1
|
Dong Z, Zhu Y, Che R, Chen T, Liang J, Xia M, Wang F. Unraveling the complexity of organophosphorus pesticides: Ecological risks, biochemical pathways and the promise of machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179206. [PMID: 40154081 DOI: 10.1016/j.scitotenv.2025.179206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Organophosphorus pesticides (OPPs) are widely used in agriculture but pose significant ecological and human health risks due to their persistence and toxicity in the environment. While microbial degradation offers a promising solution, gaps remain in understanding the enzymatic mechanisms, degradation pathways, and ecological impacts of OPP transformation products. This review aims to bridge these gaps by integrating traditional microbial degradation research with emerging machine learning (ML) technologies. We hypothesize that ML can enhance OPP degradation studies by improving the efficiency of enzyme discovery, pathway prediction, and ecological risk assessment. Through a comprehensive analysis of microbial degradation mechanisms, environmental factors, and ML applications, we propose a novel framework that combines biochemical insights with data-driven approaches. Our review highlights the potential of ML to optimize microbial strain screening, predict degradation pathways, and identify key active sites, offering innovative strategies for sustainable pesticide management. By integrating traditional research with cutting-edge ML technologies, this work contributes to the journal's scope by promoting eco-friendly solutions for environmental protection and pesticide pollution control.
Collapse
Affiliation(s)
- Zhongtian Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Institute of process engineering, Chinese Academy of Sciences, Beijing 100089, China
| | - Yining Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Ruijie Che
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Tao Chen
- China Ordnance Equipment Group Automation Research Institute CO., LTD, Mianyang 621000, China
| | - Jie Liang
- China Ordnance Equipment Group Automation Research Institute CO., LTD, Mianyang 621000, China
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Fenghe Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
2
|
Medley EA, Trasande L, Naidu M, Wang Y, Ghassabian A, Kahn LG, Long S, Afanasyeva Y, Liu M, Kannan K, Mehta-Lee SS, Cowell W. Prenatal organophosphate pesticide exposure and sex-specific estimated fetal size. Am J Epidemiol 2025; 194:954-962. [PMID: 39117571 PMCID: PMC11978611 DOI: 10.1093/aje/kwae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 05/30/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Prenatal organophosphate (OP) pesticide exposure may be associated with reduced fetal growth, although studies are limited and have mixed results. We investigated associations between prenatal OP pesticide exposure and fetal size and modification by fetal sex. Maternal urinary concentrations of dialkyl phosphate (DAP) metabolites were measured at 3 time points. Fetal biometrics were obtained from ultrasounds in the second (n = 773) and third (n = 535) trimesters. Associations between pregnancy-averaged ΣDAP and fetal biometry z scores were determined through multiple linear regression. Modification by sex was investigated through stratification and interaction. In the second trimester, one ln-unit increase in ΣDAP was associated with lower estimated fetal weight (-0.15 SD; 95% CI, -0.29 to -0.01), head circumference (-0.11 SD; CI, -0.22 to 0.01), biparietal diameter (-0.14 SD; CI, -0.27 to -0.01), and abdominal circumference (-0.12 SD; CI, -0.26 to 0.01) in females. In the third trimester, one ln-unit increase in ΣDAP was associated with lower head circumference (-0.14 SD; CI, -0.28 to 0.00) and biparietal diameter (-0.12 SD; CI, -0.26 to 0.03) in males. Our results suggest that prenatal OP pesticide exposure is negatively associated with fetal growth in a sex-specific manner, with associations present for females in mid-gestation and males in late gestation. This article is part of a Special Collection on Environmental Epidemiology.
