1
|
Merelim AS, Zacca R, Moreira-Gonçalves D, Costa PP, Baptista LC. Distinct exercise modalities on GUT microbiome in sarcopenic older adults: study protocol of a pilot randomized controlled trial. Front Med (Lausanne) 2025; 12:1504786. [PMID: 40109720 PMCID: PMC11920130 DOI: 10.3389/fmed.2025.1504786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/31/2025] [Indexed: 03/22/2025] Open
Abstract
Background Sarcopenia is a progressive and age-related skeletal muscle disease related to adverse health outcomes and to an increased economic burden. Recent evidence pinpoints the human gut microbiota (GM) as a contributing factor in the development of sarcopenia via the gut-muscle axis. To date, no study specifically analyzed the optimal type of exercise modality in older adults with sarcopenia considering the impact of GM composition in skeletal muscle mass and function. Therefore, the DEMGUTS study intents to explore the impact of three different exercise regimens on GM composition and gut-derived metabolites in older adults with sarcopenia. Methods This pilot single center three-arm parallel open-label randomized control trial (RCT) will randomly assign eligible participants to: (i) moderate aerobic exercise (AER); (ii) resistance exercise (RES); or (iii) concurrent exercise training (RES + AER). Participants will engage in a supervised center-based exercise intervention (12-weeks, 3 d/week, 60 min/d), and will be assessed at (i) baseline, (ii) end of intervention (14 weeks), and (iii) at close-out (26-weeks). The primary outcome will be the change in the relative abundance of Faecalibacterium prausnitzii and other short-chain fatty acid producing bacteria after the intervention (14-weeks). A set of complementary outcomes will also be assessed to broadly characterize the impact of each exercise intervention on body composition, skeletal muscle function, functional performance and general GM composition. Conclusion Unraveling the impact of these exercise regimens on GM is crucial to help clarify the optimal exercise modality to manage sarcopenia disease, contributing to clinical guidance and enhancing exercise prescription in older adults with sarcopenia. Clinical trial registration https://clinicaltrials.gov/, identifier NCT06545123.
Collapse
Affiliation(s)
- Ana Sofia Merelim
- Faculty of Sports, Research Center in Physical Activity, Health and Leisure (CIAFEL), University of Porto (FADEUP), Porto, Portugal
| | - Rodrigo Zacca
- Faculty of Sports, Research Center in Physical Activity, Health and Leisure (CIAFEL), University of Porto (FADEUP), Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Daniel Moreira-Gonçalves
- Faculty of Sports, Research Center in Physical Activity, Health and Leisure (CIAFEL), University of Porto (FADEUP), Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Paulo P Costa
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Multidisciplinary Unit for Biomedicine Research (UMIB), University of Porto, Porto, Portugal
- Department of Human Genetics, CSPGF, Instituto Nacional de Saúde Dr. Ricardo Jorge, Porto, Portugal
| | - Liliana C Baptista
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Faculty of Sports Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
- Research Center in Sport and Physical Activity (CIDAF), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Nakamoto S, Kajiwara Y, Taniguchi K, Hida AI, Miyoshi Y, Kin T, Yamamoto M, Takabatake D, Kubo S, Hikino H, Ogasawara Y, Ikeda M, Doihara H, Shien T, Taira N, Iwamoto T, Toyooka S. Baseline gut microbiota as a predictive marker for the efficacy of neoadjuvant chemotherapy in patients with early breast cancer: a multicenter prospective cohort study in the Setouchi Breast Project-14. Breast Cancer Res Treat 2024; 208:67-77. [PMID: 38888797 DOI: 10.1007/s10549-024-07395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE Various studies have demonstrated the causal relationship between gut microbiota and efficacy of chemotherapy; however, the impact of gut microbiota on breast cancer has not been fully elucidated. This study aimed to evaluate the associations between the gut microbiota before neoadjuvant chemotherapy and its consequent efficacy in breast cancer. METHODS This prospective observational study included patients who received neoadjuvant chemotherapy for primary early breast cancer at eight institutions between October 1, 2019, and March 31, 2022. We performed 16S rRNA analysis of fecal samples and α and β diversity analyses of the gut microbiota. The primary endpoint was the association between the gut microbiota and pathological complete response (pCR) to neoadjuvant chemotherapy. RESULTS Among the 183 patients, the pCR rate after neoadjuvant chemotherapy was 36.1% in all patients and 12.9% (9/70), 69.5% (41/59), and 29.6% (16/54) in those with the luminal, human epidermal growth factor receptor 2, and triple-negative types, respectively. The α diversity of the gut microbiota did not significantly differ between patients with pCR and those without pCR. Among the gut microbiota, two species (Victivallales, P = 0.001 and Anaerolineales, P = 0.001) were associated with pCR, and one (Gemellales, P = 0.002) was associated with non-pCR. CONCLUSION Three species in the gut microbiota had potential associations with neoadjuvant chemotherapy efficacy, but the diversity of the gut microbiota was not associated with response to chemotherapy. Further research is needed to validate our findings.
Collapse
Affiliation(s)
- Shogo Nakamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yukiko Kajiwara
- Department of Breast and Endocrine Surgery, Okayama University Hospital, Okayama, Japan
- Department of Breast Surgery, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Kohei Taniguchi
- Department of Pathology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Akira I Hida
- Department of Pathology, Matsuyama Shimin Hospital, Matsuyama, Japan
| | - Yuichiro Miyoshi
- Department of Breast Oncology, NHO Shikoku Cancer Center, Matsuyama, Japan
- Department of Breast Endocrine Surgery, Kagawa Prefectural Center Hospital, Takamatsu, Japan
| | - Takanori Kin
- Department of Breast Surgery, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Mari Yamamoto
- Department of Breast and Thyroid Surgery, Fukuyama City Hospital, Fukuyama, Japan
- Department of Breast and Thyroid Surgery, Onomichi Municipal Hospital, Onomichi, Japan
| | - Daisuke Takabatake
- Department of Breast Oncology, NHO Shikoku Cancer Center, Matsuyama, Japan
- Department of Breast and Thyroid Surgery, Kochi Health Science Center, Kochi, Japan
| | - Shinichiro Kubo
- Department of Breast and Thyroid Surgery, Fukuyama City Hospital, Fukuyama, Japan
| | - Hajime Hikino
- Department of Breast Surgery, Matsue Red Cross Hospital, Matsue, Japan
| | - Yutaka Ogasawara
- Department of Breast Endocrine Surgery, Kagawa Prefectural Center Hospital, Takamatsu, Japan
| | - Masahiko Ikeda
- Department of Breast and Thyroid Surgery, Fukuyama City Hospital, Fukuyama, Japan
| | - Hiroyoshi Doihara
- Department of Breast and Endocrine Surgery, Okayama University Hospital, Okayama, Japan
- Department of General Surgery, Kawasaki Medical School General Medical Center, Okayama, Japan
| | - Tadahiko Shien
- Department of Breast and Endocrine Surgery, Okayama University Hospital, Okayama, Japan
| | - Naruto Taira
- Department of Breast and Endocrine Surgery, Okayama University Hospital, Okayama, Japan
- Department of Breast and Thyroid Surgery, Kawasaki Medical School Hospital, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Takayuki Iwamoto
- Department of Breast and Endocrine Surgery, Okayama University Hospital, Okayama, Japan.
- Department of Breast and Thyroid Surgery, Kawasaki Medical School Hospital, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
3
|
Varghese S, Rao S, Khattak A, Zamir F, Chaari A. Physical Exercise and the Gut Microbiome: A Bidirectional Relationship Influencing Health and Performance. Nutrients 2024; 16:3663. [PMID: 39519496 PMCID: PMC11547208 DOI: 10.3390/nu16213663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: The human gut microbiome is a complex ecosystem of microorganisms that can influence our health and exercise habits. On the other hand, physical exercise can also impact our microbiome, affecting our health. Our narrative review examines the bidirectional relationship between physical activity and the gut microbiome, as well as the potential for targeted probiotic regimens to enhance sports performance. Methods: We conducted a comprehensive literature review to select articles published up till January 2024 on the topics of physical exercise, sports, probiotics, and gut microbiota from major scientific databases, incorporating over 100 studies. Results: We found that the impact of physical activity on the gut microbiome varies with the type and intensity of exercise. Moderate exercise promotes a healthy immune system, while high-intensity exercise for a long duration can cause a leaky gut and consequent systemic inflammation, which may disrupt the microbial balance. Combining aerobic and resistance training significantly affects bacterial diversity, linked to a lower prevalence of chronic metabolic disorders. Furthermore, exercise enhances gut microbiome diversity, increases SCFA production, improves nutrient utilization, and modulates neural and hormonal pathways, improving gut barrier integrity. Our findings also showed probiotic supplementation is associated with decreased inflammation, enhanced sports performance, and fewer gastrointestinal disturbances, suggesting that the relationship between the gut microbiome and physical activity is mutually influential. Conclusions: The bidirectional relationship between physical activity and the gut microbiome is exemplified by how exercise can promote beneficial bacteria while a healthy gut microbiome can potentially enhance exercise ability through various mechanisms. These findings underscore the importance of adding potential tailored exercise regimens and probiotic supplementation that consider individual microbiome profiles into exercise programs.
Collapse
Affiliation(s)
| | | | | | | | - Ali Chaari
- Department of Biochemistry, Premedical Division, Weill Cornell Medicine–Qatar, Qatar Foundation, Education City, Doha P.O. Box 24144, Qatar; (S.V.); (S.R.); (A.K.); (F.Z.)
| |
Collapse
|
4
|
Kouraki A, Vijay A, Gohir S, Millar B, Kelly A, Valdes AM. Physical Therapy for Knee Pain Relief Induces Changes in Gut Microbiome Composition: A Secondary Analysis of Data From a Randomized Controlled Trial. Sports Health 2024:19417381241283812. [PMID: 39370648 PMCID: PMC11556638 DOI: 10.1177/19417381241283812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND Aerobic exercise alters gut microbiome composition, yet the impact of gentle physiotherapy on gut microbiome and its relation to muscle strengthening and physical function remains unexplored. HYPOTHESIS Physiotherapy exercises modulate gut microbiome composition and changes in gut microbes are linked to improvements in muscle strength or function. STUDY DESIGN Secondary data analysis of samples from a randomized controlled trial. LEVEL OF EVIDENCE Level 2b. METHODS Data from a 6-week randomized controlled trial of physiotherapy for knee pain were analyzed. Gut microbiota profiling utilized 16S sequencing. We compared intervention and control (usual care) groups using microbial diversity metrics. Amplicon sequence variants (ASVs) that changed after the program were identified with ALDEX2, and correlations between these ASVs and measures of physical function, muscle strength, and interleukin-6 (IL-6) were explored. RESULTS No diversity changes were observed between standard care (n = 43) and physiotherapy (n = 34). Physiotherapy led to significant increases in Alistipes, Bacteroides, Clostridium sensu stricto 1, and Faecalibacterium ASVs. Of these, Clostridium sensu stricto 1 and Faecalibacterium were associated with postintervention muscle strength. Increase in Faecalibacterium was correlated with a decrease in IL-6 in the physiotherapy group. CONCLUSION Physiotherapy had modest effects on gut microbiome composition affecting 4 taxa. Increases in muscle strength were correlated with increases in 2 taxa including Faecalibacterium. Faecalibacterium was also linked to reduced inflammation. Improved walking speed was linked to an increase in Alistipes with no differences found for strength or squatting ability. CLINICAL RELEVANCE Improved gut microbiome composition is linked to better overall health outcomes, including enhanced immune function, reduced inflammation, and improved metabolic health. This is particularly relevant for patients with osteoarthritis, who are known to have a high prevalence of cardiometabolic comorbidities. Integrating physiotherapy protocols that positively influence the gut microbiome can thus enhance overall patient outcomes.
Collapse
Affiliation(s)
- Afroditi Kouraki
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Amrita Vijay
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Sameer Gohir
- Circle Integrated Care The Barn BMI, Manor Rd, Church End, Bedford, UK
| | - Bonnie Millar
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
| | - Anthony Kelly
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Ana M Valdes
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Etlin S, Rose J, Bielski L, Walter C, Kleinman AS, Mason CE. The human microbiome in space: parallels between Earth-based dysbiosis, implications for long-duration spaceflight, and possible mitigation strategies. Clin Microbiol Rev 2024; 37:e0016322. [PMID: 39136453 PMCID: PMC11391694 DOI: 10.1128/cmr.00163-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
SUMMARYThe human microbiota encompasses the diverse communities of microorganisms that reside in, on, and around various parts of the human body, such as the skin, nasal passages, and gastrointestinal tract. Although research is ongoing, it is well established that the microbiota exert a substantial influence on the body through the production and modification of metabolites and small molecules. Disruptions in the composition of the microbiota-dysbiosis-have also been linked to various negative health outcomes. As humans embark upon longer-duration space missions, it is important to understand how the conditions of space travel impact the microbiota and, consequently, astronaut health. This article will first characterize the main taxa of the human gut microbiota and their associated metabolites, before discussing potential dysbiosis and negative health consequences. It will also detail the microbial changes observed in astronauts during spaceflight, focusing on gut microbiota composition and pathogenic virulence and survival. Analysis will then turn to how astronaut health may be protected from adverse microbial changes via diet, exercise, and antibiotics before concluding with a discussion of the microbiota of spacecraft and microbial culturing methods in space. The implications of this review are critical, particularly with NASA's ongoing implementation of the Moon to Mars Architecture, which will include weeks or months of living in space and new habitats.
