1
|
Tölgyesi Á, Cseh A, Simon A. Determination of carboxyatractyloside, the main toxic component of Xanthium strumarium L., and alkaloid toxins in soybean by liquid chromatography tandem mass spectrometry. J Chromatogr A 2025; 1749:465897. [PMID: 40138788 DOI: 10.1016/j.chroma.2025.465897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/27/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
The presence of carboxyatractyloside (CAT) in Xanthium strumarium L. (cocklebur weed) presents a high risk for both human and animal health. In this paper, we report a liquid chromatography tandem mass spectrometric (LC-MS/MS) method for the determination of CAT in soybean intended for animal feed. The herein described approach involves a fast sample preparation utilising QuEChERS extraction followed by dSPE clean-up. The optimised mobile phase composition flowing through an HPLC column packed with C18 fused-core particles consisted of alkaline conditions (pH = 8.8) in the aqueous eluent and pure methanol as the organic modifier. In this manner, it was also suitable for the analysis of tropane and ergot alkaloids together with CAT, which was attempted for the first time and may improve the analysis efficiency and reduce costs. During the method validation the matrix effect was also investigated, which clearly showed that matrix-matched calibration or standard addition is needed for appropriate quantification, mainly at low levels. The recoveries were between 94 % and 115 %, and the RSD % varied from 2.0 % to 7.3 %. The limits of quantification for alkaloids and CAT were 1 µg/kg and 100 µg/kg, respectively. The method implementation in other LC-MS/MS instruments was also tested. Finally, the validated method was successfully applied on soybean samples naturally contaminated with cocklebur.
Collapse
Affiliation(s)
- Ádám Tölgyesi
- Mertcontrol Hungary Ltd., Móricz Zsigmond út 51, 2151 Fót, Hungary.
| | - Attila Cseh
- Mertcontrol Hungary Ltd., Móricz Zsigmond út 51, 2151 Fót, Hungary
| | - Andrea Simon
- Mertcontrol Hungary Ltd., Móricz Zsigmond út 51, 2151 Fót, Hungary
| |
Collapse
|
2
|
Li T, Ji H, Sun J, Li Y, Xu Y, Ma W, Sun H. Analysis of fungal diversity in processed jujube products and the production of mycotoxins by typical toxigenic Aspergillus spp. Front Microbiol 2025; 16:1499686. [PMID: 40207152 PMCID: PMC11978838 DOI: 10.3389/fmicb.2025.1499686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Processed jujube products are susceptible to contamination by fungi such as Aspergillus spp., which produces mycotoxins that could lead to health problems in consumers. In this study, 58 samples of processed jujube products (including 5 types such as dried jujubes) were collected from different markets in Shihezi (Xinjiang, China). The fungal diversity and the fungi isolated from processed jujube products were systematically analyzed through high-throughput sequencing and molecular biological identification (based on the ITS and/or BenA and CaM regions). In total, the 105 strains of fungi were isolated and identified as belonging to the dominant genera were Aspergillus, Cladosporium, Alternaria, and Penicillium. High-throughput sequencing indicated that Alternaria, Didymella, Cladosporium, and Aspergillus were the dominant fungi in processed jujube products. ELISA showed that A. flavus produced about 19.3862-21.7583 μg/L, 6.5309-11.0411 μg/L, 0-15.4407 μg/L, 0-5.6354 μg/L, and 0-6.0545 μg/L of AFT, AFB1, AFB2, AFM1, and AFM2, respectively. In addition, concentrations of OTA produced by A. niger, A. tubingensis, and A. ochraceus were found to range from 5.2019 to 18.5207 μg/L. Therefore, the separation of Aspergillus with good mycotoxin-producing abilities from processed jujube products poses a latent threat to consumer health.
Collapse
Affiliation(s)
- Tianzhi Li
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Hua Ji
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Jingtao Sun
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yinghao Li
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yue Xu
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Wenyi Ma
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Han Sun
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
3
|
Zhang Y, Liu C, van der Fels‐Klerx HJ. Occurrence, toxicity, dietary exposure, and management of Alternaria mycotoxins in food and feed: A systematic literature review. Compr Rev Food Sci Food Saf 2025; 24:e70085. [PMID: 39746866 PMCID: PMC11695269 DOI: 10.1111/1541-4337.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/18/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
Alternaria mycotoxins are emerging contaminants frequently detected in food products and threaten human health. This systematic review aims to provide an up-to-date overview of scientific data and knowledge and gaps therein of natural occurrence, toxicological effects, dietary exposure, and prevention and control management of Alternaria mycotoxins in food and feed. A systematic review has been performed, using the databases Scopus and PubMed, retrieving relevant scientific papers published in English from 2011 to 2024. Alternaria mycotoxins are widely present in various food and feed products, with tomatoes and cereals being the most contaminated products. From the Alternaria mycotoxins, tenuazonic acid (TeA) and alternariol were reported with the highest detection rate and concentrations. Identified toxicological effects vary between the different Alternaria mycotoxins and include carcinogenicity, immune toxicity, cytotoxicity, and genotoxicity. Dietary exposure assessments for Alternaria mycotoxins have been conducted in several countries but vary in their scope. The calculations and risk values suggest that exposure of children to TeA via their diet is close to their tolerable daily intake. A similar finding has been reported for exposure of adults to alternariol and alternariol monomethyl ether via food consumption. Most Alternaria mycotoxins are heat-stable and cannot easily be removed during food processing; therefore, prevention and control measures for Alternaria mycotoxin contamination in food and feed are crucial. Fungicide and biocontrol applications have been shown effective in reducing Alternaria fungal growth and toxin production, and the development of predictive models may be promising. Collectively, they can contribute to mitigating the impact of Alternaria mycotoxins on human health.
