1
|
Pan C, Wei C, Wang X, Jin Y, Tian F. Patulin-degrading enzymes sources, structures, and mechanisms: A review. Int J Biol Macromol 2025; 291:139148. [PMID: 39725106 DOI: 10.1016/j.ijbiomac.2024.139148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Patulin (PAT), a fungal secondary metabolite with multiple toxicities, is an unavoidable contaminant in fruit and vegetable processing, posing potential health risks to consumers and causing significant economic losses to the global food industry. Traditional control strategies, such as physical and chemical methods, face several challenges, including low efficiency, high costs, and unverified safety. In contrast, microbial degradation of patulin is considered a more efficient and environmentally friendly approach, which has become a popular research focus. However, there is still insufficient research on the key degradation enzymes involved in microorganisms. Therefore, this review comprehensively summarizes recent research progress on the biological degradation of patulin, with a focus on microbial species capable of degrading patulin, the degradation enzymes they express, potential degradation mechanisms, and the toxicity of degradation products, while providing prospects for future research. It offers valuable insights for controlling patulin in food and stimulates further investigation. Ultimately, this review aims to promote the development of efficient and eco-friendly methods to mitigate patulin contamination in fruits and vegetables.
Collapse
Affiliation(s)
- Chunqiang Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Xianghu Laboratory, Hangzhou 311231, China
| | - Chaozhi Wei
- Xianghu Laboratory, Hangzhou 311231, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xiao Wang
- Xianghu Laboratory, Hangzhou 311231, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Fengwei Tian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Mwabulili F, Li P, Shi J, Zhang H, Xie Y, Ma W, Sun S, Yang Y, Li Q, Li X, Jia H. Research diversity and advances in simultaneous removal of multi-mycotoxin. Toxicon 2024; 250:108106. [PMID: 39306098 DOI: 10.1016/j.toxicon.2024.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/14/2024]
Abstract
Mycotoxins are toxic secondary metabolites produced by different fungal species under specific environmental conditions. The common and regulated mycotoxins are such as deoxynivalenol (DON), zearalenone (ZEN), ochratoxin (OTA), aflatoxin B1 (AFB1), and fumonisins (FB). These mycotoxins are highly regulated in feed and food because their effects start to exert from their lowest exposures and are abundant in our common environment. However, there are other emerging mycotoxins such as apicidin, beauvericin, aurofusarin, and enniatins which are also harmful. Thus, making a total of around 500 forms of mycotoxins. The existence of mycotoxins in feed and food has a significant impact on animal and human health, which ultimately, slows down economic growth globally. According to this review, different approaches to removing multi-mycotoxin separately or simultaneously have been stated. Mostly, the review focused on the simultaneous removal of different multiple mycotoxins. This is because the current studies show a growing trend in reporting the co-existence of multiple mycotoxins in feed and food materials, however, most detoxifying approaches are for singular mycotoxins. Therefore, the physical, chemical, and biological approaches to remove multi-mycotoxin have been elucidated as well as their advantages and limitations. Furthermore, the authors give suggestions on the way forward to reduce exposure to mycotoxins and diminish their health effects in society. Lastly, the authors emphasized introducing more stringent limits for co-existing mycotoxins, especially those that have the same health effects by acting synergistically, such as AFB1 and OTA, which both act as carcinogenic agents.
Collapse
Affiliation(s)
- Fred Mwabulili
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China; Department of Food Science and Technology, College of Agricultural Sciences and Technology, Mbeya University of Science and Technology, P.O. Box 131, Mbeya, 53119, Tanzania
| | - Peng Li
- Centre for Complexity Science, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Jinghao Shi
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Hongxin Zhang
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Yanli Xie
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China.
| | - Weibin Ma
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Shumin Sun
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Qian Li
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Xiao Li
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Hang Jia
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Henan University of Technology, Zhengzhou, Henan, 450001, China
| |
Collapse
|
3
|
Scimone G, Carucci MG, Risoli S, Pisuttu C, Cotrozzi L, Lorenzini G, Nali C, Pellegrini E, Petersen M. Ozone Treatment as an Approach to Induce Specialized Compounds in Melissa officinalis Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:933. [PMID: 38611462 PMCID: PMC11013203 DOI: 10.3390/plants13070933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Plants are constantly subjected to environmental changes that deeply affect their metabolism, leading to the inhibition or synthesis of "specialized" compounds, small organic molecules that play a fundamental role in adaptative responses. In this work, Melissa officinalis L. (an aromatic plant broadly cultivated due to the large amounts of secondary metabolites) plants were exposed to realistic ozone (O3) dosages (80 ppb, 5 h day-1) for 35 consecutive days with the aim to evaluate its potential use as elicitor of specialized metabolite production. Ozone induced stomatal dysfunction throughout the whole experiment, associated with a low photosynthetic performance, a decrease in the potential energy conversion activity of PSII, and an alteration in the total chlorophyll content (-35, -36, -10, and -17% as average compared to the controls, respectively). The production of hydrogen peroxide at 7 days from the beginning of exposure (+47%) resulted in lipid peroxidation and visible injuries. This result suggests metabolic disturbance within the cell and a concomitant alteration in cell homeostasis, probably due to a limited activation of antioxidative mechanisms. Moderate accumulated doses of O3 triggered the accumulation of hydroxycinnamic acids and the up-regulation of the genes encoding enzymes involved in rosmarinic acid, phenylpropanoid, and flavonoid biosynthesis. While high accumulated doses of O3 significantly enhanced the content of hydroxybenzoic acid and flavanone glycosides. Our study shows that the application of O3 at the investigated concentration for a limited period (such as two/three weeks) may become a useful tool to stimulate bioactive compounds production in M. officinalis.
