1
|
Wang L, Xu C, Xiong J, Qin C, Yang L, Yan X, Mi J, Nie G. Response of muscle growth, nutritional composition, textural properties, and glucose metabolism to elevated levels of dietary pre-gelatinized starch in common carp (Cyprinus carpio). Int J Biol Macromol 2025; 307:142330. [PMID: 40118408 DOI: 10.1016/j.ijbiomac.2025.142330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/11/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Pre-gelatinized (PG) starch can effectively improve the quality of aquatic feed utilization, but reports on the quality of aquatic flesh remain scarce. This study aimed to evaluate the effects of dietary PG starch on the growth performance, nutritional composition, textural properties, and glucose metabolism of common carp (Cyprinus carpio). Fish (initial weight 451.20 ± 0.49 g) were fed with PG starch levels of 14.8 %, 29.6 %, or 44.3 % for 9 weeks. Increasing PG starch levels increased the carcass ratio and hepatosomatic index value. Muscle lipid content and monounsaturated fatty acid levels increased with an increase in dietary PG starch levels, whereas the muscle protein content, essential amino acids ratio, and polyunsaturated fatty acid levels decreased (P < 0.05). Elevated PG starch intake led to a reduction in fiber diameter and an increase in the density of muscle fibers; however, the muscle texture properties decreased. Notably, elevated PG intake inhibited muscle glycolysis and promoted glycogen deposition (P < 0.05). This study provides valuable insights into the role of PG starch in the precise nutritional regulation of muscle quality in the common carp.
Collapse
Affiliation(s)
- Luming Wang
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China.
| | - Chunchu Xu
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Jinrui Xiong
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China.
| | - Chaobin Qin
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Liping Yang
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xiao Yan
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Jiali Mi
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Guoxing Nie
- Aquatic Animal Nutrition and Feed Research Team, College of Fisheries, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
2
|
Gruber-Dorninger C, Müller A, Rosen R. Multi-Mycotoxin Contamination of Aquaculture Feed: A Global Survey. Toxins (Basel) 2025; 17:116. [PMID: 40137889 PMCID: PMC11946512 DOI: 10.3390/toxins17030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Plant-based materials are increasingly being used as ingredients of aquaculture feed. These materials are prone to mycotoxin contamination, as mycotoxigenic fungi infest crop plants in the field and agricultural products during storage. As mycotoxins can cause toxic effects in aquatic animals, their occurrence in feedstuffs should be monitored. To this end, we performed an extensive global survey of mycotoxin contamination in aquaculture feed and plant-based feed raw materials. We collected samples of compound feed for fish (n = 226) and shrimps (n = 61), maize (n = 3448), maize DDGS (n = 149), wheat (n = 1578), soybean (n = 428), and rice (n = 65). We analyzed concentrations of 51 mycotoxins, emerging mycotoxins, masked mycotoxins, and mycotoxin metabolites. Mycotoxins were almost ubiquitously present in compound feed, as >90% of samples were contaminated with at least one mycotoxin. Feed raw materials exhibited distinct mycotoxin occurrence patterns consistent with known susceptibility to fungal pathogens and with their production process. Unsafe concentrations of aflatoxin B1 exceeding the EU maximum level were detected in 7.2% of fish feed samples. While most feedstuffs complied with EU guidance values for deoxynivalenol, zearalenone, and fumonisins, a comparison of detected concentrations with dietary concentrations reported to cause adverse effects in fish and shrimps in published studies indicated that significant fractions of samples contained potentially harmful levels of these mycotoxins. In addition to regulated mycotoxins, several emerging mycotoxins (e.g., enniatins, beauvericin, alternariol, moniliformin) were prevalent. Feed was frequently co-contaminated with multiple mycotoxins indicating a risk of combined effects. In conclusion, mycotoxin contamination was common in aquaculture feed and fractions of samples were contaminated with mycotoxin levels known to exert adverse effects in aquaculture species. Results of this survey highlight the necessity for targeted studies on the effects of frequently detected mycotoxin mixtures and emerging mycotoxins in fish and shrimp.
Collapse
Affiliation(s)
| | - Anneliese Müller
- dsm-firmenich, ANH Performance Solutions, Erber Campus 1, 3131 Getzersdorf, Austria
| | - Roy Rosen
- dsm-firmenich, Animal Nutrition and Health R&D Center Tulln, Technopark 1, 3430 Tulln, Austria;
| |
Collapse
|
3
|
Muhammad AM, Yang C, Liu B, Sun C, Miao L, Zheng X, Pan L, Xia D, Zhou QL. Comparative Analysis of Meat Quality and Hindgut Microbiota of Cultured and Wild Bighead Carp ( Hypophthalmichthys nobilis, Richardson 1845) from the Yangtze River Area. Microorganisms 2024; 13:20. [PMID: 39858788 PMCID: PMC11768046 DOI: 10.3390/microorganisms13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Wild fish are often considered more nutritionally valuable than cultured fish. This study aimed to elucidate the relationship between the gut microbiota and meat quality through the gut-muscle axis. Therefore, cultured and wild bighead carp (Hypophthalmichthys nobilis, Richardson 1845) from the Yangtze River were investigated to compare the differences in the meat quality and gut microbiota composition. Cultured bighead carp were collected from four intensive ponds along the Yangtze River area, while wild bighead carp were obtained from three different sites in the Yangtze River. The results showed that wild bighead carp muscle had significantly higher total saturated fatty acid (∑SFA) and total ω - 3 polyunsaturated fatty acid (∑n - 3 PUFA) content and water-holding capacity and lower lipid, histidine, and total ω - 6 polyunsaturated fatty acid (∑n - 6 PUFA) content than cultured bighead carp, while the muscle texture was not significantly different between the two groups, with the exception of the resilience. Moreover, the hindgut microbiota was analyzed using 16S rRNA high-throughput sequencing. The alpha and beta diversity differences between the cultured and wild groups were significant. The LEfSe analysis revealed Mycobacterium, Longivirga, and Acetobacteroides as biomarkers in cultured bighead carp, while Clostridium_T and other Firmicutes-associated genera were predominant in wild bighead carp. Regarding the relationship between the hindgut microbiota and meat quality, Mycobacterium exhibited a positive correlation with the muscle n-6 PUFA content and a negative correlation with muscle n - 3 PUFAs, while Clostridium_T exhibited the opposite pattern. According to the ecological network, the abundance of Actinobacteria could serve as a significant indicator of variations in the abundance of Mycobacterium and Clostridium_T. Consequently, differences in meat quality, particularly in the fatty acid composition, were observed between wild and cultured bighead carp. These differences may be associated with variations in the hindgut microbiota, shedding light on the gut-muscle axis.
Collapse
Affiliation(s)
- Abdullateef Mukhtar Muhammad
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China; (A.M.M.); (C.Y.); (B.L.); (C.S.); (L.M.)
| | - Chang Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China; (A.M.M.); (C.Y.); (B.L.); (C.S.); (L.M.)
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China; (A.M.M.); (C.Y.); (B.L.); (C.S.); (L.M.)
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (X.Z.); (L.P.); (D.X.)
| | - Cunxin Sun
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China; (A.M.M.); (C.Y.); (B.L.); (C.S.); (L.M.)
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (X.Z.); (L.P.); (D.X.)
| | - Linghong Miao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China; (A.M.M.); (C.Y.); (B.L.); (C.S.); (L.M.)
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (X.Z.); (L.P.); (D.X.)
| | - Xiaochuan Zheng
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (X.Z.); (L.P.); (D.X.)
| | - Liangkun Pan
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (X.Z.); (L.P.); (D.X.)
| | - Dong Xia
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (X.Z.); (L.P.); (D.X.)
| | - Qun-Lan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China; (A.M.M.); (C.Y.); (B.L.); (C.S.); (L.M.)