Collapse
Affiliation(s)
- Yimin Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
- Business Economics GroupWageningen University & ResearchWageningenThe Netherlands
- Wageningen Food Safety ResearchWageningen University & ResearchWageningenThe Netherlands
| | - Cheng Liu
- Wageningen Food Safety ResearchWageningen University & ResearchWageningenThe Netherlands
| | - H. J. van der Fels‐Klerx
- Business Economics GroupWageningen University & ResearchWageningenThe Netherlands
- Wageningen Food Safety ResearchWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
4
|
Wang P, Wang H, Wang X, Li Y, Sun J, Wang X, Zhang G. Mycotoxins in grains (products), Gansu province, China and risk assessment. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:101-109. [PMID: 38234288 DOI: 10.1080/19393210.2023.2300652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
This study aimed to estimate the dietary exposure towards mycotoxins of residents in Gansu province, China, from 2014-2020 through surveillance data on mycotoxins in grains and grain products. Fumonisin B1 (FB1), Deoxynivalenol (DON), 3- and 15-Acetyl-deoxynivalenol (3-ADON and 15-ADON), Tentoxin (TEN), Tenuazonic acid (TeA) and Zearalenone (ZEN) in 863 grains and grain products were detected by HPLC-MS and UPLC-MS. DON was the most detected mycotoxin of all samples. For women, the average dietary exposure to DON was 1.49 μg/kg bw/day, with 55.8% of the individuals eating dried noodles exceeding tolerable daily intake. The hazard quotient values were 1.24-12.60, so greater than 1 for DON at the average, 90th percentile, 95th percentile, and maximum levels: 44.6% of the HQ values for men and 45.7% for women were greater than 1.
Collapse
Affiliation(s)
- Ping Wang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| | - Haixia Wang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| | - Xin Wang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| | - Yongjun Li
- Gansu Provincial Centre for Disease Control and Prevention, Lanzhou, People's Republic of China
| | - Jianyun Sun
- Gansu Provincial Centre for Disease Control and Prevention, Lanzhou, People's Republic of China
| | - Xiaoxia Wang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| | - Gexiang Zhang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
5
|
Saleh I, Zeidan R, Abu-Dieyeh M. The characteristics, occurrence, and toxicological effects of alternariol: a mycotoxin. Arch Toxicol 2024; 98:1659-1683. [PMID: 38662238 PMCID: PMC11106155 DOI: 10.1007/s00204-024-03743-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Alternaria species are mycotoxin-producing fungi known to infect fresh produce and to cause their spoilage. Humans get exposed to fungal secondary metabolites known as mycotoxin via the ingestion of contaminated food. Alternariol (AOH) (C14H10O5) is an isocoumarins produced by different species of Alternaria including Alternaria alternata. AOH is often found in grain, fruits and fruits-based food products with high levels in legumes, nuts, and tomatoes. AOH was first discovered in 1953, and it is nowadays linked to esophagus cancer and endocrine disruption due to its similarity to estrogen. Although considered as an emerging mycotoxin with no regulated levels in food, AOH occurs in highly consumed dietary products and has been detected in various masked forms, which adds to its occurrence. Therefore, this comprehensive review was developed to give an overview on recent literature in the field of AOH. The current study summarizes published data on occurrence levels of AOH in different food products in the last ten years and evaluates those levels in comparison to recommended levels by the regulating entities. Such surveillance facilitates the work of health risk assessors and highlights commodities that are most in need of AOH levels regulation. In addition, the effects of AOH on cells and animal models were summarized in two tables; data include the last two-year literature studies. The review addresses also the main characteristics of AOH and the possible human exposure routes, the populations at risk, and the effect of anthropogenic activities on the widespread of the mycotoxin. The commonly used detection and control methods described in the latest literature are also discussed to guide future researchers to focus on mitigating mycotoxins contamination in the food industry. This review aims mainly to serve as a guideline on AOH for mycotoxin regulation developers and health risk assessors.
Collapse
Affiliation(s)
- Iman Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Randa Zeidan
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammed Abu-Dieyeh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
6
|
Yang R, Zhao L, Wang F, Chen J, Ma X, Luan Y, Kong W. High-throughput extraction and automatic purification of alternariol from edible and medicinal herbs based on aptamer-functionalized magnetic nanoparticles. J Sep Sci 2024; 47:e2300870. [PMID: 38471979 DOI: 10.1002/jssc.202300870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Mycotoxin contamination is widespread in plants and herbs, posing serious threats to the consumer and human health. Of them, alternariol (AOH) has attracted great attention as an "emerging" mycotoxin in medicinal herbs. However, a specific and high-throughput extraction method for AOH is currently lacking. Thus, developing an efficient pre-treatment technique for AOH detection is extremely vital. Here, a novel automated magnetic solid-phase extraction method was proposed for the highly efficient extraction of AOH. Combining the aptamer-functionalized magnetic nanoparticles (AMNPs) and the automatic purification instrument, AOH could be extracted in medicinal herbs in high throughput (20 samples) and a short time (30 min). The main parameters affecting extraction were optimized, and the method was finally carried out by incubation AMNPs with 3 mL of sample solution for 10 min, and then desorption in 75% methanol for liquid-phase detection. Under optimal conditions, good reproducibility, stability, and selectivity were realized with an adsorption capacity of 550.84 ng/mg. AOH extraction in three edible herbs showed good resistance to matrix interference with recovery rates from 86% to 111%. In combination with AMNPs and the automatic purification instrument, high-throughput and labor-free extraction of AOH in different complex matrices was achieved, which could be extended in other complex matrices.
Collapse
Affiliation(s)
- Ruiqi Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Liping Zhao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fengchao Wang
- College of Sciences, Shanghai Institute of Technology, Shanghai, China
| | - Jin Chen
- College of Sciences, Shanghai Institute of Technology, Shanghai, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Luan
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Weijun Kong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Wu YM, Yang XQ, Yang YB, Cai L, He FF, Ding ZT. The antifungal metabolites from coculture of Aspergillus fumigatus and Alternaria alternata associated with Coffea arabica. Nat Prod Res 2024; 38:753-758. [PMID: 37021795 DOI: 10.1080/14786419.2023.2196722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
One new cyclohexenone derivative, asperfumtone A (1) along with six known compounds were obtained from the coculture of Aspergillus fumigatus and Alternaria alternata associated with Coffea arabica. The configuration of 2 was first reported in the research. The structures were determined by extensive spectroscopic analyses, and ECD calculation. Compounds 3, 4 and 7 showed significant antifungal activities against coffee phytopathogens A. alternata and Fusarium incarnatum with MICs of 1 μg/mL. Compounds 1 and 2 showed weak antifungal activities against A. alternata and F. incarnatum with MICs of 32-64 μg/mL.
