1
|
Peng L, Fang J, Yang L, Abirami G, Yin F, Cai L, Zhang C, Zhao Y, Jin Y, Zhang S, Sheng H, Zeng G, Chen H, Liang Z, Zhang X. Analysis of the correlation between the distribution of microorganisms carried by Coix seed and fungal toxins, and the biological control of aflatoxin. Curr Res Food Sci 2025; 10:101040. [PMID: 40226797 PMCID: PMC11987660 DOI: 10.1016/j.crfs.2025.101040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/22/2025] [Accepted: 03/22/2025] [Indexed: 04/15/2025] Open
Abstract
Coix seed is a valuable crop with both medicinal and edible uses, significantly impacting economic and medical sectors. However, its contamination with fungi and mycotoxins poses serious health risks when used medicinally. Thus, identifying fungi in Coix seed and controlling fungal toxins is crucial. This study employs high-throughput sequencing to detect fungi in Coix seed samples and analyze their correlation with mycotoxin content. Our findings showed no fungal infection from seed filling to maturity, but a diverse fungal community was present in mature seeds, the relative abundance of the dominant fungal phyla varied across different regions. In GZQL, YNFYA, and GD, the Ascomycota phylum dominated, and in LN and GXBS, Basidiomycota was the predominant phylum. These genera showed significant correlations with aflatoxins, zearalenone, and deoxynivalenol, indicating their potential as mycotoxin producers. Analysis revealed that Bacillus had a negative correlation with all detected mycotoxins. Antagonistic experiments demonstrated that Bacillus strains effectively inhibited aflatoxin production by Aspergillus flavus. This study provides essential data for preventing fungal growth and mycotoxin accumulation in Coix seed, ensuring its safe use in medicine and as food. These findings provide essential data for developing targeted strategies to prevent fungal growth and mycotoxin accumulation in Coix seed, ensuring its safe use in both medicinal and dietary applications. By enhancing our understanding of the microbial dynamics in Coix seed, we can improve food safety and public health outcomes, reinforcing the importance of continued research in this field.
Collapse
Affiliation(s)
- Lingxia Peng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiahao Fang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lijun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Gurusamy Abirami
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Feng Yin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lietao Cai
- R&D Center of Kanglaite, Hangzhou, 310018, China
| | | | - Yuyang Zhao
- State Key Lab Breeding Base Dao-Di Herbs, National Resource Center Chinese Materia Medica, Beijing, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yan Jin
- State Key Lab Breeding Base Dao-Di Herbs, National Resource Center Chinese Materia Medica, Beijing, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuifeng Zhang
- Zhejiang FangYuan Testing Group Co. LTD, Hangzhou, 310018, China
| | - Huadong Sheng
- Zhejiang FangYuan Testing Group Co. LTD, Hangzhou, 310018, China
| | - Guohong Zeng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Haimin Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaodan Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
2
|
Elamin A, Sakuda S. Mechanism of Mycotoxin Contamination of Medicinal Herbs. Toxins (Basel) 2025; 17:139. [PMID: 40137912 PMCID: PMC11945524 DOI: 10.3390/toxins17030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Mycotoxin contamination in medicinal plants can lead to toxicity, reduced therapeutic efficacy, and economic losses. This contamination has emerged as a significant issue, drawing attention from researchers and research centers worldwide. Over recent decades, numerous analytical studies have addressed mycotoxin contamination in these herbs, evaluating various methods to determine their presence quantitatively and qualitatively. While several reviews have summarized these studies, they often overlook a comprehensive exploration of the mechanisms and influencing factors of mycotoxin contamination in medicinal herbs. Therefore, this review aims to delve into the mechanisms of aflatoxin and ochratoxin contamination in some of the most widespread medicinal herbs, including jujube fruits, lotus seeds, and licorice roots. The factors influencing these mechanisms were also examined, including the physical composition and maturity stages of the herbs. This review concluded that aflatoxin and ochratoxin A contamination of medicinal herbs involves complex interactions between the herbs' natural defenses, fungal pathogenicity, chemical composition, physical characteristics, and individual plant differences at various maturity stages. Understanding these mechanisms of contamination, and their association with maturity, nutrient profile, and physical development, advances our comprehension of mycotoxin contamination in medicinal herbs.
Collapse
Affiliation(s)
| | - Shohei Sakuda
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya City 320-8551, Tochigi Prefecture, Japan;
| |
Collapse
|
3
|
Wang N, Xie S, Liu P, Wang L, Zhong C, Yu J, Qin M, Chen H. Quality evaluation of Semen Platycladi samples of different origins by internal extractive electrospray ionization mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2254-2262. [PMID: 39967485 DOI: 10.1039/d4ay01881h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Semen Platycladi is a widely used natural product in Chinese medicine with pharmacological effects such as anti-arteriosclerosis, sleep improvement, antioxidant and anti-inflammatory. The quality of Semen Platycladi is fundamentally important for its therapeutic use. However, the tedious sample pretreatment required by the currently available methods poses great challenge to the high throughput analysis and evaluation of the quality of Semen Platycladi. Here we establish a high-throughput analysis platform for evaluating the quality of various Semen Platycladi samples using Internal Extractive Electrospray Ionization Mass Spectrometry (iEESI-MS). The fatty acids including linoleic acid, linolenic acid, arachidonic acid, stearic acid and palmitic acid, known as one of the major ingredients in Semen Platycladi, were directly quantified in the range of 0.001-100.00 μg mg-1 (R2 > 0.995) using raw samples of different origins, with limits of detection of 0.02-0.04 μg mg-1, limits of quantification of 0.07-0.14 μg mg-1, recovery rate of 89.5-102.0%, and relative standard deviation of repeatability (n = 9) of 0.51-3.88%, respectively. The data revealed that these five fatty acids were the main differential compounds, which could be used to differentiate the samples that originated from Hebei, Shandong and Henan provinces. Experimental results demonstrated that iEESI-MS could be a useful platform for fast quality analysis of Semen Platycladi, and thus showing advanced applications in natural product analysis, drug discovery and related fields.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Traditional Chinese Medicine Diagnosis, Treatment and Rehabilitation of Malignant Tumors in Jiangxi Province, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Siyu Xie
- Key Laboratory of Traditional Chinese Medicine Diagnosis, Treatment and Rehabilitation of Malignant Tumors in Jiangxi Province, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Peng Liu
- Key Laboratory of Traditional Chinese Medicine Diagnosis, Treatment and Rehabilitation of Malignant Tumors in Jiangxi Province, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Leting Wang
- Key Laboratory of Traditional Chinese Medicine Diagnosis, Treatment and Rehabilitation of Malignant Tumors in Jiangxi Province, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Chao Zhong
- Center for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Jun Yu
- Department of Cardiovascular Sciences and Centre for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Manman Qin
- Center for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Huanwen Chen
- Key Laboratory of Traditional Chinese Medicine Diagnosis, Treatment and Rehabilitation of Malignant Tumors in Jiangxi Province, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
4
|
Stošić S, Ristić D, Trkulja N, Živković S. Penicillium Species Associated with Postharvest Blue Mold Rots of Garlic in Serbia. PLANT DISEASE 2025; 109:149-161. [PMID: 39219004 DOI: 10.1094/pdis-04-24-0890-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Garlic (Allium sativum L.) is an important plant because of its medicinal and gastronomical benefits. The host can be affected by different plant pathogens, among which Penicillium species are one of the most important rot agents of stored garlic and other stored food products. This research resolves the etiology of blue mold rots associated with garlic in Serbia. Penicillium-like isolates were collected (2016 to 2022) from diseased stored garlic bulbs in Serbia and identified using a polyphasic approach. Detailed characterization of the obtained cultures was performed using three solid media, three incubation temperatures, molecular and phylogenetic analyses of four molecular loci (internal transcribed spacer [ITS], beta-tubulin [BenA], calmodulin [CaM], and DNA-dependent RNA polymerase II second largest subunit [RPB2]), and the pathogenicity assay. Five Penicillium species, that is, P. allii, P. glabrum, P. italicum, P. polonicum, and P. psychrotrophicum, were identified and confirmed as postharvest pathogens of garlic. Herein, we report for the first time the pathogenicity of P. psychrotrophicum and P. italicum on garlic. Findings from this study provide insights into the previously unknown diversity of Penicillium fungi responsible for garlic bulb decay in Serbia and will help in the assessment of the phytosanitary status of this crop, as well as the creation and application of effective disease management strategies.
