1
|
Tan S, Shang Z, Jia H, Huang J, Geng L, Shu C, Soberón M, Bravo A, Shi W, Zhang J, Wei H. Enhancing Bacillus thuringiensis Cry8Ea1 toxicity: Insights into protease sensitivity for the evolutionary adaptation of Cry toxins to insect hosts. Int J Biol Macromol 2025; 308:142246. [PMID: 40132718 DOI: 10.1016/j.ijbiomac.2025.142246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/20/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
Toxicity of Bacillus thuringiensis Cry protoxins relies on activation by larval midgut proteases, but overprocessing can reduce toxicity in various insects. Cry8Ea1 is effective against Coleopteran pests but shows limited toxicity towards Holotrichia parallela due to instability in its midgut proteases. Treatment of Cry8Ea1 protoxin with trypsin or midgut juice-proteases, produces a 55.6 kDa fragment by cleaving between residues V163 and Y655, removing the first three α-helices from domain I. To prevent protease degradation, the trypsin cleavage site was identified and mutated (Cry8Ea1R163H). Cry8Ea1R163H mutant resulted in a 67.2 kDa activated toxin after treatment with trypsin or midgut juice-proteases, and showed a correlative 8.5-fold increase insecticidal activity against H. parallela larvae. We analyzed the activation of other Cry8 proteins with trypsin or midgut juice-proteases from H. parallela, our data showed that Cry8Fa1 was activated into a 67.2 kDa protein, in contrast to Cry8Ha1, Cry8Ca1 and Cry8Ga2 that were activated into 55.6 kDa protein fragments. Finally, the structure of the trypsin cleavage site in all Cry8 protein members was predicted, revealing that in Cry8Fa, Cry8Q and Cry8I, the trypsin cleavage site is buried. Phylogenetic analyses suggest an adaptive evolution of certain Cry8 proteins against the host digesting enzymes.
Collapse
Affiliation(s)
- Shuqian Tan
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.
| | - Zixuan Shang
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Haoran Jia
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jinqiu Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Wangpeng Shi
- State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongshuang Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Mohanty P, Rajadurai G, Mohankumar S, Balakrishnan N, Raghu R, Balasubramani V, Sivakumar U. Interactions between insecticidal cry toxins and their receptors. Curr Genet 2025; 71:9. [PMID: 40156649 DOI: 10.1007/s00294-025-01312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Bacillus thuringiensis is a prominent, eco-friendly entomopathogenic bacterium used as a plant-incorporated toxin in genetically modified crops and as a stomach poison for insects in the form of spore formulations. Upon entering the alkaline environment of the insect gut, the toxin undergoes proteolytic breakdown, converting the protoxin into its activated form. The activated toxin then binds to receptors, forming pores that disrupt the ionic balance within the cell, ultimately leading to the insect's death. Alongside the four major receptors (Cadherin, ABCC, APN, and ALP), several other notable receptors are present on the Brush Border Membrane Vesicle of insects. Binding to these receptors plays a crucial role, and any mutations in these receptors can result in improper binding, leading to the development of resistant insect strains. This review explores the major receptors of insecticidal Cry toxins, the intricate interactions between toxins and receptors, receptor mutations, and strategies to overcome the resistance.
Collapse
Affiliation(s)
- Pravukalyan Mohanty
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - G Rajadurai
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - S Mohankumar
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| | - N Balakrishnan
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - R Raghu
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - V Balasubramani
- Controller of Examinations, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - U Sivakumar
- Department of Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| |
Collapse
|
3
|
Pereira AE, Paddock KJ, Corcoran JA, Zhao Z, Gregory MLJ, Coudron TA, Hibbard BE, Shelby KS, Huynh MP. Knockdown of an ATP-binding cassette transporter in resistant western corn rootworm larvae partially reverses resistance to eCry3.1Ab protein. Sci Rep 2024; 14:31508. [PMID: 39733129 PMCID: PMC11682398 DOI: 10.1038/s41598-024-83135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, has evolved resistance to nearly every management tactic utilized in the field. This study investigated the resistance mechanisms in a WCR strain resistant to the Bacillus thuringiensis (Bt) protein eCry3.1Ab using dsRNA to knockdown WCR midgut genes previously documented to be associated with the resistance. ATP-binding cassette transporter (ABCC4), aminopeptidase-N, cadherin, and cathepsin-B were previously found to be differentially expressed in eCry3.1Ab-resistant WCR larvae when compared to susceptible larvae after feeding on maize expressing eCry3.1Ab and its near-isoline. Here we compared the susceptibility of resistant and susceptible WCR larvae to eCry3.1Ab protein in presence or absence of dsRNA targeting the above genes using 10-day diet overlay toxicity assays. Combining ABCC4 dsRNA with eCry3.1Ab protein increased susceptibility to Bt protein in WCR-resistant larvae, but the other three genes had no such effect. Among 65 ABC transport genes identified, several were expressed differently in resistant or susceptible WCR larvae, fed on eCry3.1Ab-expressing maize versus its isoline, that may be involved in Bt resistance. Our findings provide strong evidence that ABCC4 is indirectly involved in WCR resistance to eCry3.1Ab protein by enhancing the effects of Bt-induced toxicity.
Collapse
Affiliation(s)
- Adriano E Pereira
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
- RNAiSSANCE AG, St. Louis, MO, 63132, USA
| | - Kyle J Paddock
- Biological Control of Insects Research Laboratory, USDA-ARS, Columbia, MO, 65203, USA
| | - Jacob A Corcoran
- Biological Control of Insects Research Laboratory, USDA-ARS, Columbia, MO, 65203, USA
| | - Zixiao Zhao
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
- Agricultural Research and Development Program, Central State University, Wilberforce, OH, 45384, USA
| | - Michelle L J Gregory
- Biological Control of Insects Research Laboratory, USDA-ARS, Columbia, MO, 65203, USA
| | - Thomas A Coudron
- Biological Control of Insects Research Laboratory, USDA-ARS, Columbia, MO, 65203, USA
| | - Bruce E Hibbard
- Biological Control of Insects Research Laboratory, USDA-ARS, Columbia, MO, 65203, USA
- Plant Genetics Research Unit, USDA-ARS, University of Missouri, Columbia, MO, 65211, USA
| | - Kent S Shelby
- Biological Control of Insects Research Laboratory, USDA-ARS, Columbia, MO, 65203, USA
| | - Man P Huynh
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
4
|
Salum YM, Yin A, Zaheer U, Liu Y, Guo Y, He W. CRISPR/Cas9-Based Genome Editing of Fall Armyworm ( Spodoptera frugiperda): Progress and Prospects. Biomolecules 2024; 14:1074. [PMID: 39334840 PMCID: PMC11430287 DOI: 10.3390/biom14091074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The fall armyworm (Spodoptera frugiperda) poses a substantial threat to many important crops worldwide, emphasizing the need to develop and implement advanced technologies for effective pest control. CRISPR/Cas9, derived from the bacterial adaptive immune system, is a prominent tool used for genome editing in living organisms. Due to its high specificity and adaptability, the CRISPR/Cas9 system has been used in various functional gene studies through gene knockout and applied in research to engineer phenotypes that may cause economical losses. The practical application of CRISPR/Cas9 in diverse insect orders has also provided opportunities for developing strategies for genetic pest control, such as gene drive and the precision-guided sterile insect technique (pgSIT). In this review, a comprehensive overview of the recent progress in the application of the CRISPR/Cas9 system for functional gene studies in S. frugiperda is presented. We outline the fundamental principles of applying CRISPR/Cas9 in S. frugiperda through embryonic microinjection and highlight the application of CRISPR/Cas9 in the study of genes associated with diverse biological aspects, including body color, insecticide resistance, olfactory behavior, sex determination, development, and RNAi. The ability of CRISPR/Cas9 technology to induce sterility, disrupt developmental stages, and influence mating behaviors illustrates its comprehensive roles in pest management strategies. Furthermore, this review addresses the limitations of the CRISPR/Cas9 system in studying gene function in S. frugiperda and explores its future potential as a promising tool for controlling this insect pest.
