1
|
Yu CH, Song YJ, Song DH, Joe HE, Kim CH, Yun H, Kim NY, Sim E, Jeong ST, Hur GH. An Effective Prophylactic and Therapeutic Protection Against Botulinum Type A Intoxication in Mice and Rabbits Using a Humanized Monoclonal Antibody. Toxins (Basel) 2025; 17:138. [PMID: 40137911 PMCID: PMC11946523 DOI: 10.3390/toxins17030138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins on Earth and are classified as Category A biological agents. BoNTs lead to paralysis in humans and cause botulism. Antibody therapeutics can effectively treat toxin-mediated infectious diseases. In this study, we generated a pharmaceutical humanized monoclonal antibody (HZ45 mAb) to prevent or treat botulism. HZ45 binds to the heavy chain receptor (HCR) domain of the toxin, preventing the toxin from entering the cell. The mAb was produced using hybridoma technology and phage display. We evaluated HZ45 mAb for the neutralization of BoNT serotype A (BoNT/A) in mice and rabbits. The survival results showed that pretreatment with HZ45 mAb provided 100% protection at a dose of 0.1 mg per mouse against a maximum of 100 LD50 of BoNT/A. To assess the therapeutic efficacy of HZ45 mAb in New Zealand white rabbits (NZWs), a 5 mg dose was administered 4 or 8 h after challenge with 10 LD50. The results indicated that 5 mg of HZ45 could treat the NZWs within 8 h after exposure to 10 LD50 botulinum. Consequently, in an in vivo context, including mice and rabbits, HZ45 mAb could protect against botulinum type A intoxication.
Collapse
Affiliation(s)
- Chi Ho Yu
- Agency for Defense Development, Yuseong, P.O. Box 35, Daejeon 305-600, Republic of Korea; (C.H.Y.); (D.H.S.); (H.E.J.); (C.-H.K.); (S.T.J.)
| | - Young-Jo Song
- Agency for Defense Development, Yuseong, P.O. Box 35, Daejeon 305-600, Republic of Korea; (C.H.Y.); (D.H.S.); (H.E.J.); (C.-H.K.); (S.T.J.)
| | - Dong Hyun Song
- Agency for Defense Development, Yuseong, P.O. Box 35, Daejeon 305-600, Republic of Korea; (C.H.Y.); (D.H.S.); (H.E.J.); (C.-H.K.); (S.T.J.)
| | - Hae Eun Joe
- Agency for Defense Development, Yuseong, P.O. Box 35, Daejeon 305-600, Republic of Korea; (C.H.Y.); (D.H.S.); (H.E.J.); (C.-H.K.); (S.T.J.)
| | - Chang-Hwan Kim
- Agency for Defense Development, Yuseong, P.O. Box 35, Daejeon 305-600, Republic of Korea; (C.H.Y.); (D.H.S.); (H.E.J.); (C.-H.K.); (S.T.J.)
| | - Hyungseok Yun
- Agency for Defense Development, Yuseong, P.O. Box 35, Daejeon 305-600, Republic of Korea; (C.H.Y.); (D.H.S.); (H.E.J.); (C.-H.K.); (S.T.J.)
| | - Na Young Kim
- ABION Inc., Seoul 08394, Republic of Korea; (N.Y.K.); (E.S.)
| | - Euni Sim
- ABION Inc., Seoul 08394, Republic of Korea; (N.Y.K.); (E.S.)
| | - Seong Tae Jeong
- Agency for Defense Development, Yuseong, P.O. Box 35, Daejeon 305-600, Republic of Korea; (C.H.Y.); (D.H.S.); (H.E.J.); (C.-H.K.); (S.T.J.)
| | - Gyeung Haeng Hur
- Agency for Defense Development, Yuseong, P.O. Box 35, Daejeon 305-600, Republic of Korea; (C.H.Y.); (D.H.S.); (H.E.J.); (C.-H.K.); (S.T.J.)