Collapse
Affiliation(s)
- Ya-Mei Wu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China
| | - Xue-Qiong Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China
| | - Ya-Bin Yang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China
| | - Le Cai
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China
| | - Fei-Fei He
- School of Agriculture, Yunnan University, Kunming, People's Republic of China
| | - Zhong-Tao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, People's Republic of China
- Yunnan University of Chinese Medicine, Kunming, People's Republic of China
| |
Collapse
|
8
|
Lan F, Jiang F, Zang H, Wang Z. Saturated brine dissolution and liquid-liquid extraction combined with UPLC-MS/MS for the detection of typical Alternaria toxins in pear paste. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6861-6870. [PMID: 37288717 DOI: 10.1002/jsfa.12770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/26/2023] [Accepted: 06/08/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Alternaria can infest pears to produce metabolites, which can contaminate pears and their processed products. Pear paste, one of the most important pear-based products, is popular among Chinese consumers especially for its cough relieving and phlegm removal properties. Although people are concerned about the risk of Alternaria toxins in many agro-foods and their products, little is known about the toxins in pear paste. RESULTS A method was developed for the determination of tenuazonic acid, alternariol, alternariol menomethyl ether, altenuene and tentoxin in pear paste by ultra-performance liquid chromatography tandem mass spectrometry with saturated sodium sulphate dissolution and acidified acetonitrile extraction. The mean recoveries of the five toxins were 75.3-113.8% with relative standard deviations of 2.8-12.2% at spiked levels of 1.0-100 μg kg-1 . Alternaria toxins were detected in 53 out of 76 samples, with a detection rate of 71.4%. Tenuazonic acid (67.1%), alternariol (35.5%), tentoxin (23.7%) and alternariol monomethyl ether (7.9%) were detected in all samples at concentrations of < limit of quantification (LOQ)-105.0 μg kg-1 , < LOQ-32.1 μg kg-1 , < LOQ-74.2 μg kg-1 and < LOQ-15.1 μg kg-1 , respectively. Altenuene was never found in pear paste samples. Tenuazonic acid, alternariol, tentoxin and alternariol menomethyl ether should be focused on due to their toxicity and detection rates. CONCLUSION To the best of our knowledge, this is the first report on the detection method and residue levels of Alternaria toxins in pear paste. The proposed method and research data can provide technical support for the Chinese government to continuously monitor and control Alternaria toxins in pear paste, especially tenuazonic acid. It can also provide a useful reference for related researchers. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Feng Lan
- Yantai Key Laboratory of Quality Safety and Nutrition of Characteristic Fruits, Quality Inspection Center, Yantai Academy of Agricultural Sciences in Shandong Province, Yantai, P. R. China
| | - Fudong Jiang
- Yantai Key Laboratory of Quality Safety and Nutrition of Characteristic Fruits, Quality Inspection Center, Yantai Academy of Agricultural Sciences in Shandong Province, Yantai, P. R. China
| | - Hongwei Zang
- Yantai Key Laboratory of Quality Safety and Nutrition of Characteristic Fruits, Quality Inspection Center, Yantai Academy of Agricultural Sciences in Shandong Province, Yantai, P. R. China
| | - Zhixin Wang
- Yantai Key Laboratory of Quality Safety and Nutrition of Characteristic Fruits, Quality Inspection Center, Yantai Academy of Agricultural Sciences in Shandong Province, Yantai, P. R. China
| |
Collapse
|
9
|
Abreu DCP, Vargas EA, Oliveira FADS, Uetanabaro APT, Pires PN, Bazzana MJF, Saczk AA. Study of co-occurrence of mycotoxins in cocoa beans in Brazil by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1049-1058. [PMID: 37505626 DOI: 10.1080/19440049.2023.2238838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023]
Abstract
In this study, 135 samples of cocoa beans collected in the Amazon and Atlantic Forest regions of Brazil were analysed to evaluate the possible co-occurrence of 34 mycotoxins. The results indicate that 42% of the cocoa samples exhibited quantifiable levels for 11 mycotoxins: aflatoxins (AFs) B1, B2 and G1; ochratoxin A; citrinin; cyclopiazonic acid; tenuazonic acid; paxilline; sterigmatocystin; zearalenone and fumonisin B2. Of the samples, 18% exhibited the co-occurrence of up to six mycotoxins. No toxins belonging to the groups of trichothecenes or ergot alkaloids were detected. Contingency analysis of the incidence of mycotoxins did not show significant differences between the two regions evaluated. Seven samples were contaminated with AFs, while only one contained ochratoxin A above 10 μg kg-1. The accuracy of the method was evaluated by proficiency testing for ochratoxin A, where satisfactory Z-scores were obtained.
Collapse
Affiliation(s)
| | - Eugenia Azevedo Vargas
- Laboratory of Quality Control and Food Safety, National Agricultural Laboratory of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Shukla S, Singh P, Shukla S, Ali S, Didwania N. Scope of Onsite, Portable Prevention Diagnostic Strategies for Alternaria Infections in Medicinal Plants. BIOSENSORS 2023; 13:701. [PMID: 37504100 PMCID: PMC10377195 DOI: 10.3390/bios13070701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Medicinal plants are constantly challenged by different biotic inconveniences, which not only cause yield and economic losses but also affect the quality of products derived from them. Among them, Alternaria pathogens are one of the harmful fungal pathogens in medicinal plants across the globe. Therefore, a fast and accurate detection method in the early stage is needed to avoid significant economic losses. Although traditional methods are available to detect Alternaria, they are more time-consuming and costly and need good expertise. Nevertheless, numerous biochemical- and molecular-based techniques are available for the detection of plant diseases, but their efficacy is constrained by differences in their accuracy, specificity, sensitivity, dependability, and speed in addition to being unsuitable for direct on-field studies. Considering the effect of Alternaria on medicinal plants, the development of novel and early detection measures is required to detect causal Alternaria species accurately, sensitively, and rapidly that can be further applied in fields to speed up the advancement process in detection strategies. In this regard, nanotechnology can be employed to develop portable biosensors suitable for early and correct pathogenic disease detection on the field. It also provides an efficient future scope to convert innovative nanoparticle-derived fabricated biomolecules and biosensor approaches in the diagnostics of disease-causing pathogens in important medicinal plants. In this review, we summarize the traditional methods, including immunological and molecular methods, utilized in plant-disease diagnostics. We also brief advanced automobile and efficient sensing technologies for diagnostics. Here we are proposing an idea with a focus on the development of electrochemical and/or colorimetric properties-based nano-biosensors that could be useful in the early detection of Alternaria and other plant pathogens in important medicinal plants. In addition, we discuss challenges faced during the fabrication of biosensors and new capabilities of the technology that provide information regarding disease management strategies.
