1
|
Gobler CJ, Kramer BJ, Lusty MW, Thraen J, McTague S. The ability of hydrogen peroxide (H 2O 2) to degrade saxitoxin-, microcystin-, anatoxin-, and non-toxin-producing strains of the harmful cyanobacterium, Dolichospermum. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 387:125696. [PMID: 40424915 DOI: 10.1016/j.jenvman.2025.125696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/12/2025] [Accepted: 05/04/2025] [Indexed: 05/29/2025]
Abstract
Hydrogen peroxide (H2O2) has been used to mitigate cyanobacterial harmful algal blooms (CHABs), yet little is known about how H2O2 affects specific CHAB-forming genera as well as cyanotoxins beyond microcystin. This project examined the dose-dependent effects of H2O2 on six strains of Dolichospermum spp. including those that produce saxitoxin, anatoxin-a, and microcystin. Beyond toxins, this study quantified changes in photosynthetic efficiency, cell density, H2O2 concentration, and N2-fixation rates. All strains were sensitive to H2O2 with responses being dependent on dose (0-30 mg L-1) of H2O2, cell density, and strain. At 1 × 105 cells mL-1, 4 mg H2O2 L-1 significantly reduced cell density, photosynthetic efficiency, toxins, and N2-fixation rates of all strains (p < 0.05 for all compared to controls). At 1 × 106 cells mL-1, however, higher doses of H2O2 were needed to reduce one or more of the variables, with some strains unaffected by as much as 15 mg L-1, a concentration known to harm zooplankton and invertebrates. While H2O2 degraded anatoxin-a at all cell densities and doses, at 1 × 106 cells mL-1 neither microcystin nor saxitoxin were significantly degraded after four days, even by 15 mg H2O2 L-1, despite significant reduction in Dolichospermum cell densities. This finding suggests that during dense Dolichospermum blooms, H2O2 treatment may destroy cells but may concurrently liberate saxitoxin or microcystin that persists in the water column and enters food webs. Collectively, this study demonstrated that although H2O2 can efficiently lyse Dolichospermum cells, doses needed to mitigate dense blooms of all strain types (≥15 mg L-1) may harm non-target organisms and may not effectively degrade saxitoxin and microcystin.
Collapse
Affiliation(s)
- Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, USA.
| | - Benjamin J Kramer
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, USA
| | - Mark W Lusty
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, USA
| | - John Thraen
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, USA
| | - Sarah McTague
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, 11968, USA
| |
Collapse
|
2
|
Wang R, Cheng Y, Wan Q, Cao R, Cai J, Huang T, Wen G. Emergency control of dinoflagellate bloom in freshwater with chlorine enhanced by solar radiation: Efficiency and mechanism. WATER RESEARCH 2024; 265:122275. [PMID: 39163711 DOI: 10.1016/j.watres.2024.122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
Dinoflagellate requires a lower temperature and blooms frequently in the spring and autumn compared to regular cyanobacteria. The outbreak of dinoflagellate bloom will also lead to the death of some aquatic organisms. However, research on freshwater dinoflagellates is still lacking due to the challenges posed by classification and culture in laboratory. The removal effect and mechanism of Peridinium umbonatum (P. umbonatum, a typical dinoflagellate) were investigated using solar/chlorine in this study. The effect of simulated solar alone on the removal of algae was negligible, and chlorine alone had only a slight effect in removing algae. However, solar/chlorine showed a better removal efficiency with shoulder length reduction factor and kmax enhancement factor of 2.80 and 3.8, respectively, indicating a shorter latency period and faster inactivation rate for solar/chlorine compared to solar and chlorine alone. The removal efficiency of algae gradually increased with the chlorine dosage, but it dropped as the cell density grew. When the experimental temperature was raised to 30 °C, algal removal efficiency significantly increased, as the temperature was unsuitable for the survival of P. umbonatum. Attacks on cell membranes by chlorine and hydroxyl radicals (•OH) produced by solar/chlorine led to a decrease in cell membrane integrity, leading to a rise in intracellular reactive oxygen species and an inhibition of photosynthetic and antioxidant systems. Cell regeneration was not observed in either the chlorine or solar/chlorine systems due to severe cell damage or cysts formation. In addition, natural solar radiation was demonstrated to have the same enhancing effect as simulated solar radiation. However, the algal removal efficiency of solar/chlorine in real water was reduced compared to 119 medium, mainly due to background material in the real water substrate that consumed the oxidant or acted as shading agents.
Collapse
Affiliation(s)
- Ru Wang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ya Cheng
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Qiqi Wan
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ruihua Cao
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jie Cai
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
3
|
Xu H, Yang A, Ma X, Wang W, Pang Y, Pei H. Molecular mechanisms underlying sodium percarbonate treatment suppress the recovery and growth of Pseudanabaena sp. in early spring. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135145. [PMID: 38991638 DOI: 10.1016/j.jhazmat.2024.135145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
Increasing frequency and intensity of cyanobacterial blooms in water sources is a growing global issue. Algicides are usually implemented in summer or autumn when blooms break out, however, the blooms will form again when algicide's concentration declines to a certain extent. Preventing the recovery and growth of cyanobacteria in early spring may be conducive to abatement of the blooms in summer or autumn. In this study solid sodium percarbonate (SPC) was used as an algicide to suppress recovery and growth of Pseudanabaena sp., a common odour-producing cyanobacterium, in early spring (12 °C). Results showed that 3.0 and 6.0 mg/L SPC were able to kill most of the algal cells after 12 h treatment at 12 °C, and the residual cells gradually died during the re-cultivation period at 25 °C. As a control, although SPC also caused most of algal cells to lyse at 25 °C, regrowth of cells was found during the period of re-cultivation at 25 °C. Transcriptomic analysis revealed that the dysregulated genes were strongly associated with translation and photosynthesis after SPC treatment. All differentially expressed unigenes related to translation and photosynthesis were down-regulated after SPC oxidation at 12 °C, whereas key genes associated with translation and photosynthesis were upregulated after SPC treatment at 25 °C.
Collapse
Affiliation(s)
- Hangzhou Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China
| | - Aonan Yang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaolong Ma
- Shandong Harmony Project Consulting CO., Ltd., Jinan 250062, China
| | - Wenjuan Wang
- Gaomi Sunvim Water Purification Technology Co., Ltd., Gaomi 261500, China
| | - Yiming Pang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haiyan Pei
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China.
| |
Collapse
|
4
|
Lu Y, Li Q, Li T. A novel hierarchical network-based approach to unveil the complexity of functional microbial genome. BMC Genomics 2024; 25:786. [PMID: 39138557 PMCID: PMC11323692 DOI: 10.1186/s12864-024-10692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Biological networks serve a crucial role in elucidating intricate biological processes. While interspecies environmental interactions have been extensively studied, the exploration of gene interactions within species, particularly among individual microorganisms, is less developed. The increasing amount of microbiome genomic data necessitates a more nuanced analysis of microbial genome structures and functions. In this context, we introduce a complex structure using higher-order network theory, "Solid Motif Structures (SMS)", via a hierarchical biological network analysis of genomes within the same genus, effectively linking microbial genome structure with its function. Leveraging 162 high-quality genomes of Microcystis, a key freshwater cyanobacterium within microbial ecosystems, we established a genome structure network. Employing deep learning techniques, such as adaptive graph encoder, we uncovered 27 critical functional subnetworks and their associated SMSs. Incorporating metagenomic data from seven geographically distinct lakes, we conducted an investigation into Microcystis' functional stability under varying environmental conditions, unveiling unique functional interaction models for each lake. Our work compiles these insights into an extensive resource repository, providing novel perspectives on the functional dynamics within Microcystis. This research offers a hierarchical network analysis framework for understanding interactions between microbial genome structures and functions within the same genus.
Collapse
Affiliation(s)
- Yuntao Lu
- University of Michigan, Ann Arbor, USA
| | - Qi Li
- The State Key Laboratory of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Tao Li
- The State Key Laboratory of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
5
|
Wang X, Li J, Wei X, Song J, Xie J, Li Z, Yuan M, Jiang L, Wang Y, Liang C, Liu W. Photocatalytic Hydrogen Peroxide Production by a Mixed Ligand-Functionalized Uranyl-Organic Framework. ACS OMEGA 2024; 9:33671-33678. [PMID: 39130595 PMCID: PMC11307301 DOI: 10.1021/acsomega.4c02181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 08/13/2024]
Abstract
Hydrogen peroxide (H2O2) production driven by solar energy has received enormous attention due to its high efficiency, low cost, and environmental friendliness characteristics. Searching for new photocatalytic materials for H2O2 production is one of the most important targets. In this work, a new three-dimensional (3D) uranyl-organic framework material was constructed with mixed ligands via a solvothermal reaction and used for photocatalytic H2O2 production. The mixed ligand strategy not only benefits the construction of a 3D uranyl-organic framework but also introduces strong photon absorption groups into the framework. The thiophene and pyridine rings in the framework enhance photon absorption and carrier transfer. In addition, with the assistance of the hydrogen abstraction reaction of uranyl centers, the H2O2 production rate reaches 345 μmol h-1 g-1. This study provides a new blueprint for exploring the artificial photosynthesis of H2O2 through uranium-based metal-organic frameworks.