Collapse
Affiliation(s)
- Eleanor A Medley
- Department of Population Health, New York University School of Medicine, New York, NY, United States
| | - Leonardo Trasande
- Department of Population Health, New York University School of Medicine, New York, NY, United States
- Department of Pediatrics, New York University School of Medicine, New York, NY, United States
- Wagner School of Public Service, New York University, New York, NY, United States
| | - Mrudula Naidu
- Department of Pediatrics, New York University School of Medicine, New York, NY, United States
| | - Yuyan Wang
- Department of Population Health, New York University School of Medicine, New York, NY, United States
| | - Akhgar Ghassabian
- Department of Population Health, New York University School of Medicine, New York, NY, United States
- Department of Pediatrics, New York University School of Medicine, New York, NY, United States
| | - Linda G Kahn
- Department of Population Health, New York University School of Medicine, New York, NY, United States
- Department of Pediatrics, New York University School of Medicine, New York, NY, United States
| | - Sara Long
- Department of Pediatrics, New York University School of Medicine, New York, NY, United States
| | - Yelena Afanasyeva
- Department of Population Health, New York University School of Medicine, New York, NY, United States
| | - Mengling Liu
- Department of Population Health, New York University School of Medicine, New York, NY, United States
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, NY, United States
| | - Shilpi S Mehta-Lee
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, New York University Langone Health, New York City, NY, United States
| | - Whitney Cowell
- Department of Population Health, New York University School of Medicine, New York, NY, United States
- Department of Pediatrics, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
3
|
Hernández AF, Lacasaña M, Garcia-Cortés H, Fernández MF, Gozález-Alzaga B. Identification and prioritisation of biomarkers of organophosphorus compounds-induced neurotoxicity. ENVIRONMENT INTERNATIONAL 2025; 199:109446. [PMID: 40253933 DOI: 10.1016/j.envint.2025.109446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/26/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
Organophosphorus compounds (OPCs), a diverse group of chemicals widely utilised as pesticides and flame retardants, pose significant neurotoxic risks, even during neurodevelopment. While their primary molecular and cellular targets are well characterised, growing evidence suggest additional mechanisms, particularly in developmental neurotoxicity. Despite extensive research, predictive biomarkers of OPC-induced neurotoxicity beyond acetylcholinesterase remain underexplored. This study conducted a comprehensive review of epidemiological, in vivo, and in vitro evidence to identify and prioritise biomarkers associated with OPC-induced neurotoxicity. Findings highlight the critical roles of non-cholinergic mechanisms, including neuroinflammation, mitochondrial dysfunction, oxidative stress, and epigenetic modifications. Biomarkers were categorised based on their biological function, mechanistic relevance, and feasibility for early, non-invasive detection. Current research efforts focus on validating sensitive and reliable biomarkers capable of predicting and monitoring nervous system damage and severity. Growing attention is being directed toward non-invasive biomarkers that correlate with behavioural, neuropathological, and imaging outcomes. This review addresses two main aspects. The first provides an overview of established and emerging biomarkers for assessing neurotoxicity in the general population and in individuals occupationally exposed to OPC. The second evaluates molecular biomarkers prioritised based on scientific robustness, clinical relevance, and regulatory applicability. A structured ranking of biomarkers across different levels of biological organisation is proposed to enhance mechanistic understanding and improve risk assessment. This study underscores the need for a standardised biomarker framework for neurotoxicity risk assessment and regulatory decision-making. Implementing these biomarkers in biomonitoring for predictive purposes will facilitate early detection and prevention strategies, ultimately mitigating neurotoxic effects in exposed individuals.
Collapse
Affiliation(s)
- Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Marina Lacasaña
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; Andalusian School of Public Health (EASP), 18011 Granada, Spain; Andalusian Health and Environment Observatory (OSMAN), Granada, Spain.
| | - Helena Garcia-Cortés
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Andalusian School of Public Health (EASP), 18011 Granada, Spain
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada 18016 Granada, Spain; Biomedical Research Centre (CIBM), University of Granada 18016 Granada, Spain
| | - Beatriz Gozález-Alzaga
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; Andalusian School of Public Health (EASP), 18011 Granada, Spain
| |
Collapse
|
4
|
Nazir A, Sajjad M. Recent perspectives on biotechnological production, modulation and applications of glycerophosphoryl diester phosphodiesterases. Biodegradation 2025; 36:23. [PMID: 40085296 DOI: 10.1007/s10532-025-10119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Organophosphate (OP) compounds have been extensively employed as pesticides, insecticides and nerve agents. Stockpiles of chemical warfare agents must be destroyed as recommended by Chemical Weapon Convention (CWC). Toxicity of OP compounds to insects and mammals is due to their ability to inhibit the activity of acetylcholinesterase. Accumulation of acetylcholine leads to overstimulation of nerves, leading to convulsion, paralysis or even death. There is a dire need to decontaminate OP contaminated sites by using inexpensive and eco-friendly agents. Recently, OP hydrolyzing enzymes such as glycerophosphoryl diester phosphodiesterases (GDPDs) emerged as appealing agents to clean-up OP contaminated environmental sites. GDPDs are well known for enzymatic generation of glycerol 3-phosphate and corresponding alcoholic moiety from glycerophosphodiesters. Additionally, they are also involved in hydrolysis of OP compounds and degradative products of nerve agents. In the current review, structural and functional characteristics of GDPDs have been elaborated. Production of GDPDs from natural sources is quiet low so the current study aims at recombinant production of GDPDs from various sources. Comparative analysis of biochemical characteristics of various GDPDs indicated that thermostable GDPDs are active over broad temperature and pH range. In addition, thermostable GDPDs are resistant to high concentrations of organic solvents as well as metal ions. In order to enhance their practical utility, different engineering approaches (directed evolution, rational design and site-saturation mutagenesis) as well as immobilization strategies can be utilized to improve catalytic properties of GDPDs. Thus, the current review highlights the utilization of recombinant engineered free or immobilized GDPDs as tools in OP bioremediation.