Collapse
Affiliation(s)
- Sadhana Shukla
- Manav Rachna Centre for Medicinal Plant Pathology, Manav Rachna International Institute of Research and Studies, Faridabad 121004, India
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurgaon 122003, India
| | - Pushplata Singh
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurgaon 122003, India
| | - Shruti Shukla
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurgaon 122003, India
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Nidhi Didwania
- Manav Rachna Centre for Medicinal Plant Pathology, Manav Rachna International Institute of Research and Studies, Faridabad 121004, India
| |
Collapse
|
11
|
Dettman JR, Eggertson QA, Kim NE. Species diversity and molecular characterization of Alternaria section Alternaria isolates collected mainly from cereal crops in Canada. Front Microbiol 2023; 14:1194911. [PMID: 37303811 PMCID: PMC10249498 DOI: 10.3389/fmicb.2023.1194911] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 06/13/2023] Open
Abstract
Alternaria is often one on the most abundant fungal genera recovered from a wide array of plant hosts and environmental substrates. Many species within the sub-generic Alternaria section Alternaria are common plant pathogens that cause pre-harvest losses due to reduced productivity and post-harvest losses due to spoilage and contamination with mycotoxins. As certain species of Alternaria may have distinct mycotoxin profiles, and very broad host ranges, understanding the distribution of species by geography and host is critical for disease prediction, toxicological risk assessment, and guiding regulatory decisions. In two previous reports, we performed phylogenomic analyses to identify highly informative molecular markers for Alternaria section Alternaria, and validated their diagnostic ability. Here, we perform molecular characterization of 558 section Alternaria strains, collected from 64 host genera in 12 countries, using two of these section-specific loci (ASA-10 and ASA-19) along with the RNA polymerase II second largest subunit (rpb2) gene. The majority of strains (57.4%) originated from various cereal crops in Canada, which formed the main focus of our study. Phylogenetic analyses were used to classify strains into section Alternaria species/lineages, demonstrating that the most common species on Canadian cereal crops are Alternaria alternata and A. arborescens. Further population genetic analyses were consistent with A. alternata being a widely distributed species with relatively low levels of geographic isolation (i.e., Canadian isolates did not form distinct clades when compared to other regions). Our expanded sampling of A. arborescens has greatly increased the known diversity of this group, with A. arborescens isolates forming at least three distinct phylogenetic lineages. Proportionally, A. arborescens is more prevalent in Eastern Canada than in Western Canada. Sequence analyses, putative hybrids, and mating-type distributions provided some evidence for recombination events, both within and between species. There was little evidence for associations between hosts and genetic haplotypes of A. alternata or A. arborescens.
Collapse
|
12
|
Kryukov V, Kosman E, Tomilova O, Polenogova O, Rotskaya U, Yaroslavtseva O, Salimova D, Kryukova N, Berestetskiy A. Tenuazonic acid alters immune and physiological reactions and susceptibility to pathogens in Galleria mellonella larvae. Mycotoxin Res 2023; 39:135-149. [PMID: 37071305 DOI: 10.1007/s12550-023-00479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 04/19/2023]
Abstract
Tenuazonic acid (TeA) is synthesized by phytopathogenic and opportunistic fungi and is detected in a broad range of foods. This natural compound is of interest in terms of toxicity to animals, but its mechanisms of action on insects are poorly understood. We administered TeA orally at different concentrations (0.2-5.0 mg/[gram of a growth medium]) to the model insect Galleria mellonella, with subsequent estimation of physiological, histological, and immunological parameters in different tissues (midgut, fat body, and hemolymph). Susceptibility of the TeA-treated larvae to pathogenic microorganisms Beauveria bassiana and Bacillus thuringiensis was also analyzed. The feeding of TeA to the larvae led to a substation delay of larval growth, apoptosis-like changes in midgut cells, and an increase in midgut bacterial load. A decrease in activities of detoxification enzymes and downregulation of genes Nox, lysozyme, and cecropin in the midgut and/or hemocoel tissues were detected. By contrast, genes gloverin, gallerimycin, and galiomycin and phenoloxidase activity proved to be upregulated in the studied tissues. Hemocyte density did not change under the influence of TeA. TeA administration increased susceptibility of the larvae to B. bassiana but diminished their susceptibility to B. thuringiensis. The results indicate that TeA disturbs wax moth gut physiology and immunity and also exerts a systemic action on this insect. Mechanisms underlying the observed changes in wax moth susceptibility to the pathogens are discussed.
Collapse
Affiliation(s)
- Vadim Kryukov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, 630091, Frunze 11, Novosibirsk, Russia
| | - Elena Kosman
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, 630091, Frunze 11, Novosibirsk, Russia
| | - Oksana Tomilova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, 630091, Frunze 11, Novosibirsk, Russia
- All-Russian Institute of Plant Protection, 196608, Podbel'skogo Sh. 3, Pushkin, St. Petersburg, Russia
| | - Olga Polenogova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, 630091, Frunze 11, Novosibirsk, Russia.
