their metabolites) and biotics (e.g., macromolecules) in biological matrices. The most common samples in bioanalysis include blood (i.e., serum, plasma and whole blood) and urine. However, the analysis of alternative biosamples, such as hair and nails are gaining more and more attention. The main limitations for the determination of small organic compounds in biological samples is their low concentration in these matrices, in combination with the sample complexity. Therefore, a sample preparation/analyte preconcentration step is typically required. Currently, the development of novel microextraction and miniaturized extraction techniques, as well as novel adsorbents for the analysis of biosamples, in compliance with the requirements of Green Analytical Chemistry, is in the forefront of research in analytical chemistry. Graphene oxide (GO) is undoubtedly a powerful adsorbent for sample preparation that has been successfully coupled with a plethora of green extraction techniques. GO is composed of carbon atoms in a sp2 single-atom layer of a hybrid connection, and it exhibits high surface area, as well as good mechanical and thermal stability. In this review, we aim to discuss the applications of GO and functionalized GO derivatives in microextraction and miniaturized extraction techniques for the determination of small organic molecules in biological samples.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (N.M.); (G.A.Z.)
| | - Orfeas-Evangelos Plastiras
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleni A. Deliyanni
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George A. Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (N.M.); (G.A.Z.)
| |
Collapse
|
20
|
Green bioanalytical sample preparation: fabric phase sorptive extraction. Bioanalysis 2021; 13:693-710. [PMID: 33890507 DOI: 10.4155/bio-2021-0004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fabric phase sorptive extraction (FPSE) is a recently introduced sample preparation technique that has attracted substantial interest of the scientific community dealing with bioanalysis. This technique is based on a permeable and flexible substrate made of fabric, coated with a sol-gel organic-inorganic sorbent. Among the benefits of FPSE are its tunable selectivity, adjustable porosity, minimized sample preparation workflow, substantially reduced organic solvent consumption, rapid extraction kinetics and superior extraction efficiency, many of which are well-known criteria for Green Analytical Chemistry. As such, FPSE has established itself as a leading green sample preparation technology of 21st century. In this review, we discuss the principal steps for the development of an FPSE method, the main method optimization strategies, as well as the applications of FPSE in bioanalysis for the extraction of a wide range of analytes (e.g., estrogens, benzodiazepines, androgens and progestogens, penicillins, anti-inflammatory drugs, parabens etc.).
Collapse
|
21
|
Lazaridou E, Kabir A, Furton KG, Anthemidis A. A Novel Glass Fiber Coated with Sol-Gel Poly-Diphenylsiloxane Sorbent for the On-Line Determination of Toxic Metals Using Flow Injection Column Preconcentration Platform Coupled with Flame Atomic Absorption Spectrometry. Molecules 2020; 26:molecules26010009. [PMID: 33375078 PMCID: PMC7792807 DOI: 10.3390/molecules26010009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022] Open
Abstract
A novel simple and sensitive, time-based flow injection solid phase extraction system was developed for the automated determination of metals at low concentration. The potential of the proposed scheme, coupled with flame atomic absorption spectrometry (FAAS), was demonstrated for trace lead and chromium(VI) determination in environmental water samples. The method, which was based on a new sorptive extraction system, consisted of a microcolumn packed with glass fiber coated with sol-gel poly (diphenylsiloxane) (sol-gel PDPS), which is presented here for the first time. The analytical procedure involves the on-line chelate complex formation of target species with ammonium pyrrolidine dithiocarbamate (APDC), retention onto the hydrophobic sol-gel sorbent coated surface of glass fibers, and finally elution with methyl isobutyl ketone prior to atomization. All main chemical and hydrodynamic factors, which affect the complex formation, retention, and elution of the metal, were optimized thoroughly. Furthermore, the tolerance to potential interfering ions appearing in environmental samples was also explored. Enhancement factors of 215 and 70, detection limits (3 s) of 1.1 μg·L-1 and 1.2 μg·L-1, and relative standard deviations (RSD) of 3.0% (at 20.0 μg·L-1) and 3.2% (at 20.0 μg·L-1) were obtained for lead and chromium(VI), respec tively, for 120 s preconcentration time. The trueness of the developed method was estimated by analyzing certified reference materials and spiked environmental water samples.
