1
|
Marashi S, Mostarshedi P, Ghorbanikalateh S, Ghorbanikalateh S, Zoshki A, Taghavi H, Karimi E, Oskoueian E, Jahromi MF, Shokryazdan P. Dietary administration of Bacillus subtilis improves the health parameters and regulates the gene expression in mice receiving zearalenone-contaminated diet. Braz J Microbiol 2024; 55:3751-3758. [PMID: 39190258 PMCID: PMC11711959 DOI: 10.1007/s42770-024-01501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
The biodegradation of mycotoxins has become a specific, efficient, and environmentally protective way to reduce the adverse effects of mycotoxins in both foods and feeds. In the current study, the effectiveness of dietary administration of Bacillus subtilis on health parameters and regulated gene expression in mice receiving zearalenone zearalenone-contaminated diet was explored. In this trial, a total of twenty-four white balb/c mice were randomly assigned to three treatments. Dietary treatments were as follows: T1: The control (fed non-zearalenone-contaminated diet), T2: fed zearalenone-contaminated diet, T3: fed zearalenone-contaminated diet + Bacillus subtilis ARKA-S-3 (1 × 109 cfu/kg) for 28 days. The results showed, B. subtilis notably degraded zearalenone in cultured media during 18 h incubation (p < 0.05). It significantly improved average daily weight gain and feed intake. Dietary B. subtilis notably reduced the adverse effects of zearalenone on serum antioxidant indices (GSH-Px, SOD, ) and saved mice from oxidative stress. Also, treatments with B. subtilis improved morphometric characteristics of the ileum ((Villus Height (µm), Villus Width (µm), and Crypt Depth (µm)) in the mice received zearalenone-contaminated diet (p < 0.05). The molecular analysis illustrated that B. subtilis has also improved the mRNA expression levels and antioxidant-related gene expression of SOD and CAT in the jejunum tissue. Moreover, it alleviated the IL-2 and IFN-γ gene profiling in the jejunum tissue. These findings illustrate that dietary administration of B. subtilis by having a degraded effect on zearalenone, possesses a protective effect on the health parameters and gene expression regulation in mice receiving a zearalenone-contaminated diet.
Collapse
Affiliation(s)
| | - Pegah Mostarshedi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | | | - Atiyeh Zoshki
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hila Taghavi
- Department of Biology, Babol Branch, Islamic Azad University, Babol, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Ehsan Oskoueian
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
- Industrial and Mineral Research Center, Arka Industrial Cluster, Mashhad, Iran.
| | - Mohammad Faseleh Jahromi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- Industrial and Mineral Research Center, Arka Industrial Cluster, Mashhad, Iran
| | - Parisa Shokryazdan
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- Industrial and Mineral Research Center, Arka Industrial Cluster, Mashhad, Iran
| |
Collapse
|
2
|
Fu W, Dai C, Ma Z, Li Q, Lan D, Sun C, Wu X, Li J, Wang S. Enhanced glutathione production protects against zearalenone-induced oxidative stress and ferroptosis in female reproductive system. Food Chem Toxicol 2024; 185:114462. [PMID: 38272172 DOI: 10.1016/j.fct.2024.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/08/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Zearalenone (ZEN, a widespread fusarium mycotoxin) causes evoked oxidative stress in reproductive system, but little is known about whether this is involved in ferroptosis. Melatonin, a well-known antioxidant, has demonstrated unique anti-antioxidant properties in several studies. Here, this study was aimed to investigate whether ZEN-induced oxidative stress in female pig's reproductive system was involved in ferroptosis, and melatonin was then supplemented to protect against ZEN-induced abnormalities in vitro cell models [human granulosa cell (KGN) and mouse endometrial stromal cell (mEC)] and in vivo mouse model. According to the results from female pig's reproductive organs, ZEN-induced abnormalities in vulvar swelling, inflammatory invasion and pathological mitochondria, were closely linked with evoked oxidative stress. Using RNA-seq analysis, we further revealed that ZEN-induced reproductive toxicity was due to activated ferroptosis. Mechanistically, by using in vitro cell models (KGN and mEC) and in vivo mouse model, we observed that ZEN exposure resulted in oxidative stress and ferroptosis in a glutathione-dependent manner. Notably, these ZEN-induced abnormalities above were alleviated by melatonin supplementation through enhanced productions of glutathione peroxidase 4 and glutathione. Herein, the present results suggest that potential strategies to improve glutathione production protect against ZEN-induced reproductive toxicity, including oxidative stress and ferroptosis.