Collapse
Affiliation(s)
- Stefan Stošić
- Department of Plant Diseases, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia
| | - Danijela Ristić
- Department of Plant Diseases, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia
| | - Nenad Trkulja
- Department of Plant Diseases, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia
| | - Svetlana Živković
- Department of Plant Diseases, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Huang Y, Fu L, Gan Y, Qi G, Hao L, Xin T, Xu W, Song J. Analysis of Whole-Genome for Identification of Seven Penicillium Species with Significant Economic Value. Int J Mol Sci 2024; 25:8172. [PMID: 39125741 PMCID: PMC11312406 DOI: 10.3390/ijms25158172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The Penicillium genus exhibits a broad global distribution and holds substantial economic value in sectors including agriculture, industry, and medicine. Particularly in agriculture, Penicillium species significantly impact plants, causing diseases and contamination that adversely affect crop yields and quality. Timely detection of Penicillium species is crucial for controlling disease and preventing mycotoxins from entering the food chain. To tackle this issue, we implement a novel species identification approach called Analysis of whole GEnome (AGE). Here, we initially applied bioinformatics analysis to construct specific target sequence libraries from the whole genomes of seven Penicillium species with significant economic impact: P. canescens, P. citrinum, P. oxalicum, P. polonicum, P. paneum, P. rubens, and P. roqueforti. We successfully identified seven Penicillium species using the target we screened combined with Sanger sequencing and CRISPR-Cas12a technologies. Notably, based on CRISPR-Cas12a technology, AGE can achieve rapid and accurate identification of genomic DNA samples at a concentration as low as 0.01 ng/µL within 30 min. This method features high sensitivity and portability, making it suitable for on-site detection. This robust molecular approach provides precise fungal species identification with broad implications for agricultural control, industrial production, clinical diagnostics, and food safety.
Collapse
Affiliation(s)
- Yuanhao Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Lianguo Fu
- School of Life and Science, Southwest Jiaotong University, Chengdu 610031, China
| | - Yutong Gan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Guihong Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Lijun Hao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Tianyi Xin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wenjie Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| |
Collapse
|
6
|
Liu C, Xu W, Ni L, Chen H, Hu X, Lin H. Development of a sensitive simultaneous analytical method for 26 targeted mycotoxins in coix seed and Monte Carlo simulation-based exposure risk assessment for local population. Food Chem 2024; 435:137563. [PMID: 37837896 DOI: 10.1016/j.foodchem.2023.137563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/16/2023]
Abstract
Coix seed, a versatile agricultural product, is known for its nutritional and functional components. However, the common contamination with mycotoxins represents a potential risk for human health. A sensitive analytical method was developed and validated to simultaneously determine 26 mycotoxins, including regulated and emerging, using stable-isotope-dilution-assay and LC-MS/MS. The study found co-contamination in 100% of samples from Southeast China, with 8-15 different mycotoxins for each and a total of 20 for all. Probabilistic risk assessments indicated long-term health concerns, with Aflatoxin B1, ochratoxin A, and zearalenone being priority for risk control. Overall, this study appears to be the first to develop a rapid and robust analytical method of 26 mycotoxins and to conduct Monte Carlo simulation-based chronic risk assessments for 12 individual mycotoxins detected in coix seed, which would be of significance for risk communication as well as for regulatory authority in devising effective strategies to minimize exposure health risk.
Collapse
Affiliation(s)
- Chuiwei Liu
- Fujian Provincial Center for Disease Control and Prevention (Fujian Institute of Preventive Medicine, Fujian Provincial Key Laboratory of Zoonosis Research), Fuzhou 350012, Fujian, China; Xiamen University (School of Public Health), Xiamen 361005, Fujian, China; Sanyuan Center for Disease Control and Prevention, Sanming 365000, Fujian, China
| | - Weisheng Xu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Lei Ni
- Fujian Provincial Center for Disease Control and Prevention (Fujian Institute of Preventive Medicine, Fujian Provincial Key Laboratory of Zoonosis Research), Fuzhou 350012, Fujian, China
| | - Huafeng Chen
- Fujian Provincial Center for Disease Control and Prevention (Fujian Institute of Preventive Medicine, Fujian Provincial Key Laboratory of Zoonosis Research), Fuzhou 350012, Fujian, China
| | - Xiangju Hu
- Fujian Provincial Center for Disease Control and Prevention (Fujian Institute of Preventive Medicine, Fujian Provincial Key Laboratory of Zoonosis Research), Fuzhou 350012, Fujian, China
| | - Honglin Lin
- Fujian Provincial Center for Disease Control and Prevention (Fujian Institute of Preventive Medicine, Fujian Provincial Key Laboratory of Zoonosis Research), Fuzhou 350012, Fujian, China.