Collapse
Affiliation(s)
- Xuemin Wang
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Jinlu Li
- Shandong
Nuclear and Radiation Safety Monitoring Center, No. 145 Jingshi West Road, Jinan 250117, Shandong, China
| | - Xiaoyu Wei
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Jianxin Song
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Jian Xie
- School
of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Zhenyu Li
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Mengnan Yuan
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Lisha Jiang
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Yanlong Wang
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and interdisciplinary Sciences (RAD-X) and Collaborative Innovation
Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chao Liang
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Wei Liu
- School
of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| |
Collapse
|
6
|
Anam GB, Ahn YH. The interplay of low H 2O 2 doses, lytic cyanophage, and Microcystis aeruginosa: Implications for cyanobacterial bloom control and microcystin production/release. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170327. [PMID: 38266727 DOI: 10.1016/j.scitotenv.2024.170327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Low H2O2 doses can suppress cyanobacterial blooms without damaging non-target species but enable undesirable regrowth. Besides, the role of cyanophage in preventing regrowth after low H2O2 exposure remains unclear. Applying phages to cyanobacteria pre-exposed to low H2O2 in early growth stages may improve host removal and reduce microcystin (MC) production/release. Lytic cyanophage MDM-1 with a 172 PFU/cell burst size, 2-day short latent period against MCs-producing Microcystis, shows high H2O2 stability. Low H2O2 (1 to 2.5 mg/L) doses significantly (p < 0.05) inhibited Microcystis aeruginosa growth rate, biofilm and MCs concentration reduction in a dose-dependent manner but regrowth occurred at all concentrations. Phage treatment eliminated cells without H2O2 pretreatment within 3 days and reduced MC production. H2O2-pretreated M. aeruginosa cells altered the phage dynamics, affecting adsorption, latency, production, and cell lysis in response to H2O2-induced oxidative stress. At 1.5 mg H2O2/L pretreatment, cells were eliminated with reduced MC production, like untreated cells. H2O2 pretreatment with 2.0 and 2.5 mg/L resulted in an extension of the phage absorption phase and the latent period. This was accompanied by a reduction in lysis efficacy, attributed to the increased ROS production. At 2.5 mg H2O2/L, 17.10 % of phages remain un-adsorbed, with cell lysis rate dropped from 0.89 d-1 to 0.26 d-1 compared to the untreated control. The highest phage titer (70 %) was obtained with 1.5 mg/H2O2 pretreated cells. This study emphasizes that low-dose H2O2 eliminates Microcystis but severely affects phage lysis and MCs release depending on H2O2-induced ROS levels. It is a crucial consideration when using phages to control cyanobacterial blooms with H2O2-induced stress.
Collapse
Affiliation(s)
- Giridhar Babu Anam
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea.
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea.
| |
Collapse
|
7
|
Harris TD, Reinl KL, Azarderakhsh M, Berger SA, Berman MC, Bizic M, Bhattacharya R, Burnet SH, Cianci-Gaskill JA, Domis LNDS, Elfferich I, Ger KA, Grossart HPF, Ibelings BW, Ionescu D, Kouhanestani ZM, Mauch J, McElarney YR, Nava V, North RL, Ogashawara I, Paule-Mercado MCA, Soria-Píriz S, Sun X, Trout-Haney JV, Weyhenmeyer GA, Yokota K, Zhan Q. What makes a cyanobacterial bloom disappear? A review of the abiotic and biotic cyanobacterial bloom loss factors. HARMFUL ALGAE 2024; 133:102599. [PMID: 38485445 DOI: 10.1016/j.hal.2024.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
Cyanobacterial blooms present substantial challenges to managers and threaten ecological and public health. Although the majority of cyanobacterial bloom research and management focuses on factors that control bloom initiation, duration, toxicity, and geographical extent, relatively little research focuses on the role of loss processes in blooms and how these processes are regulated. Here, we define a loss process in terms of population dynamics as any process that removes cells from a population, thereby decelerating or reducing the development and extent of blooms. We review abiotic (e.g., hydraulic flushing and oxidative stress/UV light) and biotic factors (e.g., allelopathic compounds, infections, grazing, and resting cells/programmed cell death) known to govern bloom loss. We found that the dominant loss processes depend on several system specific factors including cyanobacterial genera-specific traits, in situ physicochemical conditions, and the microbial, phytoplankton, and consumer community composition. We also address loss processes in the context of bloom management and discuss perspectives and challenges in predicting how a changing climate may directly and indirectly affect loss processes on blooms. A deeper understanding of bloom loss processes and their underlying mechanisms may help to mitigate the negative consequences of cyanobacterial blooms and improve current management strategies.
Collapse
Affiliation(s)
- Ted D Harris
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, 2101 Constant Ave., Lawrence, KS, 66047
| | - Kaitlin L Reinl
- Lake Superior National Estuarine Research Reserve, University of Wisconsin - Madison Division of Extension, 14 Marina Dr, Superior, WI 54880
| | - Marzi Azarderakhsh
- Department of Construction and Civil Engineering, New York City College of Technology, 300 Jay Street, New York, NY 11201
| | - Stella A Berger
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Zur alten Fischerhütte 2, 16775 Stechlin, Germany
| | - Manuel Castro Berman
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180 and Darrin Freshwater Institute, Rensselaer Polytechnic Institute, Bolton Landing, NY, 12814
| | - Mina Bizic
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Zur alten Fischerhütte 2, 16775 Stechlin, Germany
| | - Ruchi Bhattacharya
- Department of Biological, Geological & Environmental Sciences, Cleveland State University, Cleveland, OH 44115
| | - Sarah H Burnet
- University of Idaho, Fish and Wildlife Sciences, Moscow, ID, USA, 83844
| | - Jacob A Cianci-Gaskill
- Old Woman Creek National Estuarine Research Reserve, Ohio Department of Natural Resources, 2514 Cleveland Rd East, Huron, OH 44839
| | - Lisette N de Senerpont Domis
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB Wageningen, The Netherlands; Department of Water Resources and Pervasive Systems Group, faculty of EEMCS and ITC, University of Twente, The Netherlands
| | - Inge Elfferich
- Cardiff University, Earth and Environmental Sciences, Main Building, Park Place CF10 3AT, Cardiff, UK
| | - K Ali Ger
- Department of Ecology, Center for Biosciences, Universidade Federal do Rio Grande do Norte, R. das Biociencias, Lagoa Nova, Natal, RN, 59078-970, Brazil
| | - Hans-Peter F Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Zur alten Fischerhütte 2, 16775 Stechlin, Germany; Potsdam University, Institute of Biochemistry and Biology, Maulbeeralle 2, 14469 Potsdam, Germany
| | - Bas W Ibelings
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 66 Blvd Carl Vogt, 1205, Geneva, Switzerland
| | - Danny Ionescu
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Zur alten Fischerhütte 2, 16775 Stechlin, Germany
| | - Zohreh Mazaheri Kouhanestani
- School of Natural Resources, University of Missouri-Columbia, Anheuser-Busch Natural Resources Building, Columbia, MO, 65211-7220
| | - Jonas Mauch
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany
| | - Yvonne R McElarney
- Fisheries and Aquatic Ecosystems, Agri-Food and Biosciences Institute, Belfast, Northern Ireland
| | - Veronica Nava
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, MI, Italy.
| | - Rebecca L North
- School of Natural Resources, University of Missouri-Columbia, Anheuser-Busch Natural Resources Building, Columbia, MO, 65211-7220
| | - Igor Ogashawara
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Zur alten Fischerhütte 2, 16775 Stechlin, Germany
| | - Ma Cristina A Paule-Mercado
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, České Budějovice 370 05, Czech Republic
| | - Sara Soria-Píriz
- Département des sciences biologiques, Université du Québec à Montréal, 141 Av. du Président-Kennedy, Montréal, QC H2 × 1Y4, Montréal, QC, Canada
| | - Xinyu Sun
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | | | - Gesa A Weyhenmeyer
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Kiyoko Yokota
- Biology Department, State University of New York at Oneonta, Oneonta, NY 13820, USA
| | - Qing Zhan
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
8
|
Piel T, Sandrini G, Weenink EFJ, Qin H, Herk MJV, Morales-Grooters ML, Schuurmans JM, Slot PC, Wijn G, Arntz J, Zervou SK, Kaloudis T, Hiskia A, Huisman J, Visser PM. Shifts in phytoplankton and zooplankton communities in three cyanobacteria-dominated lakes after treatment with hydrogen peroxide. HARMFUL ALGAE 2024; 133:102585. [PMID: 38485435 DOI: 10.1016/j.hal.2024.102585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/22/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024]
Abstract
Cyanobacteria can reach high densities in eutrophic lakes, which may cause problems due to their potential toxin production. Several methods are in use to prevent, control or mitigate harmful cyanobacterial blooms. Treatment of blooms with low concentrations of hydrogen peroxide (H2O2) is a promising emergency method. However, effects of H2O2 on cyanobacteria, eukaryotic phytoplankton and zooplankton have mainly been studied in controlled cultures and mesocosm experiments, while much less is known about the effectiveness and potential side effects of H2O2 treatments on entire lake ecosystems. In this study, we report on three different lakes in the Netherlands that were treated with average H2O2 concentrations ranging from 2 to 5 mg L-1 to suppress cyanobacterial blooms. Effects on phytoplankton and zooplankton communities, on cyanotoxin concentrations, and on nutrient availability in the lakes were assessed. After every H2O2 treatment, cyanobacteria drastically declined, sometimes by more than 99%, although blooms of Dolichospermum sp., Aphanizomenon sp., and Planktothrix rubescens were more strongly suppressed than a Planktothrix agardhii bloom. Eukaryotic phytoplankton were not significantly affected by the H2O2 additions and had an initial advantage over cyanobacteria after the treatment, when ample nutrients and light were available. In all three lakes, a new cyanobacterial bloom developed within several weeks after the first H2O2 treatment, and in two lakes a second H2O2 treatment was therefore applied to again suppress the cyanobacterial population. Rotifers strongly declined after most H2O2 treatments except when the H2O2 concentration was ≤ 2 mg L-1, whereas cladocerans were only mildly affected and copepods were least impacted by the added H2O2. In response to the treatments, the cyanotoxins microcystins and anabaenopeptins were released from the cells into the water column, but disappeared after a few days. We conclude that lake treatments with low concentrations of H2O2 can be a successful tool to suppress harmful cyanobacterial blooms, but may negatively affect some of the zooplankton taxa in lakes. We advise pre-tests prior to the treatment of lakes to define optimal treatment concentrations that kill the majority of the cyanobacteria and to minimize potential side effects on non-target organisms. In some cases, the pre-tests may discourage treatment of the lake.