Collapse
Affiliation(s)
- Yussuf Mohamed Salum
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Anyuan Yin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Uroosa Zaheer
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Liu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Guo
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Weiyi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Xu YJ, Zhang YN, Xue-Yang, Hao SP, Wang YJ, Yang XX, Shen YQ, Su Q, Xiao YD, Liu JQ, Li WS, He QH, Chen Y, Wang LL, Guo HZ, Xia QY, Mita K. Proteotranscriptomic analyses of the midgut and Malpighian tubules after a sublethal concentration of Cry1Ab exposure on Spodoptera litura. PEST MANAGEMENT SCIENCE 2024; 80:2587-2595. [PMID: 38265118 DOI: 10.1002/ps.7965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Cry1Ab has emerged as a bio-insecticide to control Spodoptera litura (Lepidoptera: Noctuidae). However, the sublethal effects of Cry1Ab on the physiological changes and molecular level of S. litura have not been well documented. Our aims in this study were to assess the sublethal effect of Cry1Ab on S. litura, including midgut and Malpighian tubules as targets. RESULTS After sublethal Cry1Ab exposure, distinct histological alterations were mainly observed in the midgut. Furthermore, the results of comparative RNA sequencing and tandem mass tag-based proteomics showed that, in the midgut, most differential expression genes (DEGs) were up-regulated and significantly enriched in the serine protease activity pathway, and up-regulated differential expression proteins (DEPs) were mainly associated with the oxidative phosphorylation pathway, whereas the down-regulated involved in the ribosome pathways. In the Malpighian tubules, DEGs and DEPs were significantly enriched in the ribosome pathway. We proposed that ribosome may act as a universal target in energy metabolism with other pathways via the results of protein-protein interaction analysis. Further, by verification of the mRNA expression of some Cry protein receptor and detoxification genes after Cry1Ab treatment, it was suggested that the ribosomal proteins (RPs) possibly participate in influencing the Bt-resistance of S. litura larvae under sublethal Cry1Ab exposure. CONCLUSION Under sublethal Cry1Ab exposure, the midgut of S. litura was damaged, and the proteotranscriptomic analysis elucidated that Cry1Ab disrupted the energy homeostasis of larvae. Furthermore, we emphasized the potential role of ribosomes in sublethal Cry1Ab exposure. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ya-Jing Xu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yu-Ning Zhang
- Weste College, Southwest University, Chongqing, China
| | - Xue-Yang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Shao-Peng Hao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yan-Jue Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Xiao-Xue Yang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ya-Qin Shen
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qing Su
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ying Dan Xiao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Jian-Qiu Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Wan-Shun Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qi-Hua He
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yue Chen
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Li-Ling Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Hui-Zhen Guo
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qing-You Xia
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Kazuei Mita
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Sato R. Utilization of Diverse Molecules as Receptors by Cry Toxin and the Promiscuous Nature of Receptor-Binding Sites Which Accounts for the Diversity. Biomolecules 2024; 14:425. [PMID: 38672442 PMCID: PMC11048593 DOI: 10.3390/biom14040425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
By 2013, it had been shown that the genes cadherin-like receptor (Cad) and ATP-binding cassette transporter subfamily C2 (ABCC2) were responsible for insect resistance to several Cry1A toxins, acting as susceptibility-determining receptors, and many review articles have been published. Therefore, this review focuses on information about receptors and receptor-binding sites that have been revealed since 2014. Since 2014, studies have revealed that the receptors involved in determining susceptibility vary depending on the Cry toxin subfamily, and that binding affinity between Cry toxins and receptors plays a crucial role. Consequently, models have demonstrated that ABCC2, ABCC3, and Cad interact with Cry1Aa; ABCC2 and Cad with Cry1Ab and Cry1Ac; ABCC2 and ABCC3 with Cry1Fa; ABCB1 with Cry1Ba, Cry1Ia, Cry9Da, and Cry3Aa; and ABCA2 with Cry2Aa and Cry2Ba, primarily in the silkworm, Bombyx mori. Furthermore, since 2017, it has been suggested that the binding sites of BmCad and BmABCC2 on Cry1Aa toxin overlap in the loop region of domain II, indicating that Cry toxins use various molecules as receptors due to their ability to bind promiscuously in this region. Additionally, since 2017, several ABC transporters have been identified as low-efficiency receptors that poorly induce cell swelling in heterologously expressing cultured cells. In 2024, research suggested that multiple molecules from the ABC transporter subfamily, including ABCC1, ABCC2, ABCC3, ABCC4, ABCC10, and ABCC11, act as low-efficiency receptors for a single Cry toxin in the midgut of silkworm larvae. This observation led to the hypothesis that the presence of such low-efficiency receptors contributes to the evolution of Cry toxins towards the generation of highly functional receptors that determine the susceptibility of individual insects. Moreover, this evolutionary process is considered to offer valuable insights for the engineering of Cry toxins to overcome resistance and develop countermeasures against resistance.
Collapse
Affiliation(s)
- Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei 184-8588, Tokyo, Japan
| |
Collapse
|
7
|
Tang J, Lu J, Zhang C, Zhang D, Yu S, Fang F, Naing ZL, Soe ET, Ding Z, Liang G. Reduced expression of the P-glycoprotein gene HaABCB1 is linked to resistance to Bacillus thuringiensis Cry1Ac toxin but not Cry2Ab toxin in Helicoverpa armigera. Int J Biol Macromol 2023; 253:127668. [PMID: 37884238 DOI: 10.1016/j.ijbiomac.2023.127668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Rapid evolution of pest resistance to Bt insecticidal proteins presents a serious threat to the sustainable use of Bt crops. The cotton bollworm has been extensively exposed to Bt cotton worldwide and has evolved resistance in laboratory and field. Previous studies have highlighted the significant roles played by the ABC transporter proteins in Bt resistance. In this study, the ORF of HaABCB1 was cloned and analyzed. The expression of HaABCB1 was detected in all developmental stages and tissues, with the highest expression in third instar larvae stage and hindgut tissue. Compared with susceptible strain, a remarkable decrease of HaABCB1 expression in Cry1Ac resistant strain while no significant change in Cry2Ab resistant strain were found. The HaABCB1 expression reduced after susceptible larvae induced by Cry1Ac, but no obvious expression changes after Cry2Ab exposure. RNAi-mediated down-regulation of HaABCB1 could lead to a significant reduction in larval susceptibility to Cry1Ac, but not to Cry2Ab, in susceptible strain. Genetic linkage analysis confirmed that decreased expression of the HaABCB1 mediates resistance to Cry1Ac, but not Cry2Ab resistance. This knowledge contributes to better understanding of the complex molecular mechanisms underlying Bt resistance and provide theoretical foundation for the development of new strategies for pest resistance management.
Collapse
Affiliation(s)
- Jinrong Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Caihong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dandan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Siqi Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengyun Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zaw Lin Naing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ei Thinzar Soe
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhongwei Ding
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
8
|
Iwabuchi K, Miyamoto K, Jouraku A, Takasu Y, Iizuka T, Adegawa S, Li X, Sato R, Watanabe K. ABC transporter subfamily B1 as a susceptibility determinant of Bombyx mori larvae to Cry1Ba, Cry1Ia and Cry9Da toxins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 163:104030. [PMID: 37952901 DOI: 10.1016/j.ibmb.2023.104030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/05/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023]
Abstract
ATP binding cassette (ABC) transporters are a diverse family of transmembrane proteins. Specific subfamily members expressed in the lepidopteran midgut can act as susceptibility determinants for several insecticidal Bt Cry proteins. However, the susceptibility determinants to many Cry toxins still remain unclear. Therefore, we knocked out a series of ABC transporters that are highly expressed in the midgut of Bombyx mori larvae by transcription activator-like effector nuclease (TALEN)-mediated gene editing, and the lineages that became resistant to Cry toxins were searched by toxin overlay bioassay. As a result, the B. mori ABC transporter subfamily B1 (BmABCB1) knockout lineage showed 19.17-fold resistance to Cry1Ba, 876.2-fold resistance to Cry1Ia, and 29.1-fold resistance to Cry9Da, suggesting that BmABCB1 is the determinant of susceptibility to these toxins. BmABCC2 and BmABCC3 have been shown to be susceptibility determinants based on their function as receptors. Therefore, we next heterologously expressed these ABC transporters in HEK293T cells and performed a cell swelling assay to examine whether these molecules could exert receptor functions. As a result, BmABCB1-expressing cells showed swelling response to Cry1Ia and Cry9Da, and cells expressing PxABCB1, which is the Plutella xylostella ortholog of BmABCB1, showed swelling for Cry1Ba, suggesting that ABCB1 is a susceptibility determinant by functioning as a receptor to these toxins. Furthermore, in order to clarify how high binding affinity is based on receptor function, we performed surface plasmon resonance analysis and found that each KD of Cry1Ba, Cry1Ia, and Cry9Da to BmABCB1 were 7.69 × 10-8 M, 2.19 × 10-9 M, and 4.17 × 10-6 M respectively.
Collapse
Affiliation(s)
- Kana Iwabuchi
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Kazuhisa Miyamoto
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Akiya Jouraku
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Yoko Takasu
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Tetsuya Iizuka
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Satomi Adegawa
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Xiaoyi Li
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo, 184-8588, Japan.
| | - Kenji Watanabe
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan.
| |
Collapse
|
9
|
Misra V, Mall AK, Pandey H, Srivastava S, Sharma A. Advancements and prospects of CRISPR/Cas9 technologies for abiotic and biotic stresses in sugar beet. Front Genet 2023; 14:1235855. [PMID: 38028586 PMCID: PMC10665535 DOI: 10.3389/fgene.2023.1235855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Sugar beet is a crop with high sucrose content, known for sugar production and recently being considered as an emerging raw material for bioethanol production. This crop is also utilized as cattle feed, mainly when animal green fodder is scarce. Bioethanol and hydrogen gas production from this crop is an essential source of clean energy. Environmental stresses (abiotic/biotic) severely affect the productivity of this crop. Over the past few decades, the molecular mechanisms of biotic and abiotic stress responses in sugar beet have been investigated using next-generation sequencing, gene editing/silencing, and over-expression approaches. This information can be efficiently utilized through CRISPR/Cas 9 technology to mitigate the effects of abiotic and biotic stresses in sugar beet cultivation. This review highlights the potential use of CRISPR/Cas 9 technology for abiotic and biotic stress management in sugar beet. Beet genes known to be involved in response to alkaline, cold, and heavy metal stresses can be precisely modified via CRISPR/Cas 9 technology for enhancing sugar beet's resilience to abiotic stresses with minimal off-target effects. Similarly, CRISPR/Cas 9 technology can help generate insect-resistant sugar beet varieties by targeting susceptibility-related genes, whereas incorporating Cry1Ab and Cry1C genes may provide defense against lepidopteron insects. Overall, CRISPR/Cas 9 technology may help enhance sugar beet's adaptability to challenging environments, ensuring sustainable, high-yield production.
Collapse
Affiliation(s)
- Varucha Misra
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - A. K. Mall
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - Himanshu Pandey
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
- Khalsa College, Amritsar, India
| | | | - Avinash Sharma
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, India
| |
Collapse
|
10
|
Farhan Y, Smith JL, Sovic MG, Michel AP. Genetic mutations linked to field-evolved Cry1Fa-resistance in the European corn borer, Ostrinia nubilalis. Sci Rep 2023; 13:8081. [PMID: 37202428 DOI: 10.1038/s41598-023-35252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023] Open
Abstract
Transgenic corn, Zea mays (L.), expressing insecticidal toxins such as Cry1Fa, from Bacillus thuringiensis (Bt corn) targeting Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) resulted in over 20 years of management success. The first case of practical field-evolved resistance by O. nubilalis to a Bt corn toxin, Cry1Fa, was discovered in Nova Scotia, Canada, in 2018. Laboratory-derived Cry1Fa-resistance by O. nubilalis was linked to a genome region encoding the ATP Binding Cassette subfamily C2 (ABCC2) gene; however, the involvement of ABCC2 and specific mutations in the gene leading to resistance remain unknown. Using a classical candidate gene approach, we report on O. nubilalis ABCC2 gene mutations linked to laboratory-derived and field-evolved Cry1Fa-resistance. Using these mutations, a DNA-based genotyping assay was developed to test for the presence of the Cry1Fa-resistance alleles in O. nubilalis strains collected in Canada. Screening data provide strong evidence that field-evolved Cry1Fa-resistance in O. nubilalis maps to the ABCC2 gene and demonstrates the utility of this assay for detecting the Cry1Fa resistance allele in O. nubilalis. This study is the first to describe mutations linked to Bt resistance in O. nubilalis and provides a DNA-based detection method that can be used for monitoring.