Collapse
Affiliation(s)
- Arshia Nazir
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Sajjad
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
5
|
Waye AA, Ticiani E, Sharmin Z, Perez Silos V, Perera T, Tu A, Buhimschi IA, Murga-Zamalloa CA, Hu YS, Veiga-Lopez A. Reduced bioenergetics and mitochondrial fragmentation in human primary cytotrophoblasts induced by an EGFR-targeting chemical mixture. CHEMOSPHERE 2024; 364:143301. [PMID: 39251161 PMCID: PMC11540307 DOI: 10.1016/j.chemosphere.2024.143301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Exposures to complex environmental chemical mixtures during pregnancy reach and target the feto-placental unit. This study investigates the influence of environmental chemical mixtures on placental bioenergetics. Recognizing the essential role of the epidermal growth factor receptor (EGFR) in placental development and its role in stimulating glycolysis and mitochondrial respiration in trophoblast cells, we explored the effects of chemicals known to disrupt EGFR signaling on cellular energy production. Human primary cytotrophoblasts (hCTBs) and a first-trimester extravillous trophoblast cell line (HTR-8/SVneo) were exposed to a mixture of EGFR-interfering chemicals, including atrazine, bisphenol S, niclosamide, PCB-126, PCB-153, and trans-nonachlor. An RNA sequencing approach revealed that the mixture altered the transcriptional signature of genes involved in cellular energetics. Next, the impact of the mixture on cellular bioenergetics was evaluated using a combination of mitochondrial and glycolytic stress tests, ATP production, glucose consumption, lactate synthesis, and super-resolution imaging. The chemical mixture did not alter basal oxygen consumption but diminished the maximum respiratory capacity in a dose-dependent manner, indicating a disruption of mitochondrial function. The respiratory capacity and ATP production were increased by EGF, while the Chem-Mix reduced both EGF- and non-EGF-mediated oxygen consumption rate in hCTBs. A similar pattern was observed in the glycolytic medium acidification, with EGF increasing the acidification, and the Chem-Mix blocking EGF-induced glycolytic acidification. Furthermore, direct stochastic optical reconstruction microscopy (dSTORM) imaging demonstrated that the Chem-Mix led to a reduction of the mitochondrial network architecture, with findings supported by a decrease in the abundance of OPA1, a mitochondrial membrane GTPase involved in mitochondrial fusion. In conclusion, we demonstrated that a mixture of EGFR-disrupting chemicals alters mitochondrial remodeling, resulting in disturbed cellular bioenergetics, reducing the capacity of human cytotrophoblast cells to generate energy. Future studies should investigate the mechanism by which mitochondrial dynamics are disrupted and the pathological significance of these findings.
