1
|
Zhu H, Takeoka J, Sokra I, Horn L, Ngy L, Iguchi K, Utsunomiya Y, Wada M, Yamada A, Yagishita N, Takatani T, Arakawa O. Regional differences in intra-body distribution of saxitoxins in freshwater pufferfish Pao sp. A from Cambodia. Toxicon 2025; 259:108363. [PMID: 40246207 DOI: 10.1016/j.toxicon.2025.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/31/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
The Mekong River in Cambodia is inhabited by approximately ten species of freshwater pufferfish of the family Tetraodontidae. However, limited information is available regarding the toxin profile of these fish. In this study, to obtain sufficient information on the intra-body distribution of toxins in Cambodian freshwater pufferfish, one species of Pao freshwater pufferfish (Pao sp. A) were collected from Phnom Penh (PNH) in November 2019 (n = 23) and from Kratie (KTI) in March 2023 (n = 21). Toxin analyses of these samples revealed that individuals from both regions possessed saxitoxins (STXs) and contained no tetrodotoxin. Pao sp. A specimens from PNH possessed high STXs levels in the skin, muscle, liver, and gonads, whereas those from KTI showed relatively low levels of STXs concentrated in the skin. STXs amount in the ovaries in PNH individuals increased exponentially with increasing the gonadosomatic index (GSI). We also clarified that STXs concentration in the skin became increasingly higher as KTI individuals grew. These results suggest that differences in living regions may affect the intra-body distribution of STXs in Pao freshwater pufferfish, with maturation and/or growth contributing as well.
Collapse
Affiliation(s)
- Hongchen Zhu
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Junji Takeoka
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - In Sokra
- University of Kratie, Orussey District, Kratie Province, Cambodia
| | - Linan Horn
- University of Kratie, Orussey District, Kratie Province, Cambodia
| | - Laymithuna Ngy
- University of Kratie, Orussey District, Kratie Province, Cambodia
| | - Kei'ichiro Iguchi
- Graduate School of Integrated Science and Technology, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Yuzuru Utsunomiya
- Faculty of Economics, Nagasaki University, 4-2-1, Katafuchi, Nagasaki, 850-8506, Japan
| | - Minoru Wada
- Graduate School of Integrated Science and Technology, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Akinori Yamada
- Graduate School of Integrated Science and Technology, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Naoki Yagishita
- Kurashiki University of Science and the Arts, 2640, Tsurajimachonishinoura, Kurashiki, Okayama, 712-8505, Japan
| | - Tomohiro Takatani
- Graduate School of Integrated Science and Technology, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Osamu Arakawa
- Graduate School of Integrated Science and Technology, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki, 852-8521, Japan.
| |
Collapse
|
2
|
Zhang Y, Ueno M, Tatsuno R, Takatani T, Shimasaki Y, Arima K, Sedanza MG, Yamaguchi K, Oshima Y, Arakawa O. Comparative biochemical characterization of pufferfish saxitoxin and tetrodotoxin-binding protein (PSTBP) homologs in the plasma from four Takifugu species: Conservation of heat-stable PSTBP orthologs having three and two tandemly repeated lipocalin domains in genus Takifugu. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110049. [PMID: 39326556 DOI: 10.1016/j.cbpc.2024.110049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/31/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
To study the relationship between domain characteristics of pufferfish saxitoxin and tetrodotoxin binding protein (PSTBP) proteoforms and their thermal stability, a comparative biochemical characterization of PSTBPs from the plasma of four Takifugu species (T. flavipterus, T. pardalis, T. alboplumbeus and T. rubripes) was conducted by Western blot analysis. The heat-tolerance tetrodotoxin (TTX)-binding ability of PSTBP proteoforms in T. rubripes plasma was verified by ultrafiltration and liquid chromatography tandem mass spectrometry (LC-MS/MS). These results suggest that the heat-stable PSTBP proteoforms, composed of three and two tandemly repeated lipocalin domains, are genetically conserved and ubiquitous in the genus Takifugu. This study builds on our knowledge of the structural and functional properties of PSTBP proteoforms, which is vital for understanding how toxins are transmitted and accumulate in organisms and is essential for evaluating the potential risks of toxins in seafood.