Collapse
Affiliation(s)
- Yasmine Farhan
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, Ridgetown, ON, Canada.
| | - Jocelyn L Smith
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, Ridgetown, ON, Canada
| | - Michael G Sovic
- Infectious Diseases Institute, The Ohio State University, Pickerington, OH, USA
| | - Andrew P Michel
- Department of Entomology, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
11
|
Toxicometabolomic profiling of resistant and susceptible western corn rootworm larvae feeding on Bt maize seedlings. Sci Rep 2022; 12:11639. [PMID: 35804088 PMCID: PMC9270432 DOI: 10.1038/s41598-022-15895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is the most serious pest of maize (Zea mays L.) in the U.S. Corn Belt and parts of Europe. Transgenic maize hybrids expressing at least one of the four currently available insecticidal toxins from Bacillus thuringiensis (Bt) Berliner, currently the most widely adopted control method in continuous maize, have faltered due to the emergence of resistance. The resistance mechanisms of WCR to Bt toxins are not fully understood. We identified metabolic profiles of susceptible and resistant WCR larvae fed on maize hybrids expressing each of three available Cry3 proteins (eCry3Ab1, mCry3A, and Cry3Bb1) targeting corn rootworms and a control non-Bt maize via an untargeted metabolomics approach. Over 580 unique metabolites found in WCR larvae were classified into different pathways (amino acids, carbohydrates, cofactors and vitamins, energy, lipid, nucleotide, peptide, and xenobiotics). By exploring shifts in WCR larval metabolome exclusively by Bt toxins, several candidate metabolites and metabolic pathways were identified in susceptible and resistant larvae that may be involved in defense against or recovery from Bt ingestion by these larvae. These findings would provide mechanistic insights into altered metabolic pathways associated with the resistance mechanisms of WCR to Bt toxins.
Collapse
|
12
|
Endo H. Molecular and Kinetic Models for Pore Formation of Bacillus thuringiensis Cry Toxin. Toxins (Basel) 2022; 14:toxins14070433. [PMID: 35878171 PMCID: PMC9321905 DOI: 10.3390/toxins14070433] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/03/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Cry proteins from Bacillus thuringiensis (Bt) and other bacteria are pesticidal pore-forming toxins. Since 2010, when the ABC transporter C2 (ABCC2) was identified as a Cry1Ac protein resistant gene, our understanding of the mode of action of Cry protein has progressed substantially. ABCC2 mediates high Cry1A toxicity because of its high activity for helping pore formation. With the discovery of ABCC2, the classical killing model based on pore formation and osmotic lysis became nearly conclusive. Nevertheless, we are still far from a complete understanding of how Cry proteins form pores in the cell membrane through interactions with their host gut membrane proteins, known as receptors. Why does ABCC2 mediate pore formation with high efficiency unlike other Cry1A-binding proteins? Is the “prepore” formation indispensable for pore formation? What is the mechanism underlying the synergism between ABCC2 and the 12-cadherin domain protein? We examine potential mechanisms of pore formation via receptor interactions in this paper by merging findings from prior studies on the Cry mode of action before and after the discovery of ABC transporters as Cry protein receptors. We also attempt to explain Cry toxicity using Cry–receptor binding affinities, which successfully predicts actual Cry toxicity toward cultured cells coexpressing ABC transporters and cadherin.
Collapse
Affiliation(s)
- Haruka Endo
- Department of Integrated Bioscience, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| |
Collapse
|
13
|
Wang H, Zhang C, Chen G, Li Y, Yang X, Han L, Peng Y. Downregulation of the CsABCC2 gene is associated with Cry1C resistance in the striped stem borer Chilo suppressalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105119. [PMID: 35715058 DOI: 10.1016/j.pestbp.2022.105119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Chilo suppressalis is a major target pest of transgenic rice expressing the Bacillus thuringiensis (Bt) Cry1C toxin in China. The evolution of resistance of this pest is a major threat to Bt rice. Since Bt functions by binding to receptors in the midgut (MG) of target insects, identification of Bt functional receptors in C. suppressalis is crucial for evaluating potential resistance mechanisms and developing effective management strategies. ATP-binding cassette (ABC) transporters have been vastly reported to interact with Cry1A toxins, as receptors and their mutations cause insect Bt resistance. However, the role of ABC transporters in Cry1C resistance to C. suppressalis remains unknown. Here, we measured CsABCC2 expression in C. suppressalis Cry1C-resistant (Cry1C-R) and Cry1C-susceptible strains (selected in the laboratory) via quantitative real-time PCR (qRT-PCR); the transcript level of CsABCC2 in the Cry1C-R strain was significantly lower than that in the Cry1C-susceptible strain. Furthermore, silencing CsABCC2 in C. suppressalis via RNA interference (RNAi) significantly decreased Cry1C susceptibility. Overall, CsABCC2 participates in Cry1C mode of action, and reduced expression of CsABCC2 is functionally associated with Cry1C resistance in C. suppressalis.
Collapse
Affiliation(s)
- Huilin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Chuan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Geng Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaowei Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Lanzhi Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
14
|
Transcriptional Analysis of Cotton Bollworm Strains with Different Genetic Mechanisms of Resistance and Their Response to Bacillus thuringiensis Cry1Ac Toxin. Toxins (Basel) 2022; 14:toxins14060366. [PMID: 35737027 PMCID: PMC9228822 DOI: 10.3390/toxins14060366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
Transgenic crops producing Bacillus thuringiensis (Bt) insecticidal proteins are grown widely for pest control, but the evolution of resistance in target pests could reduce their efficacy. Mutations in genes encoding cadherin, ABC transporter or tetraspanin were linked with resistance to Cry1Ac in several lepidopteran insects, including the cotton bollworm (Helicoverpa armigera), a worldwide agricultural pest. However, the detailed molecular mechanisms by which these mutations confer insect resistance to Cry1Ac remain largely unknown. In this study, we analyzed the midgut transcriptomes of a susceptible SCD strain and three SCD-derived Cry1Ac-resistant strains of H. armigera (SCD-r1, with a naturally occurring deletion mutation of cadherin; SCD-KI, with a knock-in T92C point mutation in tetraspanin; and C2/3-KO, with both ABCC2 and ABCC3 knocked out). Evaluation of midgut transcript profiles of the four strains without Cry1Ac exposure identified many constitutively differentially expressed genes (DEGs) in the resistant SCD-r1 (n = 1355), SCD-KI (n = 1254) and C2/3-KO (n = 2055) strains. Analysis of DEGs in the midguts of each strain after Cry1Ac exposure revealed similar patterns of response to Cry1Ac in the SCD and SCD-r1 strains, but unique responses in the SCD-KI and C2/3-KO strains. Expression of midgut epithelium healing and defense-related genes was strongly induced by Cry1Ac intoxication in the SCD and SCD-r1 strains, while immune-related pattern recognition receptor and effector genes were highly expressed in the SCD-KI strain after Cry1Ac exposure. This study advances our knowledge of the transcriptomic basis for insect resistance to Bt toxins and provides a valuable resource for further molecular characterization of insect response to Cry1Ac toxin in H. armigera and other pest species.
Collapse
|
15
|
Kuwar SS, Mishra R, Banerjee R, Milligan J, Rydel T, Du Z, Xie Z, Ivashuta S, Kouadio JL, Meyer JM, Bonning BC. Engineering of Cry3Bb1 provides mechanistic insights toward countering western corn rootworm resistance. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100033. [PMID: 36003270 PMCID: PMC9387510 DOI: 10.1016/j.cris.2022.100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
Abstract
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is an economically important pest of corn (maize) in North America and Europe. Current management practices for WCR involve transgenic expression of insecticidal proteins to minimize larval feeding damage to corn roots. The evolution of resistant WCR populations to transgenic corn expressing insecticidal proteins (e.g. Cry3Bb1, Gpp34Ab1/Tpp35Ab1) necessitates efforts to discover and deploy new modes of action for WCR control. Here, we tested the hypothesis that the addition of short peptides selected for binding to the WCR gut would restore insecticidal activity of Cry3Bb1 to resistant insects. Phage display technology coupled with deep sequencing was used to identify peptides selected for binding to WCR brush border membrane vesicles and to recombinant putative receptors aminopeptidase and cadherin. The binding and specificity of selected peptides was confirmed by ELISA and pull-down assays, and candidate gut surface binding partners were identified. Although production of 284 novel Cry3Bb1 variants with these peptides did not restore activity against resistant WCR in artificial diet bioassays, 112 variants were active against susceptible insects. These results provided insights for the mechanism of Cry3Bb1 activity and toward engineering a new mode-of-action via receptor re-targeting in the context of protein structure and function.
Collapse
Affiliation(s)
- Suyog S. Kuwar
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Ruchir Mishra
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Rahul Banerjee
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Jason Milligan
- Bayer U.S., Research and Development, Crop Science Plant Biotechnology, Chesterfield, MO, 63017 USA
| | - Timothy Rydel
- Bayer U.S., Research and Development, Crop Science Plant Biotechnology, Chesterfield, MO, 63017 USA
| | - Zijin Du
- Bayer U.S., Research and Development, Crop Science Plant Biotechnology, Chesterfield, MO, 63017 USA
| | - Zhidong Xie
- Bayer U.S., Research and Development, Crop Science Plant Biotechnology, Chesterfield, MO, 63017 USA
| | - Sergey Ivashuta
- Bayer U.S., Research and Development, Crop Science Plant Biotechnology, Chesterfield, MO, 63017 USA
| | - Jean-Louis Kouadio
- Bayer U.S., Research and Development, Crop Science Plant Biotechnology, Chesterfield, MO, 63017 USA
| | - Jason M. Meyer
- Bayer U.S., Research and Development, Crop Science Plant Biotechnology, Chesterfield, MO, 63017 USA
| | - Bryony C. Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Li Q, Jin M, Yu S, Cheng Y, Shan Y, Wang P, Yuan H, Xiao Y. Knockout of the ABCB1 Gene Increases Susceptibility to Emamectin Benzoate, Beta-Cypermethrin and Chlorantraniliprole in Spodoptera frugiperda. INSECTS 2022; 13:insects13020137. [PMID: 35206711 PMCID: PMC8875147 DOI: 10.3390/insects13020137] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023]
Abstract
ATP-binding cassette transporter B1 (ABCB1, or P-glycoprotein) is known to be an important participant in multidrug resistance in mammals, and it also has been proved as a transporter for some insecticides in several lepidopteran insects, yet the precise function of this transporter in Spodoptera frugiperda is unknown. Here, we generated a SfABCB1 knockout strain of the S. frugiperda using the CRISPR/Cas9 system to explore its potential roles in determining susceptibility to chemical insecticides or Bt toxins. Bioassay results showed that the susceptibility of SfABCB1 knockout strain to beta-cypermethrin, chlorantraniliprole and emamectin benzoate were significantly increased compared with the wild-type strain DH19, whereas there were no changes to Bt toxins for Cry1Ab, Cry1Fa and Vip3Aa. Our results revealed that SfABCB1 plays important roles in the susceptibility of S. frugiperda to beta-cypermethrin, chlorantraniliprole and emamectin benzoate, and imply that overexpression of ABCB1 may contribute to beta-cypermethrin, chlorantraniliprole and emamectin benzoate resistance in S. frugiperda.