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (X.Z.); (L.P.); (D.X.)
| |
Collapse
|
4
|
Ma Z, He Y, Li Y, Wang Q, Fang M, Yang Q, Gong Z, Xu L. Effects of Deoxynivalenol and Its Acetylated Derivatives on Lipid Metabolism in Human Normal Hepatocytes. Toxins (Basel) 2024; 16:294. [PMID: 39057934 PMCID: PMC11281666 DOI: 10.3390/toxins16070294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON) belong to type B trichothecenes that are widely detected in agricultural products as one of the most common classes of mycotoxins. In the present study, we aimed to characterize the alteration of lipid metabolism in normal human hepatocytes by poisoning with DON and its acetylated derivatives. After verifying the hepatotoxicity of the three toxins, DON, 15-ADON, and 3-ADON, the mRNA expression was determined by transcriptomics, and the results showed that DON and 15-ADON had a significant regulatory effect on the transcriptome, in which glycerophospholipid metabolism pathway and phospholipase D signaling pathways have not been reported in studies of DON and its acetylated derivatives. For further validation, we explored lipid metabolism in depth and found that PC (15:0/16:0), PC (16:1/18:3), PC (18:1/22:6), PC (16:0/16:0), PC (16:0/16:1), PC (16:1/18:1), PC (14:0/18:2), PE (14:0/16:0) and PE (18:1/18:3) were downregulated for all nine lipids. Combined with the transcriptome results, we found that hepatic steatosis induced by the three toxins, DON, 15-ADON and 3-ADON, was associated with altered expression of genes related to lipid oxidation, lipogenesis and lipolysis, and their effects on lipid metabolism in L-02 cells were mainly realized through the PC-PE cycle.
Collapse
Affiliation(s)
- Zhaoqing Ma
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuyun He
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuzhi Li
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-Derived Food for State Market Regulation, Wuhan 430075, China
| | - Qiao Wang
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Min Fang
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Qing Yang
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Zhiyong Gong
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Lin Xu
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| |
Collapse
|
5
|
Murtaza B, Li X, Nawaz MY, Saleemi MK, Li G, Jin B, Wang L, Xu Y. Toxicodynamic of combined mycotoxins: MicroRNAs and acute-phase proteins as diagnostic biomarkers. Compr Rev Food Sci Food Saf 2024; 23:e13338. [PMID: 38629461 DOI: 10.1111/1541-4337.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/18/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Mycotoxins, ubiquitous contaminants in food, present a global threat to human health and well-being. Mitigation efforts, such as the implementation of sound agricultural practices, thorough food processing, and the advancement of mycotoxin control technologies, have been instrumental in reducing mycotoxin exposure and associated toxicity. To comprehensively assess mycotoxins and their toxicodynamic implications, the deployment of effective and predictive strategies is imperative. Understanding the manner of action, transformation, and cumulative toxic effects of mycotoxins, moreover, their interactions with food matrices can be gleaned through gene expression and transcriptome analyses at cellular and molecular levels. MicroRNAs (miRNAs) govern the expression of target genes and enzymes that play pivotal roles in physiological, pathological, and toxicological responses, whereas acute phase proteins (APPs) exert regulatory control over the metabolism of therapeutic agents, both endogenously and posttranscriptionally. Consequently, this review aims to consolidate current knowledge concerning the regulatory role of miRNAs in the initiation of toxicological pathways by mycotoxins and explores the potential of APPs as biomarkers following mycotoxin exposure. The findings of this research highlight the potential utility of miRNAs and APPs as indicators for the detection and management of mycotoxins in food through biological processes. These markers offer promising avenues for enhancing the safety and quality of food products.
Collapse
Affiliation(s)
- Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, China
- Dalian SEM Bioengineering Technology Co., Ltd, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | | | | | - Gen Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bowen Jin
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
- Dalian SEM Bioengineering Technology Co., Ltd, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
6
|
Dai C, Hou M, Yang X, Wang Z, Sun C, Wu X, Wang S. Increased NAD + levels protect female mouse reproductive system against zearalenone-impaired glycolysis, lipid metabolism, antioxidant capacity and inflammation. Reprod Toxicol 2024; 124:108530. [PMID: 38159578 DOI: 10.1016/j.reprotox.2023.108530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The reproductive system is a primary target organ for zearalenone (ZEN, a widespread fusarium mycotoxin) to exert its toxic effects, including decreased antioxidant capacity and aggravated inflammatory response. These ZEN-induced reproductive abnormalities are partially caused by the declining levels of nicotinamide adenine dinucleotide (NAD+), which results in an imbalance in lipid/glucose metabolism. Accordingly, the present study aimed to investigate whether supplements of nicotinamide mononucleotide (NMN, a NAD+ precursor) in female mice could protect against ZEN-induced reproductive toxicity. In this study, thirty female mice were randomly divided into three groups that were intragastrically administered with i) 0.5% DMSO (the Ctrl group), ii) 3 mg/(kg bw.d) ZEN (the ZEN group), or iii) ZEN + 500 mg/(kg bw.d) NMN (the ZEN/NMN group) for two weeks. The results revealed that, compared with the Ctrl group, animals exposed to ZEN exhibited reproductive toxicity, such as decreased antioxidant capacity and aggravated inflammatory response in reproductive tissues. These effects were strongly correlated with lower activities in key glycolytic enzymes (e.g., ALDOA and PGK), but increased expressions in key lipid-synthesis genes (e.g., LPIN1 and ATGL). These changes contribute to lipid accumulation, specifically for diacylglycerols (DAGs). Furthermore, these ZEN-induced changes were linked with disturbed NAD+ synthesis/degradation, and subsequently decreased NAD+ levels. Notably, NMN supplements in mice protected against these ZEN-induced reproductive abnormalities by boosting NAD+ levels. Herein, the present findings demonstrate that potential strategies to enhance NAD+ levels can protect against ZEN-induced reproductive toxicity.
Collapse
Affiliation(s)
- Chao Dai
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Institute of Life Sciences, Chongqing Medical University, Chongqing 400032, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqian Hou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400032, China
| | - Xudong Yang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Zhefeng Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changpo Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; Standards and Quality Center of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Shujin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400032, China.
| |
Collapse
|
7
|
Kim J, Jeong H, Ray N, Kim KH, Moon Y. Gut ribotoxic stress responses facilitate dyslipidemia via metabolic reprogramming: an environmental health prediction. Theranostics 2024; 14:1289-1311. [PMID: 38323314 PMCID: PMC10845207 DOI: 10.7150/thno.88586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
Rationale: The gut and its accessory organ, the liver, are crucial determinants of metabolic homeostasis via the regulation of circulating lipids for cardiovascular health. In response to environmental insults, cells undergo diverse adaptation or pathophysiological processes via stress-responsive eukaryotic initiation factor 2 alpha (eIF2α) kinase signaling and subsequent cellular reprogramming. We noted that patients with inflammatory gut distress display enhanced levels of ribosomal stress-responsive eIF2α kinase, which is notably associated with lipid metabolic process genes. Based on an assumption that eukaryotic ribosomes are a promising stress-responsive module for molecular reprogramming, chemical ribosome-inactivating stressors (RIS) were assessed for their involvement in enterohepatic lipid regulation. Methods: Experimental assessment was based on prediction using the clinical transcriptome and single-cell RNA-sequencing analysis of inflammatory bowel diseases and obesity. The prediction was verified using RIS exposure models of mice, gut organoids, and intestinal cells. The lipidomic profiling was performed to address RIS-induced intracellular fat alterations. Biochemical processes of the mechanisms were evaluated using RT-PCR, western blot analysis, luciferase reporter assays, and confocal microscopy of genetically ablated or chemically inhibited mice, organoids, and cells. Results: Chemical RIS including deoxynivalenol promoted enterohepatic lipid sequestration while lowering blood LDL cholesterol in normal and diet-induced obese mice. Although ribosomal stress caused extensive alterations in cellular lipids and metabolic genes, the cholesterol import-associated pathway was notably modulated. In particular, ribosomal stress enhanced gut levels of the low-density lipoprotein receptor (LDLR) via both transcriptional and post-transcriptional regulation. Subsequently, LDLR facilitated enterohepatic cholesterol accumulation, leading to dyslipidemia in response to ribosomal stress. Moreover, genetic features of stress-responsive LDLR modulators were consistently proven in the inflammation- and obesity-associated gut model. Conclusion: The elucidated ribosome-linked gut lipid regulation provides predictive insights into stress-responsive metabolic rewiring in chronic human diseases as an environmental health prediction.