Collapse
Affiliation(s)
- Giulia Scimone
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (G.S.); (M.G.C.); (S.R.); (C.P.); (L.C.); (G.L.); (C.N.)
| | - Maria Giovanna Carucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (G.S.); (M.G.C.); (S.R.); (C.P.); (L.C.); (G.L.); (C.N.)
| | - Samuele Risoli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (G.S.); (M.G.C.); (S.R.); (C.P.); (L.C.); (G.L.); (C.N.)
- University School for Advanced Studies IUSS Pavia, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Claudia Pisuttu
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (G.S.); (M.G.C.); (S.R.); (C.P.); (L.C.); (G.L.); (C.N.)
| | - Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (G.S.); (M.G.C.); (S.R.); (C.P.); (L.C.); (G.L.); (C.N.)
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (G.S.); (M.G.C.); (S.R.); (C.P.); (L.C.); (G.L.); (C.N.)
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (G.S.); (M.G.C.); (S.R.); (C.P.); (L.C.); (G.L.); (C.N.)
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (G.S.); (M.G.C.); (S.R.); (C.P.); (L.C.); (G.L.); (C.N.)
| | - Maike Petersen
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Str. 4, D-35037 Marburg, Germany;
| |
Collapse
|
4
|
Dib AA, Assaf JC, Debs E, Khatib SE, Louka N, Khoury AE. A comparative review on methods of detection and quantification of mycotoxins in solid food and feed: a focus on cereals and nuts. Mycotoxin Res 2023; 39:319-345. [PMID: 37523055 DOI: 10.1007/s12550-023-00501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Many emerging factors and circumstances urge the need to develop and optimize the detection and quantification techniques of mycotoxins in solid food and feed. The diversity of mycotoxins, which have different properties and affinities, makes the standardization of the analytical procedures and the adoption of a single protocol that covers the attributes of all mycotoxins a tedious or even an impossible mission. Several modifications and improvements have been undergone in order to optimize the performance of these methods including the extraction solvents, the extraction methods, the clean-up procedures, and the analytical techniques. The techniques range from the rapid screening methods, which lack sensitivity and specificity such as TLC, to a spectrum of more advanced protocols, namely, ELISA, HPLC, and GC-MS and LC-MS/MS. This review aims at assessing the current studies related to these analytical techniques of mycotoxins in solid food and feed. It discusses and evaluates, through a critical approach, various sample treatment techniques, and provides an in-depth examination of different mycotoxin detection methods. Furthermore, it includes a comparison of their actual accuracy and a thorough analysis of the observed benefits and drawbacks.
Collapse
Affiliation(s)
- Alaa Abou Dib
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
| | - Jean Claude Assaf
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, P.O. Box 100, Tripoli, Lebanon
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli, 1300, Lebanon
| | - Sami El Khatib
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Nicolas Louka
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
| | - André El Khoury
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon.
| |
Collapse
|
5
|
Risoli S, Sarrocco S, Terracciano G, Papetti L, Baroncelli R, Nali C. Isolation and characterization of Fusarium spp. From unhatched eggs of Caretta caretta in Tuscany (Italy). Fungal Biol 2023; 127:1321-1327. [PMID: 37993243 DOI: 10.1016/j.funbio.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 11/24/2023]
Abstract
Sea Turtle Egg Fusariosis (STEF) is a worldwide emergent fungal disease affecting eggs and causing embryos mortality in turtle's nests such as those of Caretta caretta. It is caused by a complex of species belonging to Fusarium genus, particularly those included in the Fusarium Solani Species Complex (FSSC). During the samplings carried out in summer 2020 along the Tuscany coastlines (Italy), C. caretta eggs showed clinical signs resembling those caused by STEF. A total of 32 fungal isolates were obtained from lesioned eggs whose molecular characterization allowing identifying as belonging to FSSC / Neocosmospora spp., Fusarium oxysporum Species Complex (FOSC) / F. oxysporum and Fusarium nodosum, i.e., fungal genera and speciesincluding also well-known plant pathogens. Isolates inoculated on several plant hosts did not result in any pathogenic activity but F. nodosum causing, on wheat spikes, disease symptoms.This is the first time F. nodosum has been isolated from portions of eggs showing evident signs of fungal infection. This work represents the first report of Fusarium spp. isolated from C. caretta eggs showing lesions resembling those caused by STEF on Tuscan coast thus posing a significant concern to loggerhead sea turtle conservation also in this region.