Collapse
Affiliation(s)
- Yafei Zhang
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mikinori Ueno
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Ryohei Tatsuno
- National Fisheries University, Japan Fisheries Research and Education Agency, 2-7-1 Nagatahonmachi, Shimonoseki, Yamaguchi 759-6595, Japan
| | - Tomohiro Takatani
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yohei Shimasaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Arima
- Department of Chemistry, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Mary Grace Sedanza
- Institute of Aquaculture, College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, Iloilo 5023, Philippines; Regional Research Center, University of the Philippines Visayas, Miagao, Iloilo 5023, Philippines
| | - Kenichi Yamaguchi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Osamu Arakawa
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
3
|
San SP, Chea R, Grace D, Roesel K, Tum S, Young S, Charaslertrangsi T, Zand N, Thombathu SS, Thorng R, Kong L, Fidero K, Nicolaides L. Biological Hazards and Indicators Found in Products of Animal Origin in Cambodia from 2000 to 2022: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1621. [PMID: 39767462 PMCID: PMC11675544 DOI: 10.3390/ijerph21121621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Biological hazards in products of animal origin pose a significant threat to human health. In Cambodia, there are few comprehensive data and information on the causes of foodborne diseases or risks. To date, there has been no known published study similar to this review. This systematic review is aimed to investigate the prevalence of biological hazards and their indicators in products of animal origin from 2000 to 2022. The main objective of this study was also to contribute to strengthening Cambodia's food control system. This review followed the established "Preferred Reporting Items for Systematic Reviews and Meta-Analyses" (PRISMA) guidelines. In total, 46 studies were retained for complete review. Most studies (n = 40) had been conducted by or with external researchers, reflecting the under-resourcing of the National Food Control System in terms of surveillance; areas outside the capital were relatively understudied, reflecting evidence found in Ethiopia and Burkina Faso. Five categories of hazards were reported with the highest number of studies on fish parasites. Marketed fish, often originating from different countries, had a higher mean value of parasite prevalence (58.85%) than wild-caught fish (16.46%). Viral pathogens in bat meat presented a potential spillover risk. Many potentially important hazards had not yet been studied or reported (e.g., Norovirus, Shigella, toxin-producing Escherichia coli, and Vibrio cholerae). The findings of our review highlighted significant urgencies for national competent authorities to enhance food hygiene practices along the production chain, tackle import control, and enforce the implementation of a traceability system, alongside more research collaboration with neighboring countries and key trading partners. It is crucial to conduct more extensive research on food safety risk analysis, focusing on the identification and understanding of various biological hazards and their associated risk factors in food.
Collapse
Affiliation(s)
- Shwe Phue San
- Natural Resources Institute, University of Greenwich, Medway ME4 4TB, UK; (S.P.S.); (S.Y.)
| | - Rortana Chea
- National Animal Health and Production Research Institute, General Directorate of Animal Health and Production, Phnom Penh 120603, Cambodia
| | - Delia Grace
- Natural Resources Institute, University of Greenwich, Medway ME4 4TB, UK; (S.P.S.); (S.Y.)
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Kristina Roesel
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Sothyra Tum
- National Animal Health and Production Research Institute, General Directorate of Animal Health and Production, Phnom Penh 120603, Cambodia
| | - Stephen Young
- Natural Resources Institute, University of Greenwich, Medway ME4 4TB, UK; (S.P.S.); (S.Y.)
| | | | - Nazanin Zand
- Natural Resources Institute, University of Greenwich, Medway ME4 4TB, UK; (S.P.S.); (S.Y.)
| | | | - Ra Thorng
- United Nations Industrial Development Organization, Phnom Penh 120101, Cambodia; (S.S.T.); (L.K.)
| | - Leab Kong
- United Nations Industrial Development Organization, Phnom Penh 120101, Cambodia; (S.S.T.); (L.K.)
| | - Kuok Fidero
- Ministry of Industry, Science, Technology, and Innovation, Phnom Penh 120203, Cambodia;
| | - Linda Nicolaides
- Natural Resources Institute, University of Greenwich, Medway ME4 4TB, UK; (S.P.S.); (S.Y.)