Collapse
Affiliation(s)
- Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Korea
| | - Hoyoung Jeong
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Korea
| | - Navin Ray
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Korea
| | - Ki-Hyung Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Korea
- Department of Obstetrics and Gynecology, College of Medicine, Pusan National University, Pusan National University, Busan, Korea
- Biomedical Research Institute, Pusan National University, Busan, Korea
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Korea
- Biomedical Research Institute, Pusan National University, Busan, Korea
- Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
8
|
Koletsi P, Wiegertjes GF, Graat EAM, de Kool M, Lyons P, Schrama JW. Individual and combined effects of deoxynivalenol (DON) with other Fusarium mycotoxins on rainbow trout (Oncorhynchus mykiss) growth performance and health. Mycotoxin Res 2023; 39:405-420. [PMID: 37470898 PMCID: PMC10635917 DOI: 10.1007/s12550-023-00496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023]
Abstract
This study assessed whether the toxicological effects of deoxynivalenol (DON) produced by Fusarium graminearum in rainbow trout (Oncorhynchus mykiss) are altered by the co-exposure to a mixture of toxins produced by Fusarium verticillioides (FUmix). This FUmix contained fusaric acid and fumonisin B1, B2 and B3. Four diets were formulated according to a 2 × 2 factorial design: CON-CON; CON-FUmix; DON-CON; and DON-FUmix. Diets with and without DON contained on average 2700 and 0 µg/kg feed, respectively. The sum of the analysed FUmix toxins was 12,700 and 100 µg/kg feed in the diets with and without FUmix, respectively. The experiment consisted of a 6-week restrictive feeding period immediately followed by a 2-week ad libitum feeding period. Growth performance measurements were taken per feeding period. Histopathological measurements in the liver and gastrointestinal tract (pyloric caeca, midgut and hindgut) were assessed at the end of week 1 and week 6 of the restrictive feeding period and at week 8, the last day of the ad libitum feeding period. During both restrictive and ad libitum feeding, the effects of FUmix and DON on growth performance were additive (no interaction effect; p > 0.05). During the restrictive feeding period, exposure to DON (p ≤ 0.001) and FUmix (p ≤ 0.01) inhibited growth and increased feed conversion ratio (FCR). During this period, DON exposure decreased the protein (p ≤ 0.001) and energy retention (p ≤ 0.05) in the trout. During the ad libitum feeding period, FUmix affected HSI (p ≤ 0.01), while DON exposure reduced feed intake (p ≤ 0.001) and growth (p ≤ 0.001) and increased FCR (p ≤ 0.01). In general, for both liver and intestinal tissue measurements, no interaction effects between DON and FUmix were observed. In the liver, histopathological analysis revealed mild alterations, increased necrosis score by DON (p ≤ 0.01), increased glycogen vacuolization by FUmix (p ≤ 0.05) and decreased percentage of pleomorphic nuclei by FUmix (p ≤ 0.01). DON had a minor impact on the intestinal histological measurements. Over time, some of the liver (glycogen vacuolization score, pleomorphic nuclei; p ≤ 0.01) and intestinal measurements (mucosal fold and enterocyte width; p ≤ 0.01) were aggravated in fish fed the FUmix contaminated diets, with the most severe alterations being noted at week 8. Overall, the co-exposure to FUmix and DON gave rise to additive effects but showed no synergistic or antagonistic effects for the combination of DON with other Fusarium mycotoxins.
Collapse
Affiliation(s)
- Paraskevi Koletsi
- Aquaculture and Fisheries Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands.
- Alltech Biotechnology Inc, Dunboyne, A86 X006, Ireland.
| | - Geert F Wiegertjes
- Aquaculture and Fisheries Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - Elisabeth A M Graat
- Adaptation Physiology Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - Marijn de Kool
- Aquaculture and Fisheries Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - Philip Lyons
- Alltech Biotechnology Inc, Dunboyne, A86 X006, Ireland
| | - Johan W Schrama
- Aquaculture and Fisheries Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| |
Collapse
|
9
|
Miao C, Wang Z, Wang X, Huang W, Gao X, Cao Z. Deoxynivalenol Induces Blood-Testis Barrier Dysfunction through Disrupting p38 Signaling Pathway-Mediated Tight Junction Protein Expression and Distribution in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12829-12838. [PMID: 37590035 DOI: 10.1021/acs.jafc.3c03552] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Deoxynivalenol (DON) is widely present in cereals and processed grains. It can disrupt the blood-testicular barrier (BTB), leading to sterility in males; however, the mechanism is unknown. In this study, 30 Kunming mice and TM4 cells were exposed to 0 or 4.8 mg/kg (28 d) and 0-2.4 μM (24 h) of DON, respectively. Histopathological findings showed that DON increased BTB permeability in mice, leading to tight junction (TJ) structural damage. Immunofluorescence results indicated that DON disrupted the localization of zonula occludens (ZO)-1. The results of protein and mRNA expression showed that the expression of ZO-1, occludin, and claudin-11 was reduced, and that the p38/GSK-3β/snail and p38/ATF-2/MLCK signaling pathways were activated in mouse testes and TM4 cells. Pretreatment with the p38 inhibitor SB203580 maintained TJ integrity in TM4 cells after exposure to DON. Thus, DON induced BTB dysfunction in mice by disrupting p38 pathway-mediated TJ expression and distribution.
Collapse
Affiliation(s)
- Chenjiao Miao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Zijia Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Xin Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Wanyue Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiang Gao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Zheng Cao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| |
Collapse
|
10
|
Zhu F, Zhu L, Xu J, Wang Y, Wang Y. Effects of moldy corn on the performance, antioxidant capacity, immune function, metabolism and residues of mycotoxins in eggs, muscle, and edible viscera of laying hens. Poult Sci 2023; 102:102502. [PMID: 36739801 PMCID: PMC9932114 DOI: 10.1016/j.psj.2023.102502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Mycotoxins, including aflatoxin B1 (AFB1), zearalenone (ZEN) and deoxynivalenol (DON), are common contaminants of moldy feeds. Mycotoxins can cause deleterious effects on the health of chickens and can be carried over in poultry food products. This study was conducted to investigate the effects of moldy corn (containing AFB1, ZEN, and DON) on the performance, health, and mycotoxin residues of laying hens. One hundred and eighty 400-day-old laying hens were divided into 4 treatments: basal diet (Control), basal diet containing 20% moldy corn (MC20), 40% moldy corn (MC40) and 60% moldy corn (MC60). At d 20, 40, and 60, the performance, oxidative stress, immune function, metabolism, and mycotoxin residues in eggs were determined. At d 60, mycotoxin residues in muscle and edible viscera were measured. Results showed the average daily feed intake (ADFI) and laying performance of laying hens were decreased with moldy corn treatments. All the moldy corn treatments also induced significant oxidative stress and immunosuppression, reflected by decreased antioxidase activities, contents of cytokines, immunoglobulins, and increased malonaldehyde level. Moreover, the activities of aspartate aminotransferase and alanine transaminase were increased by moldy corn treatments. The lipid metabolism was influenced in laying hens receiving moldy corn, reflected by lowered levels of total protein, high density lipoprotein cholesterol, low density lipoprotein cholesterol, total cholesterol, and increased total triglyceride as well as uric acid. The above impairments were aggravated with the increase of mycotoxin levels. Furthermore, AFB1 and ZEN residues were found in eggs, muscle, and edible viscera with moldy corn treatments, but the residues were below the maximum residue limits. In conclusion, moldy corn impaired the performance, antioxidant capacity, immune function, liver function, and metabolism of laying hens at d 20, 40, and 60. Moldy corn also led to AFB1 residue in eggs at d 20, 40, and 60, and led to both AFB1 and ZEN residues in eggs at days 40 and 60, and in muscle and edible viscera at d 60. The toxic effects and mycotoxin residues were elevated with the increase of moldy corn levels in feed.