Collapse
Affiliation(s)
- Sofia Etlin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Julianna Rose
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Luca Bielski
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
| | - Claire Walter
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Ashley S Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- BioAstra Inc., New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, New York, USA
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
6
|
Park CE, Jo YJ, Jung DR, Park HC, Shin JH. Comparative Analysis of Gut Microbiota between Captive and Wild Long-Tailed Gorals for Ex Situ Conservation. Microorganisms 2024; 12:1419. [PMID: 39065187 PMCID: PMC11278867 DOI: 10.3390/microorganisms12071419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The long-tailed goral is close to extinction, and ex situ conservation is essential to prevent this phenomenon. Studies on the gut microbiome of the long-tailed goral are important for understanding the ecology of this species. We amplified DNA from the 16S rRNA regions and compared the microbiomes of wild long-tailed gorals and two types of captive long-tailed gorals. Our findings revealed that the gut microbiome diversity of wild long-tailed gorals is greatly reduced when they are reared in captivity. A comparison of the two types of captive long-tailed gorals confirmed that animals with a more diverse diet exhibit greater gut microbiome diversity. Redundancy analysis confirmed that wild long-tailed gorals are distributed throughout the highlands, midlands, and lowlands. For the first time, it was revealed that the long-tailed goral are divided into three groups depending on the height of their habitat, and that the gut bacterial community changes significantly when long-tailed gorals are raised through ex situ conservation. This provides for the first time a perspective on the diversity of food plants associated with mountain height that will be available to long-tailed goral in the future.
Collapse
Affiliation(s)
- Chang-Eon Park
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (C.-E.P.); (Y.-J.J.); (D.-R.J.)
- Institute of Ornithology, Ex Situ Conservation Institution Designated by the Ministry of Environment, Gumi 39105, Republic of Korea;
| | - Young-Jae Jo
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (C.-E.P.); (Y.-J.J.); (D.-R.J.)
| | - Da-Ryung Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (C.-E.P.); (Y.-J.J.); (D.-R.J.)
| | - Hee-Cheon Park
- Institute of Ornithology, Ex Situ Conservation Institution Designated by the Ministry of Environment, Gumi 39105, Republic of Korea;
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (C.-E.P.); (Y.-J.J.); (D.-R.J.)
- NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
7
|
Petri C, Mascherini G, Izzicupo P, Rosati D, Cerboneschi M, Smeazzetto S, Arrones LS. Gut microbiota and physical activity level: characterization from sedentary to soccer players. Biol Sport 2024; 41:169-176. [PMID: 38952907 PMCID: PMC11167455 DOI: 10.5114/biolsport.2024.134759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/06/2023] [Accepted: 01/15/2024] [Indexed: 07/03/2024] Open
Abstract
Evidence of the relationship between physical activity and gut microbiota composition is steadily increasing. The purpose of the study is to compare the gut microbiota composition of a group of elite male soccer players with a group of subjects with different physical activity levels. Cross-sectional studies were performed on 91 healthy young males, in detail: 17 elite soccer players (23.7 ± 4.2 yrs, BMI 23.2 ± 1.2 kg/m2); 14 with high levels of physical training (24.5 ± 5.6 yrs, BMI 22.7 ± 0.8 kg/m2); 23 with moderate levels of physical training (29.3 ± 3.9 yrs, BMI 22.5 ± 0.8 kg/m2); and 37 healthy men without exercise habits (28.1 ± 5.9 yrs, BMI 22.4 ± 1.0 kg/m2). Relative microbiota composition was determined by analyzing DNA extracted from stool samples. The quality and quantity of extracted DNA were assessed using a Qubit Fluorometer. Differences between subjects' populations were analyzed using a one-way ANOVA, and Bonferroni's post-hoc test was employed to identify localized effects. Elite soccer players and subjects with high physical activity levels showed a significantly higher prevalence of the nine microbiota populations analyzed than subjects with moderate physical training or who were sedentary. No differences were found in the Firmicutes to Bacteroidetes ratio among the different study populations. This study reports the gut microbiota parameters of elite footballers for the first time. In addition, it brings new insights into the effects of different levels of physical activity on the composition of the gut microbiota.
Collapse
Affiliation(s)
- Cristian Petri
- Department of Sports and Computer Science, Section of Physical Education and Sports, Universidad Pablo de Olavide, Seville, Spain
| | - Gabriele Mascherini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Pascal Izzicupo
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, Via L. Polacchi, 11, 66100 Chieti, Italy
| | - Diletta Rosati
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | | | | | - Luis Suarez Arrones
- Department of Sports and Computer Science, Section of Physical Education and Sports, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
8
|
Dahlquist-Axe G, Standeven FJ, Speller CF, Tedder A, Meehan CJ. Inferring diet, disease and antibiotic resistance from ancient human oral microbiomes. Microb Genom 2024; 10:001251. [PMID: 38739117 PMCID: PMC11165619 DOI: 10.1099/mgen.0.001251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
The interaction between a host and its microbiome is an area of intense study. For the human host, it is known that the various body-site-associated microbiomes impact heavily on health and disease states. For instance, the oral microbiome is a source of various pathogens and potential antibiotic resistance gene pools. The effect of historical changes to the human host and environment to the associated microbiome, however, has been less well explored. In this review, we characterize several historical and prehistoric events which are considered to have impacted the oral environment and therefore the bacterial communities residing within it. The link between evolutionary changes to the oral microbiota and the significant societal and behavioural changes occurring during the pre-Neolithic, Agricultural Revolution, Industrial Revolution and Antibiotic Era is outlined. While previous studies suggest the functional profile of these communities may have shifted over the centuries, there is currently a gap in knowledge that needs to be filled. Biomolecular archaeological evidence of innate antimicrobial resistance within the oral microbiome shows an increase in the abundance of antimicrobial resistance genes since the advent and widespread use of antibiotics in the modern era. Nevertheless, a lack of research into the prevalence and evolution of antimicrobial resistance within the oral microbiome throughout history hinders our ability to combat antimicrobial resistance in the modern era.
Collapse
Affiliation(s)
- Gwyn Dahlquist-Axe
- School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| | | | - Camilla F. Speller
- Department of Anthropology, University of British Columbia, Vancouver, Canada
| | - Andrew Tedder
- School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| | - Conor J. Meehan
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
9
|
Gao X, Zhang P. Exercise perspective: Benefits and mechanisms of gut microbiota on the body. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:508-515. [PMID: 39019779 PMCID: PMC11255194 DOI: 10.11817/j.issn.1672-7347.2024.230550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 07/19/2024]
Abstract
Gut microbiota refers to the vast and diverse community of microorganisms residing in the intestines. Factors such as genetics, environmental influences (e.g., exercise, diet), and early life experiences (e.g., infant feeding methods) can all affect the ecological balance of gut microbiota within the body. Dysbiosis of the gut microbiota is associated with extra-intestinal diseases such as Parkinson's syndrome, osteoporosis, and autoimmune diseases, suggesting that disturbances in gut microbiota may be one of the causes of these diseases. Exercise benefits various diseases, with gut microbiota playing a role in regulating the nervous, musculoskeletal, and immune systems. Gut microbiota can impact the body's health status through the gut-brain axis, gut-muscle axis, and immune pathways. Moderate-intensity aerobic exercise can increase the quantity of gut microbiota and change microbial abundance, although short-term exercise does not significantly affect the alpha diversity of the microbiota. Resistance exercise also does not have a significant regulatory effect on gut microbiota.
Collapse
Affiliation(s)
- Xin Gao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China.
| | - Peizhen Zhang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
10
|
Bertuccioli A, Zonzini GB, Cazzaniga M, Cardinali M, Di Pierro F, Gregoretti A, Zerbinati N, Guasti L, Matera MR, Cavecchia I, Palazzi CM. Sports-Related Gastrointestinal Disorders: From the Microbiota to the Possible Role of Nutraceuticals, a Narrative Analysis. Microorganisms 2024; 12:804. [PMID: 38674748 PMCID: PMC11051759 DOI: 10.3390/microorganisms12040804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Intense physical exercise can be related to a significant incidence of gastrointestinal symptoms, with a prevalence documented in the literature above 80%, especially for more intense forms such as running. This is in an initial phase due to the distancing of the flow of blood from the digestive system to the skeletal muscle and thermoregulatory systems, and secondarily to sympathetic nervous activation and hormonal response with alteration of intestinal motility, transit, and nutrient absorption capacity. The sum of these effects results in a localized inflammatory process with disruption of the intestinal microbiota and, in the long term, systemic inflammation. The most frequent early symptoms include abdominal cramps, flatulence, the urge to defecate, rectal bleeding, diarrhea, nausea, vomiting, regurgitation, chest pain, heartburn, and belching. Promoting the stability of the microbiota can contribute to the maintenance of correct intestinal permeability and functionality, with better control of these symptoms. The literature documents various acute and chronic alterations of the microbiota following the practice of different types of activities. Several nutraceuticals can have functional effects on the control of inflammatory dynamics and the stability of the microbiota, exerting both nutraceutical and prebiotic effects. In particular, curcumin, green tea catechins, boswellia, berberine, and cranberry PACs can show functional characteristics in the management of these situations. This narrative review will describe its application potential.
Collapse
Affiliation(s)
- Alexander Bertuccioli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy; (A.B.); (G.B.Z.); (M.C.)
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| | - Giordano Bruno Zonzini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy; (A.B.); (G.B.Z.); (M.C.)
| | - Massimiliano Cazzaniga
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
- Scientific & Research Department, Velleja Research, 20125 Milano, Italy
| | - Marco Cardinali
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy; (A.B.); (G.B.Z.); (M.C.)
- Department of Internal Medicine, Infermi Hospital, AUSL Romagna, 47921 Rimini, Italy
| | - Francesco Di Pierro
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
- Scientific & Research Department, Velleja Research, 20125 Milano, Italy
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Aurora Gregoretti
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Luigina Guasti
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Maria Rosaria Matera
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| | - Ilaria Cavecchia
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| | - Chiara Maria Palazzi
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| |
Collapse
|
11
|
Toda K, Yoshimoto S, Yoshida K, Mitsuyama E, Iwabuchi N, Hosomi K, Sanada TJ, Tanaka M, Nanri H, Kunisawa J, Odamaki T, Miyachi M. An Exploratory Study on Seasonal Variation in the Gut Microbiota of Athletes: Insights from Japanese Handball Players. Microorganisms 2024; 12:781. [PMID: 38674725 PMCID: PMC11051819 DOI: 10.3390/microorganisms12040781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Despite accumulating evidence that suggests a unique gut microbiota composition in athletes, a comprehensive understanding of this phenomenon is lacking. Furthermore, seasonal variation in the gut microbiota of athletes, particularly during the off-season, remains underexplored. This study aimed to compare the gut microbiotas between athletic subjects (AS) and non-athletic subjects (NS), and to investigate variations between athletic and off-season periods. The data were derived from an observational study involving Japanese male handball players. The results revealed a distinct gut microbiota composition in AS compared with NS, characterized by significantly higher alpha-diversity and a greater relative abundance of Faecalibacterium and Streptococcus. Moreover, a comparative analysis between athletic and off-season periods in AS demonstrated a significant change in alpha-diversity. Notably, AS exhibited significantly higher alpha-diversity than NS during the athletic season, but no significant difference was observed during the off-season. This study demonstrates the characteristics of the gut microbiota of Japanese handball players and highlights the potential for changes in alpha-diversity during the off-season. These findings contribute to our understanding of the dynamic nature of the gut microbiota of athletes throughout the season.
Collapse
Affiliation(s)
- Kazuya Toda
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., Zama 252-8583, Kanagawa, Japan; (K.T.); (S.Y.); (K.Y.); (E.M.); (N.I.); (M.T.)
| | - Shin Yoshimoto
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., Zama 252-8583, Kanagawa, Japan; (K.T.); (S.Y.); (K.Y.); (E.M.); (N.I.); (M.T.)
| | - Keisuke Yoshida
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., Zama 252-8583, Kanagawa, Japan; (K.T.); (S.Y.); (K.Y.); (E.M.); (N.I.); (M.T.)
| | - Eri Mitsuyama
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., Zama 252-8583, Kanagawa, Japan; (K.T.); (S.Y.); (K.Y.); (E.M.); (N.I.); (M.T.)
| | - Noriyuki Iwabuchi
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., Zama 252-8583, Kanagawa, Japan; (K.T.); (S.Y.); (K.Y.); (E.M.); (N.I.); (M.T.)
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 567-0085, Osaka, Japan; (K.H.); (T.J.S.); (J.K.)
| | - Takayuki Jujo Sanada
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 567-0085, Osaka, Japan; (K.H.); (T.J.S.); (J.K.)
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Chiba, Japan
| | - Miyuki Tanaka
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., Zama 252-8583, Kanagawa, Japan; (K.T.); (S.Y.); (K.Y.); (E.M.); (N.I.); (M.T.)
| | - Hinako Nanri
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Settsu 566-0002, Osaka, Japan;
- Laboratory of Gut Microbiome for Health, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 567-0085, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 567-0085, Osaka, Japan; (K.H.); (T.J.S.); (J.K.)
