1
|
Li X, Li T, Wei Y, Jin X, Pillai SC, Zhang J, Chen D, Wu X, Bao Y, Jiang X, Wang H. New insights into interfacial dynamics and mechanisms of biochar-derived dissolved organic matter on arsenic redistribution in Schwertmannite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125419. [PMID: 39615573 DOI: 10.1016/j.envpol.2024.125419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/05/2024] [Accepted: 11/28/2024] [Indexed: 01/26/2025]
Abstract
Biochar is extensively utilized for the remediation of environments contaminated with heavy metals (HMs). However, its derived-dissolved organic matter (BDOM) can interact with iron oxides, which may adversely influence the retention of HMs. This study investigates the effect of BDOM derived from tobacco stalk (TS) and tobacco petiole (TP) biochar on the redistribution behavior of As(V) in acid mine drainage (AMD)-impacted environments, particularly concentrating on the interactions with Schwertmannite (Sch). Results showed that TP-BDOM, abundant in lignin-like compounds, led to a low-amplitude release of As(V) from Sch under acidic conditions, reaching a maximum value (19.84 μg L-1), significantly lower than the release caused by TS-BDOM (87.46 μg L-1). Subsequently, 88.2% of the released As(V) were re-adsorbed in the TS-BDOM system, while 47.5% were retained in the TP-BDOM system. XRD analysis, in conjunction with SEM and STEM characterizations, confirmed that there were no additional crystalline phases or alterations in the microscopic morphological features of the particles throughout the reaction process. In-situ ATR-FTIR, complemented by 2D-COS analysis, demonstrated that aromatic N-OH groups and carboxylic in BDOMs coordinated to As-Sch, enhancing sulfate and As(V) release. It was also noted that no As(III) was detected under the influences of TP- and TS-BDOM. XPS results indicated that As(V) remained the predominant redox species even in the presence of BDOMs. These findings enhance our insight into BDOM's role in As(V) fate and transport within AMD-contaminated environments.
Collapse
Affiliation(s)
- Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China.
| | - Tianfu Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Yanfu Wei
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa, Macao, 999078, PR China
| | - Xiaohu Jin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Suresh C Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Atlantic Technological University, ATU Sligo, Ash Lane, Sligo, F91 YW50, Ireland
| | - Jun Zhang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Dian Chen
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Xiaolian Wu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Yanping Bao
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| |
Collapse
|
2
|
Fathy AT, Moneim MA, Ahmed EA, El-Ayaat AM, Dardir FM. Effective removal of heavy metal ions (Pb, Cu, and Cd) from contaminated water by limestone mine wastes. Sci Rep 2025; 15:1680. [PMID: 39799170 PMCID: PMC11724857 DOI: 10.1038/s41598-024-82861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
Limestone mining waste and its derived CaO were checked as an adsorbents of pb2+, Cu2+, and Cd2+ ions from water solution. The characterization of Limestone and calcined limestone was studied by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Scanning Electron Microscope (SEM), and Surface area measurements (BET). The optimum conditions of sorbent dosage, pH, initial concentration, and contact time factors were investigated for pristine limestone and calcined limestone absorbents. The results indicate that the optimum initial concentrations of (Ci) were 1200, 500, and 300 ppm for Pb, Cu, and Cd, respectively, using calcined limestone adsorbent, while using the pristine limestone adsorbent, the corresponding optimum initial concentrations were 700, 110, and 50 ppm. In the ternary system sorption, the results indicated that the selectivity sequence of the studied metals by limestone can be expressed as Pb2+ > Cd2+ > Cu2+, while calcined limestone exhibits a higher selectivity for Pb2+ compared to Cu2+ and Cd2+. Hence, various adsorption isotherm and kinetic models were examined to explore different patterns and behaviors of adsorption. So, the results indicate that calcined limestone has great potential for eliminating cationic heavy metal species from industrial water solutions.