| |
Collapse
|
7
|
Elamin A, Sultana S, Sakuda S. Evaluation of the Susceptibility of Lotus Seeds ( Nelumbo nucifera Gaertn.) to Aspergillus flavus Infection and Aflatoxin Contamination. Toxins (Basel) 2024; 16:29. [PMID: 38251245 PMCID: PMC10820585 DOI: 10.3390/toxins16010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
The seeds of lotus (Nelumbo nucifera Gaertn.) have been used as significant medicinal and nutritional ingredients worldwide. The abundant proteins and polysaccharides in lotus seeds make them susceptible to contamination by aflatoxin (AF), a fungal toxic metabolite. This study was conducted to investigate the susceptibility of lotus seeds at different stages of ripening to AF contamination, as well as the mechanism of the contamination. Seven groups of lotus receptacles with seeds at different ripening stages (A-G, from immature to mature) were used for the experiment. Spores of Aspergillus flavus, an AF producer, were inoculated on the water-gap area of the seeds in each receptacle. Then, each receptacle was covered with a sterilized bag, and its stalk part was soaked in water containing a life-prolonging agent, after which it was kept at room temperature for 14 days. The AF content of each whole inoculated seed from the A-G groups and that of each seed part (pericarp, cotyledon, and embryo) from the D and E groups were determined using high-performance liquid chromatography. Microtome sections were prepared from the samples and observed under a light microscope and scanning electron microscope. The seeds from the A and D groups had higher AF contents than the seeds from the B, C, E, F, and G groups, indicating that the condition of the water-gap area and the development of the embryo and cotyledon parts of the seeds are associated with AF contamination.
Collapse
Affiliation(s)
| | | | - Shohei Sakuda
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan; (A.E.); (S.S.)
| |
Collapse
|
8
|
Wei G, Guo X, Liang Y, Liu C, Zhang G, Liang C, Huang Z, Zheng Y, Chen S, Dong L. Occurrence of fungi and mycotoxins in herbal medicines and rapid detection of toxin-producing fungi. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122082. [PMID: 37343918 DOI: 10.1016/j.envpol.2023.122082] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Contamination from external hazardous materials may greatly influence the safety and efficacy of herbal medicines. This paper aimed to evaluate the levels of contamination by mycotoxins and toxigenic fungi in herbal medicines and establish a rapid method for detecting toxin-producing fungi. Herein, 62.92%, 36.25%, and 64.17% of herbal medicines were contaminated by aflatoxins (AFs), ochratoxins, and fumonisins, respectively. Aspergillus (43.77%), Fusarium (5.17%), and Cladosporium (4.46%) were the three predominant genera. Spearman's correlation results showed that Aspergillus and Fusarium were significantly and positively correlated with mycotoxin content (R > 0.5, P < 0.05). In addition, 323 fungal strains were isolated from herbal medicines, and 20 species were identified, mainly belonging to Aspergillus and Penicillium. Analysis of potential mycotoxin-producing fungi showed that Aspergillus flavus can produce AFs, and Aspergillus ochraceus and Aspergillus niger can produce ochratoxin A (OTA). Multiplex real-time polymerase chain reaction showed that A. flavus harbored AF synthesis genes (aflR), and A. ochraceus and A. niger harbored OTA synthesis genes (aoksl). With these synthesis genes, 67.07% and 37.20% of 164 herbal medicines were positive for toxigenic genes. Furthermore, an excellent correlation was found between the above gene copies and mycotoxin content (R2 = 0.99). Our results confirmed the high detection rate of mycotoxins in herbal medicines and identified pivotal AF- and OTA-producing fungi. In conclusion, this paper provided the contamination status of fungi and mycotoxins in herbal medicines and established a rapid method for detecting toxigenic fungi.
Collapse
Affiliation(s)
- Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaotong Guo
- College of Agriculture, Ludong University, Yantai, 264025, China
| | - Yichuan Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Congsheng Liu
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, Fujian, 363099, China
| | - Guozhuang Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Conglian Liang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhixin Huang
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, Fujian, 363099, China
| | - Yuqing Zheng
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, Fujian, 363099, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
9
|
Opuni KF, Kretchy JP, Agyabeng K, Boadu JA, Adanu T, Ankamah S, Appiah A, Amoah GB, Baidoo M, Kretchy IA. Contamination of herbal medicinal products in low-and-middle-income countries: A systematic review. Heliyon 2023; 9:e19370. [PMID: 37674839 PMCID: PMC10477504 DOI: 10.1016/j.heliyon.2023.e19370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023] Open
Abstract
The use of herbal medicinal products (HMPs) has grown significantly across low-and-middle-income countries (LMICs). Consequently, the safety of these products due to contamination is a significant public health concern. This systematic review aimed to determine the prevalence, types, and levels of contaminants in HMPs from LMICs. A search was performed in seven online databases, i.e., Africa journal online (AJOL), Cumulative Index to Nursing and Allied Health Literature (CINAHL), Directory of Open Access Journals (DOAJ), Health Inter-Network Access to Research Initiative (HINARI), World Health Organization Global Index Medicus (WHO GIM), Scopus, and PubMed using appropriate search queries and reported as per the "Preferred Reporting Items for Systematic Reviews and Meta-Analyses" (PRISMA) guidelines. Ninety-one peer-reviewed articles published from 1982 to 2021 from 28 different countries across four continents were included in the study. Although metals, microbial, mycotoxins, pesticides, and residual solvents were the reported contaminants in the 91 articles, metals (56.0%, 51/91), microbial (27.5%, 25/91), and mycotoxins (18.7%, 17/91) were the most predominant. About 16.4% (1236/7518) of the samples had their contaminant levels above the regulatory limits. Samples tested for microbial contaminants had the highest proportion (46.4%, 482/1039) of contaminants exceeding the regulatory limit, followed by mycotoxins (25.8%, 109/423) and metals (14.3%, 591/4128). The proportion of samples that had their average non-essential metal contaminant levels above the regulatory limit was (57.6%, 377/655), 18.3% (88/480), 10.7% (24/225), and 11.3% (29/257) for Pb, Cd, Hg, and As, respectively. The commonest bacteria species found were Escherichia coli (52.3%, 10/19) and Salmonella species (42.1%, 8/19). This review reported that almost 90% of Candida albicans and more than 80% of moulds exceeded the required regulatory limits. HMP consumption poses profound health implications to consumers and patients. Therefore, designing and/or implementing policies that effectively regulate HMPs to minimize the health hazards related to their consumption while improving the quality of life of persons living in LMICs are urgently needed.