| | - Ulyana Rotskaya
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, 630091, Frunze 11, Novosibirsk, Russia
| | - Olga Yaroslavtseva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, 630091, Frunze 11, Novosibirsk, Russia
| | - Dilara Salimova
- All-Russian Institute of Plant Protection, 196608, Podbel'skogo Sh. 3, Pushkin, St. Petersburg, Russia
| | - Natalia Kryukova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, 630091, Frunze 11, Novosibirsk, Russia
| | - Alexander Berestetskiy
- All-Russian Institute of Plant Protection, 196608, Podbel'skogo Sh. 3, Pushkin, St. Petersburg, Russia
| |
Collapse
|
13
|
Development of a Novel LC-MS/MS Multi-Method for the Determination of Regulated and Emerging Food Contaminants Including Tenuazonic Acid, a Chromatographically Challenging Alternaria Toxin. Molecules 2023; 28:molecules28031468. [PMID: 36771134 PMCID: PMC9921091 DOI: 10.3390/molecules28031468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The regulation of food contaminants in the European Union (EU) is comprehensive, and there are several compounds in the register or being added to the recommendation list. Recently, European standard methods for analysis have also been issued. The quick analysis of different groups of analytes in one sample requires a number of methods and the simultaneous use of various instruments. The aim of the present study was to develop a method that could analyze several groups of food contaminants: in this case, 266 pesticides, 12 mycotoxins, 14 alkaloid toxins, and 3 Alternaria toxins. The main advantage of the herein described approach over other methods is the simultaneous analysis of tenuazonic acid (TEA) and other relevant food contaminants. The developed method unites the newly published standard methods such as EN 15662:2018, EN 17194:2019, EN 17256:2019, EN 17425:2021, EN 17521:2021, which describes the analysis of both regulated and emerging contaminants. The developed method is based on a QuEChERS sample preparation, followed by LC-MS/MS analysis under alkaline mobile phase conditions. The pH of the aqueous eluent was set to 8.3, which resulted in baseline separation among ergot alkaloids and their corresponding epimers, a symmetric chromatographic peak shape for analyzing TEA and fit-for-purpose sensitivity for MS/MS detection in both positive and negative ionization modes. Those compounds, which possess the corresponding isotopically labeled internal standards (ISTD), allowed for direct quantification by the developed method and no further confirmation was necessary. This was proven by satisfactory analyses of a number of quality control (QC), proficiency test (PT), and validation samples.
Collapse
|
14
|
Bacha SAS, Li Y, Nie J, Xu G, Han L, Farooq S. Comprehensive review on patulin and Alternaria toxins in fruit and derived products. FRONTIERS IN PLANT SCIENCE 2023; 14:1139757. [PMID: 37077634 PMCID: PMC10108681 DOI: 10.3389/fpls.2023.1139757] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Mycotoxins are toxic secondary metabolites produced by certain fungi, which can contaminate various food commodities, including fruits and their derived products. Patulin and Alternaria toxins are among the most commonly encountered mycotoxins in fruit and their derived products. In this review, the sources, toxicity, and regulations related to these mycotoxins, as well as their detection and mitigation strategies are widely discussed. Patulin is a mycotoxin produced mainly by the fungal genera Penicillium, Aspergillus, and Byssochlamys. Alternaria toxins, produced by fungi in the Alternaria genus, are another common group of mycotoxins found in fruits and fruit products. The most prevalent Alternaria toxins are alternariol (AOH) and alternariol monomethyl ether (AME). These mycotoxins are of concern due to their potential negative effects on human health. Ingesting fruits contaminated with these mycotoxins can cause acute and chronic health problems. Detection of patulin and Alternaria toxins in fruit and their derived products can be challenging due to their low concentrations and the complexity of the food matrices. Common analytical methods, good agricultural practices, and contamination monitoring of these mycotoxins are important for safe consumption of fruits and derived products. And Future research will continue to explore new methods for detecting and managing these mycotoxins, with the ultimate goal of ensuring the safety and quality of fruits and derived product supply.
Collapse
Affiliation(s)
- Syed Asim Shah Bacha
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Yinping Li
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Guofeng Xu
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Saqib Farooq
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| |
Collapse
|
15
|
Woo SY, Lee SY, Jeong TK, Park SM, Auh JH, Shin HS, Chun HS. Natural Occurrence of Alternaria Toxins in Agricultural Products and Processed Foods Marketed in South Korea by LC-MS/MS. Toxins (Basel) 2022; 14:toxins14120824. [PMID: 36548721 PMCID: PMC9786207 DOI: 10.3390/toxins14120824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022] Open
Abstract
Alternaria mycotoxins including alternariol (AOH), alternariol monomethyl ether (AME), altenuene (ALT), altertoxin-I (ATX-I), tentoxin (TEN), and tenuazonic acid (TeA), are ubiquitous contaminants in agricultural products. A method for the simultaneous determination of these six toxins by ultrahigh performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) with solid phase extraction (SPE) was validated in rice, sesame, tomato, and apple juice matrices. The performance of the method was evaluated in terms of linearity (R2 > 0.999), the limit of detection (0.04-1.67 μg/kg), the limit of quantification (0.12-5.06 μg/kg), recovery (80.0-114.7%), and precision (<17.7%). The validated method was applied to monitor 152 marketed food samples in South Korea, as well as to investigate the co-occurrence and correlation between Alternaria toxins. The mean occurrence levels were 2.77 μg/kg for AOH, 4.36 μg/kg for AME, 0.14 μg/kg for ALT, 0.11 μg/kg for ATX-I, 0.43 μg/kg for TEN, and 104.56 μg/kg for TeA. Mean and extreme (95th percentile) daily dietary exposures of South Koreans to Alternaria toxins were estimated to be 22.93 ng/kg b.w./day and 86.07 ng/kg b.w./day, respectively.