Collapse
Affiliation(s)
- Anita A Waye
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA
| | - Elvis Ticiani
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA
| | - Zinat Sharmin
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA
| | | | - Thilini Perera
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Alex Tu
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Irina A Buhimschi
- Department of Obstetrics & Gynecology, University of Illinois Chicago, Chicago, IL, USA
| | | | - Ying S Hu
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA; The Chicago Center for Health and Environment, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Hong T, Park S, An G, Bazer FW, Song G, Lim W. Norflurazon causes cell death and inhibits implantation-related genes in porcine trophectoderm and uterine luminal epithelial cells. Food Chem Toxicol 2024; 186:114559. [PMID: 38432436 DOI: 10.1016/j.fct.2024.114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Norflurazon, an inhibitor of carotenoid synthesis, is a pre-emergent herbicide that prevents growth of weeds. The norflurazon is known to hamper embryo development in non-mammals. However, specific toxic effects of norflurazon on mammalian maternal and fetal cells have not been elucidated. Thus, the hypothesis of this study is that norflurazon may influence the toxic effects between maternal and fetal cells during early pregnancy in pigs. We aimed to examine the toxic effects of norflurazon in porcine trophectoderm (Tr) and uterine luminal epithelium (LE) cells. Norflurazon, administered at 0, 20, 50 or 100 μM for 48 h was used to determine its effects on cell proliferation and cell-cycle arrest. For both uterine LE and Tr cell lines, norflurazone caused mitochondrial dysfunction by inhibiting mitochondrial respiration and ATP production, and down-regulated expression of mRNAs of mitochondrial complex genes. Norflurazon increased cell death by increasing intracellular calcium and regulating PI3K and MAPK cell signaling pathways, as well as endoplasmic reticulum (ER) stress, ER-mitochondrial contact, and autophagy-related target proteins. Norflurazone also inhibited expression of genes required for implantation of blastocysts, including SMAD2, SMAD4, and SPP1. These findings indicate that norflurazon may induce implantation failure in pigs and other mammals through adverse effects on both Tr and uterine LE cells.
Collapse
Affiliation(s)
- Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju-si, Gyeongnam, 52725, Republic of Korea
| | - Garam An
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
7
|
Suresh S, Singh S A, Rushendran R, Vellapandian C, Prajapati B. Alzheimer's disease: the role of extrinsic factors in its development, an investigation of the environmental enigma. Front Neurol 2023; 14:1303111. [PMID: 38125832 PMCID: PMC10730937 DOI: 10.3389/fneur.2023.1303111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
In the realm of Alzheimer's disease, the most prevalent form of dementia, the impact of environmental factors has ignited intense curiosity due to its substantial burden on global health. Recent investigations have unveiled these environmental factors as key contributors, shedding new light on their profound influence. Notably, emerging evidence highlights the detrimental role of various environmental contaminants in the incidence and progression of Alzheimer's disease. These contaminants encompass a broad spectrum, including air pollutants laden with ozone, neurotoxic metals like lead, aluminum, manganese, and cadmium, pesticides with their insidious effects, and the ubiquitous presence of plastics and microplastics. By meticulously delving into the intricate web connecting environmental pollutants and this devastating neurological disorder, this comprehensive chapter takes a deep dive into their involvement as significant risk factors for Alzheimer's disease. Furthermore, it explores the underlying molecular mechanisms through which these contaminants exert their influence, aiming to unravel the complex interactions that drive the pathogenesis of the disease. Additionally, this chapter proposes potential strategies to mitigate the detrimental effects of these environmental contaminants on brain health, with the ultimate goal of restoring and preserving typical cognitive function. Through this comprehensive exploration, we aim to enhance our understanding of the multifaceted relationship between neurotoxins and Alzheimer's disease, providing a solid foundation for developing innovative in-vivo models and advancing our knowledge of the intricate pathological processes underlying this debilitating condition.
