1
|
Larocca G, Contrafatto D, Cannata A, Giudice G. Multiparametric Monitoring System of Mt. Melbourne Volcano (Victoria Land, Antarctica). SENSORS (BASEL, SWITZERLAND) 2023; 23:7594. [PMID: 37688049 PMCID: PMC10490633 DOI: 10.3390/s23177594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Volcano monitoring is the key approach in mitigating the risks associated with volcanic phenomena. Although Antarctic volcanoes are characterized by remoteness, the 2010 Eyjafjallajökull eruption and the 2022 Hunga eruption have reminded us that even the farthest and/or least-known volcanoes can pose significant hazards to large and distant communities. Hence, it is important to also develop monitoring systems in the Antarctic volcanoes, which involves installing and maintaining multiparametric instrument networks. These tasks are particularly challenging in polar regions as the instruments have to face the most extreme climate on the Earth, characterized by very low temperatures and strong winds. In this work, we describe the multiparametric monitoring system recently deployed on the Melbourne volcano (Victoria Land, Antarctica), consisting of seismic, geochemical and thermal sensors together with powering, transmission and acquisition systems. Particular strategies have been applied to make the monitoring stations efficient despite the extreme weather conditions. Fumarolic ice caves, located on the summit area of the Melbourne volcano, were chosen as installation sites as they are protected places where no storm can damage the instruments and temperatures are close to 0 °C all year round. In addition, the choice of instruments and their operating mode has also been driven by the necessity to reduce energy consumption. Indeed, one of the most complicated tasks in Antarctica is powering a remote instrument year-round. The technological solutions found to implement the monitoring system of the Melbourne volcano and described in this work can help create volcano monitoring infrastructures in other polar environments.
Collapse
Affiliation(s)
- Graziano Larocca
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Piazza Roma 2, 95123 Catania, Italy; (G.L.); (D.C.); (A.C.)
| | - Danilo Contrafatto
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Piazza Roma 2, 95123 Catania, Italy; (G.L.); (D.C.); (A.C.)
| | - Andrea Cannata
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Piazza Roma 2, 95123 Catania, Italy; (G.L.); (D.C.); (A.C.)
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali-Sezione di Scienze della Terra, Università degli Studi di Catania, Corso Italia 57, 95129 Catania, Italy
| | - Gaetano Giudice
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Piazza Roma 2, 95123 Catania, Italy; (G.L.); (D.C.); (A.C.)
| |
Collapse
|
2
|
Andrews HM, Krichels AH, Homyak PM, Piper S, Aronson EL, Botthoff J, Greene AC, Jenerette GD. Wetting-induced soil CO 2 emission pulses are driven by interactions among soil temperature, carbon, and nitrogen limitation in the Colorado Desert. GLOBAL CHANGE BIOLOGY 2023; 29:3205-3220. [PMID: 36907979 DOI: 10.1111/gcb.16669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/20/2023] [Indexed: 05/03/2023]
Abstract
Warming-induced changes in precipitation regimes, coupled with anthropogenically enhanced nitrogen (N) deposition, are likely to increase the prevalence, duration, and magnitude of soil respiration pulses following wetting via interactions among temperature and carbon (C) and N availability. Quantifying the importance of these interactive controls on soil respiration is a key challenge as pulses can be large terrestrial sources of atmospheric carbon dioxide (CO2 ) over comparatively short timescales. Using an automated sensor system, we measured soil CO2 flux dynamics in the Colorado Desert-a system characterized by pronounced transitions from dry-to-wet soil conditions-through a multi-year series of experimental wetting campaigns. Experimental manipulations included combinations of C and N additions across a range of ambient temperatures and across five sites varying in atmospheric N deposition. We found soil CO2 pulses following wetting were highly predictable from peak instantaneous CO2 flux measurements. CO2 pulses consistently increased with temperature, and temperature at time of wetting positively correlated to CO2 pulse magnitude. Experimentally adding N along the N deposition gradient generated contrasting pulse responses: adding N increased CO2 pulses in low N deposition sites, whereas adding N decreased CO2 pulses in high N deposition sites. At a low N deposition site, simultaneous additions of C and N during wetting led to the highest observed soil CO2 fluxes reported globally at 299.5 μmol CO2 m-2 s-1 . Our results suggest that soils have the capacity to emit high amounts of CO2 within small timeframes following infrequent wetting, and pulse sizes reflect a non-linear combination of soil resource and temperature interactions. Importantly, the largest soil CO2 emissions occurred when multiple resources were amended simultaneously in historically resource-limited desert soils, pointing to regions experiencing simultaneous effects of desertification and urbanization as key locations in future global C balance.