Collapse
Affiliation(s)
- Aya T Fathy
- Geology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Mohamed A Moneim
- Geology Department, Faculty of Science, Assiut University, Assiut, Egypt.
| | - Ezzat A Ahmed
- Geology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Abdalla M El-Ayaat
- Geology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Fatma M Dardir
- Geology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Tripathi A, Ekanayake A, Tyagi VK, Vithanage M, Singh R, Rao YRS. Emerging contaminants in polluted waters: Harnessing Biochar's potential for effective treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123778. [PMID: 39721395 DOI: 10.1016/j.jenvman.2024.123778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/23/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Biochar is a carbon-rich, sponge-like material with intricate functionalities, making it suitable for various environmental remediation applications, including water treatment, soil amendment and, additives in construction materials, anaerobic digesters, and electrodes, among others. Its easy adaptability and low cost make it particularly attractive. This review highlights a range of biochar and surface-modified biochar exhibiting high uptake and degradation efficiencies for a broad spectrum of contaminants, including humic acid, disinfection by-products (DBPs), radioactive materials, dyes, heavy metals, antibiotics, microplastics, pathogens, Per- and polyfluoroalkyl substances (PFAS), and cytotoxins. The study provides a detailed discussion on different classes of pollutants and their removal mechanisms using biochar, covering processes like physical and chemical adsorption, electrostatic interactions, π-π interactions, hydrogen bonding, as well as surface complexation, chelation, among others. This review article stands out for its comprehensive exploration of biochar's effectiveness in removing a wide range of emerging contaminants, as well as recent advancements in the removal of conventional pollutants like heavy metals and antibiotics.
Collapse
Affiliation(s)
- Abhilasha Tripathi
- Department of Civil Engineering, Indian Institute of Technology Kanpur, 208016, India
| | - Anusha Ekanayake
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India.
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, 248007, India; Institute of Agriculture, University of Western Australia, Perth, WA6009, Australia
| | - Rajesh Singh
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India
| | - Y R S Rao
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India
| |
Collapse
|
4
|
Vallem S, Song S, Oh Y, Bae J. Sustainable ZIF-67/Mo-MXene-Derived Nanoarchitecture Synthesis: An Enhanced Durable Performance of Lithium-Selenium Batteries. SMALL METHODS 2024; 8:e2400294. [PMID: 38546035 DOI: 10.1002/smtd.202400294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Indexed: 10/18/2024]
Abstract
Selenium-based electrodes have garnered attention for their high electrical conductivity, compatibility with carbonate electrolytes, and volumetric capacity comparable to sulfur electrodes. However, real-time application is hindered by rapid capacity deterioration from the "shuttle effect" of polyselenides and volume fluctuations. To address these challenges, a hybrid Se@ZIF-67/Mo-MXene-derived (Se@Co-NC/Mo2C) nanoarchitecture is developed via an economically viable in situ electrostatic self-assembly of ZIF-67 and Mo2C nanosheets. The catalytic effects and porous framework of Co-NC/Mo2C enhance electrode attributes, promoting superior adsorption and conversion of lithium polyselenides and facile ion/electron transport within the electrode, resulting in stable electrochemical performance. Lithium-selenium batteries (LSeBs) exhibit remarkable characteristics, boasting high specific capacity and exceptional durability. The Se@Co-NC/Mo2C electrode delivers a reversible capacity of 503.5 mAh g-1 at 0.5 C with 98% capacity retention, 100% Coulombic efficiency, and exceptional cyclic durability through 8600 cycles. In sustainability tests at 10C/1C charging/discharging, the Se@Co-NC/Mo2C electrode demonstrates an optimistic and stable capacity of ≈370.6 mAh g-1 with 93% capacity retention at the 3100th cycle in a carbonate-based electrolyte and ≈181.3 mAh g-1 with 92% capacity retention after 5000 cycles in an ether-based electrolyte, indicating exceptional stability for practical rechargeable batteries. This cost-effective and efficient approach holds significant potential for high-performance and durable LSeBs.