Collapse
Affiliation(s)
- Qi Li
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agricultural and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (M.J.); (S.Y.); (Y.C.); (Y.S.); (P.W.)
| | - Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agricultural and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (M.J.); (S.Y.); (Y.C.); (Y.S.); (P.W.)
| | - Songmiao Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agricultural and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (M.J.); (S.Y.); (Y.C.); (Y.S.); (P.W.)
| | - Ying Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agricultural and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (M.J.); (S.Y.); (Y.C.); (Y.S.); (P.W.)
| | - Yinxue Shan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agricultural and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (M.J.); (S.Y.); (Y.C.); (Y.S.); (P.W.)
| | - Peng Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agricultural and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (M.J.); (S.Y.); (Y.C.); (Y.S.); (P.W.)
| | - Haibin Yuan
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
- Correspondence: (H.Y.); (Y.X.)
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agricultural and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (M.J.); (S.Y.); (Y.C.); (Y.S.); (P.W.)
- Correspondence: (H.Y.); (Y.X.)
| |
Collapse
|
17
|
Gao Q, Lin Y, Wang X, Jing D, Wang Z, He K, Bai S, Zhang Y, Zhang T. Knockout of ABC Transporter ABCG4 Gene Confers Resistance to Cry1 Proteins in Ostrinia furnacalis. Toxins (Basel) 2022; 14:toxins14010052. [PMID: 35051029 PMCID: PMC8780026 DOI: 10.3390/toxins14010052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/16/2022] Open
Abstract
Ostrinia furnacalis is an important borer on maize. Long-term and large-scale planting of transgenic corn has led O. furnacalis evolving resistance and reducing the control effect. Recently, high levels of resistance to Bt Cry1 toxins have been reported to be genetically linked to the mutation or down-regulation of ABC transporter subfamily G gene ABCG4 in O. furnacalis. In order to further determine the relationship between ABCG4 gene and the resistance to Cry1 toxins in O. furnacalis, the novel CRISPR/Cas9 genome engineering system was utilized to successfully construct ABCG4-KO knockout homozygous strain. Bioassay results indicated that an ABCG4-KO strain had a higher resistance to Cry1 proteins compared with a susceptible strain (ACB-BtS). The result indicates that the ABCG4 gene may act as a receptor of the Bt Cry1 toxin in O. furnacalis. Furthermore, the development time was significantly changed in the early stage ABCG4-KO larvae, and the population parameters were also significantly changed. In summary, our CRISPR/Cas9-mediated genome editing study presents evidence that ABCG4 gene is a functional receptor for Bt Cry1 toxins, laying the foundation for further clarification of the Bt resistance mechanism.
Collapse
Affiliation(s)
- Qing Gao
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Yaling Lin
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
- College of Plant Protection, Gansu Agriculture University, Lanzhou 730070, China
| | - Xiuping Wang
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
- Correspondence: (X.W.); (T.Z.)
| | - Dapeng Jing
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
| | - Zhenying Wang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
| | - Kanglai He
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
| | - Shuxiong Bai
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
| | - Yongjun Zhang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
| | - Tiantao Zhang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.G.); (Y.L.); (D.J.); (Z.W.); (K.H.); (S.B.); (Y.Z.)
- Correspondence: (X.W.); (T.Z.)
| |
Collapse
|
18
|
Adegawa S, Yamaguchi N, Sato R. The base and root of domain II loops of Cry toxins contribute to binding to Bombyx mori ABC transporter C2. FEBS J 2021; 289:965-984. [PMID: 34618400 DOI: 10.1111/febs.16224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/28/2021] [Accepted: 10/06/2021] [Indexed: 01/17/2023]
Abstract
Little information is available regarding the region of Cry toxins involved in binding to their major receptors, the ATP-binding cassette (ABC) transporters. We analyzed which Cry1Aa amino acid residues contribute to binding to Bombyx mori ABC transporter C2 (BmABCC2). Several two oxidized double-cysteine substitution mutant toxins were made. In these, two amino acids at distant positions on toxin loop α8 and loop 2 or loop 2 and loop 3 were substituted with cysteine residues and crosslinked. These mutants exhibited a marked reduction in binding affinity to BmABCC2, suggesting that the binding site comprises complex cavities formed by loops α8, 2, and 3. Loop swapping between Cry1Aa and other BmABCC2-incompatible toxins indicated that loop 2 acts as a binding affinity-generating part of Cry1Aa toxin. Using single amino acid substitution mutants, the results of surface plasmon resonance (SPR) analysis and response assays with BmABCC2-expressing Sf9 cells indicated that Y366, R367, R368, and L447 in the Cry1Aa root and base region of loops 2 and 3 play important roles in binding. Furthermore, SPR analyses of these mutants suggested that a two-state binding model fits best the data obtained. Moreover, complex cavities and the above-mentioned amino acid residues contribute to the generation of multiple binding points and high-affinity binding. Finally, we found that the binding site of B. mori cadherin-like protein consists of complex cavities comprising loops 1, 2, and 3, partially overlapping that of BmABCC2, suggesting that the loop region of Cry1Aa toxin acts as a promiscuous binding site.
Collapse
Affiliation(s)
- Satomi Adegawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan.,Japan Society for the Promotion of Science Research Fellowship for Young Scientists, Chiyoda, Japan
| | - Naomi Yamaguchi
- Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| |
Collapse
|
19
|
Güney G, Cedden D, Hänniger S, Heckel DG, Coutu C, Hegedus DD, Mutlu DA, Suludere Z, Sezen K, Güney E, Toprak U. Silencing of an ABC transporter, but not a cadherin, decreases the susceptibility of Colorado potato beetle larvae to Bacillus thuringiensis ssp. tenebrionis Cry3Aa toxin. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21834. [PMID: 34288075 DOI: 10.1002/arch.21834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
The Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae), is a major pest of potato plants worldwide and is notorious for its ability to develop resistance to insecticides. Cry3 toxins synthesized by Bacillus thuringiensis ssp. tenebrionis have been used successfully to manage this pest. Resistance to Cry toxins is a concerning problem for many insect pests; therefore, it is important to determine the mechanisms by which insects acquire resistance to these toxins. Cadherin-like and ABC transporter proteins have been implicated in the mode of action of Cry toxins as mutations in these genes render lepidopterans resistant to them; however, clear consensus does not exist on whether these proteins also play a role in Cry3 toxin activity and/or development of resistance in coleopterans. In the current study, we identified the L. decemlineata orthologues of the cadherin (LdCAD) and the ABCB transporter (LdABCB1) that have been implicated in the mode of action of Cry toxins in other coleopterans. Suppression of LdABCB1 via RNA interference reduced toxin-related larval mortality, whereas partial silencing of LdCAD did not. Our results suggest that the ABCB is involved in the mode of action of Cry3Aa toxins; however, no evidence was found to support the role of cadherin as a receptor of Cry3Aa in L. decemlineata.
Collapse
Affiliation(s)
- Gözde Güney
- Molecular Entomology Lab, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
- Max Planck Institute for Chemical Ecology, Jena, Germany
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Doğa Cedden
- Molecular Entomology Lab, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | | | - David G Heckel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | - Kazım Sezen
- Department of Biology, Karadeniz Technical University, Trabzon, Turkey
| | - Ebru Güney
- Department of Biology, Karadeniz Technical University, Trabzon, Turkey
| | - Umut Toprak
- Molecular Entomology Lab, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
20
|
Coates BS, Deleury E, Gassmann AJ, Hibbard BE, Meinke LJ, Miller NJ, Petzold-Maxwell J, French BW, Sappington TW, Siegfried BD, Guillemaud T. Up-regulation of apoptotic- and cell survival-related gene pathways following exposures of western corn rootworm to B. thuringiensis crystalline pesticidal proteins in transgenic maize roots. BMC Genomics 2021; 22:639. [PMID: 34479486 PMCID: PMC8418000 DOI: 10.1186/s12864-021-07932-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/04/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Resistance of pest insect species to insecticides, including B. thuringiensis (Bt) pesticidal proteins expressed by transgenic plants, is a threat to global food security. Despite the western corn rootworm, Diabrotica virgifera virgifera, being a major pest of maize and having populations showing increasing levels of resistance to hybrids expressing Bt pesticidal proteins, the cell mechanisms leading to mortality are not fully understood. RESULTS Twenty unique RNA-seq libraries from the Bt susceptible D. v. virgifera inbred line Ped12, representing all growth stages and a range of different adult and larval exposures, were assembled into a reference transcriptome. Ten-day exposures of Ped12 larvae to transgenic Bt Cry3Bb1 and Gpp34/Tpp35Ab1 maize roots showed significant differential expression of 1055 and 1374 transcripts, respectively, compared to cohorts on non-Bt maize. Among these, 696 were differentially expressed in both Cry3Bb1 and Gpp34/Tpp35Ab1 maize exposures. Differentially-expressed transcripts encoded protein domains putatively involved in detoxification, metabolism, binding, and transport, were, in part, shared among transcripts that changed significantly following exposures to the entomopathogens Heterorhabditis bacteriophora and Metarhizium anisopliae. Differentially expressed transcripts in common between Bt and entomopathogen treatments encode proteins in general stress response pathways, including putative Bt binding receptors from the ATP binding cassette transporter superfamily. Putative caspases, pro- and anti-apoptotic factors, as well as endoplasmic reticulum (ER) stress-response factors were identified among transcripts uniquely up-regulated following exposure to either Bt protein. CONCLUSIONS Our study suggests that the up-regulation of genes involved in ER stress management and apoptotic progression may be important in determining cell fate following exposure of susceptible D. v. virgifera larvae to Bt maize roots. This study provides novel insights into insect response to Bt intoxication, and a possible framework for future investigations of resistance mechanisms.