- Graduate School of Medicine, Osaka University, Suita 565-0871, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Osaka, Japan
- Graduate School of Dentistry, Osaka University, Suita 565-0871, Osaka, Japan
- Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Minato-ku 108-8639, Tokyo, Japan
- Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kobe 650-0017, Hyogo, Japan
- Faculty of Science and Engineering, Waseda University, Shinjuku-ku 169-0072, Tokyo, Japan
| | - Toshitaka Odamaki
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., Zama 252-8583, Kanagawa, Japan; (K.T.); (S.Y.); (K.Y.); (E.M.); (N.I.); (M.T.)
| | - Motohiko Miyachi
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Settsu 566-0002, Osaka, Japan;
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Saitama, Japan
| |
Collapse
|
12
|
Imdad S, Kim JH, So B, Jang J, Park J, Lim W, Lee YK, Shin WS, Hillyer T, Kang C. Effect of aerobic exercise and particulate matter exposure duration on the diversity of gut microbiota. Anim Cells Syst (Seoul) 2024; 28:137-151. [PMID: 38601060 PMCID: PMC11005883 DOI: 10.1080/19768354.2024.2338855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/31/2024] [Indexed: 04/12/2024] Open
Abstract
Inhalation of ambient particulate matter (PM) can disrupt the gut microbiome, while exercise independently influences the gut microbiome by promoting beneficial bacteria. In this study, we analyzed changes in gut microbial diversity and composition in response to combined interventions of PM exposure and aerobic exercise, extending up to 12 weeks. This investigation was conducted using mice, categorized into five groups: control group (Con), exercise group (EXE), exercise group followed by 3-day exposure to PM (EXE + 3-day PM), particulate matter exposure (PM), and PM exposure with concurrent treadmill exercise (PME). Notably, the PM group exhibited markedly lower alpha diversity and richness compared to the Con group and our analysis of beta diversity revealed significant variations among the intervention groups. Members of the Lachnospiraceae family showed significant enhancement in the exercise intervention groups (EXE and PME) compared to the Con and PM groups. The biomarker Lactobacillus, Coriobacteraceae, and Anaerofustis were enriched in the EXE group, while Desulfovibrionaceae, Mucispirillum schaedleri, Lactococcus and Anaeroplasma were highly enriched in the PM group. Differential abundance analysis revealed that Paraprevotella, Bacteroides, and Blautia were less abundant in the 12-week PM exposure group than in the 3-day PM exposure group. Moreover, both the 3-day and 12-week PM exposure groups exhibited a reduced relative abundance of Bacteroides uniformis, SMB53, and Staphylococcus compared to non-PM exposure groups. These findings will help delineate the possible roles and associations of altered microbiota resulting from the studied interventions, paving the way for future mechanistic research.
Collapse
Affiliation(s)
- Saba Imdad
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, South Korea
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, South Korea
| | - Byunghun So
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
| | - Junho Jang
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
| | - Jinhan Park
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
| | - Wonchung Lim
- Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju, South Korea
| | - Yoon-Kwang Lee
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Trae Hillyer
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Chounghun Kang
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
- Department of Physical Education, College of Education, Inha University, Incheon, South Korea
| |
Collapse
|
13
|
Lee MC, Hsu YJ, Ho CS, Tsai YS, Chen CC, Huang CC. Supplementation with Lactiplantibacillus brevis GKEX Combined with Resistance Exercise Training Improves Muscle Mass, Strength Performance, and Body Fat Condition in Healthy Humans. Foods 2024; 13:1030. [PMID: 38611334 PMCID: PMC11011920 DOI: 10.3390/foods13071030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
In addition to maintaining good exercise and dietary habits, recent studies have shown that probiotics may have potential benefits for muscle mass and strength. It is worth noting that the effects may vary depending on the specific strains used. To date, no studies have analyzed the effects of Lactiplantibacillus brevis in this context. Here, we combine the L. brevis strain GKEX with resistance training to further understand its effects on muscle mass, thickness, performance, and fat loss. In a six-week intervention for a double-blind randomized trial, 52 healthy subjects were divided into two groups (10 male and 16 female participants in each group): a placebo group (two capsules/day, containing 0 CFU of GKEX per capsule) and a GKEX group (two capsules/day, containing 1 × 1010 CFU of GKEX per capsule). Before the intervention, no differences were observed between the two groups in any of the tests (body composition, muscle thickness, exercise performance, and blood parameters). However, supplementation with GKEX significantly improved muscle mass and thickness, as well as grip strength, muscle strength, and explosive performance, when compared to the associated parameters before the intervention. Additionally, GKEX supplementation promoted a reduction in the body fat percentage (p < 0.05). Through analysis of the change amount, we observed that GKEX supplementation yielded significantly improved benefits when compared to the placebo group (p < 0.05). In summary, our findings support the notion that a six-week resistance exercise training program combined with L. brevis GKEX supplementation has superior additive effects that enhance muscle mass and strength performance, while also reducing body fat percentage. This intervention can promote muscle gain and fat loss.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.); (C.-S.H.)
- Center for General Education, Taipei Medical University, Taipei 110301, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.); (C.-S.H.)
| | - Chin-Shan Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.); (C.-S.H.)
| | - You-Shan Tsai
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 325002, Taiwan; (Y.-S.T.); (C.-C.C.)
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 325002, Taiwan; (Y.-S.T.); (C.-C.C.)
- Institute of Food Science and Technology, National Taiwan University, Taipei 106319, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.); (C.-S.H.)
- Tajen University, Pingtung 907101, Taiwan
| |
Collapse
|
14
|
Humińska-Lisowska K, Zielińska K, Mieszkowski J, Michałowska-Sawczyn M, Cięszczyk P, Łabaj PP, Wasąg B, Frączek B, Grzywacz A, Kochanowicz A, Kosciolek T. Microbiome features associated with performance measures in athletic and non-athletic individuals: A case-control study. PLoS One 2024; 19:e0297858. [PMID: 38381714 PMCID: PMC10880968 DOI: 10.1371/journal.pone.0297858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024] Open
Abstract
The influence of human gut microbiota on health and disease is now commonly appreciated. Therefore, it is not surprising that microbiome research has found interest in the sports community, hoping to improve health and optimize performance. Comparative studies found new species or pathways that were more enriched in elites than sedentary controls. In addition, sport-specific and performance-level-specific microbiome features have been identified. However, the results remain inconclusive and indicate the need for further assessment. In this case-control study, we tested two athletic populations (i.e. strength athletes, endurance athletes) and a non-athletic, but physically active, control group across two acute exercise bouts, separated by a 2-week period, that measured explosive and high intensity fitness level (repeated 30-s all-out Wingate test (WT)) and cardiorespiratory fitness level (Bruce Treadmill Test). While we did not identify any group differences in alpha and beta diversity or significant differential abundance of microbiome components at baseline, one-third of the species identified were unique to each group. Longitudinal sample (pre- and post-exercise) analysis revealed an abundance of Alistipes communis in the strength group during the WT and 88 species with notable between-group differences during the Bruce Test. SparCC recognized Bifidobacterium longum and Bifidobacterium adolescentis, short-chain fatty acid producers with probiotic properties, species strongly associated with VO2max. Ultimately, we identified several taxa with different baseline abundances and longitudinal changes when comparing individuals based on their VO2max, average power, and maximal power parameters. Our results confirmed that the health status of individuals are consistent with assumptions about microbiome health. Furthermore, our findings indicate that microbiome features are associated with better performance previously identified in elite athletes.
Collapse
Affiliation(s)
- Kinga Humińska-Lisowska
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Kinga Zielińska
- Malopolska Centre of Biotechnology, Jagiellonian University, Cracow, Poland
| | - Jan Mieszkowski
- Faculty of Health Sciences, University of Lomza, Lomza, Poland
| | | | - Paweł Cięszczyk
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Paweł P Łabaj
- Malopolska Centre of Biotechnology, Jagiellonian University, Cracow, Poland
| | - Bartosz Wasąg
- Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Barbara Frączek
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University School of Physical Education, Cracow, Poland
| | - Anna Grzywacz
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | | | - Tomasz Kosciolek
- Malopolska Centre of Biotechnology, Jagiellonian University, Cracow, Poland
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
15
|
Álvarez-Herms J, González-Benito A, Corbi F, Odriozola A. What if gastrointestinal complications in endurance athletes were gut injuries in response to a high consumption of ultra-processed foods? Please take care of your bugs if you want to improve endurance performance: a narrative review. Eur J Appl Physiol 2024; 124:383-402. [PMID: 37839038 DOI: 10.1007/s00421-023-05331-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
To improve performance and recovery faster, athletes are advised to eat more often than usual and consume higher doses of simple carbohydrates, during and after exercise. Sports energetic supplements contain food additives, such as artificial sweeteners, emulsifiers, acidity regulators, preservatives, and salts, which could be harmful to the gut microbiota and impair the intestinal barrier function. The intestinal barrier plays a critical function in bidirectionally regulation of the selective transfer of nutrients, water, and electrolytes, while preventing at the same time, the entrance of harmful substances (selective permeability). The gut microbiota helps to the host to regulate intestinal homeostasis through metabolic, protective, and immune functions. Globally, the gut health is essential to maintain systemic homeostasis in athletes, and to ensure proper digestion, metabolization, and substrate absorption. Gastrointestinal complaints are an important cause of underperformance and dropout during endurance events. These complications are directly related to the loss of gut equilibrium, mainly linked to microbiota dysbiosis and leaky gut. In summary, athletes must be cautious with the elevated intake of ultra-processed foods and specifically those contained on sports nutrition supplements. This review points out the specific nutritional interventions that should be implemented and/or discontinued depending on individual gut functionality.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Phymolab (Physiology and Molecular Laboratory), Collado Hermoso, Segovia, Spain.
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - A González-Benito
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - F Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), University of Lleida (UdL), Lleida, Spain
| | - A Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
16
|
Cullen JMA, Shahzad S, Kanaley JA, Ericsson AC, Dhillon J. The effects of 6 wk of resistance training on the gut microbiome and cardiometabolic health in young adults with overweight and obesity. J Appl Physiol (1985) 2024; 136:349-361. [PMID: 38059291 DOI: 10.1152/japplphysiol.00350.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
Obesity is a known risk factor for the development of insulin resistance and other cardiometabolic disorders. Recently, the gut microbiome has been associated with obesity and subsequent health complications. Exercise has been regularly utilized as a therapeutic intervention to treat obesity and its associated comorbidities. This study examined the effects of a 6-wk resistance training exercise program (RT) on the diversity, composition, and metabolic pathways of the gut microbiome. Sedentary young adults (age 18-35 yr) with overweight and obesity (BMI 25-45 kg/m2) were recruited to participate in this randomized controlled trial. Participants were randomized to RT (n = 16), a 6-wk resistance training program (3 days/wk), or control (CT) (n = 16), a nonexercising control. Main outcomes of the study included gut microbiome measures (taxa abundances, diversity, and predicted function) and cardiometabolic outcomes [blood pressure (BP) and glucoregulation]. Increased abundances of Roseburia, a short-chain fatty acid (SCFA) producer were observed over 6 wk (W6) with RT compared with CT (group × week, P < 0.05, q < 0.25). RT also induced marginal alterations in predicted microbial metabolic and cell motility pathways compared with CT (group × week, P < 0.05, q < 0.25). However, RT did not significantly impact overall microbial diversity. Furthermore, RT resulted in higher quantitative insulin-sensitivity check index (QUICKI) and lower diastolic BP at W6 compared with CT [baseline (BL)-adjusted P < 0.05]. RT had mixed effects on the gut microbiome. Although RT increased abundances of Roseburia and induced minor changes in microbial pathways, it is important to consider these changes in the context of the overall stability observed in the microbiome composition.NEW & NOTEWORTHY Resistance training induces mixed changes in the gut microbiome, including an increase in the abundances of the Roseburia genus and minor alterations in microbial pathways. However, it is vital to interpret these changes in light of the broader context, where we observe stability in the overall microbiome composition. This stability may be attributed to the microbiome's resilience, demonstrating its capacity to withstand short-term physiological stressors.
Collapse
Affiliation(s)
- John M A Cullen
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Shahim Shahzad
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Jill A Kanaley
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States
| | - Jaapna Dhillon
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
17
|
Wagner A, Kapounková K, Struhár I. The relationship between the gut microbiome and resistance training: a rapid review. BMC Sports Sci Med Rehabil 2024; 16:4. [PMID: 38166998 PMCID: PMC10763211 DOI: 10.1186/s13102-023-00791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
The human gut microbiome is attracting increasing attention because of its overall effect on health. Several reviews have investigated the impact of physical activity on the gut microbiome; however, these predominantly concentrate on either endurance or a combination of physical activities. This study aims to describe the effect of resistance or strength training on the gut microbiome of a human population. This rapid review follows the guidelines of the Cochrane Rapid Reviews Guidance along with PRISMA. A review of the literature was carried out using articles indexed by PubMed, Scopus, and Web of Science published in the last 12 years. None of the seven studies included find significant change in the gut microbiome in terms of bacterial taxa composition or overall diversity, though the results show that resistance training might decrease the zonulin level and increase mucin production and thereby reduce inflammation in the gut. Interestingly, two studies point to a gut-muscle axis connection and this is discussed in our paper. However, due to the small number of existing studies and certain methodological disagreements, it was hard to find a consensus on the relationship between the gut microbiome and resistance training.
Collapse
Affiliation(s)
- Adam Wagner
- Department of Sport Performance and Exercise Testing Promotion, Faculty of Sport Studies, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Kateřina Kapounková
- Department of Physical Activities and Health Sciences, Faculty of Sport Studies, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Ivan Struhár
- Department of Physical Activities and Health Sciences, Faculty of Sport Studies, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
18
|
Morella I, Negro M, Dossena M, Brambilla R, D'Antona G. Gut-muscle-brain axis: Molecular mechanisms in neurodegenerative disorders and potential therapeutic efficacy of probiotic supplementation coupled with exercise. Neuropharmacology 2023; 240:109718. [PMID: 37774944 DOI: 10.1016/j.neuropharm.2023.109718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 10/01/2023]
Abstract
Increased longevity is often associated with age-related conditions. The most common neurodegenerative disorders in the older population are Alzheimer's disease (AD) and Parkinson's disease (PD), associated with progressive neuronal loss leading to functional and cognitive impairments. Although symptomatic treatments are available, there is currently no cure for these conditions. Gut dysbiosis has been involved in the pathogenesis of AD and PD, thus interventions targeting the "gut-brain axis" could potentially prevent or delay these pathologies. Recent evidence suggests that the skeletal muscle and the gut microbiota can affect each other via the "gut-muscle axis". Importantly, cognitive functions in AD and PD patients significantly benefit from physical activity. In this review, we aim to provide a comprehensive picture of the crosstalk between the brain, the skeletal muscle and the gut microbiota, introducing the concept of "gut-muscle-brain axis". Moreover, we discuss human and animal studies exploring the modulatory role of exercise and probiotics on cognition in AD and PD. Collectively, the findings presented here support the potential benefits of physical activity and probiotic supplementation in AD and PD. Further studies will be needed to develop targeted and multimodal strategies, including lifestyle changes, to prevent or delay the course of these pathologies.