Collapse
Affiliation(s)
- So Young Woo
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sang Yoo Lee
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Tae Kyun Jeong
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Su Mi Park
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Joong Hyuck Auh
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Hyang Sook Chun
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
- Correspondence:
| |
Collapse
|
16
|
Oueslati S, Ben Yakhlef S, Vila-Donat P, Pallarés N, Ferrer E, Barba F, Berrada H. Multi-mycotoxin determination in coffee beans marketed in Tunisia and the associated dietary exposure assessment. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Lin H, Ni L, Chen H, Xu W. A simple and versatile strategy for sensitive SIDA-UHPLC-MS/MS analysis of Alternaria toxins in olive oil. Anal Chim Acta 2022; 1232:340451. [DOI: 10.1016/j.aca.2022.340451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/12/2022] [Accepted: 09/25/2022] [Indexed: 11/15/2022]
|
18
|
Schultz J, Umberath KM, Raters M, Heckel F. About Alternaria toxins in cocoa and chocolate products-method development and monitoring of alternariol, alternariol monomethyl ether and tenuazonic acid. Mycotoxin Res 2022; 38:167-173. [PMID: 35437629 DOI: 10.1007/s12550-022-00457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/26/2022]
Abstract
A quick and selective analytical method was developed via LC-MS/MS for the simultaneous quantitation of alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TeA) which belong to the large group of secondary metabolites produced by fungi of the genus Alternaria. Cocoa is susceptible to a number of toxin-producing microorganisms, including Aspergillus and Penicillium species. The method relies on a single-step extraction, followed by an easy clean up, dilution of the raw extract and direct analysis. To assess whether cocoa and chocolate products can be a source of Alternaria toxins, a monitoring of cocoa and chocolate products (N = 99) as well as cocoa raw and semi-finished materials (cocoa shells, cocoa masses; N = 10) was performed. As the results, cocoa and products made from cocoa (without other ingredients) are no source of the Alternaria toxins considered here.
Collapse
Affiliation(s)
- Julia Schultz
- Food Chemistry Institute of the Association of the German Confectionery Industry, Adamsstraße 52-54, 51063, Köln, Germany
| | - Kim Marie Umberath
- Food Chemistry Institute of the Association of the German Confectionery Industry, Adamsstraße 52-54, 51063, Köln, Germany
| | - Marion Raters
- Food Chemistry Institute of the Association of the German Confectionery Industry, Adamsstraße 52-54, 51063, Köln, Germany.
| | - Frank Heckel
- Food Chemistry Institute of the Association of the German Confectionery Industry, Adamsstraße 52-54, 51063, Köln, Germany
| |
Collapse
|
19
|
Zhao X, Liu D, Yang X, Zhang L, Yang M. Detection of seven Alternaria toxins in edible and medicinal herbs using ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem X 2022; 13:100186. [PMID: 35499006 PMCID: PMC9039941 DOI: 10.1016/j.fochx.2021.100186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022] Open
Abstract
A modified QuEChERS-UPLC-MS/MS method was established to investigate alternaria mycotoxins. The method was applied to 260 edible and medicinal herb samples. 28.46% of samples were contaminated by at least one toxin. AME with a high occurrence in analyzed herbs.
Alternaria mycotoxins are ubiquitous mycotoxins that contaminate food and animal feed. Here, an UPLC-MS/MS was developed and used for the detection of seven Alternaria mycotoxins in 19 different edible and medicinal herbs. Extensive optimization resulted in a simple and convenient sample preparation procedure with satisfactory extraction and a lower matrix effect. LOQs ranged from 0.01 to 2.0 ng/mL. Recoveries varied between 71.44% and 112.65%, with RSD less than 12%. The method was successfully applied for use in the mycotoxin analysis of 260 samples. A high percentage (28.46%) of samples were contaminated by 1–5 mycotoxins. Alternariol mono methylether was the predominant mycotoxin with high percentage of positive samples (37.5%), followed by alternariol (22.5%), alternariol (17.5%), tentoxin (10.83%), altertoxin Ⅰ (7.5%), and altenusin (4.17%). Collectively, the natural incidence data obtained from this study will help with better, validated risk assessments and efforts towards more comprehensive, future regulation.
Collapse
Key Words
- AA, acetic acid
- ACN, acetonitrile
- Alternaria
- Alternaria toxins:alternariol, AOH, alternariol mono methylether, AME, altenuene, ALT, altenusin, ALS, altertoxin Ⅰ, ATX-Ⅰ, tenuazonic acid, TeA, tentoxin, TEN
- C18, octadecyl
- CEs, collision energies
- EFSA, European Food Safety Authority
- ESI, electrospray ionization
- FA, formic acid
- GCB, graphitized carbon black
- Herbs
- LOD, limit of detection
- LOQ, limit of quantification
- MCX, Mixed-mode cationic exchange
- ME, Matrix effect
- MRM, multiple reaction monitoring (MRM)
- MeOH, methanol
- Mycotoxin
- Occurrence
- PSA, primary secondary amines
- QuEChERS
- QuEChERS, quick, easy, cheap, effective, rugged, safe
- SPE, solid phase extraction
- TCMs, traditional Chinese medicines
- UPLC-MS/MS
- UPLC-MS/MS, ultra-high performance liquid chromatography-triple quadrupole mass spectrometry
- relative standard deviation, RSD
Collapse
Affiliation(s)
- Xiangsheng Zhao
- Key Laboratory of Resources Conservation and Development of Southern Medicine of Hainan Province & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
| | - Dan Liu
- Key Laboratory of Resources Conservation and Development of Southern Medicine of Hainan Province & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
| | - Xinquan Yang
- Key Laboratory of Resources Conservation and Development of Southern Medicine of Hainan Province & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
| | - Lei Zhang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Meihua Yang
- Key Laboratory of Resources Conservation and Development of Southern Medicine of Hainan Province & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
20
|
Lattanzio VMT, Verdini E, Sdogati S, Bibi R, Ciasca B, Pecorelli I. Monitoring Alternaria toxins in Italian food to support upcoming regulation. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2022; 15:42-51. [PMID: 34895088 DOI: 10.1080/19393210.2021.2000505] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The collection of occurrence data on Alternaria toxins in food and feed across the European countries is required since 2012 by the European Commission, endorsing the relevant scientific opinion by the EFSA CONTAM Panel. Within this framework, occurrence data for Alternaria toxins (Alternariol, Alternariol monomethyl ether, Tenuazonic acid, Tentoxin, and Altenuene) in 97 samples of cereal foods, tomato products, and sunflower seeds have been provided as requested by the Italian national monitoring programme (years 2017-2020). To this purpose, an LC-MS/MS method was set up and validated, obtaining fit for purpose sensitivity, recoveries (70-120%), repeatability (≤20%) and within laboratory reproducibility (≤26%). Occurrence data showed that oilseeds were the most contaminated food group with levels of Tenuazonic acid up to 16752 µg/kg and Tentoxin up to 570 µg/kg, whereas for the other mycotoxin/commodities combinations, the percentage of left censored data (below the limit of quantification) ranged from 74 to 100%.