| |
Collapse
|
2
|
Chimienti S, Di Spirito M, Molinari F, Rozov O, Lista F, D’Amelio R, Salemi S, Fillo S. Botulinum Neurotoxins as Two-Faced Janus Proteins. Biomedicines 2025; 13:411. [PMID: 40002825 PMCID: PMC11853235 DOI: 10.3390/biomedicines13020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Botulinum neurotoxins are synthetized by anaerobic, spore-forming bacteria that inhibit acetylcholine release at the level of the neuromuscular and autonomic cholinergic junctions, thus inducing a series of symptoms, the most relevant of which is flaccid paralysis. At least seven serotypes and over 40 subtypes are known, and they are among the most poisonous natural substances. There are different forms of botulism according to the route of contamination, but the clinical manifestation of descending symmetric flaccid paralysis is consistent, regardless of the route of contamination. It is very severe and potentially lethal. The induced paralysis lasts as long as the toxin is active, with variable length, according to the serotype of the toxin. This transient activity, as well as the precise mechanism of action, are the basis for the rationale behind use of the toxin in therapy for several clinical conditions, particularly, spastic conditions, as well as chronic migraine and axillary hyperhidrosis. The toxin has also been approved for the reduction in facial wrinkles; all these clinical applications, coupled with the toxin's risks, have earned botulinum the title of a two-faced Janus protein. No approved vaccines are currently available, andthe only approved antidotes are the human specific intravenous immunoglobulins for infant botulism and the heptavalent equine immunoglobulins/(F(ab')2 for adults. Nanobodies, which show great promise, may penetrate neuronal cells to inactivate the toxin within the cytoplasm, and Ebselen, a non-toxic, economic, small-molecule inhibitor, has the characteristic of inhibiting the toxin irrespective of the serotype.
Collapse
Affiliation(s)
- Silvia Chimienti
- Istituto di Scienze Biomediche Della Difesa, 00184 Rome, Italy; (S.C.); (M.D.S.); (F.M.); (F.L.)
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, 00144 Rome, Italy
| | - Maria Di Spirito
- Istituto di Scienze Biomediche Della Difesa, 00184 Rome, Italy; (S.C.); (M.D.S.); (F.M.); (F.L.)
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, 00185 Rome, Italy
| | - Filippo Molinari
- Istituto di Scienze Biomediche Della Difesa, 00184 Rome, Italy; (S.C.); (M.D.S.); (F.M.); (F.L.)
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, 00185 Rome, Italy
| | - Orr Rozov
- Food and Agriculture Organization, 00153 Rome, Italy;
| | - Florigio Lista
- Istituto di Scienze Biomediche Della Difesa, 00184 Rome, Italy; (S.C.); (M.D.S.); (F.M.); (F.L.)
| | | | | | - Silvia Fillo
- Istituto di Scienze Biomediche Della Difesa, 00184 Rome, Italy; (S.C.); (M.D.S.); (F.M.); (F.L.)
| |
Collapse
|
3
|
Avril A, Guillier S, Rasetti-Escargueil C. Development of Effective Medical Countermeasures Against the Main Biowarfare Agents: The Importance of Antibodies. Microorganisms 2024; 12:2622. [PMID: 39770824 PMCID: PMC11677989 DOI: 10.3390/microorganisms12122622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The COVID-19 and mpox crisis has reminded the world of the potentially catastrophic consequences of biological agents. Aside from the natural risk, biological agents can also be weaponized or used for bioterrorism. Dissemination in a population or among livestock could be used to destabilize a nation by creating a climate of terror, by negatively impacting the economy and undermining institutions. The Centers for Disease Control and Prevention (CDC) classify biological agents into three categories (A or Tier 1, B and C) according to the risk they pose to the public and national security. Category A or Tier 1 consists of the six pathogens with the highest risk to the population (Bacillus anthracis, Yersinia pestis, Francisella tularensis, botulinum neurotoxins, smallpox and viral hemorrhagic fevers). Several medical countermeasures, such as vaccines, antibodies and chemical drugs, have been developed to prevent or cure the diseases induced by these pathogens. This review presents an overview of the primary medical countermeasures, and in particular, of the antibodies available against the six pathogens on the CDC's Tier 1 agents list, as well as against ricin.
Collapse
Affiliation(s)
- Arnaud Avril
- Unité Interaction Hôte-Pathogène, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| | - Sophie Guillier
- Unité Bactériologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France;
- UMR_MD1, Inserm U1261, 91220 Brétigny sur Orge, France
| | | |
Collapse
|
4
|
Sun K, Luo S, Jiang Y, Guo J, Wang X, Cheng K, Xu C, Zhang Y, Gao C, Lu J, Du P, Yu Y, Wang R, Yang Z, Zhou C. Neutralizing chimeric heavy-chain antibody targeting the L-HN domain of Clostridium botulinum neurotoxin type F. Arch Toxicol 2024; 98:4187-4195. [PMID: 39311906 DOI: 10.1007/s00204-024-03869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024]
Abstract
Botulinum toxin (BoNT) from Clostridium botulinum is the most toxic biotoxin known and is also an important bioterrorism agent. After poisoning, the only effective treatment is injection of antitoxin. However, neutralizing nanoantibodies are safer and more effective, representing a promising therapeutic approach. Therefore, it is important to obtain effective neutralizing nanoantibodies. Hence, the present study aimed to construct a phage antibody library by immunizing a camel and screening specific clones that bind to the L-HN domain of BoNT/F and constructing chimeric heavy-chain antibodies by fusing them with a human Fc fragment. The antibodies' affinity and in vivo neutralizing activities were evaluated. The results showed that 2 µg of F20 antibody could completely neutralize 20 × the median lethal dose (LD50) of BoNT/F in vitro. Injection of 5 mg/kg F20 at 1 h, 2 h, 3 h, and 4 h into mice after BoNT/F challenge resulted in complete survival in vivo. Overall, the antibody might be a candidate for the development of new drugs to treat botulism.