Collapse
Affiliation(s)
- Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Chao Dai
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zifeng Ma
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Qiao Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Changpo Sun
- Standards and Quality Center of National Food and Strategic Reserves Administration, Beijing, 100037, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China.
| | - Shujin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400032, China.
| |
Collapse
|
3
|
Shi J, Mwabulili F, Xie Y, Yang Y, Sun S, Li Q, Ma W, Jia H. Characterization, Structural Analysis, and Thermal Stability Mutation of a New Zearalenone-Degrading Enzyme Mined from Bacillus subtilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3025-3035. [PMID: 38300990 DOI: 10.1021/acs.jafc.3c06767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Zearalenone (ZEN) is a widespread mycotoxin that causes serious damage to animal husbandry and poses a threat to human health. A screen of ZEN-degrading soil bacteria yielded Bacillus subtilis YT-4, which yielded 80% ZEN degradation after 6 h and 95% after 36 h. The gene sequence encoding the degradative enzyme ZENY was mined from the genome of YT-4 and expressed in yeast. ZENY is an α/β-hydrolase with an optimal enzyme activity at 37 °C and pH 8. By breaking the lactone ring of ZEN, it produces ZENY-C18H24O5 with a molecular weight of 320.16 g/mol. Sequence comparison and molecular docking analyses identified the catalytic ZENY triad 99S-245H-123E and the primary ZEN-binding mode within the hydrophobic pocket of the enzyme. To improve the thermal stability of the enzyme for industrial applications, we introduced a mutation at the N-terminus, specifically replacing the fifth residue N with V, and achieved a 25% improvement in stability at 45 °C. These findings aim to achieve ZEN biodegradation and provide insight into the structure and function of ZEN hydrolases.
Collapse
Affiliation(s)
- Jinghao Shi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Fred Mwabulili
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Shumin Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Qian Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Weibin Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Hang Jia
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
4
|
Zhao L, Qi D, Ma Q. Novel Strategies for the Biodegradation and Detoxification of Mycotoxins in Post-Harvest Grain. Toxins (Basel) 2023; 15:445. [PMID: 37505714 PMCID: PMC10467125 DOI: 10.3390/toxins15070445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/12/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by filamentous fungi belonging, in particular, to the Aspergillus, Fusarium, and Penicillium genera [...].
Collapse
Affiliation(s)
- Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
5
|
Xia D, Mo Q, Yang L, Wang W. Crosstalk between Mycotoxins and Intestinal Microbiota and the Alleviation Approach via Microorganisms. Toxins (Basel) 2022; 14:859. [PMID: 36548756 PMCID: PMC9784275 DOI: 10.3390/toxins14120859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungus. Due to their widespread distribution, difficulty in removal, and complicated subsequent harmful by-products, mycotoxins pose a threat to the health of humans and animals worldwide. Increasing studies in recent years have highlighted the impact of mycotoxins on the gut microbiota. Numerous researchers have sought to illustrate novel toxicological mechanisms of mycotoxins by examining alterations in the gut microbiota caused by mycotoxins. However, few efficient techniques have been found to ameliorate the toxicity of mycotoxins via microbial pathways in terms of animal husbandry, human health management, and the prognosis of mycotoxin poisoning. This review seeks to examine the crosstalk between five typical mycotoxins and gut microbes, summarize the functions of mycotoxins-induced alterations in gut microbes in toxicological processes and investigate the application prospects of microbes in mycotoxins prevention and therapy from a variety of perspectives. The work is intended to provide support for future research on the interaction between mycotoxins and gut microbes, and to advance the technology for preventing and controlling mycotoxins.