Collapse
Affiliation(s)
- Sowjanya Vallem
- Department of Physics, Gachon University, Seongnam-si, Gyeonggi-do, 461-701, South Korea
| | - Seunghyun Song
- Department of Physics, Gachon University, Seongnam-si, Gyeonggi-do, 461-701, South Korea
| | - Yoonju Oh
- Department of Physics, Gachon University, Seongnam-si, Gyeonggi-do, 461-701, South Korea
| | - Joonho Bae
- Department of Physics, Gachon University, Seongnam-si, Gyeonggi-do, 461-701, South Korea
| |
Collapse
|
5
|
Ullah MH, Rahman MJ. Adsorptive removal of toxic heavy metals from wastewater using water hyacinth and its biochar: A review. Heliyon 2024; 10:e36869. [PMID: 39281482 PMCID: PMC11400981 DOI: 10.1016/j.heliyon.2024.e36869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Heavy metal contamination in aquatic ecosystems worsens due to rapid industrial expansion. Biochar, an efficient and economical adsorbent, has attracted much interest in environmental science, particularly in removing heavy metals (HMs). The paper covers basic details on biochar, its preparation, and potential chemical and inorganic modifications. Possible adsorption mechanisms of HMs on biochar, which include electrostatic attraction, ion exchange, surface complexation, chemical precipitation, and hydrogen bonding, are also discussed. These mechanisms are affected by the type of biochar used and the species of HMs present. Research findings suggest that while biochar effectively removes HMs, modifications to the carbon-rich hybrid can enhance surface properties such as surface area, pore size, functional groups, etc., and magnetic properties in a few cases, making them more efficient in HM removal. The choice of feedstock materials is one of the key parameters influencing the sorption capacity of biochars. This review aims to investigate the use of various forms of water hyacinth (WH), including aquatic plants, biomass, biochar, and modified biochar, as effective adsorbents for removing HMs from aqueous solutions and industrial effluents through a comparative analysis of their adsorption processes. However, further studies on the diverse effects of functional groups of modified biochar on HMs adsorption are necessary for future research.
Collapse
Affiliation(s)
- M Hedayet Ullah
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
- Department of Physics, Bangladesh University of Textiles, Dhaka, 1208, Bangladesh
| | - Mohammad Jellur Rahman
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| |
Collapse
|
6
|
Hu Y, Wang J, Yang Y, Li S, Wu Q, Nepovimova E, Zhang X, Kuca K. Revolutionizing soil heavy metal remediation: Cutting-edge innovations in plant disposal technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170577. [PMID: 38311074 DOI: 10.1016/j.scitotenv.2024.170577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/08/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
Soil contamination with heavy metals has emerged as a global environmental threat, compromising agricultural productivity, ecosystem integrity, and human health. Conventional remediation techniques often fall short due to high costs, operational complexities, and environmental drawbacks. Plant-based disposal technologies, including biochar, phytometallurgy, and phrolysis, have emerged as promising solutions in this regard. Grounded in a novel experimental framework, biochar is studied for its dual role as soil amendment and metal adsorbent, while phytometallurgy is explored for its potential in resource recovery and economic benefits derived from harvested metal-rich plant biomass. Pyrolysis, in turn, is assessed for transforming contaminated biomass into value-added products, thereby minimizing waste. These plant disposal technologies create a circular model of remediation and resource utilization that holds the potential for application in large-scale soil recovery projects, development of environmentally friendly agro-industries, and advancement in sustainable waste management practices. This review mainly discussed cutting-edge plant disposal technologies-biochar application, phytometallurgy, and pyrolysis-as revolutionary approaches to soil heavy metal remediation. The efficacy, cost-effectiveness, and environmental impact of these innovative technologies are especially evaluated in comparison with traditional methods. The success of these applications could signal a paradigm shift in how we approach both environmental remediation and resource recovery, with profound implications for sustainable development and circular economy strategies.
Collapse
Affiliation(s)
- Yucheng Hu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Junbang Wang
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongsheng Yang
- The Key Laboratory of Restoration Ecology in Cold Region of Qinghai Province/Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, China
| | - Sha Li
- School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Qinghua Wu
- College Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Xiujuan Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic.
| |
Collapse
|
7
|
Phiri Z, Moja NT, Nkambule TT, de Kock LA. Utilization of biochar for remediation of heavy metals in aqueous environments: A review and bibliometric analysis. Heliyon 2024; 10:e25785. [PMID: 38375270 PMCID: PMC10875440 DOI: 10.1016/j.heliyon.2024.e25785] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
Biochar usage for removing heavy metals from aqueous environments has emerged as a promising research area with significant environmental and economic benefits. Using the PICO approach, the research question aimed to explore using biochar to remove heavy metals from aqueous media. We merged the data from Scopus and the Web of Science Core Collection databases to acquire a comprehensive perspective of the subject. The PRISMA guidelines were applied to establish the search parameters, identify the appropriate articles, and collect the bibliographic information from the publications between 2010 and 2022. The bibliometric analysis showed that biochar-based heavy metal remediation is a research field with increasing scholarly attention. The removal of Cr(VI), Pb(II), Cd(II), and Cu(II) was the most studied among the heavy metals. We identified five main clusters centered on adsorption, water treatment, adsorption models, analytical techniques, and hydrothermal carbonization by performing keyword co-occurrence analysis. Trending topics include biochar reusability, modification, acid mine drainage (AMD), wastewater treatment, and hydrochar. The reutilization of heavy metal-loaded spent biochar includes transforming it into electrodes for supercapacitors or stable catalyst materials. This study provides a comprehensive overview of biochar-based heavy metal remediation in aquatic environments and highlights knowledge gaps and future research directions.