Collapse
Affiliation(s)
- Samuele Risoli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80 Pisa 56124, Italy; University School for Advanced Studies IUSS, Palazzo Del Broletto, Piazza Della Vittoria 15, Pavia, 27100 Italy
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80 Pisa 56124, Italy.
| | - Giuliana Terracciano
- Istituto Zooprofilattico Sperimentale Delle Regioni Lazio e Toscana, SS Dell' Abetone e Del Brennero 4, Pisa 56123 Italy
| | - Luana Papetti
- tartAmare, Centro Recupero Tartarughe Marine, via Bramante n. 83 Marina di Grosseto, Italy
| | - Riccardo Baroncelli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Giuseppe Fanin 42 Bologna 40127, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80 Pisa 56124, Italy
| |
Collapse
|
6
|
Zhao L, Qi D, Ma Q. Novel Strategies for the Biodegradation and Detoxification of Mycotoxins in Post-Harvest Grain. Toxins (Basel) 2023; 15:445. [PMID: 37505714 PMCID: PMC10467125 DOI: 10.3390/toxins15070445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/12/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by filamentous fungi belonging, in particular, to the Aspergillus, Fusarium, and Penicillium genera [...].
Collapse
Affiliation(s)
- Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
7
|
Chang-Espino MC, Prieto-Benitez S, González-Fernández I, Araus JL, Gómez-Camacho JM, Bermejo-Bermejo V. Current ambient ozone levels mitigate the effect of Puccinia striiformis on wheat: Is Mediterranean wheat ready for pre-industrial background ozone levels? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163370. [PMID: 37028662 DOI: 10.1016/j.scitotenv.2023.163370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023]
Abstract
Increasing surface ozone is a main concern for crop production in the Global Change framework, especially in the Mediterranean basin where climate conditions favor its photochemical formation. Meanwhile, increasing common crop diseases, such as yellow rust, one of the most important pathogens affecting global wheat production has been detected in the area in recent decades. However, the impact of O3 on the occurrence and impact of fungal diseases is scarcely understood. A close-to-field-conditions assay (Open Top Chamber facility) situated in a Mediterranean cereal rainfed farming area was carried out to study the impact of increasing O3 levels and N-fertilization on spontaneous fungal outbreaks in wheat. Four O3-fumigation levels reproducing pre-industrial to future pollutant atmospheres with additional 20 and 40 nL L-1 over the ambient levels were considered (7 h-mean ranging from 28 to 86 nL L-1). Two top N-fertilization supplementations (100 and 200 kg ha-1) were nested within the O3 treatments; foliar damage, pigment content and gas exchange parameters were measured. Pre-industrial natural background O3 levels strongly favored the yellow rust infection, where the O3-polluted levels currently observed at the farm highly benefited the crop, mitigating the presence of rust by 22 %. However, future expected high O3-levels neutralized the beneficial infection-controlling effect by inducing early wheat senescence, decreasing the chlorophyll index of the older leaves by up to 43 % under the higher O3 exposure. Nitrogen promoted the rust infection by up to 49.5 % without interacting with the O3-factor. Achieving future air quality standards might require considering new varietal improvement programs, to be able to adapt crops to an increased pathogen tolerance without requiring the assistance provided by O3-pollution.
Collapse
Affiliation(s)
- M C Chang-Espino
- Ecotoxicology of Air Pollution, Environmental Dept. CIEMAT, Madrid, Spain; Integrative Crop Ecophysiology Group, Faculty of Biology, University of Barcelona, Barcelona and Agrotecnio, Lleida, Spain.
| | - S Prieto-Benitez
- Ecotoxicology of Air Pollution, Environmental Dept. CIEMAT, Madrid, Spain
| | | | - J L Araus
- Integrative Crop Ecophysiology Group, Faculty of Biology, University of Barcelona, Barcelona and Agrotecnio, Lleida, Spain
| | - J M Gómez-Camacho
- Ecotoxicology of Air Pollution, Environmental Dept. CIEMAT, Madrid, Spain
| | - V Bermejo-Bermejo
- Ecotoxicology of Air Pollution, Environmental Dept. CIEMAT, Madrid, Spain
| |
Collapse
|