Collapse
Affiliation(s)
- Ilaria Morella
- Neuroscience and Mental Health Innovation Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Massimo Negro
- Centro di Ricerca Interdipartimentale Nelle Attività Motorie e Sportive (CRIAMS)-Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Maurizia Dossena
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Riccardo Brambilla
- Neuroscience and Mental Health Innovation Institute, School of Biosciences, Cardiff University, Cardiff, UK; Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Giuseppe D'Antona
- Centro di Ricerca Interdipartimentale Nelle Attività Motorie e Sportive (CRIAMS)-Sport Medicine Centre, University of Pavia, Voghera, Italy; Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
19
|
Grosicki GJ, Langan SP, Bagley JR, Galpin AJ, Garner D, Hampton‐Marcell JT, Allen JM, Robinson AT. Gut check: Unveiling the influence of acute exercise on the gut microbiota. Exp Physiol 2023; 108:1466-1480. [PMID: 37702557 PMCID: PMC10988526 DOI: 10.1113/ep091446] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
The human gastrointestinal microbiota and its unique metabolites regulate a diverse array of physiological processes with substantial implications for human health and performance. Chronic exercise training positively modulates the gut microbiota and its metabolic output. The benefits of chronic exercise for the gut microbiota may be influenced by acute changes in microbial community structure and function that follow a single exercise bout (i.e., acute exercise). Thus, an improved understanding of changes in the gut microbiota that occur with acute exercise could aid in the development of evidence-based exercise training strategies to target the gut microbiota more effectively. In this review, we provide a comprehensive summary of the existing literature on the acute and very short-term (<3 weeks) exercise responses of the gut microbiota and faecal metabolites in humans. We conclude by highlighting gaps in the literature and providing recommendations for future research in this area. NEW FINDINGS: What is the topic of this review? The chronic benefits of exercise for the gut microbiota are likely influenced by acute changes in microbial community structure and function that follow a single exercise bout. This review provides a summary of the existing literature on acute exercise responses of the gut microbiota and its metabolic output in humans. What advances does it highlight? Acute aerobic exercise appears to have limited effects on diversity of the gut microbiota, variable effects on specific microbial taxa, and numerous effects on the metabolic activity of gut microbes with possible implications for host health and performance.
Collapse
Affiliation(s)
| | - Sean P. Langan
- Korey Stringer Institute, Department of KinesiologyUniversity of ConnecticutStorrsCTUSA
| | - James R. Bagley
- Muscle Physiology LaboratorySan Francisco State UniversitySan FranciscoCAUSA
| | - Andrew J. Galpin
- Center for Sport PerformanceCalifornia State University, FullertonFullertonCAUSA
| | - Dan Garner
- BioMolecular Athlete, LLCWilmingtonDEUSA
| | | | - Jacob M. Allen
- Department of Kinesiology and Community HealthUniversity of Illinois at Urbana‐ChampaignUrbanaIL
| | - Austin T. Robinson
- Neurovascular Physiology Laboratory, School of KinesiologyAuburn UniversityAuburnALUSA
| |
Collapse
|
20
|
Hart NH, Wallen MP, Farley MJ, Haywood D, Boytar AN, Secombe K, Joseph R, Chan RJ, Kenkhuis MF, Buffart LM, Skinner TL, Wardill HR. Exercise and the gut microbiome: implications for supportive care in cancer. Support Care Cancer 2023; 31:724. [PMID: 38012463 DOI: 10.1007/s00520-023-08183-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE Growing recognition of the gut microbiome as an influential modulator of cancer treatment efficacy and toxicity has led to the emergence of clinical interventions targeting the microbiome to enhance cancer and health outcomes. The highly modifiable nature of microbiota to endogenous, exogenous, and environmental inputs enables interventions to promote resilience of the gut microbiome that have rapid effects on host health, or response to cancer treatment. While diet, probiotics, and faecal microbiota transplant are primary avenues of therapy focused on restoring or protecting gut function in people undergoing cancer treatment, the role of physical activity and exercise has scarcely been examined in this population. METHODS A narrative review was conducted to explore the nexus between cancer care and the gut microbiome in the context of physical activity and exercise as a widely available and clinically effective supportive care strategy used by cancer survivors. RESULTS Exercise can facilitate a more diverse gut microbiome and functional metabolome in humans; however, most physical activity and exercise studies have been conducted in healthy or athletic populations, primarily using aerobic exercise modalities. A scarcity of exercise and microbiome studies in cancer exists. CONCLUSIONS Exercise remains an attractive avenue to promote microbiome health in cancer survivors. Future research should elucidate the various influences of exercise modalities, intensities, frequencies, durations, and volumes to explore dose-response relationships between exercise and the gut microbiome among cancer survivors, as well as multifaceted approaches (such as diet and probiotics), and examine the influences of exercise on the gut microbiome and associated symptom burden prior to, during, and following cancer treatment.
Collapse
Affiliation(s)
- Nicolas H Hart
- Human Performance Research Centre, INSIGHT Research Institute, University of Technology Sydney (UTS), Moore Park, NSW, 2030, Australia.
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, SA, Australia.
- Cancer and Palliative Care Outcomes Centre, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.
- Institute for Health Research, University of Notre Dame Australia, Fremantle, WA, Australia.
| | - Matthew P Wallen
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, SA, Australia
- Institute for Health and Wellbeing, Federation University, Ballarat, VIC, Australia
| | - Morgan J Farley
- Human Performance Research Centre, INSIGHT Research Institute, University of Technology Sydney (UTS), Moore Park, NSW, 2030, Australia
- School of Human Movement and Nutrition Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Darren Haywood
- Human Performance Research Centre, INSIGHT Research Institute, University of Technology Sydney (UTS), Moore Park, NSW, 2030, Australia
- Mental Health Division, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
- Department of Psychiatry, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Alexander N Boytar
- School of Human Movement and Nutrition Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Kate Secombe
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, St. Lucia, QLD, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Ria Joseph
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, SA, Australia
| | - Raymond J Chan
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, SA, Australia
- Cancer and Palliative Care Outcomes Centre, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Marlou-Floor Kenkhuis
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurien M Buffart
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tina L Skinner
- Human Performance Research Centre, INSIGHT Research Institute, University of Technology Sydney (UTS), Moore Park, NSW, 2030, Australia
- School of Human Movement and Nutrition Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Hannah R Wardill
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
- Supportive Oncology Research Group, Precision Cancer Medicine, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
21
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
22
|
Paton SEJ, Solano JL, Coulombe-Rozon F, Lebel M, Menard C. Barrier-environment interactions along the gut-brain axis and their influence on cognition and behaviour throughout the lifespan. J Psychiatry Neurosci 2023; 48:E190-E208. [PMID: 37253482 PMCID: PMC10234620 DOI: 10.1503/jpn.220218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 03/19/2023] [Indexed: 06/01/2023] Open
Abstract
Environment is known to substantially alter mental state and behaviour across the lifespan. Biological barriers such as the blood-brain barrier (BBB) and gut barrier (GB) are major hubs for communication of environmental information. Alterations in the structural, social and motor environment at different stages of life can influence function of the BBB and GB and their integrity to exert behavioural consequences. Importantly, each of these environmental components is associated with a distinct immune profile, glucocorticoid response and gut microbiome composition, creating unique effects on the BBB and GB. These barrier-environment interactions are sensitive to change throughout life, and positive or negative alterations at critical stages of development can exert long-lasting cognitive and behavioural consequences. Furthermore, because loss of barrier integrity is implicated in pathogenesis of mental disorders, the pathways of environmental influence represent important areas for understanding these diseases. Positive environments can be protective against stress- and age-related damage, raising the possibility of novel pharmacological targets. This review summarizes known mechanisms of environmental influence - such as social interactions, structural complexity and physical exercise - on barrier composition, morphology and development, and considers the outcomes and implications of these interactions in the context of psychiatric disorders.
Collapse
Affiliation(s)
- Sam E J Paton
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - José L Solano
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - François Coulombe-Rozon
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - Manon Lebel
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - Caroline Menard
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| |
Collapse
|
23
|
Boytar AN, Skinner TL, Wallen RE, Jenkins DG, Dekker Nitert M. The Effect of Exercise Prescription on the Human Gut Microbiota and Comparison between Clinical and Apparently Healthy Populations: A Systematic Review. Nutrients 2023; 15:nu15061534. [PMID: 36986264 PMCID: PMC10054511 DOI: 10.3390/nu15061534] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
This study systematically reviewed all human longitudinal exercise interventions that reported changes in the gut microbiota; frequency, intensity, duration and type of exercise were assessed to determine the influence of these variables on changes to the gut microbiota in both healthy individuals and clinical populations (PROPERO registration: CRD42022309854). Using PRISMA guidelines, trials analysing gut microbiota change with exercise interventions were included independent of trial randomisation, population, trial duration or analysis technique. Studies were excluded when microbiota abundance was not reported or when exercise was combined with other interventions. Twenty-eight trials were included, of which twelve involved healthy populations only and sixteen involved mixed or clinical-only populations. The findings show that participation in exercise of moderate to high-intensity for 30-90 min ≥3 times per week (or between 150-270 min per week) for ≥8 weeks is likely to produce changes in the gut microbiota. Exercise appears to be effective in modifying the gut microbiota in both clinical and healthy populations. A more robust methodology is needed in future studies to improve the certainty of the evidence.
Collapse
Affiliation(s)
- Alexander N Boytar
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tina L Skinner
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ruby E Wallen
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David G Jenkins
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
- Applied Sports Science Technology and Medicine Research Centre, Swansea University, Wales SA1 8EN, UK
| | - Marloes Dekker Nitert
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
24
|
Wiącek J, Szurkowska J, Kryściak J, Galecka M, Karolkiewicz J. No changes in the abundance of selected fecal bacteria during increased carbohydrates consumption period associated with the racing season in amateur road cyclists. PeerJ 2023; 11:e14594. [PMID: 36700000 PMCID: PMC9869777 DOI: 10.7717/peerj.14594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/28/2022] [Indexed: 01/22/2023] Open
Abstract
Background Cyclists often use high-carbohydrate, low-fiber diets to optimize the glycogen stores and to avoid the gastrointestinal distress during both, the trainings and the competitions. The impact of such dietary changes on gut microbiota is not fully known. Methods We assessed the abundances of Faecalibacterium prausnitzii, Akkermansia muciniphila, Bifidobacterium spp., and Bacteroides spp. and the fecal pH in 14 amateur cyclists during the racing season. Eleven healthy men formed the control group. Results Despite significant differences in the diet composition and physical endurance levels of amateur cyclists before the competition season (1st term) and control group (carbohydrates: 52.2% ± 4.9% vs 41.9% ± 6.6%; VO2max: 56.1 ± 6.0 vs 39.7 ± 7.7; p < 0.01; respectively), we did not observe any significant differences in studied gut bacteria abundances or fecal pH between the groups. Although the cyclists' carbohydrates consumption (2nd term) have increased throughout the season (4.48 g/kg b.w. ± 1.56 vs 5.18 g/kg b.w. ± 1.99; p < 0.05), the studied gut bacteria counts and fecal pH remained unchanged. It seems that the amateur cyclists' diet with increased carbohydrates intake does not alter the gut microbiota, but further research is needed to assess the potential impact of even higher carbohydrates consumption (over 6 g/kg b.w.).
Collapse
Affiliation(s)
- Jakub Wiącek
- Department of Food and Nutrition, Poznan University of Physical Education, Poznań, Greater Poland, Poland
| | - Joanna Szurkowska
- Department of Food and Nutrition, Poznan University of Physical Education, Poznań, Greater Poland, Poland
| | - Jakub Kryściak
- Department of Physiology and Biochemistry, Poznan University of Physical Education, Poznań, Greater Poland, Poland
| | | | - Joanna Karolkiewicz
- Department of Food and Nutrition, Poznan University of Physical Education, Poznań, Greater Poland, Poland
| |
Collapse
|
25
|
Brooks CN, Wight ME, Azeez OE, Bleich RM, Zwetsloot KA. Growing old together: What we know about the influence of diet and exercise on the aging host's gut microbiome. Front Sports Act Living 2023; 5:1168731. [PMID: 37139301 PMCID: PMC10149677 DOI: 10.3389/fspor.2023.1168731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
The immune system is critical in defending against infection from pathogenic microorganisms. Individuals with weakened immune systems, such as the elderly, are more susceptible to infections and developing autoimmune and inflammatory diseases. The gut microbiome contains a plethora of bacteria and other microorganisms, which collectively plays a significant role in immune function and homeostasis. Gut microbiota are considered to be highly influential on host health and immune function. Therefore, dysbiosis of the microbiota could be a major contributor to the elevated incidence of multiple age-related pathologies. While there seems to be a general consensus that the composition of gut microbiota changes with age, very little is known about how diet and exercise might influence the aging microbiome. Here, we examine the current state of the literature regarding alterations to the gut microbiome as hosts age, drawing particular attention to the knowledge gaps in addressing how diet and exercise influence the aging microbiome. Further, we will demonstrate the need for more controlled studies to investigate the roles that diet and exercise play driving the composition, diversity, and function of the microbiome in an aging population.