Collapse
Affiliation(s)
- Veronica M T Lattanzio
- National Research Council of Italy (CNR), Institute of Sciences of Food Production (ISPA), Bari, Italy
| | - Emanuela Verdini
- Chemistry Department, Pesticides and Mycotoxins Laboratory, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Stefano Sdogati
- Chemistry Department, Pesticides and Mycotoxins Laboratory, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Rita Bibi
- Chemistry Department, Pesticides and Mycotoxins Laboratory, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Biancamaria Ciasca
- National Research Council of Italy (CNR), Institute of Sciences of Food Production (ISPA), Bari, Italy
| | - Ivan Pecorelli
- Chemistry Department, Pesticides and Mycotoxins Laboratory, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| |
Collapse
|
21
|
Quílez-Alburquerque J, García-Iriepa C, Marazzi M, Descalzo AB, Orellana G. Interaction of a 1,3-Dicarbonyl Toxin with Ru(II)-Biimidazole Complexes for Luminescence Sensing: A Spectroscopic and Photochemical Experimental Study Rationalized by Time-Dependent Density Functional Theory Calculations. Inorg Chem 2022; 61:328-337. [PMID: 34923820 PMCID: PMC8753653 DOI: 10.1021/acs.inorgchem.1c02887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 12/05/2022]
Abstract
A family of ruthenium(II) complexes containing one 2,2'-biimidazole (bim) ligand and two polypyridyl (NN) ligands has been prepared and their photophysical and photochemical features have been tested in the presence of tenuazonic acid (TeA), a widespread food and feed mycotoxin of current concern. While not tested in in vivo studies, TeA and other secondary metabolites of Alternaria fungi are suspected to exert adverse effects on the human health, so sensors and rapid analytical procedures are required. It is well-known that 1,3-dicarbonyl compounds such as TeA are relatively easy to deprotonate (the pKa of TeA is 3.5), yielding an enolate anion stabilized by resonance. The chelating and hydrogen-donor features of bim allow simultaneous binding to the metal core and to the target β-diketonate delocalized anion. Such a binding induces changes in the blue absorption (40 nm bathochromic shift), red luminescence intensity (>75% quenching), and triplet lifetime (0.2 μs decrease) of the Ru(NN)2(bim)2+ luminophore. Moreover, we have computationally rationalized, by time-dependent density functional theory, the structure of the different adducts of Ru-bim complexes with TeA and the electronic nature of the spectral absorption bands and their change upon the addition of TeA.
Collapse
Affiliation(s)
- José Quílez-Alburquerque
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Cristina García-Iriepa
- Departamento
de Química Analítica, Química Física e
Ingeniería Química, Universidad
de Alcalá, Alcalá
de Henares (Madrid) 28871, Spain
- Instituto
de Investigación Química “Andrés M. del
Río” (IQAR), Universidad de
Alcalá, Alcalá de
Henares (Madrid) 28871, Spain
| | - Marco Marazzi
- Departamento
de Química Analítica, Química Física e
Ingeniería Química, Universidad
de Alcalá, Alcalá
de Henares (Madrid) 28871, Spain
- Instituto
de Investigación Química “Andrés M. del
Río” (IQAR), Universidad de
Alcalá, Alcalá de
Henares (Madrid) 28871, Spain
| | - Ana B. Descalzo
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Guillermo Orellana
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Madrid 28040, Spain
| |
Collapse
|
22
|
Zhou H, Pan S, Tan H, Yang Y, Guo T, Zhang Y, Ma L. A novel high-sensitive indirect competitive chemiluminescence enzyme immunoassay based on monoclonal antibody for tenuazonic acid (TeA) detection. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03905-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Toxigenic potential of Alternaria species from cereals. ZBORNIK MATICE SRPSKE ZA PRIRODNE NAUKE 2022. [DOI: 10.2298/zmspn2242039b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Toxigenic potential of four and one isolate of A. alternata and A.
tenuissima, respectively, on durum wheat cultivar Dusan (Triticum durum L.)
and common wheat cultivar Barbee (T. vulgare L.) were tested. Three
different wheat / isolate genotype combinations were used for artificial
inoculation of grains under laboratory conditions and toxins production.
Alternaria toxins alternariol (AOH), alternariol monomethyl ether (AME),
tentoxin (TEN), tenuazonic acid (TeA) and altenuen (ALT) concentrations
were determined by LC-MS/MS. Cultivar Barbee proved to be a more suitable
substrate for toxin production, whereby AOH, AME and TeA were present in
highest concentrations. These results underline the possibility of fungal
infection and mycotoxin production by Alternaria species in field and under
storage conditions. Further research is needed for official regulation of
ac?ceptable levels of Alternaria mycotoxins in food and feed.
Collapse
|
24
|
Salimova D, Dalinova A, Dubovik V, Senderskiy I, Stepanycheva E, Tomilova O, Hu Q, Berestetskiy A. Entomotoxic Activity of the Extracts from the Fungus, Alternaria tenuissima and Its Major Metabolite, Tenuazonic Acid. J Fungi (Basel) 2021; 7:774. [PMID: 34575812 PMCID: PMC8468458 DOI: 10.3390/jof7090774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
The study of fungal antibiotics in their competitive interactions with arthropods may lead to the development of novel biorational insecticides. Extracts of Alternaria tenuissima MFP253011 obtained using various methods showed a wide range of biological activities, including entomotoxic properties. Analysis of their composition and bioactivity allowed us to reveal several known mycotoxins and unidentified compounds that may be involved in the entomotoxic activity of the extracts. Among them, tenuazonic acid (TeA), which was the major component of the A. tenuissima extracts, was found the most likely to have larvicidal activity against Galleria mellonella. In the intrahaemocoel injection bioassay, TeA was toxic to G. mellonella and of Zophobas morio with an LT50 of 6 and 2 days, respectively, at the level of 50 µg/larva. Administered orally, TeA inhibited the growth of G. mellonella larvae and caused mortality of Acheta domesticus adults (LT50 7 days) at a concentration of 250 µg/g of feed. TeA showed weak contact intestinal activity against the two phytophages, Tetranychus urticae and Schizaphis graminum, causing 15% and 27% mortality at a concentration of 1 mg/mL, respectively. TeA was cytotoxic to the Sf9 cell line (IC50 25 µg/mL). Thus, model insects such as G. mellonella could be used for further toxicological characterization of TeA.