Collapse
Affiliation(s)
- Tim Piel
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240,1090 GE Amsterdam, The Netherlands; Agendia NV, 1043 NT Amsterdam, The Netherlands
| | - Giovanni Sandrini
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240,1090 GE Amsterdam, The Netherlands; Department of Technology & Sources, Evides Water Company, 3006 AL Rotterdam, The Netherlands
| | - Erik F J Weenink
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240,1090 GE Amsterdam, The Netherlands
| | - Hongjie Qin
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240,1090 GE Amsterdam, The Netherlands; Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Maria J van Herk
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240,1090 GE Amsterdam, The Netherlands
| | - Mariël Léon Morales-Grooters
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240,1090 GE Amsterdam, The Netherlands; Department of Biomedical Engineering, Erasmus MC University Rotterdam, Office Ee2302, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - J Merijn Schuurmans
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240,1090 GE Amsterdam, The Netherlands
| | - Pieter C Slot
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240,1090 GE Amsterdam, The Netherlands
| | - Geert Wijn
- Arcadis Nederland B.V., P.O. Box 264, 6800 AG Arnhem, The Netherlands
| | - Jasper Arntz
- Arcadis Nederland B.V., P.O. Box 264, 6800 AG Arnhem, The Netherlands
| | - Sevasti-Kiriaki Zervou
- Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research, "Demokritos", Patriarchou Gregoriou E & 27 Neapoleos Str, 15341 Athens, Greece
| | - Triantafyllos Kaloudis
- Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research, "Demokritos", Patriarchou Gregoriou E & 27 Neapoleos Str, 15341 Athens, Greece; Laboratory of Organic Micropollutants, Water Quality Control Department, Athens Water Supply & Sewerage Company (EYDAP SA), Athens, Greece
| | - Anastasia Hiskia
- Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research, "Demokritos", Patriarchou Gregoriou E & 27 Neapoleos Str, 15341 Athens, Greece
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240,1090 GE Amsterdam, The Netherlands
| | - Petra M Visser
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240,1090 GE Amsterdam, The Netherlands
| |
Collapse
|
9
|
Ng PH, Cheng TH, Man KY, Huang L, Cheng KP, Lim KZ, Chan CH, Kam MHY, Zhang J, Marques ARP, St-Hilaire S. Hydrogen peroxide as a mitigation against Microcystis sp. bloom. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2023; 577:739932. [PMID: 38106988 PMCID: PMC10518459 DOI: 10.1016/j.aquaculture.2023.739932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 12/19/2023]
Abstract
Microcystis sp. is a harmful cyanobacterial species commonly seen in earthen ponds. The overgrowth of these algae can lead to fluctuations in water parameters, including DO and pH. Also, the microcystins produced by these algae are toxic to aquatic animals. This study applied hydrogen peroxide (7 mg/L) to treat Microcystis sp. in a laboratory setting and in three earthen pond trials. In the lab we observed a 64.7% decline in Microcystis sp. And in our earthen pond field experiments we measured, on average, 43% reductions in Microcystis sp. cell counts within one hour. The treatment was found to eliminate specifically Microcystis sp. and did not reduce the cell count of the other algae species in the pond. A shift of the algae community towards the beneficial algae was also found post-treatment. Lastly, during the pond trials, the gill status of Tilapia and Giant tiger prawn were not affected by the H2O2 treatment suggesting this may be a good mitigation strategy for reducing cyanobacteria in pond aquaculture.
Collapse
Affiliation(s)
- Pok Him Ng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Tzu Hsuan Cheng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Ka Yan Man
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Liqing Huang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Ka Po Cheng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Kwok Zu Lim
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Chi Ho Chan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Maximilian Ho Yat Kam
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Ju Zhang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Ana Rita Pinheiro Marques
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Sophie St-Hilaire
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Li Z, Ma H, Hong Z, Zhang T, Cao M, Cui F, Grossart HP. Phytoplankton interspecific interactions modified by symbiotic fungi and bacterial metabolites under environmentally relevant hydrogen peroxide concentrations stress. WATER RESEARCH 2023; 246:120739. [PMID: 37844340 DOI: 10.1016/j.watres.2023.120739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Hydrogen peroxide (H2O2), which accumulates in water and triggers oxidative stress for aquatic microbes, has been shown to have profound impacts on planktonic microbial community dynamics including cyanobacterial bloom formation. Yet, potential effects of H2O2 on interspecific relationships of phytoplankton-microbe symbiotic interactions remain unclear. Here, we investigated effects of environmentally relevant H2O2 concentrations on interspecific microbial relationships in algae-microbe symbiosis. Microbes play a crucial role in the competition between M. aeruginosa and Chlorella vulgaris at low H2O2 concentrations (∼400 nM), in which fungi and bacteria protect Microcystis aeruginosa from oxidative stress. Moreover, H2O2 stimulated the synthesis and release of extracellular microcystin-LR from Microcystis aeruginosa, while intracellular microcystin-LR concentrations remained at a relatively constant level. In the presence of H2O2, loss of organoheterocyclic compounds, organic acids and ketones contributed to the growth of M. aeruginosa, but the reduction of vitamins inhibited it. Regulation of interspecific relationships by H2O2 is achieved by its action on fungal species and bacterial secretory metabolites. This study explored the response of phytoplankton interspecific relationships in symbiotic phytoplankton-microbe interactions to environmentally relevant H2O2 concentrations stress, providing a theoretical basis for understanding the formation of harmful-algae blooming and impact of photochemical properties of water on aquatic ecological safety and stability.
Collapse
Affiliation(s)
- Zhe Li
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Hua Ma
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Zhicheng Hong
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Ting Zhang
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Mingxing Cao
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Fuyi Cui
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Hans-Peter Grossart
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, Neuglobsow 16775, Germany; Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, Potsdam 14469, Germany
| |
Collapse
|
11
|
Brentjens ET, Beall EAK, Zucker RM. Analysis of Microcystis aeruginosa physiology by spectral flow cytometry: Impact of chemical and light exposure. PLOS WATER 2023; 2:1-30. [PMID: 38516272 PMCID: PMC10953801 DOI: 10.1371/journal.pwat.0000177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
M. aeruginosa fluorescent changes were observed using a Cytek Aurora spectral flow cytometer that contains 5 lasers and 64 narrow band detectors located between 365 and 829 nm. Cyanobacteria were treated with different concentrations of H2O2 and then monitored after exposure between 1 and 8 days. The red fluorescence emission derived from the excitation of cyanobacteria with a yellow green laser (550 nm) was measured in the 652-669 nm detector while green fluorescence from excitation with a violet laser (405 nm) was measured in the 532-550 nm detector. The changes in these parameters were measured after the addition of H2O2. There was an initial increase in red fluorescence intensity at 24 hours. This was followed by a daily decrease in red fluorescence intensity. In contrast, green fluorescence increased at 24 hours and remained higher than the control for the duration of the 8-day study. A similar fluorescence intensity effect as H2O2 on M. aeruginosa fluorescence emissions was observed after exposure to acetylacetone, diuron (DCMU), peracetic acid, and tryptoline. Minimal growth was also observed in H2O2 treated cyanobacteria during exposure of H2O2 for 24 days. In another experiment, H2O2-treated cyanobacteria were exposed to high-intensity blue (14 mW) and UV (1 mW) lights to assess the effects of light stress on fluorescence emissions. The combination of blue and UV light with H2O2 had a synergistic effect on M. aeruginosa that induced greater fluorescent differences between control and treated samples than exposure to either stimulus individually. These experiments suggest that the early increase in red and green fluorescence may be due to an inhibition in the ability of photosynthesis to process photons. Further research into the mechanisms driving these increases in fluorescence is necessary.
Collapse
Affiliation(s)
- Emma T. Brentjens
- Oak Ridge Institute for Science and Education Research Participation Program hosted by U.S. Environmental Protection Agency, Oak Ridge, TN, United States of America
| | - Elizabeth A. K. Beall
- Oak Ridge Institute for Science and Education Research Participation Program hosted by U.S. Environmental Protection Agency, Oak Ridge, TN, United States of America
| | - Robert M. Zucker
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Office of Research and Development, RTP, NC, United States of America
| |
Collapse
|
12
|
Romeu MJ, Morais J, Vasconcelos V, Mergulhão F. Effect of Hydrogen Peroxide on Cyanobacterial Biofilms. Antibiotics (Basel) 2023; 12:1450. [PMID: 37760746 PMCID: PMC10525773 DOI: 10.3390/antibiotics12091450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Although a range of disinfecting formulations is commercially available, hydrogen peroxide is one of the safest chemical agents used for disinfection in aquatic environments. However, its effect on cyanobacterial biofilms is poorly investigated. In this work, biofilm formation by two filamentous cyanobacterial strains was evaluated over seven weeks on two surfaces commonly used in marine environments: glass and silicone-based paint (Sil-Ref) under controlled hydrodynamic conditions. After seven weeks, the biofilms were treated with a solution of hydrogen peroxide (H2O2) to assess if disinfection could affect long-term biofilm development. The cyanobacterial biofilms appeared to be tolerant to H2O2 treatment, and two weeks after treatment, the biofilms that developed on glass by one of the strains presented higher biomass amounts than the untreated biofilms. This result emphasizes the need to correctly evaluate the efficiency of disinfection in cyanobacterial biofilms, including assessing the possible consequences of inefficient disinfection on the regrowth of these biofilms.
Collapse
Affiliation(s)
- Maria João Romeu
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - João Morais
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (J.M.); (V.V.)
| | - Vítor Vasconcelos
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (J.M.); (V.V.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Filipe Mergulhão
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
13
|
Mehdizadeh Allaf M, Erratt KJ, Peerhossaini H. Comparative assessment of algaecide performance on freshwater phytoplankton: Understanding differential sensitivities to frame cyanobacteria management. WATER RESEARCH 2023; 234:119811. [PMID: 36889096 DOI: 10.1016/j.watres.2023.119811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/24/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Cyanobacterial bloom represent a growing threat to global water security. With fast proliferation, they raise great concern due to potential health and socioeconomic concerns. Algaecides are commonly employed as a mitigative measure to suppress and manage cyanobacteria. However, recent research on algaecides has a limited phycological focus, concentrated predominately on cyanobacteria and chlorophytes. Without considering phycological diversity, generalizations crafted from these algaecide comparisons present a biased perpective. To limit the collateral impacts of algaecide interventions on phytoplankton communities it is critical to understand differential phycological sensitivities for establishing optimal dosage and tolerance thresholds. This research attempts to fill this knowledge gap and provide effective guidelines to frame cyanobacterial management. We investigate the effect of two common algaecides, copper sulfate (CuSO4) and hydrogen peroxide (H2O2), on four major phycological divisions (chlorophytes, cyanobacteria, diatoms, and mixotrophs). All phycological divisions exhibited greater sensitivity to copper sulfate, except chlorophytes. Mixotrophs and cyanobacteria displayed the highest sensitivity to both algaecides with the highest to lowest sensitivity being observed as follows: mixotrophs, cyanobacteria, diatoms, and chlorophytes. Our results suggest that H2O2 represents a comparable alternative to CuSO4 for cyanobacterial control. However, some eukaryotic divisions such as mixotrophs and diatoms mirrored cyanobacteria sensitivity, challenging the assumption that H2O2 is a selective cyanocide. Our findings suggest that optimizing algaecide treatments to suppress cyanobacteria while minimizing potential adverse effects on other phycological members is unattainable. An apparent trade-off between effective cyanobacterial management and conserving non-targeted phycological divisions is expected and should be a prime consideration of lake management.