Collapse
Affiliation(s)
- Kwabena F.M. Opuni
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| | - James-Paul Kretchy
- Department of Public Health, School of Medicine and Health Sciences, Central University, P. O. Box 2305, Miotso, Accra, Ghana
| | - Kofi Agyabeng
- Department of Biostatistics, School of Public Health, University of Ghana, P. O. Box LG13, Legon, Accra, Ghana
| | - Joseph A. Boadu
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| | - Theodosia Adanu
- Balme Library, University of Ghana, P.O. Box LG24, Legon, Accra, Ghana
| | - Samuel Ankamah
- Balme Library, University of Ghana, P.O. Box LG24, Legon, Accra, Ghana
| | - Alexander Appiah
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| | - Geralda B. Amoah
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| | - Mariam Baidoo
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| | - Irene A. Kretchy
- Department of Pharmacy Practice and Clinical Pharmacy, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| |
Collapse
|
10
|
Wei G, Zhang B, Liang Y, Zhang Z, Liang C, Wu L, Yu H, Zhang Y, Chen S, Dong L. Fungal microbiome related to mycotoxin contamination in medicinal and edible seed Semen Persicae. Heliyon 2023; 9:e19796. [PMID: 37810035 PMCID: PMC10559125 DOI: 10.1016/j.heliyon.2023.e19796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Medicinal and edible seed Semen Persicae is susceptible to mycotoxin and fungal contamination. However, the occurrence of mycotoxin contamination and fungal infection is still unclear. In this paper, ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry and high-throughput sequencing were conducted to determine the mycotoxin contents and fungal abundances of Semen Persicae. 42.86% of samples were positive for aflatoxin B1 (26.48-48.37 μg/kg) and 28.57% of samples were positive for aflatoxin B2 (1.47-4.82 μg/kg). Ochratoxin A and fumonisin B1 were only detected in one sample (91.02 and 34.61 μg/kg, respectively). Chao 1 and Shannon indices were significantly higher in the Dalian of Liaoning, Baotou of Innermongolia and Langfang of Hebei regions than in other groups. Ascomycota, Basidiomycota, Wallemia, Candica, Saccharomyces and Aspergillus were the predominant fungi and they were significantly region-specific. Simultaneously, the diversity, composition and co-occurrence network complexity in the mycotoxin-free group were significantly higher than those in the mycotoxin-contaminated group. Spearman correlation analysis showed aflatoxins, ochratoxin A and fumonisins contents were positively and significantly correlated with the abundances of Aspergillus, Rhodotorula, Wallemia and Candida. In conclusion, this study reported the prevalence of mycotoxin contamination and the great diversity of fungi associated with Semen Persicae for the first time, providing an early warning for subsequent potential mycotoxin biosynthesis.
Collapse
Affiliation(s)
- Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Zhang
- School of Pharmacy, Linyi University, Linyi, 276000, China
| | - Yichuan Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhaoyu Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Conglian Liang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lan Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huatao Yu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yongqing Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
11
|
Tang W, Wang J, Li W, Zhang C, Li P, Chen J. Changes in Triacylglycerols Content and Quality Control Implications of Coix Seeds during Processing and Storage. Foods 2022; 11:foods11162462. [PMID: 36010462 PMCID: PMC9407508 DOI: 10.3390/foods11162462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Coix seed is a kind of widespread cereal, and it is used as a folk medicine in China. The present work focuses on the analysis of changes in triacylglycerols (TAGs) content and mycotoxins of coix seed during the processing and storage period for its quality control. Using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS) and high-performance liquid chromatography coupled with evaporative light-scattering detector (HPLC-ELSD) techniques, 42 lipid components in coix seeds were identified, and seven molecular species of TAG in coix seeds from different localities in China were measured and compared, respectively. A correlation analysis between the morphological features and TAGs contents revealed the integrity instead of the particle size of the seed, displaying a highly positive correlation with its quality. The higher contents of TAGs in hulled coix seed than in polished coix seed proposed an alternative processing way. During storage, the changes in TAGs contents of seeds indicated that the storage period should be less than 3 months, and the intact seeds could maintain lipid stability better than the powder. Furthermore, the air humidity and temperature should be controlled during coix seed storage to prevent the production of mycotoxins. These results provide significant insight into the effective control of coix seed quality during processing and storage.
Collapse
Affiliation(s)
- Weiwei Tang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jiancheng Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chaojun Zhang
- Zhejiang Kanglaite Pharmaceutical Co., Ltd., Hangzhou 310018, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (P.L.); (J.C.)
| | - Jun Chen
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (P.L.); (J.C.)
| |
Collapse
|
12
|
Long N, Liu J, Liao X, Jia B, Liu J, Zhou L, Shi L, Kong W. Fungal communities in Nelumbinis semen characterized by high-throughput sequencing. Int J Food Microbiol 2021; 359:109428. [PMID: 34655921 DOI: 10.1016/j.ijfoodmicro.2021.109428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 01/20/2023]
Abstract
For a long period, Nelumbinis semen has been widely used as a medicinal and edible product. However, it is susceptible to contamination with toxigenic fungi and aflatoxins during the growth, collection, transportation, and storage processes, causing serious health threats to humans and huge economic losses. Effectively monitoring the fungal communities is of great importance to avoid aflatoxins contamination in Nelumbinis semen. High-throughput sequencing (HTS) is a new technology to evaluate fungal communities so as to overcome the limitations of the traditional cultural ways. In this study, the ITS2 based Illumina-MiSeq platform was developed to evaluate the fungal communities in normal and moldy Nelumbinis semen by using the HTS technology. Two different primer pairs were introduced to compare their performance in amplifying the target gene. The primer pair that produced more reads was selected to analyze the results. In all the nine tested Nelumbinis semen samples, 2 phyla, 5 classes, 6 orders, 8 families, 9 genera and 4 species were detected. A total of 9 genera were spotted, of which, Aspergillus (0.04%-72.93%) and Rhizopus (0.002%-48.12%) were the most dominant. ANOISM analysis showed no significant differences in the normal and moldy groups. The use of HTS technology can detect the fungal communities in complex Nelumbinis semen samples, providing an early warning for toxigenic fungi and aflatoxins contamination to warrant their quality and safety.