Collapse
Affiliation(s)
- Brad S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, 103 Genetics Laboratory, Iowa State University, Ames, IA, 50011, USA.
| | | | | | | | - Lance J Meinke
- Department of Entomology, University of Nebraska, Lincoln, NE, USA
| | | | | | - B Wade French
- USDA-ARS, North Central Agricultural Research Laboratory, Brookings, SD, USA
| | - Thomas W Sappington
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, 103 Genetics Laboratory, Iowa State University, Ames, IA, 50011, USA
| | | | | |
Collapse
|
21
|
MAPK-Activated Transcription Factor PxJun Suppresses PxABCB1 Expression and Confers Resistance to Bacillus thuringiensis Cry1Ac Toxin in Plutella xylostella (L.). Appl Environ Microbiol 2021; 87:e0046621. [PMID: 33893113 DOI: 10.1128/aem.00466-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Deciphering the molecular mechanisms underlying insect resistance to Cry toxins produced by Bacillus thuringiensis (Bt) is pivotal for the sustainable utilization of Bt biopesticides and transgenic Bt crops. Previously, we identified that mitogen-activated protein kinase (MAPK)-mediated reduced expression of the PxABCB1 gene is associated with Bt Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.). However, the underlying transcriptional regulation mechanism remains enigmatic. Here, the PxABCB1 promoter in Cry1Ac-susceptible and Cry1Ac-resistant P. xylostella strains was cloned and analyzed and found to contain a putative Jun binding site (JBS). A dual-luciferase reporter assay and yeast one-hybrid assay demonstrated that the transcription factor PxJun repressed PxABCB1 expression by interacting with this JBS. The expression levels of PxJun were increased in the midguts of all resistant strains compared to the susceptible strain. Silencing of PxJun expression significantly elevated PxABCB1 expression and Cry1Ac susceptibility in the resistant NIL-R strain, and silencing of PxMAP4K4 expression decreased PxJun expression and also increased PxABCB1 expression. These results indicate that MAPK-activated PxJun suppresses PxABCB1 expression to confer Cry1Ac resistance in P. xylostella, deepening our understanding of the transcriptional regulation of midgut Cry receptor genes and the molecular basis of insect resistance to Bt Cry toxins. IMPORTANCE The transcriptional regulation mechanisms underlying reduced expression of Bt toxin receptor genes in Bt-resistant insects remain elusive. This study unveils that a transcription factor PxJun activated by the MAPK signaling pathway represses PxABCB1 expression and confers Cry1Ac resistance in P. xylostella. Our results provide new insights into the transcriptional regulation mechanisms of midgut Cry receptor genes and deepen our understanding of the molecular basis of insect resistance to Bt Cry toxins. To our knowledge, this study identified the first transcription factor that can be involved in the transcriptional regulation mechanisms of midgut Cry receptor genes in Bt-resistant insects.
Collapse
|
22
|
Liu L, Li Z, Luo X, Zhang X, Chou SH, Wang J, He J. Which Is Stronger? A Continuing Battle Between Cry Toxins and Insects. Front Microbiol 2021; 12:665101. [PMID: 34140940 PMCID: PMC8203666 DOI: 10.3389/fmicb.2021.665101] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
In this article, we review the latest works on the insecticidal mechanisms of Bacillus thuringiensis Cry toxins and the resistance mechanisms of insects against Cry toxins. Currently, there are two models of insecticidal mechanisms for Cry toxins, namely, the sequential binding model and the signaling pathway model. In the sequential binding model, Cry toxins are activated to bind to their cognate receptors in the mid-intestinal epithelial cell membrane, such as the glycophosphatidylinositol (GPI)-anchored aminopeptidases-N (APNs), alkaline phosphatases (ALPs), cadherins, and ABC transporters, to form pores that elicit cell lysis, while in the signaling pathway model, the activated Cry toxins first bind to the cadherin receptor, triggering an extensive cell signaling cascade to induce cell apoptosis. However, these two models cannot seem to fully describe the complexity of the insecticidal process of Cry toxins, and new models are required. Regarding the resistance mechanism against Cry toxins, the main method insects employed is to reduce the effective binding of Cry toxins to their cognate cell membrane receptors by gene mutations, or to reduce the expression levels of the corresponding receptors by trans-regulation. Moreover, the epigenetic mechanisms, host intestinal microbiota, and detoxification enzymes also play significant roles in the insects' resistance against Cry toxins. Today, high-throughput sequencing technologies like transcriptomics, proteomics, and metagenomics are powerful weapons for studying the insecticidal mechanisms of Cry toxins and the resistance mechanisms of insects. We believe that this review shall shed some light on the interactions between Cry toxins and insects, which can further facilitate the development and utilization of Cry toxins.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhou Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xing Luo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xia Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,Department of Molecular Biology, Qingdao Vland Biotech Inc., Qingdao, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jieping Wang
- Agricultural Bioresources Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
23
|
The Essential and Enigmatic Role of ABC Transporters in Bt Resistance of Noctuids and Other Insect Pests of Agriculture. INSECTS 2021; 12:insects12050389. [PMID: 33924857 PMCID: PMC8145640 DOI: 10.3390/insects12050389] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary The insect family, Noctuidae, contains some of the most damaging pests of agriculture, including bollworms, budworms, and armyworms. Transgenic cotton and maize expressing Cry-type insecticidal proteins from Bacillus thuringiensis (Bt) are protected from such pests and greatly reduce the need for chemical insecticides. However, evolution of Bt resistance in the insects threatens the sustainability of this environmentally beneficial pest control strategy. Understanding the interaction between Bt toxins and their targets in the insect midgut is necessary to evaluate the risk of resistance evolution. ABC transporters, which in eukaryotes typically expel small molecules from cells, have recently been proposed as a target for the pore-forming Cry toxins. Here we review the literature surrounding this hypothesis in noctuids and other insects. Appreciation of the critical role of ABC transporters will be useful in discovering counterstrategies to resistance, which is already evolving in some field populations of noctuids and other insects. Abstract In the last ten years, ABC transporters have emerged as unexpected yet significant contributors to pest resistance to insecticidal pore-forming proteins from Bacillus thuringiensis (Bt). Evidence includes the presence of mutations in resistant insects, heterologous expression to probe interactions with the three-domain Cry toxins, and CRISPR/Cas9 knockouts. Yet the mechanisms by which ABC transporters facilitate pore formation remain obscure. The three major classes of Cry toxins used in agriculture have been found to target the three major classes of ABC transporters, which requires a mechanistic explanation. Many other families of bacterial pore-forming toxins exhibit conformational changes in their mode of action, which are not yet described for the Cry toxins. Three-dimensional structures of the relevant ABC transporters, the multimeric pore in the membrane, and other proteins that assist in the process are required to test the hypothesis that the ATP-switch mechanism provides a motive force that drives Cry toxins into the membrane. Knowledge of the mechanism of pore insertion will be required to combat the resistance that is now evolving in field populations of insects, including noctuids.
Collapse
|
24
|
Jin M, Yang Y, Shan Y, Chakrabarty S, Cheng Y, Soberón M, Bravo A, Liu K, Wu K, Xiao Y. Two ABC transporters are differentially involved in the toxicity of two Bacillus thuringiensis Cry1 toxins to the invasive crop-pest Spodoptera frugiperda (J. E. Smith). PEST MANAGEMENT SCIENCE 2021; 77:1492-1501. [PMID: 33145907 DOI: 10.1002/ps.6170] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND The fall armyworm Spodoptera frugiperda is a major agricultural pest that has invaded the East Hemisphere since 2016, generating a serious threat to food security worldwide including Africa and Asia. The Cry toxins produced by Bacillus thuringiensis (Bt) have been shown to be effective against this insect pest. In different insect ABC transporters (ABCC2 or ABCC3) have been shown to be involved as receptors of some Cry1 toxins. Here we analyzed the role of SfABCC2 and SfABCC3 in the toxicity of Cry1Fa and Cry1Ab toxins in this insect pest. RESULTS Two S. frugiperda SfABCC2 and SfABCC3 knockout strains, coding for potential functional Bt receptors, were created using CRISPR/Cas9 genome editing system. Both knockout strains showed resistance to both Cry1Fa and Cry1Ab toxins compared with the susceptible strain. SfABCC2 knockout strain showed higher resistance to both Cry toxins than SfABCC3 knockout strain, suggesting a major role of SfABCC2 in the mode of action of these Cry toxins. In addition, expression of SfABCC2 and SfABCC3 genes in Trichoplusia ni Hi5 cells also increased the susceptibility to Cry1Ab and Cry1Fa toxins, in agreement with the genome editing results. The double knockout of SfABCC2 and SfABCC3 strain was not viable in contrast to other lepidopteran species. Furthermore, we report here that SfABCC2 or SfABCC3 knockout strains increased their susceptibility to abamectin and spinosad insecticides. CONCLUSION We provide functional evidence that in S. frugiperda these two ABCC transporters serve as receptors of Bt Cry1Fa and Cry1Ab toxins. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Minghui Jin
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanchao Yang
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yinxue Shan
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Swapan Chakrabarty
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ying Cheng
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Kongming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yutao Xiao
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
25
|
Willse A, Flagel L, Head G. Estimation of Cry3Bb1 resistance allele frequency in field populations of western corn rootworm using a genetic marker. G3-GENES GENOMES GENETICS 2021; 11:6070152. [PMID: 33561248 PMCID: PMC8022712 DOI: 10.1093/g3journal/jkaa013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/30/2020] [Indexed: 11/18/2022]
Abstract
Following the discovery of western corn rootworm (WCR; Diabrotica virgifera virgifera) populations resistant to the Bacillus thuringiensis (Bt) protein Cry3Bb1, resistance was genetically mapped to a single locus on WCR chromosome 8 and linked SNP markers were shown to correlate with the frequency of resistance among field-collected populations from the US Corn Belt. The purpose of this paper is to further investigate the relationship between one of these resistance-linked markers and the causal resistance locus. Using data from laboratory bioassays and field experiments, we show that one allele of the resistance-linked marker increased in frequency in response to selection, but was not perfectly linked to the causal resistance allele. By coupling the response to selection data with a genetic model of the linkage between the marker and the causal allele, we developed a model that allowed marker allele frequencies to be mapped to causal allele frequencies. We then used this model to estimate the resistance allele frequency distribution in the US Corn Belt based on collections from 40 populations. These estimates suggest that chromosome 8 Cry3Bb1 resistance allele frequency was generally low (<10%) for 65% of the landscape, though an estimated 13% of landscape has relatively high (>25%) resistance allele frequency.