Collapse
Affiliation(s)
- Kaiyue Sun
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Shudi Luo
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yujia Jiang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Jiazheng Guo
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Xi Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Kexuan Cheng
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Changyan Xu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yixiao Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Chen Gao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Jiansheng Lu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Du
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yunzhou Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Rong Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China.
| | - Zhixin Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China.
| | - Chunyang Zhou
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
5
|
Wang S, Wang D, Shen WT, Kai M, Yu Y, Peng Y, Xian N, Fang RH, Gao W, Zhang L. Protein-Loaded Cellular Nanosponges for Dual-Biomimicry Neurotoxin Countermeasure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309635. [PMID: 37990378 DOI: 10.1002/smll.202309635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 11/23/2023]
Abstract
Neurotoxins present a substantial threat to human health and security as they disrupt and damage the nervous system. Their potent and structurally diverse nature poses challenges in developing effective countermeasures. In this study, a unique nanoparticle design that combines dual-biomimicry mechanisms to enhance the detoxification efficacy of neurotoxins is introduced. Using saxitoxin (STX), one of the deadliest neurotoxins, and its natural binding protein saxiphilin (Sxph) as a model system, human neuronal membrane-coated and Sxph-loaded metal-organic framework (MOF) nanosponges (denoted "Neuron-MOF/Sxph-NS") are successfully developed. The resulting Neuron-MOF/Sxph-NS exhibit a biomimetic design that not only emulates host neurons for function-based detoxification through the neuronal membrane coating, but also mimics toxin-resistant organisms by encapsulating the Sxph protein within the nanoparticle core. The comprehensive in vitro assays, including cell osmotic swelling, calcium flux, and cytotoxicity assays, demonstrate the improved detoxification efficacy of Neuron-MOF/Sxph-NS. Furthermore, in mouse models of STX intoxication, the application of Neuron-MOF/Sxph-NS shows significant survival benefits in both therapeutic and prophylactic regimens, without any apparent acute toxicity. Overall, the development of Neuron-MOF/Sxph-NS represents an important advancement in neurotoxin detoxification, offering promising potential for treating injuries and diseases caused by neurotoxins and addressing the current limitations in neurotoxin countermeasures.
Collapse
Affiliation(s)
- Shuyan Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dan Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wei-Ting Shen
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mingxuan Kai
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yiyan Yu
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yifei Peng
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nianfei Xian
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
6
|
Lu J, Jiang Y, Guo J, Chen L, Liu F, Li Z, Liu X, Du P, Yu Y, Wang R, Yang Z. A human bispecific antibody neutralizes botulinum neurotoxin serotype A. Sci Rep 2023; 13:20806. [PMID: 38012220 PMCID: PMC10681988 DOI: 10.1038/s41598-023-48008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
Botulinum neurotoxin (BoNT) shows high lethality and toxicity, marking it as an important biological threat. The only effective post-exposure therapy is botulinum antitoxin; however, such products have great potential for improvement. To prevent or treat BoNT, monoclonal antibodies (mAbs) are promising agents. Herein, we aimed to construct a bispecific antibody (termed LUZ-A1-A3) based on the anti-BoNT/A human monoclonal antibodies (HMAb) A1 and A3. LUZ-A1-A3 binds to the Hc and L-HN domains of BoNT/A, displaying potent neutralization activity against BoNT/A (124 × higher than that of HMAb A1 or HMAb A3 alone and 15 × higher than that of the A1 + A3 combination). LUZ-A1-A3 provided effective protection against BoNT/A in an in vivo mouse model. Mice were protected from infection with 500 × LD50 of BoNT/A by LUZ-A1-A3 from up to 7 days before intraperitoneal administration of BoNT/A. We also demonstrated the effective therapeutic capacity of LUZ-A1-A3 against BoNT/A in a mouse model. LUZ-A1-A3 (5 μg/mouse) neutralized 20 × LD50 of BoNT/A at 3 h after intraperitoneal BoNT/A administration and complete neutralized 20 × LD50 of BoNT/A at 0.5 h after intraperitoneal BoNT/A administration. Thus, LUZ-A1-A3 is a promising agent for the pre-exposure prophylaxis and post-exposure treatment of BoNT/A.