Collapse
Affiliation(s)
- Chequita N. Brooks
- Department of Biology, Appalachian State University, Boone, NC, United States
| | - Madeline E. Wight
- Department of Biology, Appalachian State University, Boone, NC, United States
| | - Oluwatobi E. Azeez
- Department of Biology, Appalachian State University, Boone, NC, United States
| | - Rachel M. Bleich
- Department of Biology, Appalachian State University, Boone, NC, United States
- Correspondence: Kevin A. Zwetsloot Rachel M. Bleich
| | - Kevin A. Zwetsloot
- Department of Biology, Appalachian State University, Boone, NC, United States
- Department of Public Health and Exercise Science, Appalachian State University, Boone, NC, United States
- Correspondence: Kevin A. Zwetsloot Rachel M. Bleich
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The intestinal microbiome modulates the risk of several age-related chronic diseases and syndromes, including frailty and neurodegenerative diseases. Herein we provided an update on the influence of gut microbiota on physical and cognitive performance in older age and suggest microbiota-targeted interventions for healthy ageing. RECENT FINDINGS Low uniqueness index of the gut microbiome and high representation of Bacteroides are independently associated with mortality in older individuals, while the centenarian microbiome is characterized by high abundance of Lactobacilli and Bifidobacteria . Frailty syndrome, sarcopenia and cognitive decline are associated with reduced faecal microbiota biodiversity, reduced abundance of bacteria able to synthetize short-chain fatty acids (SCFA), including Faecalibacterium prausnitzii , and reduced faecal butyrate levels. Dietary intervention, especially involving Mediterranean diet, and exercise training seem to be associated with improved biodiversity of the microbiota, increased capacity of SCFA synthesis and, probably, protection against the onset of frailty and cognitive decline. SUMMARY The gut microbiota biodiversity and composition may reflect the different ageing trajectory, but further research is needed to understand potential independent and combined effects of environmental and lifestyle factors in older adults, especially from a clinical point of view.
Collapse
Affiliation(s)
- Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, Vienna, Austria
| | - Andrea Ticinesi
- Department of Medicine and Surgery
- Microbiome Research Hub, University of Parma
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
27
|
Donati Zeppa S, Agostini D, Ferrini F, Gervasi M, Barbieri E, Bartolacci A, Piccoli G, Saltarelli R, Sestili P, Stocchi V. Interventions on Gut Microbiota for Healthy Aging. Cells 2022; 12:cells12010034. [PMID: 36611827 PMCID: PMC9818603 DOI: 10.3390/cells12010034] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the improvement in health and social conditions has led to an increase in the average lifespan. Since aging is the most important risk factor for the majority of chronic human diseases, the development of therapies and intervention to stop, lessen or even reverse various age-related morbidities is an important target to ameliorate the quality of life of the elderly. The gut microbiota, that is, the complex ecosystem of microorganisms living in the gastrointestinal tract, plays an important role, not yet fully understood, in maintaining the host's health and homeostasis, influencing metabolic, oxidative and cognitive status; for this reason, it is also named "the forgotten endocrine organ" or "the second brain". On the other hand, the gut microbiota diversity and richness are affected by unmodifiable factors, such as aging and sex, and modifiable ones, such as diet, pharmacological therapies and lifestyle. In this review, we discuss the changes, mostly disadvantageous, for human health, induced by aging, in microbiota composition and the effects of dietary intervention, of supplementation with probiotics, prebiotics, synbiotics, psychobiotics and antioxidants and of physical exercise. The development of an integrated strategy to implement microbiota health will help in the goal of healthy aging.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence: (F.F.); (M.G.)
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence: (F.F.); (M.G.)
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Roberta Saltarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Vilberto Stocchi
- Department of Human Science for Promotion of Quality of Life, Univerity San Raffaele, 00166 Rome, Italy
| |
Collapse
|
28
|
Boytar AN, Nitert MD, Morrision M, Skinner TL, Jenkins DG. Exercise-induced changes to the human gut microbiota and implications for colorectal cancer: a narrative review. J Physiol 2022; 600:5189-5201. [PMID: 36369926 PMCID: PMC10099575 DOI: 10.1113/jp283702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/18/2022] [Indexed: 11/15/2022] Open
Abstract
Physical activity is associated with reduced risks of colorectal cancer (CRC) incidence, recurrence and mortality. While these findings are consistent, the mechanism/s underlying this association remain unclear. Growing evidence supports the many ways in which differing characteristics of the gut microbiota can be tumourigenic or protective against CRC. CRC is characterised by significant dysbiosis including reduced short chain fatty acid-producing bacteria. Recent findings suggest that exercise can modify the gut microbiota, and these changes are inverse to the changes seen with CRC; however, this exercise-microbiota interaction is currently understudied in CRC. This review summarises parallel areas of research that are rapidly developing: The exercise-gut microbiota research and cancer-gut microbiota research and highlights the salient similarities. Preliminary evidence suggests that these areas are linked, with exercise mediating changes that promote the antitumorigenic characteristics of the gut microbiota. Future mechanistic and population-specific studies are warranted to confirm the physiological mechanism/s by which exercise changes the gut microbiota, and the influence of the exercise-gut interaction on cancer specific outcomes in CRC.
Collapse
Affiliation(s)
- Alexander N Boytar
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Marloes Dekker Nitert
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Mark Morrision
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Tina L Skinner
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - David G Jenkins
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia.,University of the Sunshine Coast, Maroochydore, Australia.,Applied Sports Science Technology and Medicine Research Centre, Swansea University, Wales, UK
| |
Collapse
|
29
|
Smith KS, Morris MM, Morrow CD, Novak JR, Roberts MD, Frugé AD. Associations between Changes in Fat-Free Mass, Fecal Microbe Diversity, and Mood Disturbance in Young Adults after 10-Weeks of Resistance Training. Microorganisms 2022; 10:microorganisms10122344. [PMID: 36557597 PMCID: PMC9785032 DOI: 10.3390/microorganisms10122344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The gut microbiome contributes to numerous physiological processes in humans, and diet and exercise are known to alter both microbial composition and mood. We sought to explore the effect of a 10-week resistance training (RT) regimen with or without peanut protein supplementation (PPS) in untrained young adults on fecal microbiota and mood disturbance (MD). METHODS Participants were randomized into PPS (n = 25) and control (CTL [no supplement]; n = 24) groups and engaged in supervised, full-body RT twice a week. Measures included body composition, fecal microbe relative abundance, alpha- and beta-diversity from 16 s rRNA gene sequencing with QIIME2 processing, dietary intake at baseline and following the 10-week intervention, and post-intervention MD via the profile of mood states (POMS) questionnaire. Independent samples t-tests were used to determine differences between PPS and CTL groups. Paired samples t-tests investigated differences within groups. RESULTS Our sample was mostly female (69.4%), white (87.8%), normal weight (body mass index 24.6 ± 4.2 kg/m2), and 21 ± 2.0 years old. Shannon index significantly increased from baseline in all participants (p = 0.040), with no between-group differences or pre-post beta-diversity dissimilarities. Changes in Blautia abundance were associated with the positive POMS subscales, Vigor and self-esteem-related-affect (SERA) (rho = -0.451, p = 0.04; rho = -0.487, p = 0.025, respectively). Whole tree phylogeny changes were negatively correlated with SERA and Vigor (rho = -0.475, p = 0.046; rho = -0.582, p = 0.011, respectively) as well as change in bodyfat percentage (rho = -0.608, p = 0.007). Mediation analysis results indicate changes in PD Whole Tree Phylogeny was not a significant mediator of the relationship between change in fat-free mass and total MD. CONCLUSIONS Mood state subscales are associated with changes in microbial taxa and body composition. PD Whole Tree Phylogeny increased following the 10-week RT regimen; further research is warranted to explore how RT-induced changes in microbial diversity are related to changes in body composition and mood disturbance.
Collapse
Affiliation(s)
- Kristen S. Smith
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
- Correspondence:
| | - Molly M. Morris
- College of Science and Mathematics, Auburn University, Auburn, AL 36849, USA
| | - Casey D. Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Josh R. Novak
- Department of Human Development and Family Sciences, Auburn University, Auburn, AL 36849, USA
| | | | - Andrew Dandridge Frugé
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
- College of Nursing, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
30
|
Luk AWS, Mitchell L, Koay YC, O’Sullivan JF, O’Connor H, Hackett DA, Holmes A. Intersection of Diet and Exercise with the Gut Microbiome and Circulating Metabolites in Male Bodybuilders: A Pilot Study. Metabolites 2022; 12:metabo12100911. [PMID: 36295813 PMCID: PMC9608465 DOI: 10.3390/metabo12100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Diet, exercise and the gut microbiome are all factors recognised to be significant contributors to cardiometabolic health. However, diet and exercise interventions to modify the gut microbiota to improve health are limited by poor understanding of the interactions between them. In this pilot study, we explored diet–exercise–microbiome dynamics in bodybuilders as they represent a distinctive group that typically employ well-defined dietary strategies and exercise regimes to alter their body composition. We performed longitudinal characterisation of diet, exercise, the faecal microbial community composition and serum metabolites in five bodybuilders during competition preparation and post-competition. All participants reduced fat mass while conserving lean mass during competition preparation, corresponding with dietary energy intake and exercise load, respectively. There was individual variability in food choices that aligned to individualised gut microbial community compositions throughout the study. However, there was a common shift from a high protein, low carbohydrate diet during pre-competition to a more macronutrient-balanced diet post-competition, which was associated with similar changes in the gut microbial diversity across participants. The circulating metabolite profiles also reflected individuality, but a subset of metabolites relating to lipid metabolism distinguished between pre- and post-competition. Changes in the gut microbiome and circulating metabolome were distinct for each individual, but showed common patterns. We conclude that further longitudinal studies will have greater potential than cross-sectional studies in informing personalisation of diet and exercise regimes to enhance exercise outcomes and improve health.
Collapse
Affiliation(s)
- Alison W. S. Luk
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Lachlan Mitchell
- Exercise, Health and Performance, School of Health Sciences, Faculty of Medicine and Health Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Yen Chin Koay
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- Exercise, Health and Performance, School of Health Sciences, Faculty of Medicine and Health Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- Heart Research Institute, The University of Sydney, Newtown, NSW 2042, Australia
| | - John F. O’Sullivan
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- Heart Research Institute, The University of Sydney, Newtown, NSW 2042, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Helen O’Connor
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- Exercise, Health and Performance, School of Health Sciences, Faculty of Medicine and Health Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Daniel A. Hackett
- Exercise, Health and Performance, School of Health Sciences, Faculty of Medicine and Health Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Andrew Holmes
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence: ; Tel.: +61-2-93512530
| |
Collapse
|
31
|
The Effects of Physical Activity on the Gut Microbiota and the Gut–Brain Axis in Preclinical and Human Models: A Narrative Review. Nutrients 2022; 14:nu14163293. [PMID: 36014798 PMCID: PMC9413457 DOI: 10.3390/nu14163293] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence supports the importance of the gut microbiota (GM) in regulating multiple functions related to host physical health and, more recently, through the gut–brain axis (GBA), mental health. Similarly, the literature on the impact of physical activity (PA), including exercise, on GM and GBA is growing. Therefore, this narrative review summarizes and critically appraises the existing literature that delves into the benefits or adverse effects produced by PA on physical and mental health status through modifications of the GM, highlighting differences and similarities between preclinical and human studies. The same exercise in animal models, whether performed voluntarily or forced, has different effects on the GM, just as, in humans, intense endurance exercise can have a negative influence. In humans and animals, only aerobic PA seems able to modify the composition of the GM, whereas cardiovascular fitness appears related to specific microbial taxa or metabolites that promote a state of physical health. The PA favors bacterial strains that can promote physical performance and that can induce beneficial changes in the brain. Currently, it seems useful to prioritize aerobic activities at a moderate and not prolonged intensity. There may be greater benefits if PA is undertaken from a young age and the effects on the GM seem to gradually disappear when the activity is stopped. The PA produces modifications in the GM that can mediate and induce mental health benefits.
Collapse
|
32
|
Bonomini-Gnutzmann R, Plaza-Díaz J, Jorquera-Aguilera C, Rodríguez-Rodríguez A, Rodríguez-Rodríguez F. Effect of Intensity and Duration of Exercise on Gut Microbiota in Humans: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159518. [PMID: 35954878 PMCID: PMC9368618 DOI: 10.3390/ijerph19159518] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023]
Abstract
(1) Background: The gut microbiota might play a part in affecting athletic performance and is of considerable importance to athletes. The aim of this study was to search the recent knowledge of the protagonist played by high-intensity and high-duration aerobic exercise on gut microbiota composition in athletes and how these effects could provide disadvantages in sports performance. (2) Methods: This systematic review follows the PRISMA guidelines. An exhaustive bibliographic search in Web of Science, PubMed, and Scopus was conducted considering the articles published in the last 5 years. The selected articles were categorized according to the type of study. The risk of bias was assessed using the Joanna Briggs Institute's Critical Appraisal Tool for Systematic Reviews. (3) Results: Thirteen studies had negative effects of aerobic exercise on intestinal microbiota such as an upsurge in I-FABP, intestinal distress, and changes in the gut microbiota, such as an increase in Prevotella, intestinal permeability and zonulin. In contrast, seven studies observed positive effects of endurance exercise, including an increase in the level of bacteria such as increased microbial diversity and increased intestinal metabolites. (4) Conclusions: A large part of the studies found reported adverse effects on the intestinal microbiota when performing endurance exercises. In studies carried out on athletes, more negative effects on the microbiota were found than in those carried out on non-athletic subjects.