Collapse
Affiliation(s)
- Zebron Phiri
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| | - Nathaniel T. Moja
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| | - Thabo T.I. Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| | - Lueta-Ann de Kock
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| |
Collapse
|
8
|
Rabiee Abyaneh M, Nabi Bidhendi G, Daryabeigi Zand A. Pb(ΙΙ), Cd(ΙΙ), and Mn(ΙΙ) adsorption onto pruning-derived biochar: physicochemical characterization, modeling and application in real landfill leachate. Sci Rep 2024; 14:3426. [PMID: 38341513 PMCID: PMC11306770 DOI: 10.1038/s41598-024-54028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
The aim of this study was to systemically evaluate how different pyrolysis temperatures (400, 550, and 700 °C) and particle sizes (1-2 mm and 63-75 µm) were influenced biochar evolution, made from urban pruning waste, during pyrolysis process and to establish their relationships with biochar potential for removal of lead (Pb), cadmium (Cd), and manganese (Mn) from real municipal solid waste landfill leachate. The effects of pH (2-7), contact time (30-300 min) and adsorbent dosage (0.1-5 g L-1) on heavy metals removal were also examined. The results showed that physicochemical properties of biochar were greatly influenced by pyrolysis temperature. Particle size, however, showed little influence on biochar characteristics (p > 0.05). The yield, volatile matter, hydrogen and oxygen contents, and surface functional groups decreased consistently with increasing pyrolysis temperature. An increase in the pH, electrical conductivity, ash, fixed carbon, and specific surface area values was also found. In biochar samples formed at high temperatures (i.e., 550 and 700 °C), Fourier transform infrared spectroscopy-FTIR studies confirmed the increase in aromaticity. Field emission scanning electron microscopy-FESEM images showed differences in the microporous structure and lower size pores at higher temperatures. Biochar pyrolyzed at 700 °C with a particle size of 63-75 µm (i.e., Lv700-63) showed the highest removal efficiency performance. Pb and Cd ions were completely removed (100%) by 0.2 g L-1 Lv700-63 at 7.0 pH and contact times of 120 and 90 min, respectively. The maximum percentage removal of Mn was 86.20% at optimum conditions of 0.2 g L-1 Lv700-63 dosage, 7.0 pH, and 180 min contact time. The findings suggests that the surface complexation, π-electron coordination, and cation exchange were the dominant mechanisms for the Pb, Cd, and Mn removal onto Lv700-63.
Collapse
Affiliation(s)
- Maryam Rabiee Abyaneh
- Department of Environmental Engineering, University of Tehran, Kish International Campus, Kish, Iran.
| | | | | |
Collapse
|
9
|
Mu J, Chen Y, Wu X, Chen Q, Zhang M. Rapid and efficient removal of multiple heavy metals from diverse types of water using magnetic biochars derived from antibiotic fermentation residue. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119685. [PMID: 38042070 DOI: 10.1016/j.jenvman.2023.119685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023]
Abstract
Pyrolysis is a promising method to treat antibiotic fermentation residue (AFR), a hazardous waste in China, with the benefits of detoxification and resource recycling. However, the application of the AFR-derived biochar has been limited yet, restricting the use of pyrolysis to treat AFR. Herein, for the first time, we reported the use of magnetic biochars derived from vancomycin fermentation residue to rapidly and efficiently co-adsorb multiple heavy metals from diverse types of water with complex matrices. The biochar prepared at 700 °C (labeled as VBC700) exhibited high affinity and selectivity for multiple heavy metals, especially for Ag(I), Hg(II), Pb(II), and Cu(II). The kinetics for Ag(I), Hg(II), and Pb(II) were ultrafast with an equilibrium time of only 5 min, while those for Cu(II) were relatively slower. The maximum adsorption capacity calculated from the Langmuir model for Ag(I), Hg(II), Pb(II), and Cu(II) reached 177.4, 105.9, 387.1, 124.5 mg/g, respectively, which were superior to much previously reported adsorbents. Impressively, Na(I), K(I), Ca(II), Mg(II), and salinity did not affect the capture of these heavy metals, and thus >99% of Ag(I), Pb(II), and Cu(II) were concurrently removed from complex water matrices including seawater, which has rarely been reported before. Furthermore, VBC700 remained high adsorption performance at pH ≥ 3. The adsorption mechanisms included ion exchange, precipitation, and inner-sphere complexation. Overall, the results demonstrate that VBC700 would be an excellent adsorbent to co-capture multiple heavy metals from diverse types of water, highlighting the feasibility of using pyrolysis to achieve a win-win goal for AFR management and heavy metal pollution control.