| |
Collapse
|
4
|
Alkassar M, Tudó À, Rambla-Alegre M, Ferreres L, Diogène J, Sureda FX, Campàs M. First record of paralytic shellfish toxins in marine pufferfish from the Spanish Mediterranean coast using cell-based assay, automated patch clamp and HPLC-FLD. CHEMOSPHERE 2024; 364:143053. [PMID: 39121960 DOI: 10.1016/j.chemosphere.2024.143053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Pufferfish is one of the most poisonous marine organisms, responsible for numerous poisoning incidents and some human fatalities due to its capability to accumulate potent neurotoxins such as tetrodotoxins (TTXs) and paralytic shellfish toxins (PSTs). In this study, tissue extracts (muscle, skin, liver, intestinal tract and gonads) obtained from sixteen pufferfish specimens of the Lagocephalus lagocephalus and Sphoeroides pachygaster species, collected along the Spanish Mediterranean coast, were analysed for the presence of voltage-gated sodium channel (also known as Nav channel) blockers using cell-based assay (CBA) and automated patch clamp (APC). No toxicity was observed in any of the S. pachygaster specimens, but toxicity was detected in the liver of most L. lagocephalus specimens. Instrumental analysis of these specimens, as well as in one Lagocephalus sceleratus specimen, by high-performance liquid chromatography coupled to fluorescence detection (HPLC-FLD) was performed, which confirmed the presence of PSTs only in L. lagocephalus specimens. This analysis reported the presence of saxitoxin (STX) and decarbamoylsaxitoxin (dcSTX) in all positive samples, being dcSTX the major analogue. These results demonstrate the ability of this species to accumulate PSTs, being the first report of the presence of PSTs in Mediterranean L.lagocephalus specimens. Furthermore, the presence of high PSTs contents in all five tested tissues of one L. lagocephalus specimen pointed the risk that the presence of this toxic fish in the Mediterranean Sea may represent for seafood safety and human health in case of accidental consumption.
Collapse
Affiliation(s)
- Mounira Alkassar
- IRTA, Ctra. Poble Nou Km 5.5, 43540, La Ràpita, Spain; Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain
| | - Àngels Tudó
- Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain
| | | | | | - Jorge Diogène
- IRTA, Ctra. Poble Nou Km 5.5, 43540, La Ràpita, Spain
| | - Francesc X Sureda
- Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain
| | - Mònica Campàs
- IRTA, Ctra. Poble Nou Km 5.5, 43540, La Ràpita, Spain.
| |
Collapse
|
5
|
Zhu H, Sakai T, Doi H, Yamaguchi K, Yamada A, Takatani T, Arakawa O. Tetrodotoxin/Saxitoxin Accumulation Profile in the Euryhaline Marine Pufferfish Chelonodontops patoca. Toxins (Basel) 2023; 16:18. [PMID: 38251235 PMCID: PMC10820246 DOI: 10.3390/toxins16010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Marine Takifugu pufferfish, which naturally possess tetrodotoxins (TTXs), selectively take up and accumulate TTXs, whereas freshwater Pao pufferfish, which naturally possess saxitoxins (STXs), selectively take up and accumulate STXs. To further clarify the TTXs/STXs selectivity in pufferfish, we conducted a TTX/STX administration experiment using Chelonodontops patoca, a euryhaline marine pufferfish possessing both TTXs and STXs. Forty nontoxic cultured individuals of C. patoca were divided into a seawater group (SW, acclimated/reared at 33‱ salinity; n = 20) and a brackish water group (BW, acclimated/reared at 8‱ salinity; n = 20). An aqueous TTX/STX mixture was intrarectally administered (both at 7.5 nmol/fish), and five individuals/group were analyzed after 1-48 h. Instrumental toxin analyses revealed that both TTX and STX were taken up, transferred, and retained, but more STX than TTX was retained in both groups. TTX gradually decreased and eventually became almost undetectable in the intestinal tissue, while STX was retained at ~5-10% of the dose level, and only STX showed transient transfer in the liver. The BW group showed a faster decrease/disappearance of TTX, greater STX retention in the intestine, and greater STX transient transfer to the liver. Thus, C. patoca appears to more easily accumulate STXs than TTXs, especially under hypoosmotic conditions.