Collapse
Affiliation(s)
| | - Julio Plaza-Díaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Correspondence: (J.P.-D.); (C.J.-A.); Tel.: +34-958241599 (J.P.-D.); +569-95791706 (C.J.-A.)
| | - Carlos Jorquera-Aguilera
- Escuela de Nutrición y Dietética, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile;
- Correspondence: (J.P.-D.); (C.J.-A.); Tel.: +34-958241599 (J.P.-D.); +569-95791706 (C.J.-A.)
| | - Andrés Rodríguez-Rodríguez
- Gastric Cancer Research Group—Laboratory of Oncology, UC Center for Investigational Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
| | - Fernando Rodríguez-Rodríguez
- IRyS Group, Physical Education School, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile;
| |
Collapse
|
33
|
Karolkiewicz J, Nieman DC, Cisoń T, Szurkowska J, Gałęcka M, Sitkowski D, Szygula Z. No effects of a 4-week post-exercise sauna bathing on targeted gut microbiota and intestinal barrier function, and hsCRP in healthy men: a pilot randomized controlled trial. BMC Sports Sci Med Rehabil 2022; 14:107. [PMID: 35710395 PMCID: PMC9202095 DOI: 10.1186/s13102-022-00497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/31/2022] [Indexed: 12/02/2022]
Abstract
Background Body temperature fluctuations induced by acute exercise bouts may influence the intestinal barrier with related effects on epithelial permeability, immune responses, and release of metabolites produced by the gut microbiota. This study evaluated the effects of post-exercise sauna bathing in young men undergoing endurance training on gut bacteria inflammation and intestinal barrier function. Methods Fifteen (15) untrained males aged 22 ± 1.5 years were randomly assigned to exercise training (ET) with or without post-exercise sauna treatments (S). Participants in the group ET + S (n = 8) exercised 60 min, 3 times per week, on a bicycle ergometer followed by a 30-min dry Finish sauna treatment. The control group (ET, n = 7) engaged in the same exercise training program without the sauna treatments. Blood and stool samples were collected before and after the 4-week training program. Blood samples were analysed for the concentration of high-sensitivity C-reactive protein (hsCRP) and complete blood counts. Stool samples were analysed for pH, quantitative and qualitative measures of targeted bacteria, zonulin, and secretory immunoglobulin A. Results Interaction effects revealed no differences in the pattern of change over time between groups for the abundance of selected gut microbiome bacteria and stool pH, zonulin, sIgA, and hsCRP. Pre- and post-study fecal concentrations of Bifidobacterium spp., Faecalibacterium prausnitzii, and Akkermansia muciniphila were below reference values for these bacteria in both groups. Conclusions The combination of 4-weeks exercise followed by passive heat exposure did not have a measurable influence on targeted gut microbiota, intestinal barrier function, and hsCRP levels in young males. Trial registration The study was retrospectively registered in the clinical trials registry (Clinicaltrials.gov) under the trial registration number: NCT05277597. Release Date: March 11, 2022.
Collapse
Affiliation(s)
- Joanna Karolkiewicz
- Department of Food and Nutrition, Poznan University of Physical Education, Poznań, Poland.
| | - David C Nieman
- Department of Biology, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Tomasz Cisoń
- Department of Physiotherapy, Institute of Physical Education, State University of Applied Sciences in Nowy Sącz, Nowy Sącz, Poland
| | - Joanna Szurkowska
- Department of Food and Nutrition, Poznan University of Physical Education, Poznań, Poland
| | | | - Dariusz Sitkowski
- Department of Physiology, Institute of Sport - National Research Institute PL, Warsaw, Poland
| | - Zbigniew Szygula
- Department of Sports Medicine and Human Nutrition, University of Physical Education, Kraków, Poland
| |
Collapse
|
34
|
Yeh WL, Hsu YJ, Ho CS, Ho HH, Kuo YW, Tsai SY, Huang CC, Lee MC. Lactobacillus plantarum PL-02 Supplementation Combined With Resistance Training Improved Muscle Mass, Force, and Exercise Performance in Mice. Front Nutr 2022; 9:896503. [PMID: 35571912 PMCID: PMC9094439 DOI: 10.3389/fnut.2022.896503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
Increasing numbers of researchers are investigating the benefits of probiotics in enhancing exercise performance and verifying the role of the gut–muscle axis. In our previous study, Lactobacillus plantarum PL-02 improved exercise performance and muscle mass. Therefore, the purpose of this study was to investigate whether supplementation with PL-02 combined with resistance training has a synergistic effect on exercise performance and muscle mass. All the animals were assigned into four groups (n = 8/group): a sedentary control with normal distilled water group (vehicle, n = 8); PL-02 supplementation group (PL-02, 2.05 × 109 CFU, n = 8); resistance training group (RT, n = 8); PL-02 supplementation combined with resistance training group (PL-02 + RT, 2.05 × 109 CFU, n = 8). Supplementation with PL-02 for four consecutive weeks combined with resistance exercise training significantly improved the grip strength and the maximum number of crawls; increased the time of exhaustive exercise; significantly reduced the time required for a single climb; and reduced the lactate, blood ammonia, creatine kinase, and blood urea nitrogen produced after exercise (p < 0.05). In addition, it produced substantial benefits for increasing muscle mass without causing any physical damage. In summary, our findings confirmed that PL-02 or RT supplementation alone is effective in improving muscle mass and exercise performance and in reducing exercise fatigue, but the combination of the two can achieve increased benefits.
Collapse
Affiliation(s)
- Wen-Ling Yeh
- Department of Orthopedic Surgery, Lotung Poh-Ai Hospital, Luodong, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Chin-Shen Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Hsieh-Hsun Ho
- Department of Research and Design, Bioflag Biotech Co., Ltd., Tainan, Taiwan
| | - Yi-Wei Kuo
- Department of Research and Design, Bioflag Biotech Co., Ltd., Tainan, Taiwan
| | - Shin-Yu Tsai
- Department of Research and Design, Bioflag Biotech Co., Ltd., Tainan, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| |
Collapse
|
35
|
Moore JH, Smith KS, Chen D, Lamb DA, Smith MA, Osburn SC, Ruple BA, Morrow CD, Huggins KW, McDonald JR, Brown MD, Young KC, Roberts MD, Frugé AD. Exploring the Effects of Six Weeks of Resistance Training on the Fecal Microbiome of Older Adult Males: Secondary Analysis of a Peanut Protein Supplemented Randomized Controlled Trial. Sports (Basel) 2022; 10:sports10050065. [PMID: 35622473 PMCID: PMC9145250 DOI: 10.3390/sports10050065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 01/04/2023] Open
Abstract
The bacteria inhabiting the gastrointestinal tract contribute to numerous host functions and can be altered by lifestyle factors. We aimed to determine whether a 6-week training intervention altered fecal microbiome diversity and/or function in older males. Fecal samples were collected prior to and following a 6-week twice-weekly supervised resistance training intervention in 14 older Caucasian males (65 ± 10 years, 28.5 ± 3.2 kg/m2) with minimal prior training experience. Participants were randomized to receive a daily defatted peanut powder supplement providing 30 g protein (n = 8) or no supplement (n = 6) during the intervention. Bacterial DNA was isolated from pre-and post-training fecal samples, and taxa were identified using sequencing to amplify the variable region 4 (V4) of the 16S ribosomal RNA gene. Training significantly increased whole-body and lower-body lean mass (determined by dual energy X-ray absorptiometry) as well as leg extensor strength (p < 0.05) with no differences between intervention groups. Overall composition of the microbiome and a priori selected taxa were not significantly altered with training. However, MetaCYC pathway analysis indicated that metabolic capacity of the microbiome to produce mucin increased (p = 0.047); the tight junction protein, zonulin, was measured in serum and non-significantly decreased after training (p = 0.062). Our data suggest that resistance training may improve intestinal barrier integrity in older Caucasian males; further investigation is warranted.
Collapse
Affiliation(s)
- Johnathon H. Moore
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
| | - Kristen S. Smith
- Department of Nutrition, Dietetics and Hospitality Management, College of Human Sciences, Auburn University, Auburn, AL 36849, USA; (K.S.S.); (D.A.L.); (K.W.H.)
| | - Dongquan Chen
- Department of Cell, Developmental, and Integrative Biology, Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.C.); (C.D.M.)
| | - Donald A. Lamb
- Department of Nutrition, Dietetics and Hospitality Management, College of Human Sciences, Auburn University, Auburn, AL 36849, USA; (K.S.S.); (D.A.L.); (K.W.H.)
| | - Morgan A. Smith
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
| | - Shelby C. Osburn
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
| | - Bradley A. Ruple
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
| | - Casey D. Morrow
- Department of Cell, Developmental, and Integrative Biology, Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.C.); (C.D.M.)
| | - Kevin W. Huggins
- Department of Nutrition, Dietetics and Hospitality Management, College of Human Sciences, Auburn University, Auburn, AL 36849, USA; (K.S.S.); (D.A.L.); (K.W.H.)
| | - James R. McDonald
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
| | - Michael D. Brown
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
| | - Kaelin C. Young
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL 36832, USA
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL 36832, USA
| | - Andrew D. Frugé
- Department of Nutrition, Dietetics and Hospitality Management, College of Human Sciences, Auburn University, Auburn, AL 36849, USA; (K.S.S.); (D.A.L.); (K.W.H.)
- Correspondence:
| |
Collapse
|
36
|
Oliveira CB, Marques C, Abreu R, Figueiredo P, Calhau C, Brito J, Sousa M. Gut microbiota of elite female football players is not altered during an official international tournament. Scand J Med Sci Sports 2022; 32 Suppl 1:62-72. [PMID: 34779042 DOI: 10.1111/sms.14096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022]
Abstract
The current study aimed to investigate if the gut microbiota composition of elite female football players changes during an official international tournament. The study was conducted throughout ten consecutive days, encompassing seven training sessions, and three official matches. The matches were separated by 48-72 h. Seventeen elite female football players from the Portuguese women's national football team participated in the study. Fecal samples were collected at two time points: at the beginning and end of the tournament. Fecal microbiota was analyzed by sequencing the 16S rRNA gene. Throughout the study, the duration and rating of perceived exertion (RPE) were recorded after training sessions and matches. The internal load was determined by the session RPE. The gut microbiota of players was predominantly composed of bacteria from the phyla Firmicutes (50% of relative abundance) and Bacteroidetes (20%); the genera Faecalibacterium (29%) and Collinsella (16%); the species Faecalibacterium prausnitzii (30%) and Collinsella aerofaciens (17%). Overall, no significant changes were observed between time points (p ≥ 0.05). Also, no relationship was found between any exercise parameter and the gut microbiota composition (p ≥ 0.05). These findings demonstrate that the physical and physiological demands of training and matches of an official international tournament did not change the gut microbiota composition of elite female football players. Furthermore, it supports that the gut microbiota of athletes appears resilient to the physical and physiological demands of training and match play.
Collapse
Affiliation(s)
- Catarina B Oliveira
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Cláudia Marques
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
- CINTESIS, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisboa, 1169-056, Portugal
| | - Rodrigo Abreu
- Portugal Football School, Portuguese Football Federation, Oeiras, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Pedro Figueiredo
- Portugal Football School, Portuguese Football Federation, Oeiras, Portugal
- Research Center in Sports Science, Health Sciences and Human Development, CIDESD, Vila Real, Portugal
- CIDEFES, Universidade Lusófona, Lisboa, Portugal
| | - Conceição Calhau
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
- CINTESIS, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisboa, 1169-056, Portugal
| | - João Brito
- Portugal Football School, Portuguese Football Federation, Oeiras, Portugal
| | - Mónica Sousa
- Nutrition and Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
- CINTESIS, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisboa, 1169-056, Portugal
| |
Collapse
|
37
|
Cataldi S, Bonavolontà V, Poli L, Clemente FM, De Candia M, Carvutto R, Silva AF, Badicu G, Greco G, Fischetti F. The Relationship between Physical Activity, Physical Exercise, and Human Gut Microbiota in Healthy and Unhealthy Subjects: A Systematic Review. BIOLOGY 2022; 11:479. [PMID: 35336852 PMCID: PMC8945171 DOI: 10.3390/biology11030479] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/06/2023]
Abstract
Several studies have been conducted to find at least an association between physical activity (PA)/ physical exercise (PE) and the possibility to modulate the gut microbiome (GM). However, the specific effects produced on the human GM by different types of PA/PE, different training modalities, and their age-related effects are not yet fully understood. Therefore, this systematic review aims to evaluate and summarize the current scientific evidence investigating the bi-directional relationship between PA/PE and the human GM, with a specific focus on the different types/variables of PA/PE and age-related effects, in healthy and unhealthy people. A systematic search was conducted across four databases (Web of Science, Medline (PubMed), Google Scholar, and Cochrane Library). Information was extracted using the populations, exposure, intervention, comparison, outcomes (PICOS) format. The Oxford Quality Scoring System Scale, the Risk of Bias in Non-Randomized Studies of Interventions (ROBINS-I) tool, and the JBI Critical Appraisal Checklist for Analytical Cross-Sectional Studies were used as a qualitative measure of the review. The protocol was registered in PROSPERO (code: CRD42022302725). The following data items were extracted: author, year of publication, study design, number and age of participants, type of PA/PE carried out, protocol/workload and diet assessment, duration of intervention, measurement tools used, and main outcomes. Two team authors reviewed 694 abstracts for inclusion and at the end of the screening process, only 76 full texts were analyzed. Lastly, only 25 research articles met the eligibility criteria. The synthesis of these findings suggests that GM diversity is associated with aerobic exercise contrary to resistance training; abundance of Prevotella genus seems to be correlated with training duration; no significant change in GM richness and diversity are detected when exercising according to the minimum dose recommended by the World Health Organizations; intense and prolonged PE can induce a higher abundance of pro-inflammatory bacteria; PA does not lead to significant GM α/β-diversity in elderly people (60+ years). The heterogeneity of the training parameters used in the studies, diet control, and different sequencing methods are the main confounders. Thus, this systematic review can provide an in-depth overview of the relationship between PA/PE and the human intestinal microbiota and, at the same time, provide indications from the athletic and health perspective.