Collapse
Affiliation(s)
- Malihe Mehdizadeh Allaf
- Department of Civil and Environmental Engineering, Western University, Spencer Engineering Building, 1151 Richmond Street N., London, ON, Canada, N6A5B9.
| | - Kevin J Erratt
- School of Environment & Sustainability, University of Saskatchewan, Collaborative Science Research Building, 112 Science Place, Saskatoon, SK, Canada, S7N5E2
| | - Hassan Peerhossaini
- Department of Civil and Environmental Engineering, Western University, Spencer Engineering Building, 1151 Richmond Street N., London, ON, Canada, N6A5B9; Department of Mechanical & Materials Engineering, Western University, Spencer Engineering Building, 1151 Richmond Street N., London, ON, Canada, N6A5B9; Energy Physics Research Group - AstroParticule and Cosmologie Lab. (APC) - CNRS - UMR 7164, Univ. Paris Cité, Paris, 75013 Paris, France
| |
Collapse
|
14
|
Banerji A, Benesh K. Incorporating Microbial Species Interaction in Management of Freshwater Toxic Cyanobacteria: A Systems Science Challenge. AQUATIC ECOLOGY 2022; 3:570-587. [PMID: 36643215 PMCID: PMC9836389 DOI: 10.3390/ecologies3040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water resources are critically important, but also pose risks of exposure to toxic and pathogenic microbes. Increasingly, a concern is toxic cyanobacteria, which have been linked to the death and disease of humans, domesticated animals, and wildlife in freshwater systems worldwide. Management approaches successful at reducing cyanobacterial abundance and toxin production have tended to be short-term solutions applied on small scales (e.g., algaecide application) or solutions that entail difficult multifaceted investments (e.g., modification of landscape and land use to reduce nutrient inputs). However, implementation of these approaches can be undermined by microbial species interactions that (a) provide toxic cyanobacteria with protection against the method of control or (b) permit toxic cyanobacteria to be replaced by other significant microbial threats. Understanding these interactions is necessary to avoid such scenarios and can provide a framework for novel strategies to enhance freshwater resource management via systems science (e.g., pairing existing physical and chemical approaches against cyanobacteria with ecological strategies such as manipulation of natural enemies, targeting of facilitators, and reduction of benthic occupancy and recruitment). Here, we review pertinent examples of the interactions and highlight potential applications of what is known.
Collapse
Affiliation(s)
- Aabir Banerji
- US Environmental Protection Agency, Office of Research & Development, Duluth, MN 55804, USA
| | - Kasey Benesh
- Oak Ridge Institute for Science & Education, Oak Ridge, TN 37830, USA
| |
Collapse
|
15
|
Weenink EFJ, Kraak MHS, van Teulingen C, Kuijt S, van Herk MJ, Sigon CAM, Piel T, Sandrini G, Leon-Grooters M, de Baat ML, Huisman J, Visser PM. Sensitivity of phytoplankton, zooplankton and macroinvertebrates to hydrogen peroxide treatments of cyanobacterial blooms. WATER RESEARCH 2022; 225:119169. [PMID: 36191528 DOI: 10.1016/j.watres.2022.119169] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Addition of hydrogen peroxide (H2O2) is a promising method to acutely suppress cyanobacterial blooms in lakes. However, a reliable H2O2 risk assessment to identify potential effects on non-target species is currently hampered by a lack of appropriate ecotoxicity data. The aim of the present study was therefore to quantify the responses of a wide diversity of freshwater phytoplankton, zooplankton and macroinvertebrates to H2O2 treatments of cyanobacterial blooms. To this end, we applied a multifaceted approach. First, we investigated the 24-h toxicity of H2O2 to three cyanobacteria (Planktothrix agardhii, Microcystis aeruginosa, Anabaena sp.) and 23 non-target species (six green algae, eight zooplankton and nine macroinvertebrate taxa), using EC50 values based on photosynthetic yield for phytoplankton and LC50 values based on mortality for the other organisms. The most sensitive species included all three cyanobacterial taxa, but also the rotifer Brachionus calyciflores and the cladocerans Ceriodaphnia dubia and Daphnia pulex. Next, the EC50 and LC50 values obtained from the laboratory toxicity tests were used to construct a species sensitivity distribution (SSD) for H2O2. Finally, the species predicted to be at risk by the SSD were compared with the responses of phytoplankton, zooplankton and macroinvertebrates to two whole-lake treatments with H2O2. The predictions of the laboratory-based SSD matched well with the responses of the different taxa to H2O2 in the lake. The first lake treatment, with a relatively low H2O2 concentration and short residence time, successfully suppressed cyanobacteria without major effects on non-target species. The second lake treatment had a higher H2O2 concentration with a longer residence time, which resulted in partial suppression of cyanobacteria, but also in a major collapse of rotifers and decreased abundance of small cladocerans. Our results thus revealed a trade-off between the successful suppression of cyanobacteria at the expense of adverse effects on part of the zooplankton community. This delicate balance strongly depends on the applied H2O2 dosage and may affect the decision whether to treat a lake or not.
Collapse
Affiliation(s)
- Erik F J Weenink
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, the Netherlands
| | - Michiel H S Kraak
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, the Netherlands
| | - Corné van Teulingen
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, the Netherlands
| | - Senna Kuijt
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, the Netherlands
| | - Maria J van Herk
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, the Netherlands
| | - Corrien A M Sigon
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, the Netherlands
| | - Tim Piel
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, the Netherlands
| | - Giovanni Sandrini
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, the Netherlands; Department of Technology & Sources, Evides Water Company, Rotterdam, AL 3006, the Netherlands
| | - Mariël Leon-Grooters
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, the Netherlands; Department of Biomedical Engineering, Erasmus MC University Rotterdam, P.O. Box 2040, Rotterdam, CA 3000, the Netherlands
| | - Milo L de Baat
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, the Netherlands; KWR Water Research Institute, 3430 BB, Nieuwegein, the Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, the Netherlands
| | - Petra M Visser
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Kang L, Mucci M, Lürling M. Compounds to mitigate cyanobacterial blooms affect growth and toxicity of Microcystis aeruginosa. HARMFUL ALGAE 2022; 118:102311. [PMID: 36195425 DOI: 10.1016/j.hal.2022.102311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/08/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
Numerous products and techniques are used to combat harmful cyanobacterial blooms in lakes. In this study, we tested nine products, the phosphate binders Phoslock® and Aqual-PTM, the coagulant chitosan, the phosphorus binder and coagulant aluminum salts (aluminum sulphate and sodium aluminate), the copper-based algicides SeClear, Captain® XTR and CuSO4·5H2O, the antibiotic Streptomycin and the oxidant hydrogen peroxide (H2O2) on their efficiency to manage the cyanobacterium Microcystis aeruginosa (M. aeruginosa). To this end, 7 days of laboratory experiments were conducted and effects were determined on chlorophyll-a, photosystem II efficiency (PSII), soluble reactive phosphorus (SRP) and intracellular and extracellular microcystin (MC) concentrations. The algicides, chitosan and H2O2 were the most powerful in reducing cyanobacteria biomass. Biomass reductions compared to the controls yielded: Chitosan (99.8%) > Hydrogen peroxide (99.6%) > Captain XTR (98.2%) > SeClear (98.1%) > CuSO4·5H2O (97.8%) > Streptomycin (86.6%) > Phoslock® (42.6%) > Aqual-PTM (28.4%) > alum (5.5%). Compounds that caused the largest reductions in biomass also strongly lowered photosystem II efficiency, while the other compounds (Phoslock®, Aqual-PTM, aluminum salts) had no effect on PSII, but strongly reduced SRP. Intracellular MC concentration followed the biomass patterns, extracellular MC was generally lower at higher doses of algicides, chitosan and H2O2 after one week. Recovery of PSII was observed in most algicides and chitosan, but not at the highest doses of SeClear and in all streptomycin treatments. Our results revealed that M. aeruginosa can be killed rapidly using several compounds, that in some treatments already signs of recovery occurred within one week. P fixatives are efficient in reducing SRP, and thus acting via resource suppression, which potentially may provide an addition to fast-acting algicides that kill most of the cells, but allow rapid regrowth as sufficient nutrients remain.
Collapse
Affiliation(s)
- Li Kang
- Aquatic Ecology & Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands.
| | - Maíra Mucci
- Aquatic Ecology & Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Miquel Lürling
- Aquatic Ecology & Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
17
|
Heterotrophic Bacteria Dominate Catalase Expression during Microcystis Blooms. Appl Environ Microbiol 2022; 88:e0254421. [PMID: 35862723 PMCID: PMC9328184 DOI: 10.1128/aem.02544-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In the oligotrophic oceans, key autotrophs depend on "helper" bacteria to reduce oxidative stress from hydrogen peroxide (H2O2) in the extracellular environment. H2O2 is also a ubiquitous stressor in freshwaters, but the effects of H2O2 on autotrophs and their interactions with bacteria are less well understood in freshwaters. Naturally occurring H2O2 in freshwater systems is proposed to impact the proportion of microcystin-producing (toxic) and non-microcystin-producing (nontoxic) Microcystis in blooms, which influences toxin concentrations and human health impacts. However, how different strains of Microcystis respond to naturally occurring H2O2 concentrations and the microbes responsible for H2O2 decomposition in freshwater cyanobacterial blooms are unknown. To address these knowledge gaps, we used metagenomics and metatranscriptomics to track the presence and expression of genes for H2O2 decomposition by microbes during a cyanobacterial bloom in western Lake Erie in the summer of 2014. katG encodes the key enzyme for decomposing extracellular H2O2 but was absent in most Microcystis cells. katG transcript relative abundance was dominated by heterotrophic bacteria. In axenic Microcystis cultures, an H2O2 scavenger (pyruvate) significantly improved growth rates of one toxic strain while other toxic and nontoxic strains were unaffected. These results indicate that heterotrophic bacteria play a key role in H2O2 decomposition in Microcystis blooms and suggest that their activity may affect the fitness of some Microcystis strains and thus the strain composition of Microcystis blooms but not along a toxic versus nontoxic dichotomy. IMPORTANCE Cyanobacterial harmful algal blooms (CHABs) threaten freshwater ecosystems globally through the production of toxins. Toxin production by cyanobacterial species and strains during CHABs varies widely over time and space, but the ecological drivers of the succession of toxin-producing species remain unclear. Hydrogen peroxide (H2O2) is ubiquitous in natural waters, inhibits microbial growth, and may determine the relative proportions of Microcystis strains during blooms. However, the mechanisms and organismal interactions involved in H2O2 decomposition are unexplored in CHABs. This study shows that some strains of bloom-forming freshwater cyanobacteria benefit from detoxification of H2O2 by associated heterotrophic bacteria, which may impact bloom development.