Collapse
Affiliation(s)
- Hongchen Zhu
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan; (H.Z.); (T.S.); (K.Y.); (A.Y.); (T.T.)
| | - Takashi Sakai
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan; (H.Z.); (T.S.); (K.Y.); (A.Y.); (T.T.)
| | - Hiroyuki Doi
- Nifrel, Osaka Aquarium Kaiyukan, 2-1, Senribanpakukoen, Suita, Osaka 565-0826, Japan;
| | - Kenichi Yamaguchi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan; (H.Z.); (T.S.); (K.Y.); (A.Y.); (T.T.)
| | - Akinori Yamada
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan; (H.Z.); (T.S.); (K.Y.); (A.Y.); (T.T.)
| | - Tomohiro Takatani
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan; (H.Z.); (T.S.); (K.Y.); (A.Y.); (T.T.)
| | - Osamu Arakawa
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan; (H.Z.); (T.S.); (K.Y.); (A.Y.); (T.T.)
| |
Collapse
|
6
|
Tetrodotoxin/Saxitoxins Selectivity of the Euryhaline Freshwater Pufferfish Dichotomyctere fluviatilis. Toxins (Basel) 2021; 13:toxins13100731. [PMID: 34679024 PMCID: PMC8540976 DOI: 10.3390/toxins13100731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
The present study evaluated differences in the tetrodotoxin (TTX)/saxitoxins (STXs) selectivity between marine and freshwater pufferfish by performing in vivo and in vitro experiments. In the in vivo experiment, artificially reared nontoxic euryhaline freshwater pufferfish Dichotomyctere fluviatilis were intrarectally administered a mixture of TTX (24 nmol/fish) and STX (20 nmol/fish). The amount of toxin in the intestine, liver, muscle, gonads, and skin was quantified at 24, 48, and 72 h. STX was detected in the intestine over a long period of time, with some (2.7-6.1% of the given dose) being absorbed into the body and temporarily located in the liver. Very little TTX was retained in the body. In the in vitro experiments, slices of intestine, liver, and skin tissue prepared from artificially reared nontoxic D. fluviatilis and the marine pufferfish Takifugu rubripes were incubated in buffer containing TTX and STXs (20 nmol/mL each) for up to 24 or 72 h, and the amount of toxin taken up in the tissue was quantified over time. In contrast to T. rubripes, the intestine, liver, and skin tissues of D. fluviatilis selectively took up only STXs. These findings indicate that the TTX/STXs selectivity differs between freshwater and marine pufferfish.
Collapse
|
7
|
Yamada A, Hamaguchi A, Sakoda H, Kakamu M, Doi H, Hasin S, Arakawa O. Complete mitochondrial genomes of the Southeast Asian freshwater pufferfishes, Pao abei (Roberts, 1998) and Pao suvattii (Sontirat and Soonthornsatit, 1985) (Tetraodontiformes: Tetraodontidae) and an insight into the taxonomic status of Pao species. Mitochondrial DNA B Resour 2021; 6:1448-1450. [PMID: 33969194 PMCID: PMC8079078 DOI: 10.1080/23802359.2021.1911708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The complete mitochondrial genomes of the Southeast Asian freshwater pufferfishes, Pao abei and Pao suvattii, were reconstructed using the MGISEQ platform. The genomes were 16,448 bp and 16,449 bp in length, each made up of 37 mitochondrial genes (13 CDSs, 22 tRNAs, and two rRNAs) and putative control region. It is suggested that an accumulation of complete mitochondrial genome sequences can contribute to resolve the taxonomic status of Pao species.
Collapse
Affiliation(s)
- Akinori Yamada
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Ayaka Hamaguchi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Hikari Sakoda
- Faculty of Fisheries, Nagasaki University, Nagasaki, Japan
| | | | | | - Sasitorn Hasin
- Innovation of Environmental Management, College of Innovative Management, Valaya Alongkorn Rajabhat University Under the Royal Patronage, Pathumthani, Thailand
| | - Osamu Arakawa
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|