Collapse
Affiliation(s)
- Holly M Andrews
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Alexander H Krichels
- Department of Environmental Sciences, University of California, Riverside, California, USA
- Center for Conservation Biology, University of California, Riverside, California, USA
| | - Peter M Homyak
- Department of Environmental Sciences, University of California, Riverside, California, USA
| | - Stephanie Piper
- Department of Botany and Plant Sciences, University of California, Riverside, California, USA
| | - Emma L Aronson
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| | - Jon Botthoff
- Center for Conservation Biology, University of California, Riverside, California, USA
| | - Aral C Greene
- Department of Environmental Sciences, University of California, Riverside, California, USA
| | - G Darrel Jenerette
- Center for Conservation Biology, University of California, Riverside, California, USA
- Department of Botany and Plant Sciences, University of California, Riverside, California, USA
| |
Collapse
|
3
|
Ghani MU, Kamran M, Ahmad I, Arshad A, Zhang C, Zhu W, Lou S, Hou F. Alfalfa-grass mixtures reduce greenhouse gas emissions and net global warming potential while maintaining yield advantages over monocultures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157765. [PMID: 35926624 DOI: 10.1016/j.scitotenv.2022.157765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Improving forage productivity with lower greenhouse gas (GHG) emissions from limited grassland has been a hotspot of interest in global agricultural production. In this study, we analyzed the effects of grasses (tall fescue, smooth bromegrass), legume (alfalfa), and alfalfa-grass (alfalfa + smooth bromegrass and alfalfa + tall fescue) mixtures on GHG emissions, net global warming potential (Net GWP), yield-based greenhouse gas intensity (GHGI), soil chemical properties and forage productivity in cultivated grassland in northwest China during 2020-2021. Our results demonstrated that alfalfa-grass mixtures significantly improved forage productivity. The highest total dry matter yield (DMY) during 2020 and 2021 was obtained from alfalfa-tall fescue (11,311 and 13,338 kg ha-1) and alfalfa-smooth bromegrass mixtures (10,781 and 12,467 kg ha-1). The annual cumulative GHG emissions from mixtures were lower than alfalfa monoculture. Alfalfa-grass mixtures significantly reduced GHGI compared with the grass or alfalfa monocultures. Furthermore, results indicated that grass, alfalfa and alfalfa-grass mixtures differentially affected soil chemical properties. Lower soil pH and C/N ratio were recorded in alfalfa monoculture. Alfalfa and mixtures increased soil organic carbon (SOC) and soil total nitrogen (STN) contents. Importantly, alfalfa-grass mixtures are necessary for improving forage productivity and mitigating the GHG emissions in this region. In conclusion, the alfalfa-tall fescue mixture lowered net GWP and GHGI in cultivated grassland while maintaining high forage productivity. These advanced agricultural practices could contribute to the development of climate-sustainable grassland production in China.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Muhammad Kamran
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Irshad Ahmad
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Adnan Arshad
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Cheng Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Wanhe Zhu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Shanning Lou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
4
|
Sengupta A, Volkmann THM, Danczak RE, Stegen JC, Dontsova K, Abramson N, Bugaj AS, Volk MJ, Matos KA, Meira-Neto AA, Barberán A, Neilson JW, Maier RM, Chorover J, Troch PA, Meredith LK. Contrasting Community Assembly Forces Drive Microbial Structural and Potential Functional Responses to Precipitation in an Incipient Soil System. Front Microbiol 2021; 12:754698. [PMID: 34887842 PMCID: PMC8650109 DOI: 10.3389/fmicb.2021.754698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial communities in incipient soil systems serve as the only biotic force shaping landscape evolution. However, the underlying ecological forces shaping microbial community structure and function are inadequately understood. We used amplicon sequencing to determine microbial taxonomic assembly and metagenome sequencing to evaluate microbial functional assembly in incipient basaltic soil subjected to precipitation. Community composition was stratified with soil depth in the pre-precipitation samples, with surficial communities maintaining their distinct structure and diversity after precipitation, while the deeper soil samples appeared to become more uniform. The structural community assembly remained deterministic in pre- and post-precipitation periods, with homogenous selection being dominant. Metagenome analysis revealed that carbon and nitrogen functional potential was assembled stochastically. Sub-populations putatively involved in the nitrogen cycle and carbon fixation experienced counteracting assembly pressures at the deepest depths, suggesting the communities may functionally assemble to respond to short-term environmental fluctuations and impact the landscape-scale response to perturbations. We propose that contrasting assembly forces impact microbial structure and potential function in an incipient landscape; in situ landscape characteristics (here homogenous parent material) drive community structure assembly, while short-term environmental fluctuations (here precipitation) shape environmental variations that are random in the soil depth profile and drive stochastic sub-population functional dynamics.