Collapse
Affiliation(s)
- Alan Willse
- Bayer Crop Science, Chesterfield, MO 63017, USA
| | - Lex Flagel
- Bayer Crop Science, Chesterfield, MO 63017, USA
| | - Graham Head
- Bayer Crop Science, Chesterfield, MO 63017, USA
| |
Collapse
|
26
|
Jurat-Fuentes JL, Heckel DG, Ferré J. Mechanisms of Resistance to Insecticidal Proteins from Bacillus thuringiensis. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:121-140. [PMID: 33417820 DOI: 10.1146/annurev-ento-052620-073348] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are used in sprayable formulations or produced in transgenic crops as the most successful alternatives to synthetic pesticides. The most relevant threat to sustainability of Bt insecticidal proteins (toxins) is the evolution of resistance in target pests. To date, high-level resistance to Bt sprays has been limited to one species in the field and another in commercial greenhouses. In contrast, there are currently seven lepidopteran and one coleopteran species that have evolved practical resistance to transgenic plants producing insecticidal Bt proteins. In this article, we present a review of the current knowledge on mechanisms of resistance to Bt toxins, with emphasis on key resistance genes and field-evolved resistance, to support improvement of Bt technology and its sustainability.
Collapse
Affiliation(s)
- Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee 37996, USA;
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany;
| | - Juan Ferré
- ERI of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot 46100, Spain;
| |
Collapse
|
27
|
Functional validation of DvABCB1 as a receptor of Cry3 toxins in western corn rootworm, Diabrotica virgifera virgifera. Sci Rep 2020; 10:15830. [PMID: 32985523 PMCID: PMC7522262 DOI: 10.1038/s41598-020-72572-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/03/2020] [Indexed: 02/03/2023] Open
Abstract
Western corn rootworm (WCR), Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is a serious insect pest in the major corn growing areas of North America and in parts of Europe. WCR populations with resistance to Bacillus thuringiensis (Bt) toxins utilized in commercial transgenic traits have been reported, raising concerns over their continued efficacy in WCR management. Understanding the modes of action of Bt toxins is important for WCR control and resistance management. Although different classes of proteins have been identified as Bt receptors for lepidopteran insects, identification of receptors in WCR has been limited with no reports of functional validation. Our results demonstrate that heterologous expression of DvABCB1 in Sf9 and HEK293 cells conferred sensitivity to the cytotoxic effects of Cry3A toxins. The result was further validated using knockdown of DvABCB1 by RNAi which rendered WCR larvae insensitive to a Cry3A toxin. However, silencing of DvABCB2 which is highly homologous to DvABCB1 at the amino acid level, did not reduce the sensitivity of WCR larvae to a Cry3A toxin. Furthermore, our functional studies corroborate different mode-of-actions for other insecticidal proteins including Cry34Ab1/35Ab1, Cry6Aa1, and IPD072Aa against WCR. Finally, reduced expression and alternatively spliced transcripts of DvABCB1 were identified in a mCry3A-resistant strain of WCR. Our results provide the first clear demonstration of a functional receptor in the molecular mechanism of Cry3A toxicity in WCR and confirmed its role in the mechanism of resistance in a mCry3A resistant strain of WCR.
Collapse
|
28
|
Heckel DG. How do toxins from Bacillus thuringiensis kill insects? An evolutionary perspective. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21673. [PMID: 32212396 DOI: 10.1002/arch.21673] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 05/29/2023]
Abstract
Three-domain Cry toxins from the bacterium Bacillus thuringiensis (Bt) are increasingly used in agriculture to replace chemical insecticides in pest control. Most chemical insecticides kill pest insects swiftly, but are also toxic to beneficial insects and other species in the agroecosystem. Cry toxins enjoy the advantages of high selectivity and the possibility of the application by sprays or transgenic plants. However, these benefits are offset by the limited host range and the evolution of resistance to Bt toxins by insect pests. Understanding how Bt toxins kill insects will help to understand the nature of both problems. The recent realization that ABC transporters play a central role in the killing mechanism will play an important role in devising solutions.
Collapse
Affiliation(s)
- David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
29
|
Wang J, Ma H, Zhao S, Huang J, Yang Y, Tabashnik BE, Wu Y. Functional redundancy of two ABC transporter proteins in mediating toxicity of Bacillus thuringiensis to cotton bollworm. PLoS Pathog 2020; 16:e1008427. [PMID: 32191775 PMCID: PMC7108736 DOI: 10.1371/journal.ppat.1008427] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/31/2020] [Accepted: 02/21/2020] [Indexed: 01/20/2023] Open
Abstract
Evolution of pest resistance reduces the efficacy of insecticidal proteins from the gram-positive bacterium Bacillus thuringiensis (Bt) used widely in sprays and transgenic crops. Better understanding of the genetic basis of resistance is needed to more effectively monitor, manage, and counter pest resistance to Bt toxins. Here we used CRISPR/Cas9 gene editing to clarify the genetics of Bt resistance and the associated effects on susceptibility to other microbial insecticides in one of the world's most damaging pests, the cotton bollworm (Helicoverpa armigera). We discovered that CRISPR-mediated knockouts of ATP-binding cassette (ABC) transporter genes HaABCC2 and HaABCC3 together caused >15,000-fold resistance to Bt toxin Cry1Ac, whereas knocking out either HaABCC2 or HaABCC3 alone had little or no effect. Inheritance of resistance was autosomal and recessive. Bioassays of progeny from interstrain crosses revealed that one wild type allele of either HaABCC2 or HaABCC3 is sufficient to sustain substantial susceptibility to Cry1Ac. In contrast with previous results, susceptibility to two insecticides derived from bacteria other than Bt (abamectin and spinetoram), was not affected by knocking out HaABCC2, HaABCC3, or both. The results here provide the first evidence that either HaABCC2 or HaABCC3 protein is sufficient to confer substantial susceptibility to Cry1Ac. The functional redundancy of these two proteins in toxicity of Cry1Ac to H. armigera is expected to reduce the likelihood of field-evolved resistance relative to disruption of a toxic process where mutations affecting a single protein can confer resistance.
Collapse
Affiliation(s)
- Jing Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Huanhuan Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shan Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jianlei Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Bruce E. Tabashnik
- Department of Entomology, University of Arizona, Tucson, Arizona, United States of America
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
30
|
The ABCB Multidrug Resistance Proteins Do Not Contribute to Ivermectin Detoxification in the Colorado Potato Beetle, Leptinotarsa decemlineata (Say). INSECTS 2020; 11:insects11020135. [PMID: 32093187 PMCID: PMC7074147 DOI: 10.3390/insects11020135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/16/2023]
Abstract
The Colorado potato beetle, Leptinotarsa decemlineata (Say), is a significant agricultural pest that has developed resistance to many insecticides that are used to control it. Investigating the mechanisms of insecticide detoxification in this pest is important for ensuring its continued control, since they may be contributors to such resistance. Multidrug resistance (MDR) genes that code for the ABCB transmembrane efflux transporters are one potential source of insecticide detoxification activity that have not been thoroughly examined in L. decemlineata. In this study, we annotated the ABCB genes found in the L. decemlineata genome and then characterized the expression profiles across midgut, nerve, and Malpighian tubule tissues of the three full transporters identified. To investigate if these genes are involved in defense against the macrocyclic lactone insecticide ivermectin in this insect, each gene was silenced using RNA interference or MDR protein activity was inhibited using a chemical inhibitor, verapamil, before challenging the insects with a dose of ivermectin. Survival of the insects did not significantly change due to gene silencing or protein inhibition, suggesting that MDR transporters do not significantly contribute to defense against ivermectin in L. decemlineata.
Collapse
|
31
|
Li X, Miyamoto K, Takasu Y, Wada S, Iizuka T, Adegawa S, Sato R, Watanabe K. ATP-Binding Cassette Subfamily A Member 2 is a Functional Receptor for Bacillus thuringiensis Cry2A Toxins in Bombyx mori, but not for Cry1A, Cry1C, Cry1D, Cry1F, or Cry9A Toxins. Toxins (Basel) 2020; 12:E104. [PMID: 32041133 PMCID: PMC7076765 DOI: 10.3390/toxins12020104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 11/29/2022] Open
Abstract
: Cry toxins are insecticidal proteins produced by Bacillus thuringiensis (Bt). They are used commercially to control insect pests since they are very active in specific insects and are harmless to the environment and human health. The gene encoding ATP-binding cassette subfamily A member 2 (ABCA2) was identified in an analysis of Cry2A toxin resistance genes. However, we do not have direct evidence for the role of ABCA2 for Cry2A toxins or why Cry2A toxin resistance does not cross to other Cry toxins. Therefore, we performed two experiments. First, we edited the ABCA2 sequence in Bombyx mori using transcription activator-like effector-nucleases (TALENs) and confirmed the susceptibility-determining ability in a diet overlay bioassay. Strains with C-terminal half-deleted BmABCA2 showed strong and specific resistance to Cry2A toxins; even strains carrying a deletion of 1 to 3 amino acids showed resistance. However, the C-terminal half-deleted strains did not show cross-resistance to other toxins. Second, we conducted a cell swelling assay and confirmed the specific ability of BmABCA2 to Cry2A toxins in HEK239 cells. Those demonstrated that BmABCA2 is a functional receptor for Cry2A toxins and that BmABCA2 deficiency-dependent Cry2A resistance does not confer cross-resistance to Cry1A, Cry1F, Cry1Ca, Cry1Da, or Cry9Aa toxins.