Collapse
Affiliation(s)
- Daiyang Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qianyuan Mo
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
6
|
Wu F, Cui J, Yang X, Chen B. Effects of zearalenone on vulva area, liver function, serum immunoglobulin, antioxidant capability and sex hormone secretion of prepubertal gilts. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2121230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Fengyang Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jia Cui
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xinyu Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
7
|
Qin S, She F, Zhao F, Li L, Chen F. Selenium-chitosan alleviates the toxic effects of Zearalenone on antioxidant and immune function in mice. Front Vet Sci 2022; 9:1036104. [PMID: 36277059 PMCID: PMC9582340 DOI: 10.3389/fvets.2022.1036104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022] Open
Abstract
This study assessed the protective effects of selenium-chitosan (SC) against antioxidant and immune function-related damage induced by zearalenone (ZEN) in mice. In total, 150 female mice were allotted to five groups for a 30-day study. Control mice were fed a basal diet. Mice in the ZEN, ZEN-Se1, ZEN-Se2 and ZEN-Se3 groups were fed the basal diet supplemented with same dose of ZEN (2 mg/kg) and different doses of SC, 0.0, 0.2, 0.4 and 0.6 mg/kg, respectively (calculated by selenium). After 30 days, the total antioxidant capacity (T-AOC) level, glutathione peroxidase (GSH-Px) activity, total superoxide dismutase (T-SOD) activity and malondialdehyde (MDA) content in plasma and liver, as well as Con A-induced splenocyte proliferation, plasma interleukins concentrations and liver interleukin mRNA expression levels were determined. The plasma and liver GSH-Px activities, liver T-AOC levels, Con A-induced splenocyte proliferation, interleukin (IL) contents and mRNA expression levels in the ZEN group were significantly lower than in the control group (P < 0.01 or P < 0.05), whereas plasma and liver MDA contents in the ZEN group were significantly higher than in the control group (P < 0.01 or P < 0.05). Additionally, plasma and liver GSH-Px activities, liver T-AOC levels, Con A-induced splenocyte proliferation, IL-1β, IL-17A, IL-2 and IL-6 contents and mRNA expression levels in ZEN+Se2 and ZEN+Se3 groups were significantly higher than in the ZEN group (P < 0.01 or P < 0.05), whereas plasma and liver MDA contents in the ZEN+Se2 and ZEN+Se3 groups were significantly lower than in the ZEN group (P < 0.01 or P < 0.05). The plasma and liver GSH-Px activities, Con A-induced splenocyte proliferation, IL-1β and IL-6 contents, IL-2 and IL-17A mRNA expression levels in the ZEN+Se1 group were also significantly higher than in the ZEN group (P < 0.01 or P < 0.05), whereas the plasma MDA content in the ZEN+Se1 group was also significantly lower than in the ZEN group (P < 0.01). Thus, SC may alleviate antioxidant function-related damage and immunosuppression induced by ZEN in mice.
Collapse
Affiliation(s)
- Shunyi Qin
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Fuze She
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Fanghong Zhao
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Liuan Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Fu Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China,*Correspondence: Fu Chen
| |
Collapse
|
8
|
Yang X, Li F, Ning H, Zhang W, Niu D, Shi Z, Chai S, Shan A. Screening of Pig-Derived Zearalenone-Degrading Bacteria through the Zearalenone Challenge Model, and Their Degradation Characteristics. Toxins (Basel) 2022; 14:toxins14030224. [PMID: 35324721 PMCID: PMC8952410 DOI: 10.3390/toxins14030224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Zearalenone (ZEN) is widely found in food and feed. Its cytotoxicity, reproductive toxicity, genetic toxicity, immunotoxicity and hepatorenal toxicity have serious impacts on human and animal health. In order to help animals avoid ZEN poisoning in feed, ZEN-degrading bacterial strains were screened from fecal samples through a zearalenone challenge pig model, and their degradation characteristics were researched. Through the optimization of parameters such as the culture time, pH value, temperature, and strain concentration, the optimal conditions for the ZEN-degrading ability of these strains were preliminarily determined, and the active site of the ZEN degradation was explored. In this study, three strains (SY-3, SY-14, SY-20) with high ZEN degradation capacities were obtained. SY-3 was identified as Proteus mirabilis, and its main degrading component was the supernatant. SY-14 and SY-20 were identified as Bacillus subtilis. Their main degrading components were the intracellular fluid of SY-14, and the intracellular fluid and cell wall of SY-20. The above results showed that the ZEN challenge model was an effective way to screen ZEN-degrading bacteria.
Collapse
Affiliation(s)
- Xue Yang
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.Y.); (H.N.); (W.Z.); (Z.S.); (S.C.); (A.S.)
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Feng Li
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.Y.); (H.N.); (W.Z.); (Z.S.); (S.C.); (A.S.)
- Correspondence:
| | - Hangyi Ning
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.Y.); (H.N.); (W.Z.); (Z.S.); (S.C.); (A.S.)
| | - Wei Zhang
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.Y.); (H.N.); (W.Z.); (Z.S.); (S.C.); (A.S.)
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Dongyan Niu
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada;
| | - Zhuo Shi
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.Y.); (H.N.); (W.Z.); (Z.S.); (S.C.); (A.S.)
| | - Sa Chai
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.Y.); (H.N.); (W.Z.); (Z.S.); (S.C.); (A.S.)
| | - Anshan Shan
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (X.Y.); (H.N.); (W.Z.); (Z.S.); (S.C.); (A.S.)
| |
Collapse
|