Collapse
Affiliation(s)
- Aditi Sengupta
- Department of Biology, California Lutheran University, Thousand Oaks, CA, United States.,Biosphere 2, University of Arizona, Tucson, AZ, United States
| | | | - Robert E Danczak
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - James C Stegen
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Katerina Dontsova
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Nate Abramson
- Department of Geosciences, University of Arizona, Tucson, AZ, United States
| | - Aaron S Bugaj
- Biosphere 2, University of Arizona, Tucson, AZ, United States
| | - Michael J Volk
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | | | - Antonio A Meira-Neto
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, United States
| | - Albert Barberán
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Julia W Neilson
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Raina M Maier
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Jon Chorover
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Peter A Troch
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, United States
| | - Laura K Meredith
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
5
|
Wang X, Wang J, Wang J. Seasonality of soil respiration under gypsum and straw amendments in an arid saline-alkali soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111494. [PMID: 33069145 DOI: 10.1016/j.jenvman.2020.111494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/30/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Soil respiration (or CO2 production) is often determined by measuring CO2 efflux; however, there are differences between them in saline-alkali soils of arid land. The purpose of this study is to test a hypothesis that CO2 production exceeds efflux in arid saline-alkali soils under organic and gypsum amendments. We conducted a modeling study that was based on a two-year field experiment with four treatments: control, gypsum addition, wheat straw incorporation, and gypsum-straw combination. A diffusion model was forced by soil CO2, temperature and moisture that were continuously recorded at 0, 8 and 15 cm, and calibrated by measured CO2 efflux. We then applied the model to calculate CO2 production and efflux over 2014-2015, and found a strong and similar seasonality in both CO2 production and efflux under all treatments (i.e., highest in summer with one peak in 2014 and two peaks in 2015). Our results showed enhanced CO2 production and efflux over short period following rainfall. There were significantly exponential relationships between CO2 production/efflux and temperature. While straw incorporation significantly increased CO2 production and efflux, straw incorporation combined with gypsum amendment caused a decrease in CO2 production and efflux. CO2 production exceeded CO2 efflux mainly in the first half year, and annual difference was 33-130 g C m-2, with larger differences under gypsum amendment. Our study implies that a portion of respired CO2 is transformed into other forms and stored in saline-alkaline soils in arid land.
Collapse
Affiliation(s)
- Xiujun Wang
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China.