Collapse
Affiliation(s)
- Swathi Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ankul Singh S
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Rapuru Rushendran
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat, India
| |
Collapse
|
8
|
El-Baz MAH, Amin AF, Mohany KM. Exposure to pesticide components causes recurrent pregnancy loss by increasing placental oxidative stress and apoptosis: a case-control study. Sci Rep 2023; 13:9147. [PMID: 37277462 PMCID: PMC10241831 DOI: 10.1038/s41598-023-36363-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023] Open
Abstract
We investigated the plasma levels of pesticides components namely polychlorinated biphenyls (PCBs), dieldrin, dichlorodiphenyldichloroethylene (DDE), ethion, malathion, and chlorpyrifos in recurrent pregnancy loss (RPL) cases, and tested their associations with placental oxidative stress (OS) biomarkers [nitric oxide (NO.), thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), and superoxide dismutase (SOD)] and with placental apoptotic/antiapoptotic indices (Bcl-2 and caspase-3), and evaluated their possible cut-off points to distinguish RPL cases. The study recruited 101 pregnant women divided into; G1 [n = 49, control, normal 1st-trimester pregnancy, normal obstetric history with at least one previous normal live birth], G2 [n = 26, cases with missed abortion (< 3 abortions) before 24 weeks of gestation], and G3 [n = 26, cases with missed abortion (≥ 3 abortions) before 24 weeks of gestation]. The plasma pesticide levels were analyzed by gas chromatography-mass spectrometry. Plasma human chorionic gonadotrophin (HCG), placental OS, Bcl-2, and caspase-3, were analyzed by their corresponding methods and kits. Plasma PCBs, DDE, dieldrin, and ethion levels were significantly higher in RPL cases than in normal pregnancies (p ≤ 0.001). These levels correlated positively with placental OS and apoptosis and negatively with plasma HCG levels. Also, these levels were reliable markers of risk to RPL. Malathion and chlorpyrifos were not detected in any of the study's participants. Pesticides may be risk factors in cases of spontaneous RPL cases. They are associated with an increasing placental OS and placental apoptosis. Specific measures should be taken to decrease maternal exposure to these pollutants' sources, especially in underdeveloped and developing countries.
Collapse
Affiliation(s)
- Mona A H El-Baz
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Assiut University, EL Gammaa Street, Assiut City, 71515, Egypt
| | - Ahmed F Amin
- Department of Obstetrics and Gynecology, Faculty of Medicine, Women Health Hospital, Assiut University, Assiut City, 71515, Egypt
| | - Khalid M Mohany
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Assiut University, EL Gammaa Street, Assiut City, 71515, Egypt.
| |
Collapse
|
9
|
Li Q, Lesseur C, Srirangam P, Kaur K, Hermetz K, Caudle WM, Fiedler N, Panuwet P, Prapamontol T, Naksen W, Suttiwan P, Baumert BO, Hao K, Barr DB, Marsit CJ, Chen J. Associations between prenatal organophosphate pesticide exposure and placental gene networks. ENVIRONMENTAL RESEARCH 2023; 224:115490. [PMID: 36828252 PMCID: PMC10054353 DOI: 10.1016/j.envres.2023.115490] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Exposure to organophosphate (OP) pesticides during pregnancy has been linked to deficiencies of neurobehavioral development in childhood; however, the molecular mechanisms underlying this association remain elusive. The placenta plays a crucial role in protecting the fetus from environmental insults and safeguarding proper fetal development including neurodevelopment. The aim of our study is to evaluate changes in the placental transcriptome associated with prenatal OP exposure. METHODS Pregnant farm workers from two agricultural districts in northern Thailand were recruited for the Study of Asian Women and Offspring's Development and Environmental Exposures (SAWASDEE) from 2017 to 2019. For 254 participants, we measured maternal urinary concentrations of six nonspecific dialkyl phosphates (DAP) metabolites in early, middle, and late pregnancy. In parallel, we profiled the term placental transcriptome from the same participants using RNA-Sequencing and performed Weighted Gene co-expression Network Analysis (WGCNA). Generalized linear regression modeling was used to examine associations of urinary OP metabolites and placental co-expression module eigenvalues. RESULTS We identified 21 gene co-expression modules in the placenta. From the six DAP metabolites assayed, diethylphosphate (DEP) and diethylthiophosphate (DETP) were detected in more than 70% of the urine samples. Significant associations between DEP at multiple time points and two specific placental gene modules were observed. The 'black' module, enriched in genes involved in epithelial-to-mesenchymal transition (EMT) and hypoxia, was negatively associated with DEP in early (p = 0.034), and late pregnancies (p = 0.016). The 'lightgreen' module, enriched in genes involved in myogenesis and EMT, was negatively associated with DEP in late pregnancy (p = 0.010). We observed 2 hub genes (CELSR1 and PYCR1) of the 'black' module to be negatively associated with DEP in early and late pregnancies. CONCLUSIONS Our results suggest that prenatal OP exposure may disrupt placental gene networks in a time-dependent manner. Such transcriptomic effects may lead to down-stream changes in placental function that ultimately affect the developing fetus.