Collapse
Affiliation(s)
- Nan Long
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jinxin Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical College, Chengde 067000, China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Boyu Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jiali Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Linchun Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
13
|
Yu J, Yang M, Han J, Pang X. Fungal and mycotoxin occurrence, affecting factors, and prevention in herbal medicines: a review. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1925696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jingsheng Yu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, China
| | - Meihua Yang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianping Han
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, China
| | - Xiaohui Pang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, China
| |
Collapse
|
14
|
Zhai S, Zhu Y, Feng P, Li M, Wang W, Yang L, Yang Y. Ochratoxin A: its impact on poultry gut health and microbiota, an overview. Poult Sci 2021; 100:101037. [PMID: 33752074 PMCID: PMC8005833 DOI: 10.1016/j.psj.2021.101037] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/24/2020] [Accepted: 01/02/2021] [Indexed: 12/25/2022] Open
Abstract
Ochratoxin A (OTA) is a widespread mycotoxin, that has strong thermal stability, and is difficult to remove from feed. OTA is nephrotoxic, hepatotoxic, teratogenic, immunotoxic, and enterotoxic to several species of animals. The gut is the first defense barrier against various types of mycotoxins present in feed that enter the body, and it is closely connected to other tissues through enterohepatic circulation. Compared with mammals, poultry is more sensitive to OTA and has a lower absorption rate. Therefore, the gut is an important target tissue for OTA in poultry. This review comprehensively discusses the role of OTA in gut health and the gut microbiota of poultry, focusing on the effect of OTA on digestive and absorptive processes, intestinal barrier integrity, intestinal histomorphology, gut immunity, and gut microbiota. According to the studies described to date, OTA can affect gut dysbiosis, including increasing gut permeability, immunity, and bacterial translocation, and can eventually lead to gut and other organ injury. Although there are many studies investigating the effects of OTA on the gut health of poultry, further studies are needed to better characterize the underlying mechanisms of action and develop preventative or therapeutic interventions for mycotoxicosis in poultry.
Collapse
Affiliation(s)
- Shuangshuang Zhai
- College of Animal Science, Yangtze University, Jingzhou 434000, China
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China
| | - Peishi Feng
- Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Macheng Li
- Research and Development department, Hunan Microorganism & Herb Biological Feed Technology Co., Ltd., Xiangtan 411100, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China
| | - Ye Yang
- College of Animal Science, Yangtze University, Jingzhou 434000, China.
| |
Collapse
|
15
|
Kozieł MJ, Kowalska K, Piastowska-Ciesielska AW. Nrf2: a main responsive element in cells to mycotoxin-induced toxicity. Arch Toxicol 2021; 95:1521-1533. [PMID: 33554281 PMCID: PMC8113212 DOI: 10.1007/s00204-021-02995-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022]
Abstract
Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor participating in response to cellular oxidative stress to maintain the redox balance. Generation of reactive oxygen species (ROS) and, in consequence, oxidative stress, are physiological as well as pathological processes which take place in almost all types of cells. Nrf2, in response to oxidative stress, activates expression and production of antioxidant enzymes to remove free radicals. However, the role of Nrf2 seems to be more sophisticated and its increased expression observed in cancer cells allows to draw a conclusion that its role is tissue—and condition—dependent. Interestingly, Nrf2 might also play a crucial role in response to environmental factors like mycotoxins. Thus, the aim of the study is to review the role of Nrf2 in cells exposed to most common mycotoxins to check if the Nrf2 signaling pathway serves as the main response element to mycotoxin-induced oxidative stress in human and animal cells and if it can be a target of detoxifying agents.
Collapse
Affiliation(s)
- Marta Justyna Kozieł
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Karolina Kowalska
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | | |
Collapse
|
16
|
Yu J, Guo M, Jiang W, Yang M, Pang X. Assessment of the Microbiome and Potential Aflatoxin Associated With the Medicinal Herb Platycladus orientalis. Front Microbiol 2020; 11:582679. [PMID: 33193220 PMCID: PMC7644961 DOI: 10.3389/fmicb.2020.582679] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/06/2020] [Indexed: 12/05/2022] Open
Abstract
Platycladi Semen, which is derived from the dried ripe seed of Platycladus orientalis, has been used for the treatment of insomnia and constipation in China for 2000 years. However, it is susceptible to fungal and aflatoxin contamination under proper humidity and temperature during storage. Although aflatoxin contamination in Platycladi Semen has been reported preliminarily, few studies have been conducted on fungal infection and aflatoxin contamination simultaneously. Thus, this work aims to provide an in-depth understanding of fungal contamination in Platycladi Semen, and information on aflatoxin contamination. We focused on a comparison of the difference in fungal diversity between aflatoxin-contaminated and aflatoxin-free Platycladi Semen samples. First, aflatoxin levels in 11 Platycladi Semen samples, which were collected from local herbal markets in Shandong, Anhui, and Hebei provinces throughout China, were determined by IAC-HPLC-FLD, and positive confirmation of detected samples was performed by LC-MS/MS. The samples were divided into two groups, based on production or non-production of aflatoxin. We then used the Illumina MiSeq PE250 platform, and targeted the internal transcribed spacer two sequences to analyze the diversity and composition of the fungal microbiome, as well as to assess the presence of potential mycotoxin-producing fungi. Results showed that five samples were contaminated with aflatoxins, one of which exceeded the legal limits of Chinese Pharmacopeia Commission (2015). At the phylum level, the Ascomycota was the most dominant in all tested samples, with a relative abundance of 83.04-99.46%. Aspergillus (27.88-97.28%), Xerochrysium (0-28.49%), and Xeromyces (0-22.24%) were the three predominant genera. Furthermore, differences in fungal composition between the aflatoxin-contaminated and aflatoxin-free groups, as well as between different provinces were observed. A total of 74 species were identified, and four potential mycotoxin-producing fungi were detected in all samples, namely Aspergillus flavus, Aspergillus fumigatus, Fusarium poae, and Penicillium steckii. In conclusion, we report the great diversity of fungi associated with Platycladi Semen, highlight the risk to consumers of ingesting potent aflatoxin, and provide a reference for the safe application and quality improvement of Platycladi Semen.