Collapse
Affiliation(s)
- Stefania Cataldi
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Valerio Bonavolontà
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Luca Poli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Filipe Manuel Clemente
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal; (F.M.C.); (A.F.S.)
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), 4960-320 Melgaço, Portugal
- Instituto de Telecomunicações, Delegação da Covilhã, 1049-001 Lisboa, Portugal
| | - Michele De Candia
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Roberto Carvutto
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Ana Filipa Silva
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal; (F.M.C.); (A.F.S.)
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), 4960-320 Melgaço, Portugal
- The Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD), 5001-801 Vila Real, Portugal
| | - Georgian Badicu
- Department of Physical Education and Special Motricity, Transilvania University of Brasov, 500068 Brasov, Romania;
| | - Gianpiero Greco
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Francesco Fischetti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| |
Collapse
|
38
|
Suryani D, Subhan Alfaqih M, Gunadi JW, Sylviana N, Goenawan H, Megantara I, Lesmana R. Type, Intensity, and Duration of Exercise as Regulator of Gut Microbiome Profile. Curr Sports Med Rep 2022; 21:84-91. [PMID: 35245243 DOI: 10.1249/jsr.0000000000000940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ABSTRACT Gut microbiome profile is related to individual health. In metabolic syndrome, there is a change in the gut microbiome profile, indicated by an increase in the ratio of Firmicutes to Bacteroidetes. Many studies have been conducted to determine the effect of exercise on modifying the gut microbiome profile. The effectiveness of exercise is influenced by its type, intensity, and duration. Aerobic training decreases splanchnic blood flow and shortens intestinal transit time. High-intensity exercise improves mitochondrial function and increases the essential bacteria in lactate metabolism and urease production. Meanwhile, exercise duration affects the hypothalamic-pituitary-adrenal axis. All of these mechanisms are related to each other in producing the effect of exercise on the gut microbiome profile.
Collapse
Affiliation(s)
| | | | - Julia Windi Gunadi
- Department of Physiology, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, INDONESIA
| | | | | | | | | |
Collapse
|
39
|
Imdad S, Lim W, Kim JH, Kang C. Intertwined Relationship of Mitochondrial Metabolism, Gut Microbiome and Exercise Potential. Int J Mol Sci 2022; 23:ijms23052679. [PMID: 35269818 PMCID: PMC8910986 DOI: 10.3390/ijms23052679] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The microbiome has emerged as a key player contributing significantly to the human physiology over the past decades. The potential microbial niche is largely unexplored in the context of exercise enhancing capacity and the related mitochondrial functions. Physical exercise can influence the gut microbiota composition and diversity, whereas a sedentary lifestyle in association with dysbiosis can lead to reduced well-being and diseases. Here, we have elucidated the importance of diverse microbiota, which is associated with an individual's fitness, and moreover, its connection with the organelle, the mitochondria, which is the hub of energy production, signaling, and cellular homeostasis. Microbial by-products, such as short-chain fatty acids, are produced during regular exercise that can enhance the mitochondrial capacity. Therefore, exercise can be employed as a therapeutic intervention to circumvent or subside various metabolic and mitochondria-related diseases. Alternatively, the microbiome-mitochondria axis can be targeted to enhance exercise performance. This review furthers our understanding about the influence of microbiome on the functional capacity of the mitochondria and exercise performance, and the interplay between them.
Collapse
Affiliation(s)
- Saba Imdad
- Molecular Metabolism in Health & Disease, Exercise Physiology Laboratory, Sport Science Research Institute, Inha University, Incheon 22212, Korea;
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju 28503, Korea
| | - Wonchung Lim
- Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju 28503, Korea;
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju 28503, Korea
- Correspondence: (J.-H.K.); (C.K.)
| | - Chounghun Kang
- Molecular Metabolism in Health & Disease, Exercise Physiology Laboratory, Sport Science Research Institute, Inha University, Incheon 22212, Korea;
- Department of Physical Education, College of Education, Inha University, Incheon 22212, Korea
- Correspondence: (J.-H.K.); (C.K.)
| |
Collapse
|
40
|
Zheng C, Chen XK, Tian XY, Ma ACH, Wong SHS. Does the gut microbiota contribute to the antiobesity effect of exercise? A systematic review and meta-analysis. Obesity (Silver Spring) 2022; 30:407-423. [PMID: 35088557 DOI: 10.1002/oby.23345] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/07/2021] [Accepted: 10/31/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The aim of this study was to assess gut microbiota modifications after exercise in humans and animal models with obesity or type 2 diabetes and their role in exercise-induced weight loss. METHODS A systematic search of six databases was conducted on July 31, 2021. The extracted data on body fat or body weight from human and animal studies were analyzed using random-effects meta-analysis. RESULTS A total of 28 studies were included, with all studies reporting exercise-induced gut microbiota modifications; however, the modified taxa varied among studies. Proteobacteria was the only taxa reported to be altered by exercise in more than one human and one animal study. Taxa belonging to Firmicutes were the most responsive to exercise in humans and mice, whereas Proteobacteria taxa were the most responsive to exercise in rats. A meta-analysis was conducted to examine the weight-lowering effect of exercise based on data subgrouped by altered or unaltered α-diversity or β-diversity. The association between the weight-lowering effect of exercise and altered β-diversity was observed in humans with obesity but not in animals. CONCLUSIONS These findings suggest that gut microbiota modifications contribute to exercise-induced weight loss in obesity; however, their precise contributions, especially those of taxon-level variations, remain to be investigated.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Xiang-Ke Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Alvin Chun-Hang Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Stephen Heung-Sang Wong
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| |
Collapse
|
41
|
Byerley LO, Gallivan KM, Christopher CJ, Taylor CM, Luo M, Dowd SE, Davis GM, Castro HF, Campagna SR, Ondrak KS. Gut Microbiome and Metabolome Variations in Self-Identified Muscle Builders Who Report Using Protein Supplements. Nutrients 2022; 14:nu14030533. [PMID: 35276896 PMCID: PMC8839395 DOI: 10.3390/nu14030533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/03/2022] Open
Abstract
Muscle builders frequently consume protein supplements, but little is known about their effect on the gut microbiota. This study compared the gut microbiome and metabolome of self-identified muscle builders who did or did not report consuming a protein supplement. Twenty-two participants (14 males and 8 females) consumed a protein supplement (PS), and seventeen participants (12 males and 5 females) did not (No PS). Participants provided a fecal sample and completed a 24-h food recall (ASA24). The PS group consumed significantly more protein (118 ± 12 g No PS vs. 169 ± 18 g PS, p = 0.02). Fecal metabolome and microbiome were analyzed by using untargeted metabolomics and 16S rRNA gene sequencing, respectively. Metabolomic analysis identified distinct metabolic profiles driven by allantoin (VIP score = 2.85, PS 2.3-fold higher), a catabolic product of uric acid. High-protein diets contain large quantities of purines, which gut microbes degrade to uric acid and then allantoin. The bacteria order Lactobacillales was higher in the PS group (22.6 ± 49 No PS vs. 136.5 ± 38.1, PS (p = 0.007)), and this bacteria family facilitates purine absorption and uric acid decomposition. Bacterial genes associated with nucleotide metabolism pathways (p < 0.001) were more highly expressed in the No PS group. Both fecal metagenomic and metabolomic analyses revealed that the PS group’s higher protein intake impacted nitrogen metabolism, specifically altering nucleotide degradation.
Collapse
Affiliation(s)
- Lauri O. Byerley
- Sports and Health Sciences, School of Health Sciences, American Public University System, Charles Town, WV 25414, USA; (K.M.G.); (K.S.O.)
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Correspondence: or
| | - Karyn M. Gallivan
- Sports and Health Sciences, School of Health Sciences, American Public University System, Charles Town, WV 25414, USA; (K.M.G.); (K.S.O.)
| | - Courtney J. Christopher
- Department of Chemistry, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; (C.J.C.); (H.F.C.); (S.R.C.)
| | - Christopher M. Taylor
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (C.M.T.); (M.L.)
| | - Meng Luo
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (C.M.T.); (M.L.)
| | - Scot E. Dowd
- Molecular Research LP, 503 Clovis Rd, Shallowater, TX 79363, USA;
| | - Gregory M. Davis
- Kinesiology and Health Studies, Southeastern Louisiana University, Hammond, LA 70401, USA;
| | - Hector F. Castro
- Department of Chemistry, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; (C.J.C.); (H.F.C.); (S.R.C.)
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Shawn R. Campagna
- Department of Chemistry, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; (C.J.C.); (H.F.C.); (S.R.C.)
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| | - Kristin S. Ondrak
- Sports and Health Sciences, School of Health Sciences, American Public University System, Charles Town, WV 25414, USA; (K.M.G.); (K.S.O.)
| |
Collapse
|
42
|
Armstrong LE, Bergeron MF, Lee EC, Mershon JE, Armstrong EM. Overtraining Syndrome as a Complex Systems Phenomenon. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 1:794392. [PMID: 36925581 PMCID: PMC10013019 DOI: 10.3389/fnetp.2021.794392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022]
Abstract
The phenomenon of reduced athletic performance following sustained, intense training (Overtraining Syndrome, and OTS) was first recognized more than 90 years ago. Although hundreds of scientific publications have focused on OTS, a definitive diagnosis, reliable biomarkers, and effective treatments remain unknown. The present review considers existing models of OTS, acknowledges the individualized and sport-specific nature of signs/symptoms, describes potential interacting predisposing factors, and proposes that OTS will be most effectively characterized and evaluated via the underlying complex biological systems. Complex systems in nature are not aptly characterized or successfully analyzed using the classic scientific method (i.e., simplifying complex problems into single variables in a search for cause-and-effect) because they result from myriad (often non-linear) concomitant interactions of multiple determinants. Thus, this review 1) proposes that OTS be viewed from the perspectives of complex systems and network physiology, 2) advocates for and recommends that techniques such as trans-omic analyses and machine learning be widely employed, and 3) proposes evidence-based areas for future OTS investigations, including concomitant multi-domain analyses incorporating brain neural networks, dysfunction of hypothalamic-pituitary-adrenal responses to training stress, the intestinal microbiota, immune factors, and low energy availability. Such an inclusive and modern approach will measurably help in prevention and management of OTS.
Collapse
Affiliation(s)
| | - Michael F. Bergeron
- Sport Sciences and Medicine and Performance Health, WTA Women’s Tennis Association, St. Petersburg, FL, United States
| | - Elaine C. Lee
- Human Performance Laboratory, University of Connecticut, Storrs, CT, United States
| | - James E. Mershon
- Department of Energy and Renewables, Heriot-Watt University, Stromness, United Kingdom
| | | |
Collapse
|
43
|
Fernández J, Fernández-Sanjurjo M, Iglesias-Gutiérrez E, Martínez-Camblor P, Villar CJ, Tomás-Zapico C, Fernández-García B, Lombó F. Resistance and Endurance Exercise Training Induce Differential Changes in Gut Microbiota Composition in Murine Models. Front Physiol 2022; 12:748854. [PMID: 35002754 PMCID: PMC8739997 DOI: 10.3389/fphys.2021.748854] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022] Open
Abstract
Background: The effect of resistance training on gut microbiota composition has not been explored, despite the evidence about endurance exercise. The aim of this study was to compare the effect of resistance and endurance training on gut microbiota composition in mice. Methods: Cecal samples were collected from 26 C57BL/6N mice, divided into three groups: sedentary (CTL), endurance training on a treadmill (END), and resistance training on a vertical ladder (RES). After 2 weeks of adaption, mice were trained for 4 weeks, 5 days/week. Maximal endurance and resistance capacity test were performed before and after training. Genomic DNA was extracted and 16S Ribosomal RNA sequenced for metagenomics analysis. The percentages for each phylum, class, order, family, or genus/species were obtained using an open-source bioinformatics pipeline. Results: END showed higher diversity and evenness. Significant differences among groups in microbiota composition were only observed at genera and species level. END showed a significantly higher relative abundance of Desulfovibrio and Desulfovibrio sp., while Clostridium and C. cocleatum where higher for RES. Trained mice showed significantly lower relative abundance of Ruminococcus gnavus and higher of the genus Parabacteroides compared to CTL. We explored the relationship between relative taxa abundance and maximal endurance and resistance capacities after the training period. Lachnospiraceae and Lactobacillaceae families were negatively associated with endurance performance, while several taxa, including Prevotellaceae family, Prevotella genus, and Akkermansia muciniphila, were positively correlated. About resistance performance, Desulfovibrio sp. was negatively correlated, while Alistipes showed a positive correlation. Conclusion: Resistance and endurance training differentially modify gut microbiota composition in mice, under a high-controlled environment. Interestingly, taxa associated with anti- and proinflammatory responses presented the same pattern after both models of exercise. Furthermore, the abundance of several taxa was differently related to maximal endurance or resistance performance, most of them did not respond to training.