Collapse
Affiliation(s)
- Qian Li
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pranathi Srirangam
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Barnard College, New York, NY, USA
| | - Kirtan Kaur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karen Hermetz
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - W Michael Caudle
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Nancy Fiedler
- Environmental and Occupational Health Sciences Institute, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Tippawan Prapamontol
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Warangkana Naksen
- Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand
| | - Panrapee Suttiwan
- Psychology Center of Life-span Development and Intergeneration (LIFE Di), Faculty of Psychology, Chulalongkorn University, Bangkok, Thailand
| | - Brittney O Baumert
- Department of Population and Public Health Science, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Ke Hao
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Organophosphate Insecticide Toxicity in Neural Development, Cognition, Behaviour and Degeneration: Insights from Zebrafish. J Dev Biol 2022; 10:jdb10040049. [PMID: 36412643 PMCID: PMC9680476 DOI: 10.3390/jdb10040049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Organophosphate (OP) insecticides are used to eliminate agricultural threats posed by insects, through inhibition of the neurotransmitter acetylcholinesterase (AChE). These potent neurotoxins are extremely efficacious in insect elimination, and as such, are the preferred agricultural insecticides worldwide. Despite their efficacy, however, estimates indicate that only 0.1% of organophosphates reach their desired target. Moreover, multiple studies have shown that OP exposure in both humans and animals can lead to aberrations in embryonic development, defects in childhood neurocognition, and substantial contribution to neurodegenerative diseases such as Alzheimer's and Motor Neurone Disease. Here, we review the current state of knowledge pertaining to organophosphate exposure on both embryonic development and/or subsequent neurological consequences on behaviour, paying particular attention to data gleaned using an excellent animal model, the zebrafish (Danio rerio).
Collapse
|
11
|
Caba IC, Ștreangă V, Dobrin ME, Jităreanu C, Jităreanu A, Profire BȘ, Apotrosoaei M, Focșa AV, Caba B, Agoroaei L. Clinical Assessment of Acute Organophosphorus Pesticide Poisoning in Pediatric Patients Admitted to the Toxicology Emergency Department. TOXICS 2022; 10:582. [PMID: 36287862 PMCID: PMC9609388 DOI: 10.3390/toxics10100582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Pesticide poisoning in pediatric patients is still an important reason for presenting to the emergency department in Romania. In this context, the present study aims to raise awareness of the toxicological impact of pesticides on human health in pediatrics. For this purpose, the demographic characteristics, clinical assessment, and outcome of pediatric patients with acute pesticide poisoning admitted to the toxicology department of "Saint Mary" Emergency Children's Hospital from Iasi, were analyzed. This retrospective study focused on the clinical and laboratory data of patients aged under 18 years diagnosed with acute pesticide poisoning between 2010-2020. The statistical analysis was performed using the Statistica 10 package. A total of 49 patients presented with manifestations of acute pesticide poisoning, and the most common pesticide involved was diazinon. The most frequent exposure route was accidentally ingesting pesticide products (95%). The primary clinical manifestations were toxic encephalopathy, coma, depressive disorder, gastric disorders, and respiratory failure. Changes in the glycemic status, liver, and kidney damage were also present. Treatment included decontamination, administration of antidote, supportive care, and recommendations to be closely monitored to avoid a new incident. These results highlight the toxic potential of pesticides on human health and their biological consequences, which require an increase in consciousness of the precautions imposed on their use, especially when children are nearby.