Collapse
Affiliation(s)
- Jingsheng Yu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, China
| | - Mengyue Guo
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, China
| | - Wenjun Jiang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, China
| | - Meihua Yang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaohui Pang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, China
| |
Collapse
|
17
|
Li M, Tong Z, Gao X, Zhang L, Li S. Simultaneous detection of zearalenone, citrinin, and ochratoxin A in pepper by capillary zone electrophoresis. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1388-1398. [PMID: 32546103 DOI: 10.1080/19440049.2020.1769197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the present study, a simple and fast method for simultaneous detection of zearalenone, citrinin, and ochratoxin A utilising capillary zone electrophoresis with an ultraviolet detector was developed. The optimised approach was validated and applied using pepper samples. The proposed method yielded satisfactory linearity between the signal and the mycotoxin concentration in the range of 1.5-150 μg/kg for zearalenone, 4.5-150 μg/kg for citrinin, and 0.8-150 μg/kg for ochratoxin A. The limits of detection for these mycotoxins ranged from 0.3 to 1.5 μg/kg. The corresponding intra- and inter-day precisions were less than 3.5 % and 4.1 %, respectively. Moreover, the matrix effect was also assessed and the result was compared using the capillary zone electrophoresis and high-performance liquid chromatography methods. The developed approach could be used for simultaneous detection of zearalenone, citrinin, and ochratoxin A in pepper.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University , Hangzhou, Zhejiang Province, P. R. China
| | - Zaikang Tong
- Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University , Hangzhou, Zhejiang Province, P. R. China
| | - Xingjun Gao
- Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University , Hangzhou, Zhejiang Province, P. R. China
| | - Lijun Zhang
- Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University , Hangzhou, Zhejiang Province, P. R. China
| | - Sha Li
- Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University , Hangzhou, Zhejiang Province, P. R. China
| |
Collapse
|
18
|
Characterizing fungal communities in medicinal and edible Cassiae Semen using high-throughput sequencing. Int J Food Microbiol 2019; 319:108496. [PMID: 31911209 DOI: 10.1016/j.ijfoodmicro.2019.108496] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 11/20/2022]
Abstract
Cassiae Semen (CS) has been widely used as roasted tea and traditional Chinese medicine for decades. However, CS is easily contaminated by fungi and mycotoxins during pre-harvest and post-harvest process, thus posing a potential threat to consumer health. In this study, we used the Illumina MiSeq PE300 platform and targeted the internal transcribed spacer 2 sequences to survey the occurrence of fungi in raw and roasted CS samples. Results showed the fungal contamination in all 12 test samples. Ascomycota was the prevailing fungus at the phylum level, with the relative abundance of 66.50%-99.42%. At the genus level, Aspergillus, Cladosporium, and Penicillium were the most dominant genera, accounting for 0.66%-85.51%, 0.20%-29.11%, and 0.11%-32.92% of the fungal reads, respectively. A total of 68 species were identified, among which six potential toxigenic fungi belonging to Aspergillus, Penicillium, Candida, and Schizophyllum genera were detected. Moreover, differences in fungal communities were observed in raw and roasted CS samples. In conclusion, amplicon sequencing is feasible for analyzing fungal communities in CS samples, which provides a new approach to investigate the fungal contamination in edible-medicinal herb, thereby ensuring food safety and drug efficacy.
Collapse
|
19
|
Rocha-Miranda F, Venâncio A. Mycotoxigenic fungi in plant-based supplements and medicines. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2018.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Wang W, Zhai S, Xia Y, Wang H, Ruan D, Zhou T, Zhu Y, Zhang H, Zhang M, Ye H, Ren W, Yang L. Ochratoxin A induces liver inflammation: involvement of intestinal microbiota. MICROBIOME 2019; 7:151. [PMID: 31779704 PMCID: PMC6883682 DOI: 10.1186/s40168-019-0761-z] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/17/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Ochratoxin A (OTA) is a widespread mycotoxin and induces liver inflammation to human and various species of animals. The intestinal microbiota has critical importance in liver inflammation; however, it remains to know whether intestinal microbiota mediates the liver inflammation induced by OTA. Here, we treated ducklings with oral gavage of OTA (235 μg/kg body weight) for 2 weeks. Then, the microbiota in the cecum and liver were analyzed with 16S rRNA sequencing, and the inflammation in the liver was analyzed. To explore the role of intestinal microbiota in OTA-induced liver inflammation, intestinal microbiota was cleared with antibiotics and fecal microbiota transplantation was conducted. RESULTS Here, we find that OTA treatment in ducks altered the intestinal microbiota composition and structure [e.g., increasing the relative abundance of lipopolysaccharides (LPS)-producing Bacteroides], and induced the accumulation of LPS and inflammation in the liver. Intriguingly, in antibiotic-treated ducks, OTA failed to induce these alterations in the liver. Notably, with the fecal microbiota transplantation (FMT) program, in which ducks were colonized with intestinal microbiota from control or OTA-treated ducks, we elucidated the involvement of intestinal microbiota, especially Bacteroides, in liver inflammation induced by OTA. CONCLUSIONS These results highlight the role of gut microbiota in OTA-induced liver inflammation and open a new window for novel preventative or therapeutic intervention for mycotoxicosis.
Collapse
Affiliation(s)
- Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shuangshuang Zhai
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyao Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hao Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dong Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Ting Zhou
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, N1G 5C9, Canada
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Minhong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
21
|
Guo P, Yang W, Hu H, Wang Y, Li P. Rapid detection of aflatoxin B 1 by dummy template molecularly imprinted polymer capped CdTe quantum dots. Anal Bioanal Chem 2019; 411:2607-2617. [PMID: 30877344 DOI: 10.1007/s00216-019-01708-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022]
Abstract
A novel and sensitive fluorescent sensor was synthesized for the rapid and specific recognition of aflatoxin B1 (AFB1) by our combining molecular imprinting techniques with quantum dot technology. Molecularly imprinted polymers coated CdTe quantum dots (MIP@CdTe QDs) were prepared through the Stöber method with 5,7-dimethoxycoumarin as a dummy template. 3-Aminopropyltriethoxysilane was selected as the functional monomer, and tetraethyl orthosilicate was used as the cross-linking agent. The best molar ratio of 5,7-dimethoxycoumarin to functional monomer to cross-linker was 4:20:15. The MIP@CdTe QD composites were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and fluorescence spectroscopy. Under the optimum conditions, the relative fluorescence intensity of the MIP@CdTe QDs showed adequate linearity with AFB1 concentration over the range from 80 to 400 ng/g. The detection limit is 4 ng/g, according to 3s/K. Finally, the method was successfully applied to the quantitative determination of AFB1 in real samples. The spike recoveries at different spiking levels ranged from 99.20% to 101.78%, which were consistent with those measured by ultrahigh-performance liquid chromatography-mass spectrometry. The method developed for AFB1 detection lays the foundation for rapid detection of trace amounts of other exogenous harmful substances in a complicated matrix.