Collapse
Affiliation(s)
- Jiansheng Lu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yujia Jiang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jiazheng Guo
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Lei Chen
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Fujia Liu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhiying Li
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xuyang Liu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Du
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yunzhou Yu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China.
| | - Rong Wang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China.
| | - Zhixin Yang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|
7
|
Wang D, Ai X, Duan Y, Xian N, Fang RH, Gao W, Zhang L. Neuronal Cellular Nanosponges for Effective Detoxification of Neurotoxins. ACS NANO 2022; 16:19145-19154. [PMID: 36354967 DOI: 10.1021/acsnano.2c08319] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Neurotoxins attack and destruct the nervous system, which can cause serious health problems and security threats. Existing detoxification approaches, such as antibodies and small molecule antidotes, rely on neurotoxin's molecular structure as design cues and require toxin-specific development for each type of toxins. However, the enormous diversity of neurotoxins makes such structure-based development of antitoxin particularly challenging and inefficient. Here, we report on the development and use of neuronal membrane-coated nanosponges (denoted "Neuron-NS") as an effective approach to detoxifying neurotoxins. Specifically, Neuron-NS act as neuron decoys to lure neurotoxins, bind with and neutralize the toxins, and thus block them from attacking the host neuron cells. These nanosponges detoxify neurotoxins regardless of their molecular structures and therefore can overcome the challenge posed by toxin structural diversity. In the study, we fabricate Neuron-NS by coating the membrane of Neuro-2a cells onto polymeric cores. Meanwhile, we select tetrodotoxin (TTX) as a model neurotoxin and demonstrate the detoxification efficacy of the Neuron-NS in a cytotoxicity assay, a calcium flux assay, and a cell osmotic swelling assay in vitro. Additionally, in mouse models of TTX intoxication, the Neuron-NS significantly enhance mouse survival in therapeutic and prophylactic regimens without showing acute toxicity. Overall, the Neuron-NS contribute to the current detoxification arsenal with the potential to treat various injuries and diseases caused by neurotoxins.
Collapse
Affiliation(s)
- Dan Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Xiangzhao Ai
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Yaou Duan
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Nianfei Xian
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Ronnie H Fang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Weiwei Gao
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Neutralizing Concentrations of Anti-Botulinum Toxin Antibodies Positively Correlate with Mouse Neutralization Assay Results in a Guinea Pig Model. Toxins (Basel) 2021; 13:toxins13090671. [PMID: 34564675 PMCID: PMC8471557 DOI: 10.3390/toxins13090671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Botulinum neurotoxins (BoNT) are some of the most toxic proteins known and can induce respiratory failure requiring long-term intensive care. Treatment of botulism includes the administration of antitoxins. Monoclonal antibodies (mAbs) hold considerable promise as BoNT therapeutics and prophylactics, due to their potency and safety. A three-mAb combination has been developed that specifically neutralizes BoNT serotype A (BoNT/A), and a separate three mAb combination has been developed that specifically neutralizes BoNT serotype B (BoNT/B). A six mAb cocktail, designated G03-52-01, has been developed that combines the anti-BoNT/A and anti-BoNT/B mAbs. The pharmacokinetics and neutralizing antibody concentration (NAC) of G03-52-01 has been determined in guinea pigs, and these parameters were correlated with protection against an inhalation challenge of BoNT/A1 or BoNT/B1. Previously, it was shown that each antibody demonstrated a dose-dependent mAb serum concentration and reached maximum circulating concentrations within 48 h after intramuscular (IM) or intraperitoneal (IP) injection and that a single IM injection of G03-52-01 administered 48 h pre-exposure protected guinea pigs against an inhalation challenge of up to 93 LD50s of BoNT/A1 and 116 LD50s of BoNT/B1. The data presented here advance our understanding of the relationship of the neutralizing NAC to the measured circulating antibody concentration and provide additional support that a single IM or intravenous (IV) administration of G03-52-01 will provide pre-exposure prophylaxis against botulism from an aerosol exposure of BoNT/A and BoNT/B.
Collapse
|