Collapse
Affiliation(s)
- Ioana-Cezara Caba
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Violeta Ștreangă
- Department of Toxicology, “Saint Mary” Children Emergency Hospital, 700309 Iasi, Romania
| | - Mona-Elisabeta Dobrin
- Department of Clinical Biochemistry, Clinical Hospital of Pulmonary Disease, 700115 Iasi, Romania
| | - Cristina Jităreanu
- Department of Toxicology, “Saint Mary” Children Emergency Hospital, 700309 Iasi, Romania
| | - Alexandra Jităreanu
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Bianca-Ștefania Profire
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Maria Apotrosoaei
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Alin-Viorel Focșa
- Department of Drug Industry and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Bogdan Caba
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| | - Luminița Agoroaei
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| |
Collapse
|
12
|
Wołejko E, Łozowicka B, Jabłońska-Trypuć A, Pietruszyńska M, Wydro U. Chlorpyrifos Occurrence and Toxicological Risk Assessment: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12209. [PMID: 36231509 PMCID: PMC9566616 DOI: 10.3390/ijerph191912209] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 05/15/2023]
Abstract
Chlorpyrifos (CPF) was the most frequently used pesticide in food production in the European Union (EU) until 2020. Unfortunately, this compound is still being applied in other parts of the world. National monitoring of pesticides conducted in various countries indicates the presence of CPF in soil, food, and water, which may have toxic effects on consumers, farmers, and animal health. In addition, CPF may influence changes in the population of fungi, bacteria, and actinomycete in soil and can inhibit nitrogen mineralization. The mechanisms of CPF activity are based on the inhibition of acetylcholinesterase (AChE) activity. This compound also exhibits reproductive toxicity, neurotoxicity, and genotoxicity. The problem seems to be the discrepancy between the actual observations and the final conclusions drawn for the substance's approval in reports presenting the toxic impact of CPF on human health. Therefore, this influence is still a current and important issue that requires continuous monitoring despite its withdrawal from the market in the EU. This review traces the scientific reports describing the effects of CPF resulting in changes occurring in both the environment and at the cellular and tissue level in humans and animals. It also provides an insight into the hazards and risks to human health in food consumer products in which CPF has been detected.
Collapse
Affiliation(s)
- Elżbieta Wołejko
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45A Street, 15-351 Białystok, Poland
| | - Bożena Łozowicka
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22 Street, 15-195 Białystok, Poland
| | - Agata Jabłońska-Trypuć
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45A Street, 15-351 Białystok, Poland
| | - Marta Pietruszyńska
- Department of Ophthalmology, Medical University of Białystok, M. Skłodowskiej-Curie 24A Street, 15-276 Białystok, Poland
| | - Urszula Wydro
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45A Street, 15-351 Białystok, Poland
| |
Collapse
|
13
|
Nicolella HD, de Assis S. Epigenetic Inheritance: Intergenerational Effects of Pesticides and Other Endocrine Disruptors on Cancer Development. Int J Mol Sci 2022; 23:4671. [PMID: 35563062 PMCID: PMC9102839 DOI: 10.3390/ijms23094671] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 12/14/2022] Open
Abstract
Parental environmental experiences affect disease susceptibility in the progeny through epigenetic inheritance. Pesticides are substances or mixtures of chemicals-some of which are persistent environmental pollutants-that are used to control pests. This review explores the evidence linking parental exposure to pesticides and endocrine disruptors to intergenerational and transgenerational susceptibility of cancer in population studies and animal models. We also discuss the impact of pesticides and other endocrine disruptors on the germline epigenome as well as the emerging evidence for how epigenetic information is transmitted between generations. Finally, we discuss the importance of this mode of inheritance in the context of cancer prevention and the challenges ahead.
Collapse
Affiliation(s)
- Heloiza Diniz Nicolella
- Georgetown University Medical Center, Washington, DC 20057, USA;
- Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA
| | - Sonia de Assis
- Georgetown University Medical Center, Washington, DC 20057, USA;
- Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA
| |
Collapse
|
14
|
Yusà V, F Fernández S, Dualde P, López A, Lacomba I, Coscollà C. Exposure to non-persistent pesticides in the Spanish population using biomonitoring: A review. ENVIRONMENTAL RESEARCH 2022; 205:112437. [PMID: 34838757 DOI: 10.1016/j.envres.2021.112437] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Although Spain does not have a regular national human biomonitoring program yet, different research groups are active in evaluating the exposure of children and adults to chemicals. In the last seven years, several studies in Spain have evaluated the internal exposure of the population to currently used pesticides. The present review analyzes the scope of these studies, the employed analytical methods and the main results of the exposure and risk, mainly for children and mothers. The frequency of exposure to biomarkers of exposure to organophosphate pesticides is high. Some non-specific dialkyl phosphate metabolites (DAPs), such as the diethyl phosphate (DEP), present Detection Frequencies (DFs) in the range of 65-92% in various studies. Also, the specific biomarker of the chlorpyrifos (3,5,6-trichloro-2-pyridinol, TCPy), achieves Detection Frequencies between 74% and 100% in many studies. For pyrethroids, the metabolite 3-phenoxybenzoic acid (PBA) is present, in general, in more than the 65% of the studied samples. Highly polar herbicides were only assessed in one study and both glyphosate and its metabolite aminomethylphosphonic acid showed Detection Frequencies around 60%. However, putting the biomonitoring data in a risk assessment context, the mean Hazard Quotient (HQ), used as a metric for the individual risk, ranges from 0.0006 (glyphosate) to 0.93 in farm workers (parathion), which means that is unlike that the exposure poses a health concern (HQ < 1).