Collapse
Affiliation(s)
- Eleni Lazaridou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, 54124 Thessaloniki, Greece;
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33131, USA; (A.K.); (K.G.F.)
| | - Kenneth G. Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33131, USA; (A.K.); (K.G.F.)
| | - Aristidis Anthemidis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, 54124 Thessaloniki, Greece;
- Correspondence: ; Tel.: +30-2310-99-7826
| |
Collapse
|
22
|
Agadellis E, Tartaglia A, Locatelli M, Kabir A, Furton KG, Samanidou V. Mixed-mode fabric phase sorptive extraction of multiple tetracycline residues from milk samples prior to high performance liquid chromatography-ultraviolet analysis. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Trujillo-Rodríguez MJ, Pacheco-Fernández I, Taima-Mancera I, Díaz JHA, Pino V. Evolution and current advances in sorbent-based microextraction configurations. J Chromatogr A 2020; 1634:461670. [DOI: 10.1016/j.chroma.2020.461670] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022]
|
24
|
Moyo B, Gitari M, Tavengwa NT. Application of sorptive micro-extraction techniques for the pre-concentration of antibiotic drug residues from food samples - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1865-1880. [PMID: 33000997 DOI: 10.1080/19440049.2020.1802069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Antibiotic residues have become a major concern worldwide as food contaminants due to the risk that they may pose to human health. The presence of these residues in food is due to improper veterinary practices. Consequently, rapid and cost-effective clean-up methods prior to analysis for these residues in food matrices are increasingly becoming necessary in order to ensure food safety. Miniaturised extraction and pre-concentration techniques have been developed as alternatives to conventional extraction procedures in recent years. Furthermore, the current trends in analytical sample preparation favour extraction techniques that comply with the principles of green analytical chemistry. Solid phase micro-extraction, stir bar sorptive extraction, stir cake sorptive extraction and fabric phase sorptive extraction methods are very promising sorbent-based sorptive micro-extraction techniques, and they are compliant to the principles of green chemistry. This review critically discusses the application of these techniques in the extraction and pre-concentration of antibiotic residues from food samples in the years 2015 to 2020.
Collapse
Affiliation(s)
- Babra Moyo
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda , Thohoyandou, South Africa
| | - Mugera Gitari
- Department of Ecology and Resource Management, School of Environmental Sciences, University of Venda , Thohoyandou, South Africa
| | - Nikita T Tavengwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda , Thohoyandou, South Africa
| |
Collapse
|
25
|
Alampanos V, Kabir A, Furton KG, Roje Ž, Vrček IV, Samanidou V. Fabric phase sorptive extraction combined with high-performance-liquid chromatography-photodiode array analysis for the determination of seven parabens in human breast tissues: Application to cancerous and non-cancerous samples. J Chromatogr A 2020; 1630:461530. [PMID: 32950814 DOI: 10.1016/j.chroma.2020.461530] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/22/2020] [Accepted: 09/06/2020] [Indexed: 11/25/2022]
Abstract
An improved pretreatment approach of human breast tissue is demonstrated for subsequent analysis of seven parabens including methyl paraben (MPB), ethyl paraben (EPB), propyl paraben (PPB), butyl paraben (BPB), isopropyl paraben (iPPB), isobutyl paraben (iBPB), and benzyl paraben (BzPB). Specifically, a well-designed homogenization procedure, conjugated with an optimized fabric phase sorptive extraction (FPSE) protocol, resulted in a carefully outlined sample preparation process as part of a green, simple, sensitive, economical and fast HPLC-PDA analytical method in agreement with Green Analytical Chemistry (GAC) demands. Among all tested FPSE membranes, the highest extraction efficiency was achieved by employing sol-gel poly(tetrahydrofuran) (sol-gel PTHF) coating on 100% cotton cellulose fabric that represents a medium polarity microextraction device, which combined the advanced material characteristics of sol-gel sorbent and the rich surface chemistry of an inherent porous cellulose fabric substrate. The chromatographic separation was accomplished with a Spherisorb C18 column and an isocratic mobile phase consisted of ammonium acetate and acetonitrile at a flow rate of 1.4 mL/min. The total analysis time was 13.6 min. The analytical adequacy of the composite sample preparation and chromatographic separation method was strongly evidenced by its successful application in the bioanalysis of real cancerous and non-cancerous tissue samples originated from different sub regions of human breast including axila, the upper left and the right quadrant. In all samples, at least one paraben was detected, while 35% of the samples were tested positive for all seven target parabens. Moreover, concentration levels of parabens in cancerous tissues were unambiguously higher than in healthy tissues. The obtained results underlined bioaccumulation potential of parabens in human breast tissue as a consequence of constant low-dose exposure of humans, despite the statutory concentration limits. The developed methodology has demonstrated to be suitable and efficient for future epidemiological and toxicological studies.