Collapse
Affiliation(s)
- Fenghua Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Lianqin Zhu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Jindong Xu
- College of Science and Information, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Yuchang Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, P.R. China.
| |
Collapse
|
11
|
Chen H, Chen X, Ma J. The mitigation mechanism of hesperidin on deoxynivalenol toxicity in grass carp hepatocytes via decreasing ROS accumulation and inhibiting JNK phosphorylation. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108646. [PMID: 36842640 DOI: 10.1016/j.fsi.2023.108646] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Deoxynivalenol (DON), a crucial kind of mycotoxin, is found globally present in the contaminated cereal crops including wheat, barley, maize and rice. Hesperidin (HDN) is a flavonoid with a variety of biological activities found in high concentrations in citrus fruits. However, the potential protective effects of HDN on cell damage under DON toxicity, and the role of oxidative stress, inflammation, autophagy and apoptosis in it, remain unclear. Therefore, we treated grass carp (Ctenopharyngodon idellus) liver cells (L8824 cell) with DON and HDN for 24 h. The results showed that DON exposure caused a higher ROS accumulation, activated inflammation, autophagy and apoptosis, induced the expression of cytokines (NF-kappaB, TNF-α, IL-1β, IL-6), triggered BCL2/BAX-mediated apoptosis and LC3B/P62-dependent autophagy in the L8824 cell line. Moreover, HDN reduced DON exposure-induced inflammation and autophagy by decreasing ROS accumulation and reduced DON exposure-induced apoptosis by inhibiting JNK phosphorylation. These results partly explained the mechanism of biological threat on fish under DON exposure and the potential application value of HDN in aquaculture.
Collapse
Affiliation(s)
- Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, 150030, PR China
| | - Xin Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, 150030, PR China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, 150030, PR China.
| |
Collapse
|
12
|
Koletsi P, Wiegertjes GF, Graat EAM, Lyons P, Schrama J. Time- and Dose-Dependent Effects of Dietary Deoxynivalenol (DON) in Rainbow Trout ( Oncorhynchus mykiss) at Organism and Tissue Level. Toxins (Basel) 2022; 14:toxins14110810. [PMID: 36422984 PMCID: PMC9697072 DOI: 10.3390/toxins14110810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
This study with juvenile rainbow trout evaluated the effects of dietary exposure to deoxynivalenol (DON) at industrially relevant doses (up to 1.6 mg/kg) on growth performance, the liver, and the gastrointestinal tract. Fifteen groups of 30 fish each were given one of five dietary treatments in triplicate: (1) control diet (CON; DON < 100 µg/kg feed), (2) naturally DON-contaminated diet (ND1) with a DON content of 700 µg/kg in the feed, (3) ND2 with a DON content of 1200 µg/kg feed, (4) a pure DON-contaminated diet (PD1) with 800 µg/kg of DON in the feed, and (5) PD2 with DON at a concentration of 1600 µg/kg in the feed. The feeding trial lasted eight weeks: six weeks of restrictive feeding followed by two weeks of ad libitum feeding. Exposure to DON during restrictive feeding for six weeks did not affect the growth performance of trout but did lead to a reduction in retained protein in fish fed with higher doses of DON in the ND2 and PD2 groups. During the two following weeks of ad libitum feeding, feed intake was similar among all groups, but body weight gain was lower in the ND2 and PD2 groups and feed efficiency was higher in PD2 (week 8). Histopathological assessment revealed liver damage, including altered nuclear characteristics and haemorrhages, in groups fed higher doses of natural DON (ND2) after just one week of restrictive feeding. Liver damage (necrosis and haemorrhage presence in ND2) was alleviated over time (week 6) but was again aggravated after ad libitum exposure (week 8). In contrast, gastrointestinal tract damage was generally mild with only a few histopathological alterations, and the absence of an inflammatory cytokine response was demonstrated by PCR at week 8. In conclusion, ad libitum dietary exposure of rainbow trout to either natural or pure DON resulted in reduced growth (dose-dependent), while restrictive exposure revealed time-dependent effects of natural DON in terms of liver damage.
Collapse
Affiliation(s)
- Paraskevi Koletsi
- Aquaculture and Fisheries Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
- Correspondence:
| | - Geert F. Wiegertjes
- Aquaculture and Fisheries Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | - Elisabeth A. M. Graat
- Adaptation Physiology Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | - Philip Lyons
- Alltech Biotechnology Inc., A86 X006 Dunboyne, Ireland
| | - Johan Schrama
- Aquaculture and Fisheries Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
13
|
Hao W, Li A, Wang J, An G, Guan S. Mycotoxin Contamination of Feeds and Raw Materials in China in Year 2021. Front Vet Sci 2022; 9:929904. [PMID: 35847652 PMCID: PMC9281542 DOI: 10.3389/fvets.2022.929904] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 11/15/2022] Open
Abstract
In this research, we performed a large-scale survey of mycotoxin contamination in several feed commodities and assessed regional differences in mycotoxin occurrence in maize across China in 2021. Concentrations of aflatoxins, zearalenone (ZEN), fumonisins, and trichothecenes type B were analyzed in 2,643 raw material and compound feed samples collected from eight provinces. Generally, trichothecenes type B, fumonisins, and ZEN were most prevalent and detected in averages of positive concentrations at 1,167, 1,623, and 204 μg/kg, respectively. In the new season maize, samples were also seriously infested with trichothecenes type B, fumonisins, and ZEN, and their averages of positive concentrations were 1,302, 2,518, and 225 μg/kg, respectively. Wheat was commonly contaminated with trichothecenes type B and ZEN, and the highest concentration levels of trichothecenes type B, fumonisins, and ZEN were all detected in the samples from maize by-products. Among the different geographical regions, distinct trends were observed in new season maize. Samples from Shandong province were highly contaminated with trichothecenes type B, fumonisins, and ZEN, while special attention should be paid to aflatoxins and fumonisins in Anhui and Jiangsu provinces in East China. In addition, the present survey showed that compound feeds and raw materials are commonly contaminated by multiple mycotoxins. Trichothecenes type B and ZEN concentrations were correlated significantly in this survey.
Collapse
Affiliation(s)
- Wei Hao
- Department of Animal Nutrition and Health, DSM (China) Co., Ltd, Shanghai, China
| | - Anping Li
- Department of Animal Nutrition and Health, DSM (China) Co., Ltd, Shanghai, China
| | - Jinyong Wang
- Department of Animal Nutrition and Health, DSM (China) Co., Ltd, Shanghai, China
| | - Gang An
- Department of Animal Nutrition and Health, DSM (China) Co., Ltd, Shanghai, China
| | - Shu Guan
- Department of Animal Nutrition and Health, DSM Singapore Industrial Pte Ltd, Singapore, Singapore
- *Correspondence: Shu Guan
| |
Collapse
|
14
|
Development of a USE/d-SPE and targeted DIA-Orbitrap-MS acquisition methodology for the analysis of wastewater-derived organic pollutants in fish tissues and body fluids. MethodsX 2022; 9:101705. [PMID: 35518922 PMCID: PMC9062737 DOI: 10.1016/j.mex.2022.101705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Pharmaceuticals (PhACs) are partially removed during wastewater treatment and end up in the receiving waters. As a result, aquatic biota is continuously exposed to a wide range of potentially hazardous contaminants such as PhACs. Therefore, fish could be a good bio indicator to give a direct measure of the occurrence of PhACs in the aquatic environment. In this study, a robust analytical method has been optimized and validated for the determination of 81 organic compounds, mainly PhACs, in seven wild fish tissue types (liver, muscle, pancreas, kidney, skin, heart, and brain) and two body fluids (plasma and bile). Solid samples extraction was performed combining a procedure based on bead beating tissue homogenization plus ultrasound extraction followed by dispersive solid-phase extraction (dSPE) clean-up using zirconia and C18 sorbents for solid matrices, whereas bile and plasma were diluted. The key aspects of this method are: • The method facilitated the simultaneous extraction of 81 PhACs of a wide range of polarity (logP from -4.9 to 5.6) in tissues with variable lipid content. • The validation was performed using Cyprinus carpio at 20 ng g−1 and 200 ng g−1 for solid tissues, 50 ng mL−1 and 500 ng mL−1 for plasma, and 100 ng mL−1 and 1000 ng mL−1 for bile. Analyte detection was performed in LC-HRMS Q-Exactive Orbitrap system with full scan and targeted data-independent acquisition (DIA) mode for high-confidence and sensitive quantitation in either (+) or (-) ESI mode. • The majority of compounds presented recoveries between 40% and 70% and relative standard deviations (RSD) below 30%.