Collapse
Affiliation(s)
- Xiaoyi Li
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan; (X.L.); (S.A.)
| | - Kazuhisa Miyamoto
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan; (K.M.); (Y.T.); (S.W.); (T.I.)
| | - Yoko Takasu
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan; (K.M.); (Y.T.); (S.W.); (T.I.)
| | - Sanae Wada
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan; (K.M.); (Y.T.); (S.W.); (T.I.)
| | - Tetsuya Iizuka
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan; (K.M.); (Y.T.); (S.W.); (T.I.)
| | - Satomi Adegawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan; (X.L.); (S.A.)
| | - Ryoichi Sato
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan; (X.L.); (S.A.)
| | - Kenji Watanabe
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan; (K.M.); (Y.T.); (S.W.); (T.I.)
| |
Collapse
|
32
|
Zhou J, Guo Z, Kang S, Qin J, Gong L, Sun D, Guo L, Zhu L, Bai Y, Zhang Z, Zhou X, Zhang Y. Reduced expression of the P-glycoprotein gene PxABCB1 is linked to resistance to Bacillus thuringiensis Cry1Ac toxin in Plutella xylostella (L.). PEST MANAGEMENT SCIENCE 2020; 76:712-720. [PMID: 31359575 DOI: 10.1002/ps.5569] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Rapid evolution of pest resistance has seriously threatened the sustainable use of Bacillus thuringiensis (Bt). The diamondback moth, Plutella xylostella (L.), is the first pest to develop resistance to Bt biopesticides in the open field, which renders it an excellent model to explore the molecular basis of Bt resistance in insects. Our previous midgut transcriptome and RNA-Seq profiles showed that the P-glycoprotein gene PxABCB1 was down-regulated in two Cry1Ac-resistant P. xylostella strains, suggesting its potential involvement in Cry1Ac resistance in P. xylostella. RESULTS In this study, the bona fide full-length cDNA sequence of the PxABCB1 gene was cloned and analyzed, and the expression of the PxABCB1 gene was detected in all tissues and developmental stages, with the highest expression in midgut tissue and the female adult stage. Although no consistent non-synonymous mutations were identified between the susceptible and resistant strains, PxABCB1 gene expression was remarkably decreased in all resistant strains, and the association was further validated by Cry1Ac selection in the moderately resistant SZ-R strain. Moreover, knockdown of the PxABCB1 gene expression resulted in significantly reduced larval susceptibility to Cry1Ac toxin in the DBM1Ac-S strain, and decreased expression of the PxABCB1 gene was tightly linked to Cry1Ac resistance in P. xylostella. CONCLUSION Our results demonstrated that down-regulation of the PxABCB1 gene is associated with both laboratory-selected and field-evolved Cry1Ac resistance in P. xylostella. This knowledge will be conducive to further elucidating the complicated molecular basis of Bt resistance and developing new insect resistance management tactics. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junlei Zhou
- Longping Branch, Graduate School of Hunan University, Changsha, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shi Kang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianying Qin
- Longping Branch, Graduate School of Hunan University, Changsha, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijun Gong
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Sun
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Le Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liuhong Zhu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Bai
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhuzhu Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaomao Zhou
- Longping Branch, Graduate School of Hunan University, Changsha, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
33
|
Adedipe F, Grubbs N, Coates B, Wiegmman B, Lorenzen M. Structural and functional insights into the Diabrotica virgifera virgifera ATP-binding cassette transporter gene family. BMC Genomics 2019; 20:899. [PMID: 31775611 PMCID: PMC6882327 DOI: 10.1186/s12864-019-6218-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The western corn rootworm, Diabrotica virgifera virgifera, is a pervasive pest of maize in North America and Europe, which has adapted to current pest management strategies. In advance of an assembled and annotated D. v. virgifera genome, we developed transcriptomic resources to use in identifying candidate genes likely to be involved in the evolution of resistance, starting with members of the ATP-binding cassette (ABC) transporter family. RESULTS In this study, 65 putative D. v. virgifera ABC (DvvABC) transporters were identified within a combined transcriptome assembly generated from embryonic, larval, adult male, and adult female RNA-sequence libraries. Phylogenetic analysis placed the deduced amino-acid sequences of the DvvABC transporters into eight subfamilies (A to H). To supplement our sequence data with functional analysis, we identified orthologs of Tribolium castaneum ABC genes which had previously been shown to exhibit overt RNA interference (RNAi) phenotypes. We identified eight such D. v. virgifera genes, and found that they were functionally similar to their T. castaneum counterparts. Interestingly, depletion of DvvABCB_39715 and DvvABCG_3712 transcripts in adult females produced detrimental reproductive and developmental phenotypes, demonstrating the potential of these genes as targets for RNAi-mediated insect control tactics. CONCLUSIONS By combining sequence data from four libraries covering three distinct life stages, we have produced a relatively comprehensive de novo transcriptome assembly for D. v. virgifera. Moreover, we have identified 65 members of the ABC transporter family and provided the first insights into the developmental and physiological roles of ABC transporters in this pest species.
Collapse
Affiliation(s)
- Folukemi Adedipe
- Department of Entomology and Plant Pathology, North Carolina State University, Box 7613, 1566 Thomas Hall, Raleigh, NC, 27695-7613, USA
| | - Nathaniel Grubbs
- Department of Entomology and Plant Pathology, North Carolina State University, Box 7613, 1566 Thomas Hall, Raleigh, NC, 27695-7613, USA
| | - Brad Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA, 50011, USA
| | - Brian Wiegmman
- Department of Entomology and Plant Pathology, North Carolina State University, Box 7613, 1566 Thomas Hall, Raleigh, NC, 27695-7613, USA
| | - Marcé Lorenzen
- Department of Entomology and Plant Pathology, North Carolina State University, Box 7613, 1566 Thomas Hall, Raleigh, NC, 27695-7613, USA.
| |
Collapse
|
34
|
Yang X, Chen W, Song X, Ma X, Cotto-Rivera RO, Kain W, Chu H, Chen YR, Fei Z, Wang P. Mutation of ABC transporter ABCA2 confers resistance to Bt toxin Cry2Ab in Trichoplusia ni. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 112:103209. [PMID: 31422154 DOI: 10.1016/j.ibmb.2019.103209] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 05/29/2023]
Abstract
Insecticidal proteins from Bacillus thuringiensis (Bt) are the primary recombinant proteins expressed in transgenic crops (Bt-crops) to confer insect resistance. Development of resistance to Bt toxins in insect populations threatens the sustainable application of Bt-crops in agriculture. The Bt toxin Cry2Ab is a major insecticidal protein used in current Bt-crops, and resistance to Cry2Ab has been selected in several insects, including the cabbage looper, Trichoplusia ni. In this study, the Cry2Ab resistance gene in T. ni was mapped to Chromosome 17 by genetic linkage analyses using a whole genome resequencing approach, and was then finely mapped using RNA-seq-based bulked segregant analysis (BSA) and amplicon sequencing (AmpSeq)-based fine linkage mapping to a locus containing two genes, ABCA1 and ABCA2. Mutations in ABCA1 and ABCA2 in Cry2Ab resistant T. ni were identified by both genomic DNA and cDNA sequencing. Analysis of the expression of ABCA1 and ABCA2 in T. ni larvae indicated that ABCA2 is abundantly expressed in the larval midgut, but ABCA1 is not a midgut-expressed gene. The mutation in ABCA2 in Cry2Ab resistant T. ni was identified to be an insertion of a transposon Tntransib in ABCA2. For confirmation of ABCA2 as the Cry2Ab-resistance gene, T. ni mutants with frameshift mutations in ABCA1 and ABCA2 were generated by CRISPR/Cas9 mutagenesis. Bioassays of the T. ni mutants with Cry2Ab verified that the mutations of ABCA1 did not change larval susceptibility to Cry2Ab, but the ABCA2 mutants were highly resistant to Cry2Ab. Genetic complementation test of the ABCA2 allele in Cry2Ab resistant T. ni with an ABCA2 mutant generated by CRISPR/Cas9 confirmed that the ABCA2 mutation in the Cry2Ab resistant strain confers the resistance. The results from this study confirmed that ABCA2 is essential for the toxicity of Cry2Ab in T. ni and mutation of ABCA2 confers the resistance to Cry2Ab in the resistant T. ni strain derived from a Bt resistant greenhouse population.
Collapse
Affiliation(s)
- Xiaowei Yang
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Wenbo Chen
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Xiaozhao Song
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Xiaoli Ma
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Rey O Cotto-Rivera
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Wendy Kain
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Hannah Chu
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA; Department of Science, John Jay College of Criminal Justice-City University of New York, New York, NY, 10019, USA
| | - Yun-Ru Chen
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, 14853, USA; USDA-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Ping Wang
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA.
| |
Collapse
|
35
|
Wu C, Chakrabarty S, Jin M, Liu K, Xiao Y. Insect ATP-Binding Cassette (ABC) Transporters: Roles in Xenobiotic Detoxification and Bt Insecticidal Activity. Int J Mol Sci 2019; 20:ijms20112829. [PMID: 31185645 PMCID: PMC6600440 DOI: 10.3390/ijms20112829] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 01/09/2023] Open
Abstract
ATP-binding cassette (ABC) transporters, a large class of transmembrane proteins, are widely found in organisms and play an important role in the transport of xenobiotics. Insect ABC transporters are involved in insecticide detoxification and Bacillus thuringiensis (Bt) toxin perforation. The complete ABC transporter is composed of two hydrophobic transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). Conformational changes that are needed for their action are mediated by ATP hydrolysis. According to the similarity among their sequences and organization of conserved ATP-binding cassette domains, insect ABC transporters have been divided into eight subfamilies (ABCA–ABCH). This review describes the functions and mechanisms of ABC transporters in insecticide detoxification, plant toxic secondary metabolites transport and insecticidal activity of Bt toxin. With improved understanding of the role and mechanisms of ABC transporter in resistance to insecticides and Bt toxins, we can identify valuable target sites for developing new strategies to control pests and manage resistance and achieve green pest control.