Collapse
Affiliation(s)
- Vasileios Alampanos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Kenneth G Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Željka Roje
- Department for Plastic, Reconstructive and Aesthetic Surgery, University Hospital Dubrava, Zagreb, Croatia
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Victoria Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
26
|
Fabric phase sorptive extraction followed by HPLC-PDA detection for the monitoring of pirimicarb and fenitrothion pesticide residues. Mikrochim Acta 2020; 187:337. [DOI: 10.1007/s00604-020-04306-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
|
27
|
Kaur R, Heena, Kaur R, Grover A, Rani S, Malik AK, Kabir A, Furton KG. Trace determination of parabens in cosmetics and personal care products using fabric‐phase sorptive extraction and high‐performance liquid chromatography with UV detection. J Sep Sci 2020; 43:2626-2635. [DOI: 10.1002/jssc.201900978] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Ramandeep Kaur
- Department of ChemistryPunjabi University Patiala Punjab India
| | - Heena
- Department of ChemistryPunjabi University Patiala Punjab India
- Department of ChemistryGSSDGS Khalsa College Patiala Punjab India
| | - Ripneel Kaur
- Department of ChemistryPunjabi University Patiala Punjab India
| | - Aman Grover
- Department of ChemistryPunjabi University Patiala Punjab India
| | - Susheela Rani
- Department of ChemistryPunjabi University Patiala Punjab India
| | | | - Abuzar Kabir
- Department of Chemistry and BiochemistryInternational Forensic Research InstituteFlorida International University Miami FL
| | - Kenneth G. Furton
- Department of Chemistry and BiochemistryInternational Forensic Research InstituteFlorida International University Miami FL
| |
Collapse
|
28
|
Pacheco-Fernández I, Allgaier-Díaz DW, Mastellone G, Cagliero C, Díaz DD, Pino V. Biopolymers in sorbent-based microextraction methods. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115839] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Locatelli M, Tartaglia A, D'Ambrosio F, Ramundo P, Ulusoy H, Furton K, Kabir A. Biofluid sampler: A new gateway for mail-in-analysis of whole blood samples. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1143:122055. [DOI: 10.1016/j.jchromb.2020.122055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 10/24/2022]
|
30
|
Alampanos V, Kabir A, Furton KG, Samanidou V, Papadoyannis I. Fabric phase sorptive extraction for simultaneous observation of four penicillin antibiotics from human blood serum prior to high performance liquid chromatography and photo-diode array detection. Microchem J 2019. [DOI: 10.1016/j.microc.2019.103964] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Cyclodextrin-functionalized cellulose filter paper for selective capture of diclofenac. Carbohydr Polym 2019; 220:43-52. [DOI: 10.1016/j.carbpol.2019.05.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/29/2019] [Accepted: 05/18/2019] [Indexed: 11/22/2022]
|
32
|
Lioupi A, Kabir A, Furton KG, Samanidou V. Fabric phase sorptive extraction for the isolation of five common antidepressants from human urine prior to HPLC-DAD analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1118-1119:171-179. [DOI: 10.1016/j.jchromb.2019.04.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/09/2019] [Accepted: 04/22/2019] [Indexed: 10/27/2022]
|
33
|
An On-Line Flow-Injection Sorbent Extraction System Coupled with Flame Atomic Absorption Spectrometry for Thallium Determination Using a PTFE Turning-Packed Column. SEPARATIONS 2019. [DOI: 10.3390/separations6020022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A novel time-based flow-injection–solid-phase extraction system (FI–SPE) coupled with flame atomic absorption spectrometry (FAAS) for automatic on-line preconcentration and determination of thallium was developed. The efficiency of poly-tetrafluoroethylene (PTFE) turnings packed into a column as sorbent material was investigated for thallium extraction. Total thallium was determined by oxidizing thallium(I) to thallium(III), adding bromine in acidic solution. The formed [TlBr4]− anionic bromo complex was retained onto the PTFE turnings by on-line mixing with sodium diethyl dithiocarbamate (DDTC). The preconcentrated Tl(III)-DDTC complex was then effectively eluted with methyl isobutyl ketone (MIBK) and introduced into the flame atomizer for measurement and quantification. The column proved to be effective, stable, and reproducible, with a long lifetime. The enrichment factor was 105 for 60 s preconcentration time, and the sampling frequency 40 h−1. The detection limit was 1.93 μg L−1, and the relative standard deviation (RSD) was 3.2% at 50.0 μg L−1 concentration. The accuracy of the proposed method was estimated by analyzing certified reference materials and environmental and biological samples.