Collapse
|
15
|
Hooft JM, Bureau DP. Deoxynivalenol: Mechanisms of action and its effects on various terrestrial and aquatic species. Food Chem Toxicol 2021; 157:112616. [PMID: 34662691 DOI: 10.1016/j.fct.2021.112616] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/02/2021] [Accepted: 10/12/2021] [Indexed: 11/26/2022]
Abstract
Deoxynivalenol, a type B trichothecene mycotoxin produced by Fusarium species of fungi, is a ubiquitious contaminant of cereal grains worldwide. Chronic, low dose consumption of feeds contaminated with DON is associated with a wide range of symptoms in terrestrial and aquatic species including decreased feed intake and feed refusal, reduced weight gain, and altered nutritional efficiency. Acute, high dose exposure to DON may be associated with more severe symptoms such as vomiting, diarrhea, intestinal inflammation and gastrointestinal hemorrhage. The toxicity of DON is partly related to its ability to disrupt eukaryotic protein synthesis via binding to the peptidyl transferase site of the ribosome. Moreover, DON exerts its effects at the cellular level by activating mitogen activated protein kinases (MAPK) through a process known as the ribotoxic stress response (RSR). The outcome of DON-associated MAPK activation is dose and duration dependent; acute low dose exposure results in immunostimulation characterized by the upregulation of cytokines, chemokines and other proinflammatory-related proteins, whereas longer term exposure to higher doses generally results in apoptosis, cell cycle arrest, and immunosuppression. The order of decreasing sensitivity to DON is considered to be: swine > rats > mice > poultry ≈ ruminants. However, studies conducted within the past 10 years have demonstrated that some species of fish, such as rainbow trout, are highly sensitive to DON. The aims of this review are to explore the effects of DON on terrestrial and aquatic species as well as its mechanisms of action, metabolism, and interaction with other Fusarium mycotoxins. Notably, a considerable emphasis is placed on reviewing the effects of DON on different species of fish.
Collapse
Affiliation(s)
- Jamie M Hooft
- Wittaya Aqua International, 1 University Ave, Floor 5, Toronto, ON, M5J 2P1, Canada.
| | - Dominique P Bureau
- Wittaya Aqua International, 1 University Ave, Floor 5, Toronto, ON, M5J 2P1, Canada; Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
16
|
|
17
|
Changes of DNA Damage Effect of T-2 or Deoxynivalenol Toxins during Three Weeks Exposure in Common Carp ( Cyprinus carpio L.) Revealed by LORD-Q PCR. Toxins (Basel) 2021; 13:toxins13080576. [PMID: 34437447 PMCID: PMC8402481 DOI: 10.3390/toxins13080576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 11/19/2022] Open
Abstract
The present study aimed to adapt a Long-run Real-time DNA Damage Quantification (LORD-Q) qPCR-based method for the analysis of the mitochondrial genome of Common carp (Cyprinus carpio L.) and detect the DNA damaging effect of T-2 (4.11 mg kg−1) and deoxynivalenol (5.96 mg kg−1) mycotoxins in a 3-week feeding period. One-year-old Common carp were treated in groups (control, T-2 and DON). The mycotoxins were sprayed over the complete pelleted feed, and samples were taken weekly. Following the adaptation of LORD-Q PCR method for the Common carp species, the number of lesions were calculated to determine the amount of DNA damage. In the first and second weeks, the T-2 and the DON treated groups differed significantly from each other; however these differences disappeared in the third week. There was a significant difference in the DNA lesion values between weeks 1 and 3 in the deoxynivalenol-contaminated groups. While in the T-2 treated groups, the DNA lesion values were significantly reduced on weeks 2 and 3 compared to week 1. The results suggested that the trichothecene mycotoxins have a relevant DNA damaging effect.
Collapse
|
18
|
Koletsi P, Schrama JW, Graat EAM, Wiegertjes GF, Lyons P, Pietsch C. The Occurrence of Mycotoxins in Raw Materials and Fish Feeds in Europe and the Potential Effects of Deoxynivalenol (DON) on the Health and Growth of Farmed Fish Species-A Review. Toxins (Basel) 2021; 13:403. [PMID: 34198924 PMCID: PMC8226812 DOI: 10.3390/toxins13060403] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
The first part of this study evaluates the occurrence of mycotoxin patterns in feedstuffs and fish feeds. Results were extrapolated from a large data pool derived from wheat (n = 857), corn (n = 725), soybean meal (n = 139) and fish feed (n = 44) samples in European countries and based on sample analyses by liquid chromatography/tandem mass spectrometry (LC-MS/MS) in the period between 2012-2019. Deoxynivalenol (DON) was readily present in corn (in 47% of the samples) > wheat (41%) > soybean meal (11%), and in aquafeeds (48%). Co-occurrence of mycotoxins was frequently observed in feedstuffs and aquafeed samples. For example, in corn, multi-mycotoxin occurrence was investigated by Spearman's correlations and odd ratios, and both showed co-occurrence of DON with its acetylated forms (3-AcDON, 15-AcDON) as well as with zearalenone (ZEN). The second part of this study summarizes the existing knowledge on the effects of DON on farmed fish species and evaluates the risk of DON exposure in fish, based on data from in vivo studies. A meta-analytical approach aimed to estimate to which extent DON affects feed intake and growth performance in fish. Corn was identified as the ingredient with the highest risk of contamination with DON and its acetylated forms, which often cannot be detected by commonly used rapid detection methods in feed mills. Periodical state-of-the-art mycotoxin analyses are essential to detect the full spectrum of mycotoxins in fish feeds aimed to prevent detrimental effects on farmed fish and subsequent economic losses for fish farmers. Because levels below the stated regulatory limits can reduce feed intake and growth performance, our results show that the risk of DON contamination is underestimated in the aquaculture industry.
Collapse
Affiliation(s)
- Paraskevi Koletsi
- Aquaculture and Fisheries Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands; (J.W.S.); (G.F.W.)
| | - Johan W. Schrama
- Aquaculture and Fisheries Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands; (J.W.S.); (G.F.W.)
| | - Elisabeth A. M. Graat
- Adaptation Physiology Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands;
| | - Geert F. Wiegertjes
- Aquaculture and Fisheries Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands; (J.W.S.); (G.F.W.)
| | - Philip Lyons
- Alltech Biotechnology Inc., A86 X006 Dunboyne, Ireland;
| | - Constanze Pietsch
- School of Agricultural, Forest and Food Sciences (HAFL), Applied University Berne (BFH), 3052 Zollikofen, Switzerland
| |
Collapse
|
19
|
Kövesi B, Kulcsár S, Zándoki E, Szabó-Fodor J, Mézes M, Balogh K, Ancsin Z, Pelyhe C. Short-term effects of deoxynivalenol, T-2 toxin, fumonisin B1 or ochratoxin on lipid peroxidation and glutathione redox system and its regulatory genes in common carp (Cyprinus carpio L.) liver. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1921-1932. [PMID: 32617788 PMCID: PMC7584534 DOI: 10.1007/s10695-020-00845-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/23/2020] [Indexed: 05/09/2023]
Abstract
The effects of a single oral dose of 1.82 mg kg-1 bw of T-2 and HT-2 toxin (T-2), 1.75 mg kg-1 bw deoxynivalenol (DON) and 15-acetyl DON, 1.96 mg kg-1 bw fumonisin B1 (FB1) or 1.85 mg kg-1 bw ochratoxin A (OTA) were investigated in common carp juveniles on lipid peroxidation, the parameters of the glutathione redox system including the expression of their encoding genes in a short-term (24 h) experiment. Markers of the initiation phase of lipid peroxidation, conjugated dienes, and trienes, were slightly affected by DON and OTA treatment at 16-h sampling. The termination marker, malondialdehyde, concentration increased only as an effect of FB1. Glutathione content and glutathione peroxidase activity showed significantly higher levels in the T-2 and FB1 groups at 8 h, and in the DON and FB1 groups at 16 h. The expression of glutathione peroxidase genes (gpx4a, gpx4b) showed a dual response. Downregulation of gpxa was observed at 8 h, as the effect of DON, FB1, and OTA, but an upregulation in the T-2 group. At 16 h gpx4a upregulated as an effect of DON, T-2, and FB1, and at 24 h in the DON and T-2 groups. Expression of gpx4b downregulated at 8 h, except in the T-2 group, and upregulation observed as an effect of T-2 at 24 h. The lack of an increase in the expression of nrf2, except as the effect of DON at 8 h, and a decrease in the keap1 expression suggests that the antioxidant defence system was activated at gene and protein levels through Keap1-Nrf2 independent pathways.