Collapse
|
18
|
Morris JJ, Rose AL, Lu Z. Reactive oxygen species in the world ocean and their impacts on marine ecosystems. Redox Biol 2022; 52:102285. [PMID: 35364435 PMCID: PMC8972015 DOI: 10.1016/j.redox.2022.102285] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
Reactive oxygen species (ROS) are omnipresent in the ocean, originating from both biological (e.g., unbalanced metabolism or stress) and non-biological processes (e.g. photooxidation of colored dissolved organic matter). ROS can directly affect the growth of marine organisms, and can also influence marine biogeochemistry, thus indirectly impacting the availability of nutrients and food sources. Microbial communities and evolution are shaped by marine ROS, and in turn microorganisms influence steady-state ROS concentrations by acting as the predominant sink for marine ROS. Through their interactions with trace metals and organic matter, ROS can enhance microbial growth, but ROS can also attack biological macromolecules, causing extensive modifications with deleterious results. Several biogeochemically important taxa are vulnerable to very low ROS concentrations within the ranges measured in situ, including the globally distributed marine cyanobacterium Prochlorococcus and ammonia-oxidizing archaea of the phylum Thaumarchaeota. Finally, climate change may increase the amount of ROS in the ocean, especially in the most productive surface layers. In this review, we explore the sources of ROS and their roles in the oceans, how the dynamics of ROS might change in the future, and how this change might impact the ecology and chemistry of the future ocean.
Collapse
Affiliation(s)
- J Jeffrey Morris
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Andrew L Rose
- Faculty of Science and Engineering, Southern Cross University, New South Wales, Australia
| | - Zhiying Lu
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
19
|
A Review of Cyanophage–Host Relationships: Highlighting Cyanophages as a Potential Cyanobacteria Control Strategy. Toxins (Basel) 2022; 14:toxins14060385. [PMID: 35737046 PMCID: PMC9229316 DOI: 10.3390/toxins14060385] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Harmful algal blooms (HABs) are naturally occurring phenomena, and cyanobacteria are the most commonly occurring HABs in freshwater systems. Cyanobacteria HABs (cyanoHABs) negatively affect ecosystems and drinking water resources through the production of potent toxins. Furthermore, the frequency, duration, and distribution of cyanoHABs are increasing, and conditions that favor cyanobacteria growth are predicted to increase in the coming years. Current methods for mitigating cyanoHABs are generally short-lived and resource-intensive, and have negative impacts on non-target species. Cyanophages (viruses that specifically target cyanobacteria) have the potential to provide a highly specific control strategy with minimal impacts on non-target species and propagation in the environment. A detailed review (primarily up to 2020) of cyanophage lifecycle, diversity, and factors influencing infectivity is provided in this paper, along with a discussion of cyanophage and host cyanobacteria relationships for seven prominent cyanoHAB-forming genera in North America, including: Synechococcus, Microcystis, Dolichospermum, Aphanizomenon, Cylindrospermopsis, Planktothrix, and Lyngbya. Lastly, factors affecting the potential application of cyanophages as a cyanoHAB control strategy are discussed, including efficacy considerations, optimization, and scalability for large-scale applications.
Collapse
|
20
|
Hellweger FL, Martin RM, Eigemann F, Smith DJ, Dick GJ, Wilhelm SW. Models predict planned phosphorus load reduction will make Lake Erie more toxic. Science 2022; 376:1001-1005. [PMID: 35617400 DOI: 10.1126/science.abm6791] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Harmful cyanobacteria are a global environmental problem, yet we lack actionable understanding of toxigenic versus nontoxigenic strain ecology and toxin production. We performed a large-scale meta-analysis including 103 papers and used it to develop a mechanistic, agent-based model of Microcystis growth and microcystin production. Simulations for Lake Erie suggest that the observed toxigenic-to-nontoxigenic strain succession during the 2014 Toledo drinking water crisis was controlled by different cellular oxidative stress mitigation strategies (protection by microcystin versus degradation by enzymes) and the different susceptibility of those mechanisms to nitrogen limitation. This model, as well as a simpler empirical one, predicts that the planned phosphorus load reduction will lower biomass but make nitrogen and light more available, which will increase toxin production, favor toxigenic cells, and increase toxin concentrations.
Collapse
Affiliation(s)
- Ferdi L Hellweger
- Water Quality Engineering, Technical University of Berlin, Berlin, Germany
| | - Robbie M Martin
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Falk Eigemann
- Water Quality Engineering, Technical University of Berlin, Berlin, Germany
| | - Derek J Smith
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA.,Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA
| | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
21
|
Latour D, Perrière F, Purdie D. Higher sensitivity to hydrogen peroxide and light stress conditions of the microcystin producer Microcystis aeruginosa sp PCC7806 compared to non-producer strains. HARMFUL ALGAE 2022; 114:102219. [PMID: 35550290 DOI: 10.1016/j.hal.2022.102219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 06/15/2023]
Abstract
The increasing incidence of cyanobacterial blooms with their associated production of cyanotoxins lead managers of aquatics systems to control their biomass to limit the health risk. Among the variety of existing treatment approaches, hydrogen peroxide (H2O2) shows increasing use but the effects of environmental parameters on its effectiveness are still not completely known. With the aim to assess the efficiency of H2O2 treatments in the control of cyanobacterial blooms and decrease toxic risk, we tested three Microcystis strains according to their ability to produce cyanotoxins (a microcystin-producing, non-microcystin-producing and mcyB-knockout mutant). Photochemical efficiency, percentage of living cells and microcystin cell content were compared under various hydrogen peroxide concentrations coupled with stress conditions encountered during the life cycle of cyanobacteria as darkness and high light. The microcystin-producing strain appeared the more sensitive to hydrogen peroxide treatment and to light condition, probably due to a lower rate of repair of Photo System II (PSII). We also highlighted various responses of PSII activity according to Microcystis strains which could partly explain the shift of dominant genotypes often occurring during a bloom event. Our results confirm the link between light and microcystin content and variations of microcystin contents appear as a consequence of photosynthetic activity. These findings could be of particular interest regarding water quality management, especially the use of H2O2 as a potential algaecide which seems to be more effective to use during periods of high light.
Collapse
Affiliation(s)
- Delphine Latour
- Université Clermont Auvergne, CNRS, LMGE-UMR 6023, F-63178 Aubière Cedex, France.
| | - Fanny Perrière
- Université Clermont Auvergne, CNRS, LMGE-UMR 6023, F-63178 Aubière Cedex, France
| | - Duncan Purdie
- University of Southampton, National Oceanography Centre, Waterfront Campus, European Way, Southampton SO14 3ZH, United Kingdom
| |
Collapse
|
22
|
A Summer of Cyanobacterial Blooms in Belgian Waterbodies: Microcystin Quantification and Molecular Characterizations. Toxins (Basel) 2022; 14:toxins14010061. [PMID: 35051038 PMCID: PMC8780180 DOI: 10.3390/toxins14010061] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
In the context of increasing occurrences of toxic cyanobacterial blooms worldwide, their monitoring in Belgium is currently performed by regional environmental agencies (in two of three regions) using different protocols and is restricted to some selected recreational ponds and lakes. Therefore, a global assessment based on the comparison of existing datasets is not possible. For this study, 79 water samples from a monitoring of five lakes in Wallonia and occasional blooms in Flanders and Brussels, including a canal, were analyzed. A Liquid Chromatography with tandem mass spectrometry (LC-MS/MS) method allowed to detect and quantify eight microcystin congeners. The mcyE gene was detected using PCR, while dominant cyanobacterial species were identified using 16S RNA amplification and direct sequencing. The cyanobacterial diversity for two water samples was characterized with amplicon sequencing. Microcystins were detected above limit of quantification (LOQ) in 68 water samples, and the World Health Organization (WHO) recommended guideline value for microcystins in recreational water (24 µg L−1) was surpassed in 18 samples. The microcystin concentrations ranged from 0.11 µg L−1 to 2798.81 µg L−1 total microcystin. For 45 samples, the dominance of the genera Microcystis sp., Dolichospermum sp., Aphanizomenon sp., Cyanobium/Synechococcus sp., Planktothrix sp., Romeria sp., Cyanodictyon sp., and Phormidium sp. was shown. Moreover, the mcyE gene was detected in 75.71% of all the water samples.
Collapse
|
23
|
Evaluation of a Peroxide-Based Algaecide for Cyanobacteria Control: A Mesocosm Trial in Lake Okeechobee, FL, USA. WATER 2022. [DOI: 10.3390/w14020169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A 72 h small-scale trial was conducted in enclosed mesocosms in the Lake Okeechobee waterway to evaluate the effectiveness of a USEPA-registered peroxide-based algaecide (formulated as sodium carbonate peroxyhydrate) for controlling a natural cyanobacteria population. Mesocosms were initially subjected to either no algaecide or the maximum label rate of 10 mg H2O2·L−1. A subset of mesocosms were then subjected to a sequential application of 5 mg H2O2·L−1 at 48 h after initial treatment. Following application, peroxide concentrations rapidly decreased and were undetectable by 48 h. At 24 h after treatment, significant decreases in all biomass indicators were observed (compared to untreated mesocosms), including extracted chlorophyll a, microscopic counts (total phytoplankton and total cyanobacteria), and cyanobacteria-specific 16S rRNA gene copies by over 71%. Although peroxide treatment reduced cyanobacteria biomass, there was no change in overall community structure and the remaining population was still dominated by cyanobacteria (>90%). After 48 h exposure, some biomass recovered in single application mesocosms resulting in only a 32–45% reduction in biomass. Repeated peroxide dosing resulted in the greatest efficacy, which had a sustained (60–91%) decrease in all biomass indicators for the entire study. While a single application of the peroxide was effective in the first 24 h, a sequential treatment is likely necessary to sustain efficacy when using this approach to manage cyanobacteria in the field. Results of this study support that this peroxide-based algaecide is a strong candidate to continue with scalable field trials to assess its potential future utility for operational management programs in the Lake Okeechobee waterway.