| | - Junyi Wang
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Jiaping Wang
- College of Agriculture, Shihezi University, Shihezi, 832000, China
| |
Collapse
|
6
|
Arevalo J, Zeng X, Durcik M, Sibayan M, Pangle L, Abramson N, Bugaj A, Ng WR, Kim M, Barron-Gafford G, van Haren J, Niu GY, Adams J, Ruiz J, Troch PA. Highly sampled measurements in a controlled atmosphere at the Biosphere 2 Landscape Evolution Observatory. Sci Data 2020; 7:306. [PMID: 32934240 PMCID: PMC7493898 DOI: 10.1038/s41597-020-00645-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/14/2020] [Indexed: 11/09/2022] Open
Abstract
Land-atmosphere interactions at different temporal and spatial scales are important for our understanding of the Earth system and its modeling. The Landscape Evolution Observatory (LEO) at Biosphere 2, managed by the University of Arizona, hosts three nearly identical artificial bare-soil hillslopes with dimensions of 11 × 30 m2 (1 m depth) in a controlled and highly monitored environment within three large greenhouses. These facilities provide a unique opportunity to explore these interactions. The dataset presented here is a subset of the measurements in each LEO's hillslopes, from 1 July 2015 to 30 June 2019 every 15 minutes, consisting of temperature, water content and heat flux of the soil (at 5 cm depth) for 12 co-located points; temperature, relative humidity and wind speed above ground at 5 locations and 5 different heights ranging from 0.25 m to 9-10 m; 3D wind at 1 location; the four components of radiation at 2 locations; spatially aggregated precipitation rates, total subsurface discharge, and relative water storage; and the measurements from a weather station outside the greenhouses.
Collapse
Affiliation(s)
- Jorge Arevalo
- Department of Hydrology and Atmospheric Sciences, University of Arizona, 1133 James E. Rogers Way, Tucson, AZ, 85721, USA.
- Departamento de Meteorología, Universidad de Valparaíso, Av. Gran Bretaña 644, Playa Ancha, Valparaíso, Chile.
| | - Xubin Zeng
- Department of Hydrology and Atmospheric Sciences, University of Arizona, 1133 James E. Rogers Way, Tucson, AZ, 85721, USA
- Biosphere 2, University of Arizona, 32540 S Biosphere Road, Oracle, AZ, 85623, USA
| | - Matej Durcik
- Biosphere 2, University of Arizona, 32540 S Biosphere Road, Oracle, AZ, 85623, USA
| | - Michael Sibayan
- Department of Astronomy/Steward Observatory, University of Arizona, 933 N Cherry Avenue, Tucson, AZ, 85721, USA
| | - Luke Pangle
- Department of Geosciences, Georgia State University, 38 Peachtree Center Avenue, Atlanta, GA, 30303, USA
| | - Nate Abramson
- Department of Geosciences, University of Arizona, 1040 E Fourth Street, Tucson, AZ, 85721, USA
| | - Aaron Bugaj
- Biosphere 2, University of Arizona, 32540 S Biosphere Road, Oracle, AZ, 85623, USA
| | - Wei-Ren Ng
- Biosphere 2, University of Arizona, 32540 S Biosphere Road, Oracle, AZ, 85623, USA
| | - Minseok Kim
- Biosphere 2, University of Arizona, 32540 S Biosphere Road, Oracle, AZ, 85623, USA
| | - Greg Barron-Gafford
- Biosphere 2, University of Arizona, 32540 S Biosphere Road, Oracle, AZ, 85623, USA
- School of Geography and Development, University of Arizona, 1064 E Lowell Street, Tucson, AZ, 85721, USA
| | - Joost van Haren
- Biosphere 2, University of Arizona, 32540 S Biosphere Road, Oracle, AZ, 85623, USA
- Department of Soil, Water and Environmental Science, University of Arizona, 1177 E. 4th Street, Tucson, AZ, 85721, USA
- Honors College, 1101 East Mabel Street, Tucson, AZ, 18719, USA
| | - Guo-Yue Niu
- Department of Hydrology and Atmospheric Sciences, University of Arizona, 1133 James E. Rogers Way, Tucson, AZ, 85721, USA
- Biosphere 2, University of Arizona, 32540 S Biosphere Road, Oracle, AZ, 85623, USA
| | - John Adams
- Biosphere 2, University of Arizona, 32540 S Biosphere Road, Oracle, AZ, 85623, USA
| | - Joaquin Ruiz
- Biosphere 2, University of Arizona, 32540 S Biosphere Road, Oracle, AZ, 85623, USA
- Department of Geosciences, University of Arizona, 1040 E Fourth Street, Tucson, AZ, 85721, USA
| | - Peter A Troch
- Department of Hydrology and Atmospheric Sciences, University of Arizona, 1133 James E. Rogers Way, Tucson, AZ, 85721, USA
- Biosphere 2, University of Arizona, 32540 S Biosphere Road, Oracle, AZ, 85623, USA
| |
Collapse
|