Collapse
Affiliation(s)
- Benjámin Kövesi
- Department of Nutrition, Szent István University, Gödöllő, H-2103, Hungary
| | - Szabina Kulcsár
- Department of Nutrition, Szent István University, Gödöllő, H-2103, Hungary
| | - Erika Zándoki
- Hungarian Academy of Sciences-Kaposvár University- Szent István University, Mycotoxins in the Food Chain Research Group, Kaposvár, H-7400, Hungary
| | - Judit Szabó-Fodor
- Hungarian Academy of Sciences-Kaposvár University- Szent István University, Mycotoxins in the Food Chain Research Group, Kaposvár, H-7400, Hungary
| | - Miklós Mézes
- Department of Nutrition, Szent István University, Gödöllő, H-2103, Hungary.
- Hungarian Academy of Sciences-Kaposvár University- Szent István University, Mycotoxins in the Food Chain Research Group, Kaposvár, H-7400, Hungary.
| | - Krisztián Balogh
- Department of Nutrition, Szent István University, Gödöllő, H-2103, Hungary
- Hungarian Academy of Sciences-Kaposvár University- Szent István University, Mycotoxins in the Food Chain Research Group, Kaposvár, H-7400, Hungary
| | - Zsolt Ancsin
- Department of Nutrition, Szent István University, Gödöllő, H-2103, Hungary
| | - Csilla Pelyhe
- Department of Nutrition, Szent István University, Gödöllő, H-2103, Hungary
| |
Collapse
|
20
|
Kövesi B, Pelyhe C, Zándoki E, Mézes M, Balogh K. Combined effects of aflatoxin B1 and deoxynivalenol on the expression of glutathione redox system regulatory genes in common carp. J Anim Physiol Anim Nutr (Berl) 2020; 104:1531-1539. [PMID: 32166807 DOI: 10.1111/jpn.13343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/23/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
Abstract
The purpose of the present study was to evaluate the short-term effects of aflatoxin B1 (AFB1 ) and deoxynivalenol (DON) exposure on the expression of the genes encoding the glutathione redox system glutathione peroxidase 4a (gpx4a), glutathione peroxidase 4b (gpx4b), glutathione synthetase (gss) and glutathione reductase (gsr) and the oxidative stress response-related transcription factors Kelch-like ECH-associated protein 1 (keap1) and nuclear factor-erythroid 2 p45-related factor 2 (nrf2) in liver, kidney and spleen of common carp. During the 24-hr long experiment, three different doses (5 µg AFB1 and 110 µg DON; 7.5 µg AFB1 and 165 µg DON or 10 µg AFB1 and 220 µg DON/kg bw) were used. The results indicated that the co-exposure of AFB1 and DON initiated free radical formation in liver, kidney and spleen, which was suggested by the increase in Nrf2 dependent genes, namely gpx4a, gpx4b, gss and gsr. Expression of keap1 gene showed upregulation after 8 hr of mycotoxin exposure, and also upregulation of nrf2 gene was found in kidney after 8 hr of exposure, while in the liver, only slight differences were observed. The changes in the expression of the analysed genes suggest that level of reactive oxygen species reached a critical level where other signalling pathway was activated as described by the hierarchical model of oxidative stress.
Collapse
Affiliation(s)
- Benjamin Kövesi
- Department of Nutrition, Szent István University, Gödöllő, Hungary
| | - Csilla Pelyhe
- Mycotoxins in the Food Chain Research Group, Hungarian Academy of Sciences, Kaposvár University, Szent István University, Kaposvár, Hungary
| | - Erika Zándoki
- Mycotoxins in the Food Chain Research Group, Hungarian Academy of Sciences, Kaposvár University, Szent István University, Kaposvár, Hungary
| | - Miklós Mézes
- Department of Nutrition, Szent István University, Gödöllő, Hungary.,Mycotoxins in the Food Chain Research Group, Hungarian Academy of Sciences, Kaposvár University, Szent István University, Kaposvár, Hungary
| | - Krisztián Balogh
- Department of Nutrition, Szent István University, Gödöllő, Hungary.,Mycotoxins in the Food Chain Research Group, Hungarian Academy of Sciences, Kaposvár University, Szent István University, Kaposvár, Hungary
| |
Collapse
|
21
|
Nogueira WV, de Oliveira FK, Garcia SDO, Sibaja KVM, Tesser MB, Garda Buffon J. Sources, quantification techniques, associated hazards, and control measures of mycotoxin contamination of aquafeed. Crit Rev Microbiol 2020; 46:26-37. [PMID: 32065532 DOI: 10.1080/1040841x.2020.1716681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
With the productive intensification of fish farming, the partial or total replacement of fishmeal by ingredients of plant origin became a reality within the feed industry, with the aim of reducing costs. However, this practice increased the impact of mycotoxin contamination. Studies have shown that mycotoxins can induce various disorders in fish, such as cellular and organic alterations, as well as impair functional and morphological development, and, in more severe cases, mortality. Thus, studies have been conducted to evaluate and develop strategies to prevent the formation of mycotoxins, as well as to induce their elimination, inactivation or reduction of their availability in feed.
Collapse
Affiliation(s)
- Wesclen Vilar Nogueira
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| | - Francine Kerstner de Oliveira
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| | - Sabrina de Oliveira Garcia
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| | - Karen Vanessa Marimón Sibaja
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| | - Marcelo Borges Tesser
- Aquatic Organism Nutrition Laboratory, Institute of Oceanography, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| | - Jaqueline Garda Buffon
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| |
Collapse
|
22
|
Pietsch C. Risk assessment for mycotoxin contamination in fish feeds in Europe. Mycotoxin Res 2020; 36:41-62. [PMID: 31346981 PMCID: PMC6971146 DOI: 10.1007/s12550-019-00368-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 01/09/2023]
Abstract
Mycotoxins are difficult to monitor continuously, and a tool to assess the risk would help to judge if there is a particular risk due to the inclusion of certain feed ingredients. For this, the toxin contents of 97 commercial fish feeds have been estimated, and the most prominent toxins in fish feed are calculated to be deoxynivalenol, zearalenone, fumonisins and enniatins. These pose a risk to fish well-being, as can be calculated by the Bayesian models for determining the critical concentrations 5% (CC5) for the different toxins. Besides fishmeal, wheat, soybean products and corn are regularly used as fish feed ingredients. The calculated scenarios show that fish are at high risk of toxin contamination if feed ingredients of low quality are chosen for feed production. Due to this, specific maximum allowable levels for several mycotoxins in fish feeds should be established.
Collapse
Affiliation(s)
- Constanze Pietsch
- Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences (ZHAW), Grüental, P.O. Box, 8820, Wädenswil, Switzerland.