Collapse
|
24
|
Samanta L, Stensjö K, Lindblad P, Bhattacharya J. Differential catalase activity and tolerance to hydrogen peroxide in the filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Anabaena sp. PCC 7120. Arch Microbiol 2022; 204:121. [PMID: 34993618 DOI: 10.1007/s00203-021-02643-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/03/2021] [Accepted: 10/29/2021] [Indexed: 11/28/2022]
Abstract
Photoautotrophic cyanobacteria often confront hydrogen peroxide (H2O2), a reactive oxygen species potentially toxic to cells when present in sufficiently high concentrations. In this study, H2O2 tolerance ability of filamentous cyanobacteria Nostoc punctiforme ATCC 29133 (Nostoc 29133) and Anabaena sp. PCC 7120 (Anabaena 7120) was investigated at increasing concentrations of H2O2 (0-0.5 mM). In Nostoc 29133, 0.25 and 0.5 mM H2O2 caused a reduction in chlorophyll a content by 12 and 20%, respectively, whereas with similar treatments, a total loss of chlorophyll a was detected in Anabaena 7120. Further, Nostoc 29133 was able to maintain its photosystem II performance in the presence of H2O2 up to a concentration of 0.5 mM, whereas in Anabaena 7120, 0.25 mM H2O2 caused a complete reduction of photosystem II performance. The intracellular hydroperoxide level (indicator of oxidative status) did not increase to the same high level in Nostoc 29133, as compared to in Anabaena 7120 after H2O2 treatment. This might be explained by that Nostoc 29133 showed a 20-fold higher intrinsic constitutive catalase activity than Anabaena 7120, thus indicating that the superior tolerance of Nostoc 29133 to H2O2 stems from its higher ability to decompose H2O2. It is suggested that difference in H2O2 tolerance between closely related filamentous cyanobacteria, as revealed in this study, may be taken into account for judicious selection and effective use of strains in biotechnological applications.
Collapse
Affiliation(s)
- Loknath Samanta
- Department of Biotechnology, Mizoram University, PB No. 190, Aizawl, 796004, Mizoram, India
| | - Karin Stensjö
- Microbial Chemistry-Ångström Laboratory, Uppsala University, Box 523, 751 20, Uppsala, Sweden
| | - Peter Lindblad
- Microbial Chemistry-Ångström Laboratory, Uppsala University, Box 523, 751 20, Uppsala, Sweden
| | - Jyotirmoy Bhattacharya
- Department of Biotechnology, Mizoram University, PB No. 190, Aizawl, 796004, Mizoram, India.
| |
Collapse
|
25
|
Differential Effect of Hydroxen Peroxide οn Toxic Cyanobacteria of Hypertrophic Mediterranean Waterbodies. SUSTAINABILITY 2021. [DOI: 10.3390/su14010123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyanobacterial blooms have been known since ancient times; however, they are currently increasing globally. Human and ecological health risks posed by harmful cyanobacterial blooms have been recorded around the world. These risks are mainly associated with their ability to affect the ecosystem chain by different mechanisms like the production of cyanotoxins, especially microcystins. Their expansion and their harmful effects have led many researchers to seek techniques and strategies to control them. Among them, hydrogen peroxide could be a promising tool against cyanobacteria and cyanotoxins and it is well-established as an environmentally friendly oxidizing agent because of its rapid decomposition into oxygen and water. The aim of the present study was to evaluate the effect of hydrogen peroxide on phytoplankton from two hypertrophic waterbodies in Greece. The effect of hydrogen peroxide on concentration of microcystins found in the waterbodies was also studied. Treatment with 4 mg/L hydrogen peroxide was applied to water samples originated from the waterbodies and Cyanobacterial composition and biomass, phycocyanin, chlorophyll-a, and intra-cellular and total microcystin concentrations were studied. Cyanobacterial biomass and phycocyanin was reduced significantly after the application of 4 mg/L hydrogen peroxide in water treatment experiments while chlorophytes and extra-cellular microcystin concentrations were increased. Raphidiopsis (Cylindrospermopsis) raciborskii was the most affected cyanobacterial species after treatment of the water of the Karla Reservoir in comparison to Aphanizomenon favaloroi, Planktolyngbya limnetica, and Chroococcus sp. Furthermore, Microcystis aeruginosa was more resistant to the treatment of Pamvotis lake water in comparison with Microcystis wesenbergii and Microcystis panniformis. Our study showed that hydrogen peroxide differentially impacts the members of the phytoplankton community, affecting, thus, its overall efficacy. Different effects of hydrogen peroxide treatment were observed among cyanobacerial genera as well as among cyanobacterial species of the same genus. Different effects could be the result of the different resistance mechanisms of each genus or species to hydrogen peroxide. Hydrogen peroxide could be used as a treatment for the mitigation of cyanobacterial blooms in a waterbody; however, the biotic and abiotic characteristics of the waterbody should be considered.
Collapse
|
26
|
Wang B, Zheng S, Huang Z, Hu Y, Zhu K. Fabrication of H 2O 2 slow-releasing composites for simultaneous Microcystis mitigation and phosphate immobilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149164. [PMID: 34325137 DOI: 10.1016/j.scitotenv.2021.149164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen peroxide (H2O2) is a widely accepted algicide in controlling cyanobacterial blooms. However, this method includes two disadvantages: 1) a low H2O2 concentration (<5 mg L-1) is required; 2) H2O2-induced cell lysis causes phosphorus (P) contamination. To overcome the drawbacks, a H2O2 slow-releasing composite (HSRC) based on calcium peroxide (CaO2) was fabricated to substitute liquid H2O2. According to the results, a higher CaO2 dose increased H2O2 yield and releasing rate. H2O2 yield of 160 mg L-1 CaO2 in HSRC reached 32.9 mg L-1 and its releasing rate was 0.407 h-1. In addition, a higher temperature decreased H2O2 yield and increased H2O2-releasing rate. Besides, HSRC endowed with a remarkable ability to immobilize P. Higher CaO2 dose, pH value, and temperature increased the rate of P immobilization. The highest rate was 0.185 h-1, which occurred with 160 mg L-1 CaO2 in HSRC at 25 °C and pH 8.0. Toxicity assays showed that HSRC exerted sustaining oxidative stress on Microcystis aeruginosa. Accumulation of intracellular reactive oxygen species resulted in the disruption of enzymatic systems and inactivation of photosystem. Tracking the variations of cell growth and H2O2 concentration during HSRC treatments, it suggested that the lethal effect on Microcystis aeruginosa was achieved with a super-low H2O2 concentration (<0.3 mg L-1). In addition, cell lysis did not cause a sudden rise in P concentration due to the P immobilization by HSRC. Therefore, HSRC successfully offsets the drawbacks of liquid H2O2 in mitigating cyanobacterial blooms. It may be a novel and promising algicide that not only kills cyanobacteria but also reduces eutrophication momentarily.
Collapse
Affiliation(s)
- Binliang Wang
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Shuaibo Zheng
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Zongken Huang
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Yiwei Hu
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China.
| | - Kongxian Zhu
- Changjiang River Scientific Research Institute, Wuhan 430000, PR China
| |
Collapse
|
27
|
Kibuye FA, Zamyadi A, Wert EC. A critical review on operation and performance of source water control strategies for cyanobacterial blooms: Part I-chemical control methods. HARMFUL ALGAE 2021; 109:102099. [PMID: 34815017 DOI: 10.1016/j.hal.2021.102099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacterial blooms produce nuisance metabolites (e.g., cyanotoxins and T&O compounds) thereby posing water quality management issues for aquatic sources used for potable water production, aquaculture, and recreation. A variety of in-lake/reservoir control measures are implemented to reduce the abundance of nuisance cyanobacteria biomass or decrease the amount of available phosphorous (P). This paper critically reviews the chemical control strategies implemented for in-lake/reservoir management of cyanobacterial blooms, i.e., algaecides and nutrient sequestering coagulants/flocculants, by highlighting (i) their mode of action, (ii) cases of successful and unsuccessful treatment, (iii) and factors influencing performance (e.g., water quality, process control techniques, source water characteristics, etc.). Algaecides generally result in immediate improvements in water quality and offer selective cyanobacterial control when peroxide-based alagecides are used. However, they have a range of limitations: causing cell lysis and release of cyanotoxins, posing negative impacts on aquatic plants and animals, leaving behind environmentally relevant treatment residuals (e.g., Cu in water and sediments), and offering only short-term bloom control characterized by cyanobacterial rebound. Coagulants/flocculants (alum, iron, calcium, and lanthanum bentonite) offer long-term internal nutrient control when external nutrient loading is controlled. Treatment performance is often influenced by background water quality conditions, and source water characteristics (e.g., surface area, depth, mixing regimes, and residence time). The reviewed case studies highlight that external nutrient load reduction is the most fundamental aspect of cyanobacterial control. None of the reviewed control strategies provide a comprehensive solution to cyanobacterial blooms.