Collapse
|
34
|
Preparation and characterization of a novel nanocomposite coating based on sol-gel titania/hydroxyapatite for solid-phase microextraction. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Georgiadis D, Tsalbouris A, Kabir A, Furton KG, Samanidou V. Novel capsule phase microextraction in combination with high performance liquid chromatography with diode array detection for rapid monitoring of sulfonamide drugs in milk. J Sep Sci 2019; 42:1440-1450. [DOI: 10.1002/jssc.201801283] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/09/2019] [Accepted: 01/19/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Doukas‐Evangelos Georgiadis
- Laboratory of Analytical ChemistryDepartment of ChemistryAristotle University of Thessaloniki Thessaloniki Greece
| | - Athanasios Tsalbouris
- Laboratory of Analytical ChemistryDepartment of ChemistryAristotle University of Thessaloniki Thessaloniki Greece
| | - Abuzar Kabir
- International Forensic Research InstituteDepartment of Chemistry and BiochemistryFlorida International University Miami FL USA
| | - Kenneth G. Furton
- International Forensic Research InstituteDepartment of Chemistry and BiochemistryFlorida International University Miami FL USA
| | - Victoria Samanidou
- Laboratory of Analytical ChemistryDepartment of ChemistryAristotle University of Thessaloniki Thessaloniki Greece
| |
Collapse
|
36
|
Abstract
Fabric phase sorptive extraction (FPSE) is a novel and green sample preparation technique introduced in 2014. FPSE utilizes a natural or synthetic permeable and flexible fabric substrate chemically coated with a sol-gel organic-inorganic hybrid sorbent in the form of ultra-thin coating, which leads to a fast and sensitive micro-extraction device. The flexible FPSE requires no modification of samples and allows direct extraction of analytes. Sol-gel sorbent-coated FPSE media possesses high chemical, solvent, and thermal stability due to the strong covalent bonding between the substrate and the sol-gel sorbent. Therefore, any elution solvent can be used in a small volume, which achieves a high pre-concentration factor without requiring any solvent evaporation and sample reconstitution step. Taking into consideration the complexity of the samples and the need of further minimization and automation, some new, alternative modes of the FPSE have also been developed. Therefore, FPSE has attracted the interest of the scientific community that deals with sample pre-treatment and has been successfully applied for the extraction and determination of many analytes in environmental samples as well as in food and biological samples. The objective of the current review is to present and classify the applications of FPSE according to different sample categories and to briefly show the progress, advantages, and the main principles of the proposed technique.
Collapse
|
37
|
On-Line Fabric Disk Sorptive Extraction via a Flow Preconcentration Platform Coupled with Atomic Absorption Spectrometry for the Determination of Essential and Toxic Elements in Biological Samples. SEPARATIONS 2018. [DOI: 10.3390/separations5030034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
38
|
Food Sample Preparation for the Determination of Sulfonamides by High-Performance Liquid Chromatography: State-of-the-Art. SEPARATIONS 2018. [DOI: 10.3390/separations5020031] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
39
|
Kazantzi V, Kabir A, Furton KG, Anthemidis A. Fabric fiber sorbent extraction for on-line toxic metal determination by atomic absorption spectrometry: Determination of lead and cadmium in energy and soft drinks. Microchem J 2018. [DOI: 10.1016/j.microc.2017.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Bitas D, Samanidou V. Molecularly Imprinted Polymers as Extracting Media for the Chromatographic Determination of Antibiotics in Milk. Molecules 2018; 23:E316. [PMID: 29393877 PMCID: PMC6017535 DOI: 10.3390/molecules23020316] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/26/2018] [Accepted: 02/01/2018] [Indexed: 11/16/2022] Open
Abstract
Milk-producing animals are typically kept stationary in overcrowded large-scale farms and in most cases under unsanitary conditions, which promotes the development of infections. In order to maintain sufficient health status among the herd or promote growth and increase production, farmers administer preventative antibiotic doses to the animals through their feed. However, many antibiotics used in cattle farms are intended for the treatment of bacterial infections in humans. This results in the development of antibiotic-resistant bacteria which pose a great risk for public health. Additionally, antibiotic residues are found in milk and dairy products, with potential toxic effects for the consumers. Hence the need of antibiotic residues monitoring in milk arises. Analytical methods were developed for the determination of antibiotics in milk, with key priority given to the analyte extraction and preconcentration step. Extraction can benefit from the production of molecularly imprinted polymers (MIPs) that can be applied as sorbents for the extraction of specific antibiotics. This review focuses on the principals of molecular imprinting technology and synthesis methods of MIPs, as well as the application of MIPs and MIPs composites for the chromatographic determination of various antibiotic categories in milk found in the recent literature.
Collapse
Affiliation(s)
- Dimitrios Bitas
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Victoria Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
41
|
Abd Wahib SM, Wan Ibrahim WA, Sanagi MM, Kamboh MA, Abdul Keyon AS. Magnetic sporopollenin-cyanopropyltriethoxysilane-dispersive micro-solid phase extraction coupled with high performance liquid chromatography for the determination of selected non-steroidal anti-inflammatory drugs in water samples. J Chromatogr A 2018; 1532:50-57. [DOI: 10.1016/j.chroma.2017.11.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 11/29/2022]
|
42
|
Abstract
Although analytical scientists equivocally agree that “no sample preparation” would be the best approach, the fact is that all samples that are handled in any analytical laboratory need to undergo treatment to some extent prior to their introduction to the analytical instrument [...]
Collapse
|