| |
Collapse
|
23
|
García-Herranz V, Valdehita A, Navas J, Fernández-Cruz M. Cytotoxicity against fish and mammalian cell lines and endocrine activity of the mycotoxins beauvericin, deoxynivalenol and ochratoxin-A. Food Chem Toxicol 2019; 127:288-297. [DOI: 10.1016/j.fct.2019.01.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 12/15/2022]
|
24
|
Effects of dietary deoxynivalenol or ochratoxin A on performance and selected health indices in Atlantic salmon (Salmo salar). Food Chem Toxicol 2018; 121:374-386. [DOI: 10.1016/j.fct.2018.08.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022]
|
25
|
Wu S, Liu Y, Duan Y, Wang F, Guo F, Yan F, Yang X, Yang X. Intestinal toxicity of deoxynivalenol is limited by supplementation with Lactobacillus plantarum JM113 and consequentially altered gut microbiota in broiler chickens. J Anim Sci Biotechnol 2018; 9:74. [PMID: 30338065 PMCID: PMC6174567 DOI: 10.1186/s40104-018-0286-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/19/2018] [Indexed: 01/10/2023] Open
Abstract
Background Limited research has focused on the effect of Lactobacillus on the intestinal toxicity of deoxynivalenol (DON). The present study was conducted to investigate the role of Lactobacillus plantarum (L. plantarum) JM113 in protecting against the intestinal toxicity caused by DON. Methods A total of 144 one-day-old healthy Arbor Acres broilers were randomly distributed into 3 treatments, including the CON (basal diet), the DON (extra 10 mg/kg deoxynivalenol), and the DL (extra 1 × 109 CFU/ kg L. plantarum JM113 based on DON group) treatments. The growth performance, organ indexes, intestinal morphology, pancreatic digestive enzymes, intestinal secreted immunoglobulin A (sIgA), jejunal transcriptome, and intestinal microbiota were evaluated. Results Compared with the CON and DL groups, the DON supplementation altered intestinal morphology, especially in duodenum and jejunum, where villi were shorter and crypts were deeper (P < 0.05). Meanwhile, the significantly decreased mRNA expression of jejunal claudin-1 and occludin (P < 0.05), ileal rBAT and jejunal GLUT1 of 21-day-old broilers (P < 0.05), as well as duodenal PepT1 and ileal rBAT of 42-day-old broilers were identified in the DON group. Moreover, supplementation with L. plantarum JM113 could increase duodenal expression of IL-10 and IL-12 of 21-day-old broilers, ileal sIgA of 42-day-old broilers, and the bursa of Fabricius index of 21-day-old broilers. Further jejunal transcriptome proved that the genes related to the intestinal absorption and metabolism were significantly reduced in the DON group but a significant increase when supplemented with extra L. plantarum JM113. Furthermore, the bacteria related to nutrient utilization, including the Proteobacteria, Escherichia, Cc-115 (P < 0.05), Lactobacillus and Prevotella (P < 0.1) were all decreased in the DON group. By contrast, supplementation with L. plantarum JM113 increased the relative abundance of beneficial bacterium, including the Bacteroidetes, Roseburia, Anaerofustis, Anaerostipe, and Ruminococcus bromii (P < 0.05). Specifically, the increased abundance of bacteria in the DL group could be proved by the significantly increased caecal content of propionic acid, n-Butyric acid, and total short-chain fatty acid. Conclusions L. plantarum JM113 enhanced the digestion, absorption, and metabolic functions of the gut when challenged with DON by reducing the injury to intestinal barriers and by increasing the abundance of beneficial bacterium. Electronic supplementary material The online version of this article (10.1186/s40104-018-0286-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shengru Wu
- 1College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi China.,2College of animal science and Technology, Hebei Agricultural University, Baoding, Hebei China
| | - Yanli Liu
- 1College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi China
| | - Yongle Duan
- 1College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi China
| | - Fangyuan Wang
- 1College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi China
| | - Fangshen Guo
- 1College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi China
| | - Fang Yan
- 1College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi China
| | - Xiaojun Yang
- 1College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi China
| | - Xin Yang
- 1College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi China
| |
Collapse
|
26
|
Lu Y, Zhang Y, Liu JQ, Zou P, Jia L, Su YT, Sun YR, Sun SC. Comparison of the toxic effects of different mycotoxins on porcine and mouse oocyte meiosis. PeerJ 2018; 6:e5111. [PMID: 29942714 PMCID: PMC6015490 DOI: 10.7717/peerj.5111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/06/2018] [Indexed: 11/30/2022] Open
Abstract
Background Aflatoxin B1 (AFB1), deoxynivalenol (DON), HT-2, ochratoxin A (OTA), zearalenone (ZEA) are the most common mycotoxins that are found in corn-based animal feed which have multiple toxic effects on animals and humans. Previous studies reported that these mycotoxins impaired mammalian oocyte quality. However, the effective concentrations of mycotoxins to animal oocytes were different. Methods In this study we aimed to compare the sensitivity of mouse and porcine oocytes to AFB1, DON, HT-2, OTA, and ZEA for mycotoxin research. We adopted the polar body extrusion rate of mouse and porcine oocyte as the standard for the effects of mycotoxins on oocyte maturation. Results and Discussion Our results showed that 10 μM AFB1 and 1 μM DON significantly affected porcine oocyte maturation compared with 50 μM AFB1 and 2 μM DON on mouse oocytes. However, 10 nM HT-2 significantly affected mouse oocyte maturation compared with 50 nM HT-2 on porcine oocytes. Moreover, 5 μM OTA and 10 μM ZEA significantly affected porcine oocyte maturation compared with 300 μM OTA and 50 μM ZEA on mouse oocytes. In summary, our results showed that porcine oocytes were more sensitive to AFB1, DON, OTA, and ZEA than mouse oocytes except HT-2 toxin.
Collapse
Affiliation(s)
- Yujie Lu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Yue Zhang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Qian Liu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Peng Zou
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Lu Jia
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | | | - Yu-Rong Sun
- Jiangsu Aomai Bio-Tech Company, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
27
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, De Saeger S, Eriksen GS, Farmer P, Fremy JM, Gong YY, Meyer K, Naegeli H, Parent-Massin D, Rietjens I, van Egmond H, Altieri A, Eskola M, Gergelova P, Ramos Bordajandi L, Benkova B, Dörr B, Gkrillas A, Gustavsson N, van Manen M, Edler L. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J 2017; 15:e04718. [PMID: 32625635 PMCID: PMC7010102 DOI: 10.2903/j.efsa.2017.4718] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin primarily produced by Fusarium fungi, occurring predominantly in cereal grains. Following the request of the European Commission, the CONTAM Panel assessed the risk to animal and human health related to DON, 3-acetyl-DON (3-Ac-DON), 15-acetyl-DON (15-Ac-DON) and DON-3-glucoside in food and feed. A total of 27,537, 13,892, 7,270 and 2,266 analytical data for DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside, respectively, in food, feed and unprocessed grains collected from 2007 to 2014 were used. For human exposure, grains and grain-based products were main sources, whereas in farm and companion animals, cereal grains, cereal by-products and forage maize contributed most. DON is rapidly absorbed, distributed, and excreted. Since 3-Ac-DON and 15-Ac-DON are largely deacetylated and DON-3-glucoside cleaved in the intestines the same toxic effects as DON can be expected. The TDI of 1 μg/kg bw per day, that was established for DON based on reduced body weight gain in mice, was therefore used as a group-TDI for the sum of DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside. In order to assess acute human health risk, epidemiological data from mycotoxicoses were assessed and a group-ARfD of 8 μg/kg bw per eating occasion was calculated. Estimates of acute dietary exposures were below this dose and did not raise a health concern in humans. The estimated mean chronic dietary exposure was above the group-TDI in infants, toddlers and other children, and at high exposure also in adolescents and adults, indicating a potential health concern. Based on estimated mean dietary concentrations in ruminants, poultry, rabbits, dogs and cats, most farmed fish species and horses, adverse effects are not expected. At the high dietary concentrations, there is a potential risk for chronic adverse effects in pigs and fish and for acute adverse effects in cats and farmed mink.
Collapse
|
28
|
Peng Z, Chen L, Nüssler AK, Liu L, Yang W. Current sights for mechanisms of deoxynivalenol-induced hepatotoxicity and prospective views for future scientific research: A mini review. J Appl Toxicol 2017; 37:518-529. [PMID: 27996102 DOI: 10.1002/jat.3428] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 03/10/2025]
Abstract
Deoxynivalenol (DON) belongs to the group B trichothecenes, which are the most common mycotoxins in cereal commodities. It is very stable within the temperature range 170-350 °C, showing no reduction in its concentration after 30 min at 170 °C. This chemical property is a very dangerous factor for human and animal health. Liver is also responsible for the detoxification and formation of DON-glucuronide in both human and animals. Some studies already demonstrated that DON could induce liver damage remarkably through DON altering expressions of p53, caspase-3, caspase-7, caspase-8 and Bax in different cell lines. At the same time, other publications illustrated some opposite results. At present, a full and systematic discussion of the hepatic toxicity of DON is still lacking. Therefore, the aim of the present review is to summarize and update the prominent evidence, regarding DON effects on liver tissues and cell lines. Moreover, based on the current studies we outline some of the identified molecule targets or pathways involved in DON-induced hepatotoxicity, and put forward our opinions and suggest an hypothesis for future research. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma center, University of Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| |
Collapse
|
29
|
Zahran E, Manning B, Seo JK, Noga EJ. The effect of Ochratoxin A on antimicrobial polypeptide expression and resistance to water mold infection in channel catfish (Ictalurus punctatus). FISH & SHELLFISH IMMUNOLOGY 2016; 57:60-67. [PMID: 27539704 DOI: 10.1016/j.fsi.2016.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/08/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
Mycotoxin contamination of agricultural commodities poses a serious risk to animal health, including aquaculture species. Ochratoxin A (OA) is the most immunotoxic ochratoxin, yet little is known about its effect on immune function in fish. Antimicrobial polypeptides (AMPPs) are one of the most potent, innate, host defense factors, yet very little is known about what types of chronic stressors affect their expression. Among the most prevalent and potent AMPPs in fish are histone-like proteins (HLPs). In this study, fish were fed 2, 4, or 8 mg OA/kg diet. Skin antibacterial activity and HLP-1 levels were measured on Days 0, 28 and 56. Feeding 2, 4 or 8 mg OA/kg diet resulted in significant growth depression, but higher levels (4 or 8 mg OA/kg diet) resulted in lowering feed intake (FI) and impaired feed conversion ratio. In addition, feeding 8 mg OA/kg diet increased susceptibility to experimental water mold (Saprolegnia) challenge, suggesting that OA toxicity might contribute to some saprolegnosis outbreaks. However, there were no changes in AMPP expression in any treatment group. Our data suggests that the increased disease susceptibility of channel catfish due to OA is probably due to mechanisms other than a direct effect on antimicrobial polypeptide expression.