Collapse
Affiliation(s)
- Faith A Kibuye
- Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, United States
| | - Arash Zamyadi
- Walter and Eliza Hall Institute of Medical Research (WEHI), 1G, Royal Parade, Parkville VIC 3052, Australia; Water Research Australia (WaterRA) Melbourne based position hosted by Melbourne Water, 990 La Trobe St, Docklands VIC 3008, Australia
| | - Eric C Wert
- Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, United States.
| |
Collapse
|
28
|
Piel T, Sandrini G, Muyzer G, Brussaard CPD, Slot PC, van Herk MJ, Huisman J, Visser PM. Resilience of Microbial Communities after Hydrogen Peroxide Treatment of a Eutrophic Lake to Suppress Harmful Cyanobacterial Blooms. Microorganisms 2021; 9:microorganisms9071495. [PMID: 34361929 PMCID: PMC8304526 DOI: 10.3390/microorganisms9071495] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Applying low concentrations of hydrogen peroxide (H2O2) to lakes is an emerging method to mitigate harmful cyanobacterial blooms. While cyanobacteria are very sensitive to H2O2, little is known about the impacts of these H2O2 treatments on other members of the microbial community. In this study, we investigated changes in microbial community composition during two lake treatments with low H2O2 concentrations (target: 2.5 mg L−1) and in two series of controlled lake incubations. The results show that the H2O2 treatments effectively suppressed the dominant cyanobacteria Aphanizomenon klebahnii, Dolichospermum sp. and, to a lesser extent, Planktothrix agardhii. Microbial community analysis revealed that several Proteobacteria (e.g., Alteromonadales, Pseudomonadales, Rhodobacterales) profited from the treatments, whereas some bacterial taxa declined (e.g., Verrucomicrobia). In particular, the taxa known to be resistant to oxidative stress (e.g., Rheinheimera) strongly increased in relative abundance during the first 24 h after H2O2 addition, but subsequently declined again. Alpha and beta diversity showed a temporary decline but recovered within a few days, demonstrating resilience of the microbial community. The predicted functionality of the microbial community revealed a temporary increase of anti-ROS defenses and glycoside hydrolases but otherwise remained stable throughout the treatments. We conclude that the use of low concentrations of H2O2 to suppress cyanobacterial blooms provides a short-term pulse disturbance but is not detrimental to lake microbial communities and their ecosystem functioning.
Collapse
Affiliation(s)
- Tim Piel
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; (T.P.); (G.S.); (G.M.); (C.P.D.B.); (P.C.S.); (M.J.v.H.); (J.H.)
| | - Giovanni Sandrini
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; (T.P.); (G.S.); (G.M.); (C.P.D.B.); (P.C.S.); (M.J.v.H.); (J.H.)
| | - Gerard Muyzer
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; (T.P.); (G.S.); (G.M.); (C.P.D.B.); (P.C.S.); (M.J.v.H.); (J.H.)
| | - Corina P. D. Brussaard
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; (T.P.); (G.S.); (G.M.); (C.P.D.B.); (P.C.S.); (M.J.v.H.); (J.H.)
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherland Institute for Sea Research, 1790 AB Den Burg, The Netherlands
| | - Pieter C. Slot
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; (T.P.); (G.S.); (G.M.); (C.P.D.B.); (P.C.S.); (M.J.v.H.); (J.H.)
| | - Maria J. van Herk
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; (T.P.); (G.S.); (G.M.); (C.P.D.B.); (P.C.S.); (M.J.v.H.); (J.H.)
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; (T.P.); (G.S.); (G.M.); (C.P.D.B.); (P.C.S.); (M.J.v.H.); (J.H.)
| | - Petra M. Visser
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; (T.P.); (G.S.); (G.M.); (C.P.D.B.); (P.C.S.); (M.J.v.H.); (J.H.)
- Correspondence: ; Tel.: +31-20-5257073
| |
Collapse
|
29
|
Sukenik A, Kaplan A. Cyanobacterial Harmful Algal Blooms in Aquatic Ecosystems: A Comprehensive Outlook on Current and Emerging Mitigation and Control Approaches. Microorganisms 2021; 9:1472. [PMID: 34361909 PMCID: PMC8306311 DOI: 10.3390/microorganisms9071472] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/31/2022] Open
Abstract
An intensification of toxic cyanobacteria blooms has occurred over the last three decades, severely affecting coastal and lake water quality in many parts of the world. Extensive research is being conducted in an attempt to gain a better understanding of the driving forces that alter the ecological balance in water bodies and of the biological role of the secondary metabolites, toxins included, produced by the cyanobacteria. In the long-term, such knowledge may help to develop the needed procedures to restore the phytoplankton community to the pre-toxic blooms era. In the short-term, the mission of the scientific community is to develop novel approaches to mitigate the blooms and thereby restore the ability of affected communities to enjoy coastal and lake waters. Here, we critically review some of the recently proposed, currently leading, and potentially emerging mitigation approaches in-lake novel methodologies and applications relevant to drinking-water treatment.
Collapse
Affiliation(s)
- Assaf Sukenik
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, P.O. Box 447, Migdal 14950, Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel;
| |
Collapse
|
30
|
Xu H, Pang Y, Li Y, Zhang S, Pei H. Using sodium percarbonate to suppress vertically distributed filamentous cyanobacteria while maintaining the stability of microeukaryotic communities in drinking water reservoirs. WATER RESEARCH 2021; 197:117111. [PMID: 33857892 DOI: 10.1016/j.watres.2021.117111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/20/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
The increasing frequency and intensity of blooms of toxin- and taste & odour-producing filamentous cyanobacteria in water sources is a growing global issue. Compared to the common spherical Microcystis genus, the removal of filamentous cyanobacteria is more difficult in drinking water treatment plants; hence, abatement and control of the occurrence and proliferation of harmful filamentous cyanobacteria within drinking water sources is important for water supply. In this study, the solid sodium percarbonate (SPC), Na2CO3·1.5H2O2, was used as an algaecide to eliminate the cyanobacteria distributed throughout the water column in the surface and bottom layer of a reservoir serving as a drinking water source. Results showed that although the oxidation capacity of SPC was higher in the surface water due to the higher light intensity than in the bottom water, 3.0 mg/L SPC can still suppress the harmful cyanobacteria in the bottom water after 36 h because the carbonate ion generated by SPC decomposition can act as an activator of H2O2 to generate many reactive oxygen species - including superoxide radicals, carbonate radical anions, and hydroxyl radicals - even in the light-limited environment. The obtained inactivation rates for the main cyanobacteria in this reservoir followed the order: Pseudanabaena limnetica > Raphidiopsis curvata > Cylindrospermopsis raciborskii. 3.0 mg/L SPC has a slight impact on microeukaryotic communities according to the 18S rRNA gene sequencing, while 6.0 mg/L SPC changed the composition of eukaryotic phytoplankton and zooplankton clearly. Eukaryotic co-occurrence networks showed that although the network of eukaryotic plankton in treated surface water was more compact and clustered, stability of microeukaryotes in the treated surface water was lower than for the treated bottom water, owing to the higher oxidation capacity of SPC in the surface water. The results above not only have important implications for full-scale control of harmful cyanobacteria in drinking water sources, especially filamentous cyanobacteria with vertical distributions, but also help to ensure the health and stability of the whole aquatic ecosystem.
Collapse
Affiliation(s)
- Hangzhou Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China
| | - Yiming Pang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yizhen Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shasha Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Haiyan Pei
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China.
| |
Collapse
|
31
|
Santos AA, Guedes DO, Barros MUG, Oliveira S, Pacheco ABF, Azevedo SMFO, Magalhães VF, Pestana CJ, Edwards C, Lawton LA, Capelo-Neto J. Effect of hydrogen peroxide on natural phytoplankton and bacterioplankton in a drinking water reservoir: Mesocosm-scale study. WATER RESEARCH 2021; 197:117069. [PMID: 33784604 DOI: 10.1016/j.watres.2021.117069] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/15/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Cyanobacterial blooms are increasingly reported worldwide, presenting a challenge to water treatment plants and concerning risks to human health and aquatic ecosystems. Advanced oxidative processes comprise efficient and safe methods for water treatment. Hydrogen peroxide (H2O2) has been proposed as a sustainable solution to mitigate bloom-forming cyanobacteria since this group presents a higher sensitivity compared to other phytoplankton, with no major risks to the environment at low concentrations. Here, we evaluated the effects of a single H2O2 addition (10 mg L-1) over 120 h in mesocosms introduced in a reservoir located in a semi-arid region presenting a Planktothrix-dominated cyanobacterial bloom. We followed changes in physical and chemical parameters and in the bacterioplankton composition. H2O2 efficiently suppressed cyanobacteria, green algae, and diatoms over 72 h, leading to an increase in transparency and dissolved organic carbon, and a decrease in dissolved oxygen and pH, while nutrient concentrations were not affected. After 120 h, cyanobacterial abundance remained low and green algae became dominant. 16S rRNA sequencing revealed that the original cyanobacterial bloom was composed by Planktothrix, Cyanobium and Microcystis. Only Cyanobium increased in relative abundance at 120 h, suggesting regrowth. A prominent change in the composition of heterotrophic bacteria was observed with Exiguobacterium, Paracoccus and Deinococcus becoming the most abundant genera after the H2O2 treatment. Our results indicate that this approach is efficient in suppressing cyanobacterial blooms and improving water quality in tropical environments. Monitoring changes in abiotic parameters and the relative abundance of specific bacterial taxa could be used to anticipate the regrowth of cyanobacteria after H2O2 degradation and to indicate where in the reservoir H2O2 should be applied so the effects are still felt in the water treatment plant intake.
Collapse
Affiliation(s)
- Allan A Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Brazil.
| | - Dayvson O Guedes
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Mário U G Barros
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil; Water Resources Management Company, Fortaleza, Brazil
| | - Samylla Oliveira
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Ana B F Pacheco
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Brazil
| | - Sandra M F O Azevedo
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Brazil
| | - Valéria F Magalhães
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Brazil
| | - Carlos J Pestana
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Linda A Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - José Capelo-Neto
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
32
|
Dick GJ, Duhaime MB, Evans JT, Errera RM, Godwin CM, Kharbush JJ, Nitschky HS, Powers MA, Vanderploeg HA, Schmidt KC, Smith DJ, Yancey CE, Zwiers CC, Denef VJ. The genetic and ecophysiological diversity of Microcystis. Environ Microbiol 2021; 23:7278-7313. [PMID: 34056822 DOI: 10.1111/1462-2920.15615] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/30/2023]
Abstract
Microcystis is a cyanobacterium that forms toxic blooms in freshwater ecosystems around the world. Biological variation among taxa within the genus is apparent through genetic and phenotypic differences between strains and via the spatial and temporal distribution of strains in the environment, and this fine-scale diversity exerts strong influence over bloom toxicity. Yet we do not know how varying traits of Microcystis strains govern their environmental distribution, the tradeoffs and links between these traits, or how they are encoded at the genomic level. Here we synthesize current knowledge on the importance of diversity within Microcystis and on the genes and traits that likely underpin ecological differentiation of taxa. We briefly review spatial and environmental patterns of Microcystis diversity in the field and genetic evidence for cohesive groups within Microcystis. We then compile data on strain-level diversity regarding growth responses to environmental conditions and explore evidence for variation of community interactions across Microcystis strains. Potential links and tradeoffs between traits are identified and discussed. The resulting picture, while incomplete, highlights key knowledge gaps that need to be filled to enable new models for predicting strain-level dynamics, which influence the development, toxicity and cosmopolitan nature of Microcystis blooms.