Collapse
Affiliation(s)
- Jingli Mu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, PR China; Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou, 350108, PR China
| | - Yunchao Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, PR China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350028, PR China
| | - Xihui Wu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, PR China; College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Qinpeng Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, PR China; College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Mingdong Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, PR China; Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou, 350108, PR China.
| |
Collapse
|
10
|
Sim DHH, Tan IAW, Lim LLP, Lau ET, Hameed BH. Synthesis of tapioca starch/palm oil encapsulated urea-impregnated biochar derived from peppercorn waste as a sustainable controlled-release fertilizer. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 173:51-61. [PMID: 37977096 DOI: 10.1016/j.wasman.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/06/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Nutrient leaching and volatilization cause environmental pollution, thus the pursuit of developing controlled-release fertilizer formulation is necessary. Biochar-based fertilizer exhibits slow-release characteristic, however the nutrient release mechanism needs to be improved. To overcome this limitation, the approach of applying encapsulation technology with biochar-based fertilizer has been implemented in this study. Black peppercorn waste was used to synthesize urea-impregnated biochar (UIB). Central composite design was used to investigate the effects of pyrolysis temperature, residence time and urea:biochar ratio on nitrogen content of UIB. The optimum condition to synthesize UIB was at 400 °C pyrolysis temperature, 120 min residence time and 0.6:1 urea:biochar ratio, which resulted in 16.07% nitrogen content. The tapioca starch/palm oil (PO) biofilm formulated using 8 g of tapioca starch and 0.12 µL of PO was coated on the UIB to produce encapsulated urea-impregnated biochar (EUIB). The UIB and EUIB pellets achieved complete release of nitrogen in water after 90 min and 330 min, respectively. The nutrient release mechanism of UIB and EUIB was best described by the Higuchi model and Korsmeyer-Peppas model, respectively. The improvement of water retention ratio of UIB and EUIB pellets was more significant in sandy-textural soil as compared to clayey-textural soil. The EUIB derived from peppercorn waste has the potential to be utilized as a sustainable controlled-release fertilizer for agriculture.
Collapse
Affiliation(s)
- D H H Sim
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - I A W Tan
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.
| | - L L P Lim
- Department of Civil Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - E T Lau
- Division of Research and Quality Development, Malaysian Pepper Board, Lot 1115, Jalan Utama, Pending Industrial Area, 93916 Kuching, Sarawak, Malaysia
| | - B H Hameed
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box: 2713, Doha, Qatar
| |
Collapse
|
11
|
“Gamma Irradiation Synthesis of Carboxymethyl Chitosan-Nanoclay Hydrogel for the Removal of Cr(VI) and Pb(II) from Aqueous Media”. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
AbstractHydrogel composites comprised of N,O carboxymethyl chitosan crosslinked with different weight ratios of acrylic acid and fabricated with nanoclay particle were prepared via gamma irradiation at 25 kGy irradiation dose. The prepared composites were coded as CsAA1Cl, CsAA2Cl and CsAA3Cl based on the weight ratio of acrylic acid to the chitosan derivative. The claimed hydrogels were characterized by FTIR, TGA and XRD. The TGA data implied that the incorporation of clay nanoparticles enhanced the thermal stability of the composites; the decomposition temperature increased up to 500 °C for CsAA3Cl. Three AFM outcomes were used to compare the surface features of the samples; topography, height and surface roughness. The topography data reveals that the nanoclay particles incorporated in CsAA3Cl are intercalated and exfoliated. Then, the optimized sorbent (CsAA3Cl) was investigated as green sorbents for chromium (VI) and lead (II). The data revealed that CsAA3Cl displayed maximum removal performance towards both lead and chromium with removal efficiencies 125 mg/g and 205 mg/g respectively at the optimum application conditions within 90 min only. Also, it was found that the optimum pH value was 9 for chromium and 8 for lead. The data proved that the adsorption of both cations followed pseudo-first order kinetic model. The prepared composites showed acceptable metal uptake capacity at three successive cycles.
Graphical Abstract
Collapse
|