Collapse
Affiliation(s)
- Pengqi Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,School of Chemical Engineering, Northwest University, Xi'an, China
| | - Wu Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
22
|
Guo M, Jiang W, Luo J, Yang M, Pang X. Analysis of the Fungal Community in Ziziphi Spinosae Semen through High-Throughput Sequencing. Toxins (Basel) 2018; 10:E494. [PMID: 30477258 PMCID: PMC6315384 DOI: 10.3390/toxins10120494] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/14/2018] [Accepted: 11/23/2018] [Indexed: 12/31/2022] Open
Abstract
Ziziphi Spinosae Semen (ZSS) has been widely used in traditional Chinese medicine system for decades. Under proper humidity and temperature, ZSS is easily contaminated by fungi and mycotoxins during harvest, storage, and transport, thereby posing a considerable threat to consumer health. In this study, we first used the Illumina MiSeq PE250 platform and targeted the internal transcribed spacer 2 sequences to investigate the presence of fungi in moldy and normal ZSS samples collected from five producing areas in China. Results showed that all 14 samples tested were contaminated by fungi. Ascomycota was the dominant fungus at the phylum level, accounting for 64.36⁻99.74% of the fungal reads. At the genus level, Aspergillus, Candida, and Wallemia were the most predominant genera, with the relative abundances of 13.52⁻87.87%, 0.42⁻64.56%, and 0.06⁻34.31%, respectively. Meanwhile, 70 fungal taxa were identified at the species level. Among these taxa, three potential mycotoxin-producing fungi, namely, Aspergillusflavus, A. fumigatus, and Penicillium citrinum that account for 0.30⁻36.29%, 0.04⁻7.37%, and 0.01⁻0.80% of the fungal reads, respectively, were detected in all ZSS samples. Moreover, significant differences in fungal communities were observed in the moldy and normal ZSS samples. In conclusion, our results indicated that amplicon sequencing is feasible for the detection and analysis of the fungal community in the ZSS samples. This study used a new approach to survey the fungal contamination in herbal materials. This new approach can provide early warning for mycotoxin contamination in herbal materials, thereby ensuring drug efficacy and safety.
Collapse
Affiliation(s)
- Mengyue Guo
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Wenjun Jiang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Jiaoyang Luo
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xiaohui Pang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
23
|
Su C, Hu Y, Gao D, Luo YI, Chen AJ, Jiao X, Gao W. Occurrence of Toxigenic Fungi and Mycotoxins on Root Herbs from Chinese Markets. J Food Prot 2018; 81:754-761. [PMID: 29620485 DOI: 10.4315/0362-028x.jfp-17-405] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Herbs derived from roots, leaves, flowers, or fruits of plants are unavoidably contaminated with fungi and mycotoxins during growth, harvest, and storage, thereby posing a health threat to humans. Especially, root herbs (RHs) are more easily contaminated with fungi and mycotoxins because the roots are in direct contact with the soil. Here, we investigated the occurrence of fungi, aflatoxins (AFs), and ochratoxin A (OTA) in eight RHs that are used as medicines, beverages, dietary supplements, and functional foods in China and other countries. Morphological observation and MultiGeneBlast (β-tubulin and calmodulin) were used to identify the potentially toxigenic fungi. Of the 48 samples tested, all were contaminated by fungi, and 1,844 isolates belonging to 25 genera were detected. The genera Aspergillus and Penicillium, which contain potentially toxigenic fungal species, represented a frequency of 10 and 25%, respectively. Thirty-three isolates of Aspergillus flavus, Aspergillus parasiticus, Aspergillus niger, and Penicillium polonicum were arbitrarily selected for analysis of their toxigenic potential. Five of 13 isolates of A. flavus and 1 isolate of A. parasiticus produced AFs, whereas OTA production was not detected for any of the isolates of A. niger and P. polonicum. The occurrence of AFs and OTA in the 48 samples of eight RHs was tested by ultraperformance liquid chromatography-tandem mass spectrometry; 37.50% of samples from six RHs were contaminated with AFs and 16.67% of samples from four RHs were contaminated with OTA. Seven (14.58%) and four (8.33%) samples of ginseng, polygala, and liquorice exceeded the permissible limits of aflatoxin B1 and AFs, respectively. Because ginseng, polygala, and liquorice are widely used as herbs, dietary supplements, and functional foods, the high frequency of AF contamination of these herbs indicated by our current study warrant attention to raise public awareness.
Collapse
Affiliation(s)
- Chunyan Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Yongjian Hu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Dan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Y I Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Amanda Juan Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Xiaolin Jiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Weiwei Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| |
Collapse
|
24
|
Extrinsic harmful residues in Chinese herbal medicines: types, detection, and safety evaluation. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
25
|
Tao Y, Xie S, Xu F, Liu A, Wang Y, Chen D, Pan Y, Huang L, Peng D, Wang X, Yuan Z. Ochratoxin A: Toxicity, oxidative stress and metabolism. Food Chem Toxicol 2018; 112:320-331. [DOI: 10.1016/j.fct.2018.01.002] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023]
|
26
|
4-Hydroxy-7-methyl-3-phenylcoumarin Suppresses Aflatoxin Biosynthesis via Downregulation of aflK Expressing Versicolorin B Synthase in Aspergillus flavus. Molecules 2017; 22:molecules22050712. [PMID: 28468270 PMCID: PMC6154296 DOI: 10.3390/molecules22050712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 11/22/2022] Open
Abstract
Naturally occurring coumarins possess antibacterial and antifungal properties. In this study, these natural and synthetic coumarins were used to evaluate their antifungal activities against Aspergillus flavus, which produces aflatoxins. In addition to control antifungal activities, antiaflatoxigenic properties were also determined using a high-performance liquid chromatography in conjunction with fluorescence detection. In this study, 38 compounds tested and 4-hydroxy-7-methyl-3-phenyl coumarin showed potent antifungal and antiaflatoxigenic activities against A. flavus. Inhibitory mode of antiaflatoxigenic action by 4-hydroxy-7-methyl-3-phenyl coumarin was based on the downregulation of aflD, aflK, aflQ, and aflR in aflatoxin biosynthesis. In the cases of coumarins, antifungal and aflatoxigenic activities are highly related to the lack of diene moieties in the structures. In structurally related compounds, 2,3-dihydrobenzofuran exhibited antifungal and antiaflatoxigenic activities against A. flavus. The inhibitory mode of antiaflatoxigenic action by 2,3-dihydrobenzofuran was based on the inhibition of the transcription factor (aflS) in the aflatoxin biosynthesis pathway. These potent inhibitions of 2,3-dihydrobenzofuran and 4-hydroxy-7-methyl-3-phenyl coumarin on the Aspergillus growth and production of aflatoxins contribute to the development of new controlling agents to mitigate aflatoxin contamination.
Collapse
|
27
|
Perrone G, Logrieco AF, Frisvad JC. Comments on "Screening and Identification of Novel Ochratoxin A-Producing Fungi from Grapes. Toxins 2016, 8, 333"-In Reporting Ochratoxin A Production from Strains of Aspergillus, Penicillium and Talaromyces. Toxins (Basel) 2017; 9:E65. [PMID: 28216564 PMCID: PMC5331444 DOI: 10.3390/toxins9020065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/08/2017] [Indexed: 11/16/2022] Open
Abstract
Recently a species in the genus Talaromyces, a uniseriate species of Aspergillus section Nigri and an isolate each of two widespread species, Penicillium rubens and P. commune, were reported to produce ochratoxin A. This claim was based on insufficient biological and chemical data. We propose a list of criteria that need to be met before an unexpected mycotoxin producer is reported. There have only been convincing data on ochratoxin A production for Penicillium verrucosum, P. nordicum, P. thymicola, all from Penicillium series Verrucosa, and from species in three sections of Aspergillus: section Circumdati, section Nigri and section Flavi.