Collapse
Affiliation(s)
- Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Melissa B Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jacob T Evans
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Reagan M Errera
- National Oceanographic and Atmospheric Administration Great Lakes Environmental Research Lab, Ann Arbor, MI, USA
| | - Casey M Godwin
- School for Environment and Sustainability, Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA
| | - Jenan J Kharbush
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Helena S Nitschky
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - McKenzie A Powers
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Henry A Vanderploeg
- National Oceanographic and Atmospheric Administration Great Lakes Environmental Research Lab, Ann Arbor, MI, USA
| | - Kathryn C Schmidt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Derek J Smith
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Colleen E Yancey
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Claire C Zwiers
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Vincent J Denef
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
33
|
Jacinavicius FR, Geraldes V, Crnkovic CM, Delbaje E, Fiore MF, Pinto E. Effect of ultraviolet radiation on the metabolomic profiles of potentially toxic cyanobacteria. FEMS Microbiol Ecol 2021; 97:6006873. [PMID: 33242088 DOI: 10.1093/femsec/fiaa243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Interactions between climate change and ultraviolet radiation (UVR) have a substantial impact on aquatic ecosystems, especially on photosynthetic organisms. To counteract the damaging effects of UVR, cyanobacteria developed adaptive strategies such as the biosynthesis of secondary metabolites. This study aimed to evaluate the effects of UVR on the metabolomic profiles of potentially toxic cyanobacteria. Twelve strains were irradiated with ultraviolet A and ultraviolet B radiation and parabolic aluminized reflector lamps for 3 days, followed by liquid chromatography-tandem mass spectometry (LC-MS/MS) analysis to assess changes in metabolomic profiles. Matrices were used to generate principal component analysis biplots, and molecular networks were obtained using the Global Natural Products platform. Most strains showed significant changes in their metabolomic profiles after UVR exposure. On average, 7% of MS features were shown to be exclusive to metabolomic profiles before UVR exposure, while 9% were unique to metabolomic profiles after UVR exposure. The identified compounds included aeruginosins, spumigins, cyanopeptolins, microginins, namalides, pseudospumigins, anabaenopeptins, mycosporine-like amino acids, nodularins and microcystins. Data showed that cyanobacteria display broad metabolic plasticity upon UVR exposure, including the synthesis and differential expression of a variety of secondary metabolites. This could result in a competitive advantage, supporting cyanobacterial blooms under various UVR light exposures.
Collapse
Affiliation(s)
| | - Vanessa Geraldes
- University of São Paulo, School of Pharmaceutical Sciences, São Paulo-SP, Brazil
| | - Camila M Crnkovic
- University of São Paulo, School of Pharmaceutical Sciences, São Paulo-SP, Brazil
| | - Endrews Delbaje
- University of São Paulo, Centre for Nuclear Energy in Agriculture, Piracicaba-SP, Brazil
| | - Marli F Fiore
- University of São Paulo, Centre for Nuclear Energy in Agriculture, Piracicaba-SP, Brazil
| | - Ernani Pinto
- University of São Paulo, School of Pharmaceutical Sciences, São Paulo-SP, Brazil.,University of São Paulo, Centre for Nuclear Energy in Agriculture, Piracicaba-SP, Brazil
| |
Collapse
|
34
|
Weenink EFJ, Matthijs HCP, Schuurmans JM, Piel T, van Herk MJ, Sigon CAM, Visser PM, Huisman J. Interspecific protection against oxidative stress: green algae protect harmful cyanobacteria against hydrogen peroxide. Environ Microbiol 2021; 23:2404-2419. [PMID: 33587811 PMCID: PMC8248038 DOI: 10.1111/1462-2920.15429] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/08/2021] [Indexed: 11/27/2022]
Abstract
Oceanographic studies have shown that heterotrophic bacteria can protect marine cyanobacteria against oxidative stress caused by hydrogen peroxide (H2O2). Could a similar interspecific protection play a role in freshwater ecosystems? In a series of laboratory experiments and two lake treatments, we demonstrate that freshwater cyanobacteria are sensitive to H2O2 but can be protected by less‐sensitive species such as green algae. Our laboratory results show that green algae degrade H2O2 much faster than cyanobacteria. Consequently, the cyanobacterium Microcystis was able to survive at higher H2O2 concentrations in mixtures with the green alga Chlorella than in monoculture. Interestingly, even the lysate of destructed Chlorella was capable to protect Microcystis, indicating a two‐component H2O2 degradation system in which Chlorella provided antioxidant enzymes and Microcystis the reductants. The level of interspecific protection provided to Microcystis depended on the density of Chlorella. These findings have implications for the mitigation of toxic cyanobacterial blooms, which threaten the water quality of many eutrophic lakes and reservoirs worldwide. In several lakes, H2O2 has been successfully applied to suppress cyanobacterial blooms. Our results demonstrate that high densities of green algae can interfere with these lake treatments, as they may rapidly degrade the added H2O2 and thereby protect the bloom‐forming cyanobacteria.
Collapse
Affiliation(s)
- Erik F J Weenink
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, Amsterdam, GE, 1090, The Netherlands
| | - Hans C P Matthijs
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, Amsterdam, GE, 1090, The Netherlands
| | - J Merijn Schuurmans
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, Amsterdam, GE, 1090, The Netherlands
| | - Tim Piel
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, Amsterdam, GE, 1090, The Netherlands
| | - Maria J van Herk
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, Amsterdam, GE, 1090, The Netherlands
| | - Corrien A M Sigon
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, Amsterdam, GE, 1090, The Netherlands
| | - Petra M Visser
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, Amsterdam, GE, 1090, The Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, Amsterdam, GE, 1090, The Netherlands
| |
Collapse
|
35
|
Lürling M, Mucci M, Waajen G. Removal of Positively Buoyant Planktothrix rubescens in Lake Restoration. Toxins (Basel) 2020; 12:toxins12110700. [PMID: 33167347 PMCID: PMC7694384 DOI: 10.3390/toxins12110700] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/31/2023] Open
Abstract
The combination of a low-dose coagulant (polyaluminium chloride—‘Floc’) and a ballast able to bind phosphate (lanthanum modified bentonite, LMB—‘Sink/Lock’) have been used successfully to manage cyanobacterial blooms and eutrophication. In a recent ‘Floc and Lock’ intervention in Lake de Kuil (the Netherlands), cyanobacterial chlorophyll-a was reduced by 90% but, surprisingly, after one week elevated cyanobacterial concentrations were observed again that faded away during following weeks. Hence, to better understand why and how to avoid an increase in cyanobacterial concentration, experiments with collected cyanobacteria from Lakes De Kuil and Rauwbraken were performed. We showed that the Planktothrix rubescens from Lake de Kuil could initially be precipitated using a coagulant and ballast but, after one day, most of the filaments resurfaced again, even using a higher ballast dose. By contrast, the P. rubescens from Lake Rauwbraken remained precipitated after the Floc and Sink/Lock treatment. We highlight the need to test selected measures for each lake as the same technique with similar species (P. rubescens) yielded different results. Moreover, we show that damaging the cells first with hydrogen peroxide before adding the coagulant and ballast (a ‘Kill, Floc and Lock/Sink’ approach) could be promising to keep P. rubescens precipitated.
Collapse
Affiliation(s)
- Miquel Lürling
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands;
- Correspondence: ; Tel.: +31-317-489-838
| | - Maíra Mucci
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands;
| | - Guido Waajen
- Water Authority Brabantse Delta, Team Knowledge, P.O. Box 5520, 4801 DZ Breda, The Netherlands;
| |
Collapse
|
36
|
Sandrini G, Piel T, Xu T, White E, Qin H, Slot PC, Huisman J, Visser PM. Sensitivity to hydrogen peroxide of the bloom-forming cyanobacterium Microcystis PCC 7806 depends on nutrient availability. HARMFUL ALGAE 2020; 99:101916. [PMID: 33218441 DOI: 10.1016/j.hal.2020.101916] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Application of low concentrations of hydrogen peroxide (H2O2) is a relatively new and promising method to selectively suppress harmful cyanobacterial blooms, while minimizing effects on eukaryotic organisms. However, it is still unknown how nutrient limitation affects the sensitivity of cyanobacteria to H2O2. In this study, we compare effects of H2O2 on the microcystin-producing cyanobacterium Microcystis PCC 7806 under light-limited but nutrient-replete conditions, nitrogen (N) limitation and phosphorus (P) limitation. Microcystis was first grown in chemostats to acclimate to these different experimental conditions, and subsequently transferred to batch cultures where they were treated with a range of H2O2 concentrations (0-10 mg L-1) while exposed to high light (100 µmol photons m-2 s-1) or low light (15 µmol photons m-2 s-1). Our results show that, at low light, N- and P-limited Microcystis were less sensitive to H2O2 than light-limited but nutrient-replete Microcystis. A significantly higher expression of the genes encoding for anti-oxidative stress enzymes (2-cys-peroxiredoxin, thioredoxin A and type II peroxiredoxin) was observed prior to and after the H2O2 treatment for both N- and P-limited Microcystis, which may explain their increased resistance against H2O2. At high light, Microcystis was more sensitive to H2O2 than at low light, and differences in the decline of the photosynthetic yield between nutrient-replete and nutrient-limited Microcystis exposed to H2O2 were less pronounced. Leakage of microcystin was stronger and faster from nutrient-replete than from N- and P-limited Microcystis. Overall, this study provides insight in the sensitivity of harmful cyanobacteria to H2O2 under various environmental conditions.
Collapse
Affiliation(s)
- Giovanni Sandrini
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Tim Piel
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Tianshuo Xu
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Emily White
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Hongjie Qin
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Pieter C Slot
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Petra M Visser
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|