Collapse
Affiliation(s)
- Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain; Public Health Laboratory of Valencia, Av. Cataluña, 21, 46020, Valencia, Spain; Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain.
| | - Sandra F Fernández
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain; Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain
| | - Pablo Dualde
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| | - Antonio López
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| | - Iñaki Lacomba
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain; Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| |
Collapse
|
15
|
Colorimetric Detection of Organophosphate Pesticides Based on Acetylcholinesterase and Cysteamine Capped Gold Nanoparticles as Nanozyme. SENSORS 2021; 21:s21238050. [PMID: 34884060 PMCID: PMC8659924 DOI: 10.3390/s21238050] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023]
Abstract
Organophosphates (OPs) are neurotoxic agents also used as pesticides that can permanently block the active site of the acetylcholinesterase (AChE). A robust and sensitive detection system of OPs utilising the enzyme mimic potential of the cysteamine capped gold nanoparticles (C-AuNPs) was developed. The detection assay was performed by stepwise addition of AChE, parathion ethyl (PE)-a candidate OP, acetylcholine chloride (ACh), C-AuNPs, and 3, 3′, 5, 5′-tetramethylbenzidine (TMB) in the buffer solution. The whole sensing protocol completes in 30–40 min, including both incubations. The Transmission Electron Microscopy (TEM) results indicated that the NPs are spherical and have an average size of 13.24 nm. The monomers of C-AuNPs exhibited intense catalytic activity (nanozyme) for the oxidization of TMB, revealed by the production of instant blue colour and confirmed by a sharp peak at 652 nm. The proposed biosensor’s detection limit and linear ranges were 5.8 ng·mL−1 and 11.6–92.8 ng·mL−1, respectively, for PE. The results strongly advocate that the suggested facile colorimetric biosensor may provide an excellent platform for on-site monitoring of OPs.
Collapse
|
16
|
Deval G, Boland S, Fournier T, Ferecatu I. On Placental Toxicology Studies and Cerium Dioxide Nanoparticles. Int J Mol Sci 2021; 22:ijms222212266. [PMID: 34830142 PMCID: PMC8624015 DOI: 10.3390/ijms222212266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/20/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
The human placenta is a transient organ essential for pregnancy maintenance, fetal development and growth. It has several functions, including that of a selective barrier against pathogens and xenobiotics from maternal blood. However, some pollutants can accumulate in the placenta or pass through with possible repercussions on pregnancy outcomes. Cerium dioxide nanoparticles (CeO2 NPs), also termed nanoceria, are an emerging pollutant whose impact on pregnancy is starting to be defined. CeO2 NPs are already used in different fields for industrial and commercial applications and have even been proposed for some biomedical applications. Since 2010, nanoceria have been subject to priority monitoring by the Organization for Economic Co-operation and Development in order to assess their toxicity. This review aims to summarize the current methods and models used for toxicology studies on the placental barrier, from the basic ones to the very latest, as well as to overview the most recent knowledge of the impact of CeO2 NPs on human health, and more specifically during the sensitive window of pregnancy. Further research is needed to highlight the relationship between environmental exposure to CeO2 and placental dysfunction with its implications for pregnancy outcome.
Collapse
Affiliation(s)
- Gaëlle Deval
- Université de Paris, Inserm, UMR-S 1139, 3PHM, Faculté de Pharmacie, 75006 Paris, France; (G.D.); (T.F.)
| | - Sonja Boland
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France;
| | - Thierry Fournier
- Université de Paris, Inserm, UMR-S 1139, 3PHM, Faculté de Pharmacie, 75006 Paris, France; (G.D.); (T.F.)
| | - Ioana Ferecatu
- Université de Paris, Inserm, UMR-S 1139, 3PHM, Faculté de Pharmacie, 75006 Paris, France; (G.D.); (T.F.)
- Correspondence: ; Tel.: +33-1-5373-9605
| |
Collapse
|