Collapse
Affiliation(s)
- Dilara Salimova
- Department of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Podbelskogo Shosse, 3, Pushkin, 196608 Saint-Petersburg, Russia; (D.S.); (A.D.); (V.D.); (I.S.); (E.S.)
| | - Anna Dalinova
- Department of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Podbelskogo Shosse, 3, Pushkin, 196608 Saint-Petersburg, Russia; (D.S.); (A.D.); (V.D.); (I.S.); (E.S.)
| | - Vsevolod Dubovik
- Department of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Podbelskogo Shosse, 3, Pushkin, 196608 Saint-Petersburg, Russia; (D.S.); (A.D.); (V.D.); (I.S.); (E.S.)
| | - Igor Senderskiy
- Department of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Podbelskogo Shosse, 3, Pushkin, 196608 Saint-Petersburg, Russia; (D.S.); (A.D.); (V.D.); (I.S.); (E.S.)
| | - Elena Stepanycheva
- Department of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Podbelskogo Shosse, 3, Pushkin, 196608 Saint-Petersburg, Russia; (D.S.); (A.D.); (V.D.); (I.S.); (E.S.)
| | - Oksana Tomilova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze Str. 11, 630091 Novosibirsk, Russia;
| | - Qiongbo Hu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| | - Alexander Berestetskiy
- Department of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Podbelskogo Shosse, 3, Pushkin, 196608 Saint-Petersburg, Russia; (D.S.); (A.D.); (V.D.); (I.S.); (E.S.)
| |
Collapse
|
25
|
Quílez-Alburquerque J, Descalzo AB, Moreno-Bondi MC, Orellana G. Luminescent molecularly imprinted polymer nanocomposites for emission intensity and lifetime rapid sensing of tenuazonic acid mycotoxin. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Tölgyesi Á, Farkas T, Bálint M, McDonald TJ, Sharma VK. A Dilute and Shoot Strategy for Determining Alternaria Toxins in Tomato-Based Samples and in Different Flours Using LC-IDMS Separation. Molecules 2021; 26:1017. [PMID: 33671906 PMCID: PMC7918963 DOI: 10.3390/molecules26041017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/21/2022] Open
Abstract
Alternaria toxins are emerging mycotoxins whose regulation and standardization are in progress by the European Commission and the European Committee for Standardization. This paper describes a dilute and shoot approach to determine five Alternaria toxins in selected food samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The strategy involves sample extraction with acidified aqueous methanol, followed by a solvent change accomplished via sample evaporation and reconstitution. The quantification is based on isotope dilution, applying all corresponding isotopically labeled internal standards to compensate possible matrix effects of the analysis. The main advantages of the present method over other existing methods includes simple and effective sample preparation, as well as detection with high sensitivity. The five-fold sample dilution can decrease matrix effects, which were evaluated with both external and internal standard methods. The results demonstrated a limit of quantification lower than 1.0 µg/kg for all five analytes for the first time. The newly presented method showed acceptable accuracy (52.7-111%) when analyzing naturally contaminated and spiked standard samples at the described levels. The method was validated for tomato-based and flour samples (wheat, rye, and maize). The absolute recovery ranged from 66.7% to 91.6% (RSD < 10%). The developed method could be an alternative approach for those laboratories that exclude sample cleanup and pre-concentration of state-of-the-art instruments with enhanced sensitivity.
Collapse
Affiliation(s)
- Ádám Tölgyesi
- Bálint Analitika Ltd., Fehérvári út 144, 1116 Budapest, Hungary; (T.F.); (M.B.)
| | - Tamás Farkas
- Bálint Analitika Ltd., Fehérvári út 144, 1116 Budapest, Hungary; (T.F.); (M.B.)
| | - Mária Bálint
- Bálint Analitika Ltd., Fehérvári út 144, 1116 Budapest, Hungary; (T.F.); (M.B.)
| | - Thomas J. McDonald
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Rd., 1266 TAMU, College Station, TX 77843, USA;
| | - Virender K. Sharma
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Rd., 1266 TAMU, College Station, TX 77843, USA;
| |
Collapse
|
27
|
Ochratoxin A and citrinin in green coffee and dietary supplements with green coffee extract. Toxicon 2020; 188:172-177. [PMID: 33096150 DOI: 10.1016/j.toxicon.2020.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 11/21/2022]
Abstract
The aim of this study was to determine the degree of mold contamination and mycotoxin levels in commercially available green coffee products and dietary supplements with green coffee extract. The study included 34 samples from green coffee products: raw beans (n = 16), ground coffee (n = 15) and instant coffee (n = 3), as well as 22 samples from dietary supplements in form of capsules (n = 19), tablets (n = 2) and sachets (n = 1). Total mold count was determined with spread-plate method. Anamorphic mold were identified based on their microscopic morphology and the type of sporulation. Concentrations of mycotoxins, ochratoxin A and citrinin, were quantified by means of HPLC-fluorescence detection. Molds, typically Aspergillus spp. and Penicillium spp., were found in 94% of green coffee beans, 100% of ground and instant coffee samples, and 55% of dietary supplement samples. None of the samples contained detectable levels of citrinin. Ochratoxin A (0.4 ng/g) was detected in only one sample of raw green coffee beans, but in up to 40% and 67% of ground and instant coffee samples, respectively. Mean concentrations of ochratoxin A in ground and instant coffee samples were 3.28 ng/g and 4.09 ng/g, respectively, and maximum concentrations amounted to 6.65 ng/g and 7.44 ng/g, respectively. Ochratoxin A (mean concentration 9.60 ng/g, maximum level 31.4 ng/g) was also detected in up to 58% of the supplement capsules, but in none of tablets and sachets.
Collapse
|