Collapse
Affiliation(s)
- Eman Zahran
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA, 27606.
| | - Bruce Manning
- National Warmwater Aquaculture Center, Mississippi State University, Stoneville, MS, 38776, USA
| | - Jung-Kil Seo
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA, 27606
| | - Edward J Noga
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA, 27606
| |
Collapse
|
30
|
Pietsch C, Junge R. Physiological responses of carp (Cyprinus carpio L.) to dietary exposure to zearalenone (ZEN). Comp Biochem Physiol C Toxicol Pharmacol 2016; 188:52-9. [PMID: 27349726 DOI: 10.1016/j.cbpc.2016.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/30/2016] [Accepted: 06/15/2016] [Indexed: 11/18/2022]
Abstract
Zearalenone (ZEN) is a frequent contaminant of animal feeds, but systemic effects on fish and possible metabolic costs have not yet been investigated. In order to fill this gap a feeding trial with juvenile carp was conducted. The fish were fed ZEN-contaminated diets at three concentrations (low: 332μgkg(-1), medium: 621μgkg(-1), and high: 797μgkg(-1) final feed, respectively) for four weeks. Possible reversible effects of ZEN were evaluated by feeding an additional group with the mycotoxin for four weeks period and the uncontaminated diet for further two weeks. After that possible ZEN effects on enzyme activities in kidney, spleen, liver and muscle tissue were investigated to get an organism-wide aspect of ZEN effects. Most organs appeared to (over)compensate ZEN effects during the exposure to this mycotoxin, which caused metabolic costs. Oxygen consumption increased in fish treated with the two higher ZEN concentrations via the diet. The differences between the treatments persisted also after the recovery phase of two weeks. Thus, the present study provided evidence of effects of ZEN on carbohydrate metabolism, lipid peroxidation in organs and metabolic oxygen demand. This is the first evidence for increased metabolic costs in a fish species due to exposure to the mycotoxin ZEN.
Collapse
Affiliation(s)
- Constanze Pietsch
- Zurich University of Applied Sciences (ZHAW), Institute of Natural Resource Sciences (IUNR), Gruental, P.O. Box, CH-8820 Waedenswil, Switzerland.
| | - Ranka Junge
- Zurich University of Applied Sciences (ZHAW), Institute of Natural Resource Sciences (IUNR), Gruental, P.O. Box, CH-8820 Waedenswil, Switzerland
| |
Collapse
|
31
|
Effect of 4-week feeding of deoxynivalenol- or T-2-toxin-contaminated diet on lipid peroxidation and glutathione redox system in the hepatopancreas of common carp (Cyprinus carpio L.). Mycotoxin Res 2016; 32:77-83. [PMID: 26920403 DOI: 10.1007/s12550-016-0242-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 01/29/2023]
Abstract
The purpose of study was to investigate the effects of T-2 toxin (4.11 mg T-2 toxin and 0.45 mg HT-2 toxin kg(-1) feed) and deoxynivalenol (5.96 and 0.33 mg 15-acetyl deoxynivalenol (DON) kg(-1) feed) in 1-year-old common carp juveniles in a 4-week feeding trial. The exposure of mycotoxins resulted in increased mortality in both groups consuming mycotoxin-contaminated diet. Parameters of lipid peroxidation were not affected during the trial, and antioxidant defence also did not show response to oxidative stress; however, glutatione peroxidase activity slightly, but significantly, decreased in the T-2 toxin group. Glutathione S-transferase activity showed moderate decrease as effect of T-2 toxin, which suggests its effect on xenobiotic transformation. Reduced glutathione concentration showed moderate changes as effect of DON exposure, but T-2 toxin has no effect. Expression of phospholipid hydroperoxide glutathione peroxidase (GPx4) genes showed different response to mycotoxin exposure. T-2 toxin caused dual response in the expression of gpx4a (early and late downregulation and mid-term upregulation), but continuous upregulation was found as effect of deoxynivalenol. Expression of the other gene, gpx4b, was upregulated by both trichothecenes during the whole period. The results suggested that trichothecenes have some effect on free radical formation and antioxidant defence, but the changes depend on the duration of exposure and the dose applied, and in case of glutathione peroxidase, there was no correlation between expression of genes and enzyme activity.
Collapse
|
32
|
Pietsch C, Burkhardt-Holm P. Feed-borne exposure to deoxynivalenol leads to acute and chronic effects on liver enzymes and histology in carp. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2015.1879] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Deoxynivalenol (DON) is a frequent contaminant of feeds in aquaculture, but the consequences of this contamination have rarely been evaluated. Previous studies on carp indicated effects of DON on liver function and histology after four weeks of feeding. The present study aimed to unravel the time course of liver responses of carp to orally applied DON. Therefore, liver enzyme activities and histology have been investigated after 7, 14, 26 and 56 days of DON feeding. The acute response comprises down-regulation of biotransformation enzymes, whereas the chronic response to DON is characterised by activation of alanine aminotransferase which indicates damage to liver tissue. Examination of histological sections of liver tissue revealed that changes such as fat aggregation, vacuolisation and hyperaemia were present after 14 and 26 days of exposure to DON but not thereafter. Several enzymes involved in glutathione cycling and reduction of oxidative stress were found to be reduced after 26 and 56 days of DON feeding. The results suggest that supporting the antioxidative system, e.g. by using glutathione-enriched yeast extracts as a food additive, might be successful in preventing the effects of DON in carp. This is the basis of a fundamental hypothesis since DON contamination of fish feed leads to pronounced effects on liver histology and liver enzyme activities which may also cause changes in the normal liver metabolism of endogenous and xenobiotic compounds.
Collapse
Affiliation(s)
- C. Pietsch
- Zurich University of Applied Sciences, Institute of Natural Resource Sciences, Gruental, P.O. Box, 8820 Waedenswil, Switzerland
- University Basel, Man – Society – Environment, Department of Environmental Sciences, Vesalgasse 1, 4051 Basel, Switzerland
| | - P. Burkhardt-Holm
- Zurich University of Applied Sciences, Institute of Natural Resource Sciences, Gruental, P.O. Box, 8820 Waedenswil, Switzerland
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
33
|
Pietsch C, Katzenback BA, Garcia-Garcia E, Schulz C, Belosevic M, Burkhardt-Holm P. Acute and subchronic effects on immune responses of carp (Cyprinus carpio L.) after exposure to deoxynivalenol (DON) in feed. Mycotoxin Res 2015; 31:151-64. [DOI: 10.1007/s12550-015-0226-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 05/07/2015] [Accepted: 05/10/2015] [Indexed: 12/13/2022]
|
34
|
Pietsch C, Michel C, Kersten S, Valenta H, Dänicke S, Schulz C, Kloas W, Burkhardt-Holm P. In vivo effects of deoxynivalenol (DON) on innate immune responses of carp (Cyprinus carpio L.). Food Chem Toxicol 2014; 68:44-52. [DOI: 10.1016/j.fct.2014.03.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/09/2014] [Accepted: 03/07/2014] [Indexed: 12/29/2022]
|