Collapse
Affiliation(s)
- Javier Fernández
- Department of Functional Biology, Microbiology, University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Manuel Fernández-Sanjurjo
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Functional Biology, Physiology, University of Oviedo, Oviedo, Spain
| | - Eduardo Iglesias-Gutiérrez
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Functional Biology, Physiology, University of Oviedo, Oviedo, Spain
| | - Pablo Martínez-Camblor
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Claudio J Villar
- Department of Functional Biology, Microbiology, University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Cristina Tomás-Zapico
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Functional Biology, Physiology, University of Oviedo, Oviedo, Spain
| | - Benjamin Fernández-García
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Morphology and Cell Biology, Anatomy, University of Oviedo, Oviedo, Spain
| | - Felipe Lombó
- Department of Functional Biology, Microbiology, University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
44
|
Klann EM, Dissanayake U, Gurrala A, Farrer M, Shukla AW, Ramirez-Zamora A, Mai V, Vedam-Mai V. The Gut-Brain Axis and Its Relation to Parkinson's Disease: A Review. Front Aging Neurosci 2022; 13:782082. [PMID: 35069178 PMCID: PMC8776990 DOI: 10.3389/fnagi.2021.782082] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/18/2021] [Indexed: 02/02/2023] Open
Abstract
Parkinson's disease is a chronic neurodegenerative disease characterized by the accumulation of misfolded alpha-synuclein protein (Lewy bodies) in dopaminergic neurons of the substantia nigra and other related circuitry, which contribute to the development of both motor (bradykinesia, tremors, stiffness, abnormal gait) and non-motor symptoms (gastrointestinal issues, urinogenital complications, olfaction dysfunction, cognitive impairment). Despite tremendous progress in the field, the exact pathways and mechanisms responsible for the initiation and progression of this disease remain unclear. However, recent research suggests a potential relationship between the commensal gut bacteria and the brain capable of influencing neurodevelopment, brain function and health. This bidirectional communication is often referred to as the microbiome-gut-brain axis. Accumulating evidence suggests that the onset of non-motor symptoms, such as gastrointestinal manifestations, often precede the onset of motor symptoms and disease diagnosis, lending support to the potential role that the microbiome-gut-brain axis might play in the underlying pathological mechanisms of Parkinson's disease. This review will provide an overview of and critically discuss the current knowledge of the relationship between the gut microbiota and Parkinson's disease. We will discuss the role of α-synuclein in non-motor disease pathology, proposed pathways constituting the connection between the gut microbiome and the brain, existing evidence related to pre- and probiotic interventions. Finally, we will highlight the potential opportunity for the development of novel preventative measures and therapeutic options that could target the microbiome-gut-brain axis in the context of Parkinson's disease.
Collapse
Affiliation(s)
- Emily M. Klann
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Upuli Dissanayake
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Anjela Gurrala
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Matthew Farrer
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Aparna Wagle Shukla
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Adolfo Ramirez-Zamora
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Volker Mai
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Vinata Vedam-Mai
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
45
|
The Athlete Gut Microbiome and its Relevance to Health and Performance: A Review. Sports Med 2022; 52:119-128. [PMID: 36396898 PMCID: PMC9734205 DOI: 10.1007/s40279-022-01785-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/19/2022]
Abstract
The human gut microbiome is a complex ecosystem of microorganisms that play an important role in human health, influencing functions such as vitamin uptake, digestion and immunomodulation. While research of the gut microbiome has expanded considerably over the past decade, some areas such as the relationship between exercise and the microbiome remain relatively under investigated. Despite this, multiple studies have shown a potential bidirectional relationship between exercise and the gut microbiome, with some studies demonstrating the possibility of influencing this relationship. This, in turn, could provide a useful route to influence athletic performance via microbiome manipulation, a valuable prospect for many elite athletes and their teams. The evidence supporting the potential benefits of pursuing this route and associated future perspectives are discussed in this review.
Collapse
|
46
|
Hughes RL, Holscher HD. Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Adv Nutr 2021; 12:2190-2215. [PMID: 34229348 PMCID: PMC8634498 DOI: 10.1093/advances/nmab077] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The athlete's goal is to optimize their performance. Towards this end, nutrition has been used to improve the health of athletes' brains, bones, muscles, and cardiovascular system. However, recent research suggests that the gut and its resident microbiota may also play a role in athlete health and performance. Therefore, athletes should consider dietary strategies in the context of their potential effects on the gut microbiota, including the impact of sports-centric dietary strategies (e.g., protein supplements, carbohydrate loading) on the gut microbiota as well as the effects of gut-centric dietary strategies (e.g., probiotics, prebiotics) on performance. This review provides an overview of the interaction between diet, exercise, and the gut microbiota, focusing on dietary strategies that may impact both the gut microbiota and athletic performance. Current evidence suggests that the gut microbiota could, in theory, contribute to the effects of dietary intake on athletic performance by influencing microbial metabolite production, gastrointestinal physiology, and immune modulation. Common dietary strategies such as high protein and simple carbohydrate intake, low fiber intake, and food avoidance may adversely impact the gut microbiota and, in turn, performance. Conversely, intake of adequate dietary fiber, a variety of protein sources, and emphasis on unsaturated fats, especially omega-3 (ɷ-3) fatty acids, in addition to consumption of prebiotics, probiotics, and synbiotics, have shown promising results in optimizing athlete health and performance. Ultimately, while this is an emerging and promising area of research, more studies are needed that incorporate, control, and manipulate all 3 of these elements (i.e., diet, exercise, and gut microbiome) to provide recommendations for athletes on how to "fuel their microbes."
Collapse
Affiliation(s)
- Riley L Hughes
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Nutrition Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
47
|
Prokopidis K, Chambers E, Ni Lochlainn M, Witard OC. Mechanisms Linking the Gut-Muscle Axis With Muscle Protein Metabolism and Anabolic Resistance: Implications for Older Adults at Risk of Sarcopenia. Front Physiol 2021; 12:770455. [PMID: 34764887 PMCID: PMC8576575 DOI: 10.3389/fphys.2021.770455] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with a decline in skeletal muscle mass and function-termed sarcopenia-as mediated, in part, by muscle anabolic resistance. This metabolic phenomenon describes the impaired response of muscle protein synthesis (MPS) to the provision of dietary amino acids and practice of resistance-based exercise. Recent observations highlight the gut-muscle axis as a physiological target for combatting anabolic resistance and reducing risk of sarcopenia. Experimental studies, primarily conducted in animal models of aging, suggest a mechanistic link between the gut microbiota and muscle atrophy, mediated via the modulation of systemic amino acid availability and low-grade inflammation that are both physiological factors known to underpin anabolic resistance. Moreover, in vivo and in vitro studies demonstrate the action of specific gut bacteria (Lactobacillus and Bifidobacterium) to increase systemic amino acid availability and elicit an anti-inflammatory response in the intestinal lumen. Prospective lifestyle approaches that target the gut-muscle axis have recently been examined in the context of mitigating sarcopenia risk. These approaches include increasing dietary fiber intake that promotes the growth and development of gut bacteria, thus enhancing the production of short-chain fatty acids (SCFA) (acetate, propionate, and butyrate). Prebiotic/probiotic/symbiotic supplementation also generates SCFA and may mitigate low-grade inflammation in older adults via modulation of the gut microbiota. Preliminary evidence also highlights the role of exercise in increasing the production of SCFA. Accordingly, lifestyle approaches that combine diets rich in fiber and probiotic supplementation with exercise training may serve to produce SCFA and increase microbial diversity, and thus may target the gut-muscle axis in mitigating anabolic resistance in older adults. Future mechanistic studies are warranted to establish the direct physiological action of distinct gut microbiota phenotypes on amino acid utilization and the postprandial stimulation of muscle protein synthesis in older adults.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Edward Chambers
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Mary Ni Lochlainn
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Oliver C. Witard
- Faculty of Life Sciences and Medicine, Centre for Human and Applied Physiological Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
48
|
COVID-19 Infection Alters the Microbiome: Elite Athletes and Sedentary Patients Have Similar Bacterial Flora. Genes (Basel) 2021; 12:genes12101577. [PMID: 34680972 PMCID: PMC8536180 DOI: 10.3390/genes12101577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Regular exercise can upgrade the efficiency of the immune system and beneficially alter the composition of the gastro-intestinal microbiome. We tested the hypothesis that active athletes have a more diverse microbiome than sedentary subjects, which could provide better protection against COVID-19 during infection. Twenty active competing athletes (CA) (16 male and 4 females of the national first and second leagues), aged 24.15 ± 4.7 years, and 20 sedentary subjects (SED) (15 male and 5 females), aged 27.75 ± 7.5 years, who had been diagnosed as positive for COVID-19 by a PCR test, served as subjects for the study. Fecal samples collected five to eight days after diagnosis and three weeks after a negative COVID-19 PCR test were used for microbiome analysis. Except for two individuals, all subjects reported very mild and/or mild symptoms of COVID-19 and stayed at home under quarantine. Significant differences were not found in the bacterial flora of trained and untrained subjects. On the other hand, during COVID-19 infection, at the phylum level, the relative abundance of Bacteroidetes was elevated during COVID-19 compared to the level measured three weeks after a negative PCR test (p < 0.05) when all subjects were included in the statistical analysis. Since it is known that Bacteroidetes can suppress toll-like receptor 4 and ACE2-dependent signaling, thus enhancing resistance against pro-inflammatory cytokines, it is suggested that Bacteroidetes provide protection against severe COVID-19 infection. There is no difference in the microbiome bacterial flora of trained and untrained subjects during and after a mild level of COVID-19 infection.
Collapse
|
49
|
Semmler G, Datz C, Reiberger T, Trauner M. Diet and exercise in NAFLD/NASH: Beyond the obvious. Liver Int 2021; 41:2249-2268. [PMID: 34328248 PMCID: PMC9292198 DOI: 10.1111/liv.15024] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 12/12/2022]
Abstract
Lifestyle represents the most relevant factor for non-alcoholic fatty liver disease (NAFLD) as the hepatic manifestation of the metabolic syndrome. Although a tremendous body of clinical and preclinical data on the effectiveness of dietary and lifestyle interventions exist, the complexity of this topic makes firm and evidence-based clinical recommendations for nutrition and exercise in NAFLD difficult. The aim of this review is to guide readers through the labyrinth of recent scientific findings on diet and exercise in NAFLD and non-alcoholic steatohepatitis (NASH), summarizing "obvious" findings in a holistic manner and simultaneously highlighting stimulating aspects of clinical and translational research "beyond the obvious". Specifically, the importance of calorie restriction regardless of dietary composition and evidence from low-carbohydrate diets to target the incidence and severity of NAFLD are discussed. The aspect of ketogenesis-potentially achieved via intermittent calorie restriction-seems to be a central aspect of these diets warranting further investigation. Interactions of diet and exercise with the gut microbiota and the individual genetic background need to be comprehensively understood in order to develop personalized dietary concepts and exercise strategies for patients with NAFLD/NASH.
Collapse
Affiliation(s)
- Georg Semmler
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Christian Datz
- Department of Internal MedicineGeneral Hospital OberndorfTeaching Hospital of the Paracelsus Medical University SalzburgSalzburgAustria
| | - Thomas Reiberger
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Michael Trauner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
50
|
Resende AS, Leite GSF, Lancha Junior AH. Changes in the Gut Bacteria Composition of Healthy Men with the Same Nutritional Profile Undergoing 10-Week Aerobic Exercise Training: A Randomized Controlled Trial. Nutrients 2021; 13:nu13082839. [PMID: 34444999 PMCID: PMC8398245 DOI: 10.3390/nu13082839] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022] Open
Abstract
Nutrient consumption and body mass index (BMI) are closely related to the gut microbiota, and exercise effects on gut bacteria composition may be related to those variables. Thus, we aimed to investigate the effect of 10-week moderate aerobic exercise on the cardiorespiratory fitness and gut bacteria composition of non-obese men with the same nutritional profile. Twenty-four previously sedentary men (age 25.18 [SD 4.66] years, BMI 24.5 [SD 3.72] kg/m2) were randomly assigned into Control (CG; n = 12) or Exercise Groups (EG; n = 12). Body composition, cardiorespiratory parameters, blood markers, dietary habits and gut bacteria composition were evaluated. EG performed 150 min per week of supervised moderate (60–65% of VO2peak) aerobic exercise, while CG maintained their daily routine. The V4 16S rRNA gene was sequenced and treated using QIIME software. Only EG demonstrated marked improvements in cardiorespiratory fitness (VO2peak, p < 0.05; Effect Size = 0.971) without changes in other gut bacteria-affecting variables. Exercise did not promote clustering based on diversity indices (p > 0.05), although significant variations in an unclassified genus from Clostridiales order and in Streptococcus genus were observed (p < 0.05). Moreover, α-diversity was correlated with VO2peak (Pearson’s R: 0.47; R2 0.23: 95%CI: 0.09 to 0.74, p = 0.02) and BMI (Pearson’s R: −0.50; R2 0.25: 95%CI: −0.75 to −0.12, p = 0.01). Roseburia, Sutterella and Odoribacter genera were associated with VO2peak, while Desulfovibrio and Faecalibacterium genera were associated with body composition (p < 0.05). Our study indicates that aerobic exercise at moderate intensity improved VO2peak and affected gut bacteria composition of non-obese men who maintained a balanced consumption of nutrients.
Collapse
Affiliation(s)
- Ayane S. Resende
- Health Sciences Graduate Program, Federal University of Sergipe, São Cristovão 49100-000, SE, Brazil
- Correspondence: ; Tel.: +55-11-3061-7474
| | - Geovana S. F. Leite
- Laboratory of Nutrition and Metabolism Applied to Motor Activity, School of Physical Education and Sports, University of Sao Paulo, São Paulo 05508-030, SP, Brazil;
| | - Antonio H. Lancha Junior
- Laboratory of Clinical Investigation: Experimental Surgery (LIM/26), Clinics’ Hospital of Medical School, University of Sao Paulo, São Paulo 01246-903, SP, Brazil;
| |
Collapse
|