Collapse
Affiliation(s)
- Giancarlo Perrone
- Institute of Food Science and Production, National Reseach Council (CNR), I-70126 Bari, Italy.
| | - Antonio F Logrieco
- Institute of Food Science and Production, National Reseach Council (CNR), I-70126 Bari, Italy.
| | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
28
|
Piemontese L. Plant Food Supplements with Antioxidant Properties for the Treatment of Chronic and Neurodegenerative Diseases: Benefits or Risks? J Diet Suppl 2016; 14:478-484. [PMID: 27893282 DOI: 10.1080/19390211.2016.1247936] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Wine by-products, in particular grape pomace, can be an important source of polyphenols and dietary fibers and are increasingly being used as a starting material in the industrial production of plant food supplements, such as other matrices containing biomolecules, with antioxidant properties. The risk associated with the consumption of these products was recently analyzed through a study of potential genotoxic and carcinogenic compounds that can be found in the marketed products. In particular, occurrence data about contamination with the mycotoxin ochratoxin A were also reported. This short review aims at giving an overview about the quality and benefits of these kinds of food supplements, and also about risks of incorrect use, focusing on the emerging need for stricter European regulations.
Collapse
Affiliation(s)
- Luca Piemontese
- a Dipartimento Farmacia-Scienze del Farmaco , Università degli Studi di Bari "Aldo Moro" , Bari , Italy.,b Istituto di Scienze delle Produzioni Alimentari , Consiglio Nazionale delle Ricerche (ISPA-CNR) , Bari , Italy
| |
Collapse
|
29
|
An TJ, Shin KS, Paul NC, Kim YG, Cha SW, Moon Y, Yu SH, Oh SK. Prevalence, Characterization, and Mycotoxin Production Ability of Fusarium Species on Korean Adlay (Coix lacrymal-jobi L.) Seeds. Toxins (Basel) 2016; 8:E310. [PMID: 27801779 PMCID: PMC5127107 DOI: 10.3390/toxins8110310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022] Open
Abstract
Adlay seed samples were collected from three adlay growing regions (Yeoncheon, Hwasun, and Eumseong region) in Korea during 2012. Among all the samples collected, 400 seeds were tested for fungal occurrence by standard blotter and test tube agar methods and different taxonomic groups of fungal genera were detected. The most predominant fungal genera encountered were Fusarium, Phoma, Alternaria, Cladosporium, Curvularia, Cochliobolus and Leptosphaerulina. Fusarium species accounted for 45.6% of all species found; and, with phylogenetic analysis based on the combined sequences of two protein coding genes (EF-1α and β-tubulin), 10 Fusarium species were characterized namely, F. incarnatum (11.67%), F. kyushuense (10.33%), F. fujikuroi (8.67%), F. concentricum (6.00%), F. asiaticum (5.67%), F. graminearum (1.67%), F. miscanthi (0.67%), F. polyphialidicum (0.33%), F. armeniacum (0.33%), and F. thapsinum (0.33%). The Fusarium species were then examined for their morphological characteristics to confirm their identity. Morphological observations of the species correlated well with and confirmed their molecular identification. The ability of these isolates to produce the mycotoxins fumonisin (FUM) and zearalenone (ZEN) was tested by the ELISA quantitative analysis method. The result revealed that FUM was produced only by F. fujikuroi and that ZEN was produced by F. asiaticum and F. graminearum.
Collapse
Affiliation(s)
- Tae Jin An
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Eumseong, Chungbuk 27709, Korea.
| | - Kyu Seop Shin
- Department of Applied Biology, College of Agriculture & Life Sciences, Chungnam National University, Daejeon 34134, Korea.
| | - Narayan Chandra Paul
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Eumseong, Chungbuk 27709, Korea.
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Korea.
| | - Young Guk Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Eumseong, Chungbuk 27709, Korea.
| | - Seon Woo Cha
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Eumseong, Chungbuk 27709, Korea.
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan 50612, Korea.
| | - Seung Hun Yu
- Department of Applied Biology, College of Agriculture & Life Sciences, Chungnam National University, Daejeon 34134, Korea.
| | - Sang-Keun Oh
- Department of Applied Biology, College of Agriculture & Life Sciences, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
30
|
Comments on "Mycobiota and Mycotoxins in Traditional Medicinal Seeds from China. Toxins 2015, 7, 3858-3875"- in Attributing Ochratoxin A Biosynthesis Within the Genus Penicillium Occurring on Natural Agricultural Produce. Toxins (Basel) 2016; 8:toxins8060166. [PMID: 27258309 PMCID: PMC4926133 DOI: 10.3390/toxins8060166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/29/2016] [Indexed: 11/17/2022] Open
Abstract
The unusual attribution of trace amounts of ochratoxin A in some Chinese food commodities to Penicillium polonicum is questioned by European experience in searches for ochratoxinogenic food-spoilage Penicillia, where mistaken attribution is now known to have been due to cryptic Penicillium verrucosum contamination. Consequently, selection of single-spore isolates is recommended as pre-requisite for attributing mycotoxin biosynthetic potential to fungi.
Collapse
|
31
|
Ochratoxin A: Molecular Interactions, Mechanisms of Toxicity and Prevention at the Molecular Level. Toxins (Basel) 2016; 8:111. [PMID: 27092524 PMCID: PMC4848637 DOI: 10.3390/toxins8040111] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/31/2016] [Accepted: 04/06/2016] [Indexed: 01/28/2023] Open
Abstract
Ochratoxin A (OTA) is a widely-spread mycotoxin all over the world causing major health risks. The focus of the present review is on the molecular and cellular interactions of OTA. In order to get better insight into the mechanism of its toxicity and on the several attempts made for prevention or attenuation of its toxic action, a detailed description is given on chemistry and toxicokinetics of this mycotoxin. The mode of action of OTA is not clearly understood yet, and seems to be very complex. Inhibition of protein synthesis and energy production, induction of oxidative stress, DNA adduct formation, as well as apoptosis/necrosis and cell cycle arrest are possibly involved in its toxic action. Since OTA binds very strongly to human and animal albumin, a major emphasis is done regarding OTA-albumin interaction. Displacement of OTA from albumin by drugs and by natural flavonoids are discussed in detail, hypothesizing their potentially beneficial effect in order to prevent or attenuate the OTA-induced toxic consequences.
Collapse
|