Collapse
Affiliation(s)
- Chao Wu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Swapan Chakrabarty
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Minghui Jin
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Kaiyu Liu
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
36
|
de Bortoli CP, Jurat-Fuentes JL. Mechanisms of resistance to commercially relevant entomopathogenic bacteria. CURRENT OPINION IN INSECT SCIENCE 2019; 33:56-62. [PMID: 31358196 DOI: 10.1016/j.cois.2019.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 05/29/2023]
Abstract
Bacteria represent the most commercially successful entomopathogenic microbial group, with most commercialized insecticides containing gram-positive bacteria in the Bacillaceae family. Resistance to entomopathogenic bacteria threatens sustainable agriculture, and information on the mechanisms and genes involved is vital to develop management practices aimed at reducing this risk. We provide an integrative summary on mechanisms responsible for resistance to commercialized entomopathogenic bacteria, including information on resistance to transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt crops). The available experimental evidence identifies alterations in binding of insecticidal proteins to receptors in the host as the main mechanism for high levels of resistance to entomopathogenic bacteria.
Collapse
Affiliation(s)
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
37
|
Pinos D, Martínez-Solís M, Herrero S, Ferré J, Hernández-Martínez P. The Spodoptera exigua ABCC2 Acts as a Cry1A Receptor Independently of its Nucleotide Binding Domain II. Toxins (Basel) 2019; 11:toxins11030172. [PMID: 30909393 PMCID: PMC6468857 DOI: 10.3390/toxins11030172] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 12/27/2022] Open
Abstract
ABC proteins are primary-active transporters that require the binding and hydrolysis of ATP to transport substrates across the membrane. Since the first report of an ABCC2 transporter as receptor of Cry1A toxins, the number of ABC transporters known to be involved in the mode of action of Cry toxins has increased. In Spodoptera exigua, a mutation in the SeABCC2 gene is described as genetically linked to resistance to the Bt-product XentariTM. This mutation affects an intracellular domain involved in ATP binding, but not the extracellular loops. We analyzed whether this mutation affects the role of the SeABCC2 as a functional receptor to Cry1A toxins. The results show that Sf21 cells expressing the truncated form of the transporter were susceptible to Cry1A toxins. Moreover, specific Cry1Ac binding was observed in those cells expressing the truncated SeABCC2. Additionally, no differences in the irreversible Cry1Ac binding component (associated with the toxin insertion into the membrane) were observed when tested in Sf21 cells expressing either the full-length or the truncated form of the SeABCC2 transporter. Therefore, our results point out that the partial lack of the nucleotide binding domain II in the truncated transporter does not affect its functionality as a Cry1A receptor.
Collapse
Affiliation(s)
- Daniel Pinos
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain.
| | - María Martínez-Solís
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain.
| | - Salvador Herrero
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain.
| | - Juan Ferré
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain.
| | - Patricia Hernández-Martínez
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain.
| |
Collapse
|
38
|
Xiao Y, Wu K. Recent progress on the interaction between insects and Bacillus thuringiensis crops. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180316. [PMID: 30967027 PMCID: PMC6367150 DOI: 10.1098/rstb.2018.0316] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
Extensive use of chemical pesticides poses a great threat to the environment and food safety. The discovery of Bacillus thuringiensis (Bt) toxins with effective insecticidal activity against pests and the development of transgenic technology of plants opened a new era of pest control. Transgenic Bt crops, including maize, cotton and soya bean, have now been produced and commercialized to protect against about 30 major coleopteran and lepidopteran pests, greatly benefiting the environment and the economy. However, with the long-term cultivation of Bt crops, some target pests have gradually developed resistance. Numerous studies have indicated that mutations in genes for toxins activation, toxin-binding and insect immunization are important sources in Bt resistance. An in-depth exploration of the corresponding Bt-resistance mechanisms will aid in the design of new strategies to prevent and control pests. Future research will focus on Bt crops expressing new genes and multiple genes to control a broader range of pests as part of an integrated pest management programme. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, People's Republic of China
| | - Kongming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| |
Collapse
|
39
|
Sato R, Adegawa S, Li X, Tanaka S, Endo H. Function and Role of ATP-Binding Cassette Transporters as Receptors for 3D-Cry Toxins. Toxins (Basel) 2019; 11:E124. [PMID: 30791434 PMCID: PMC6409751 DOI: 10.3390/toxins11020124] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022] Open
Abstract
When ABC transporter family C2 (ABCC2) and ABC transporter family B1 (ABCB1) were heterologously expressed in non-susceptible cultured cells, the cells swelled in response to Cry1A and Cry3 toxins, respectively. Consistent with the notion that 3D-Cry toxins form cation-permeable pores, Bombyx mori ABCC2 (BmABCC2) facilitated cation-permeable pore formation by Cry1A when expressed in Xenopus oocytes. Furthermore, BmABCC2 had a high binding affinity (KD) to Cry1Aa of 3.1 × 10-10 M. These findings suggest that ABC transporters, including ABCC2 and ABCB1, are functional receptors for 3D-Cry toxins. In addition, the Cry2 toxins most distant from Cry1A toxins on the phylogenetic tree used ABC transporter A2 as a receptor. These data suggest that 3D-Cry toxins use ABC transporters as receptors. In terms of inducing cell swelling, ABCC2 has greater activity than cadherin-like receptor. The pore opening of ABC transporters was hypothesized to be linked to their receptor function, but this was repudiated by experiments using mutants deficient in export activity. The synergistic relationship between ABCC2 and cadherin-like receptor explains their ability to cause resistance in one species of insect.
Collapse
Affiliation(s)
- Ryoichi Sato
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan.
| | - Satomi Adegawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan.
| | - Xiaoyi Li
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan.
| | - Shiho Tanaka
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan.
| | - Haruka Endo
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
40
|
Jin M, Liao C, Chakrabarty S, Zheng W, Wu K, Xiao Y. Transcriptional response of ATP-binding cassette (ABC) transporters to insecticides in the cotton bollworm, Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 154:46-59. [PMID: 30765056 DOI: 10.1016/j.pestbp.2018.12.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
When any living organism is frequently exposed to any drugs or toxic substances, they evolve different detoxification mechanism to confront with toxicants during absorption and metabolism. Likewise, the insects have evolved detoxification mechanisms as they are frequently exposed to different toxic secondary plant metabolites and commercial insecticides. ABC transporter superfamily is one of the largest and ubiquitous group of proteins which play an important role in phase III of the detoxification process. However, knowledge about this gene family remains largely unknown. To help fill this gap, we have identified a total of 54 ABC transporters in the Helicoverpa armigera genome which are classified into eight subfamilies (A-H) by phylogenetic analysis. The temporal and spatial expression profiles of these 54 ABC transporters throughout H. armigera development stages and seven tissues and their responses to five different insecticides, were investigated using RNA-seq analysis. Furthermore, the mRNA expression of eight selected genes in different tissues and six genes responses to insecticides were confirmed by the quantitative real-time PCR (RT-qPCR). Moreover, H. armigera become more sensitive to abamectin and indoxacarb when P-gp was inhibited. These results provide a foundation for further studies of ABCs in H. armigera.
Collapse
Affiliation(s)
- Minghui Jin
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing 100193, China
| | - Chongyu Liao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Swapan Chakrabarty
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Weigang Zheng
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Kongming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing 100193, China
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
41
|
Pickett JA, Weston LA. Possibilities for rationally exploiting co-evolution in addressing resistance to insecticides, and beyond. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 151:18-24. [PMID: 30704708 DOI: 10.1016/j.pestbp.2018.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/09/2018] [Accepted: 03/20/2018] [Indexed: 06/09/2023]
Abstract
Certain biorational chemical agents used against insect pests impact essential stages or processes in insect life cycles when applied for pest management. Development of resistance to these agents, while involving maintenance of the natural role of the chemical agent, frequently requires the evolution of a new chemical structure by the resistant organism. When considering the process of resistance development, one could theoretically consider biorational structural determination rather than the less predictable or feasible generation of a novel replacement insecticide. At first consideration, this process might exclude toxicants such as typical pest control agents and rather be a phenomenon reserved principally for signalling processes such as are fulfilled by pheromones and other semiochemicals. However, because there is a unique co-evolutionary relationship between chemical defence and the physiology of the antagonistic organism, this process can be further explored for potential to overcome resistance to toxins. Given further consideration, newly evolved chemical defences may rationally provide options for new resistance-defeating chemistry. This review therefore discusses the potential for overcoming insecticide resistance through targeted application of this approach. Potential for use of a similar approach to counteract fungicide and herbicide resistance is also considered. Furthermore, the possible applications of this approach to address drug or pharmaceutic resistance are also considered.
Collapse
Affiliation(s)
- John A Pickett
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom.
| | - Leslie A Weston
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
42
|
ABC transporter mis-splicing associated with resistance to Bt toxin Cry2Ab in laboratory- and field-selected pink bollworm. Sci Rep 2018; 8:13531. [PMID: 30202031 PMCID: PMC6131251 DOI: 10.1038/s41598-018-31840-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/28/2018] [Indexed: 11/13/2022] Open
Abstract
Evolution of pest resistance threatens the benefits of genetically engineered crops that produce Bacillus thuringiensis (Bt) insecticidal proteins. Strategies intended to delay pest resistance are most effective when implemented proactively. Accordingly, researchers have selected for and analyzed resistance to Bt toxins in many laboratory strains of pests before resistance evolves in the field, but the utility of this approach depends on the largely untested assumption that laboratory- and field-selected resistance to Bt toxins are similar. Here we compared the genetic basis of resistance to Bt toxin Cry2Ab, which is widely deployed in transgenic crops, between laboratory- and field-selected populations of the pink bollworm (Pectinophora gossypiella), a global pest of cotton. We discovered that resistance to Cry2Ab is associated with mutations disrupting the same ATP-binding cassette transporter gene (PgABCA2) in a laboratory-selected strain from Arizona, USA, and in field-selected populations from India. The most common mutation, loss of exon 6 caused by alternative splicing, occurred in resistant larvae from both locations. Together with previous data, the results imply that mutations in the same gene confer Bt resistance in laboratory- and field-selected strains and suggest that focusing on ABCA2 genes may help to accelerate progress in monitoring and managing resistance to Cry2Ab.
Collapse
|
43
|
Silva-Brandão KL, Peruchi A, Seraphim N, Murad NF, Carvalho RA, Farias JR, Omoto C, Cônsoli FL, Figueira A, Brandão MM. Loci under selection and markers associated with host plant and host-related strains shape the genetic structure of Brazilian populations of Spodoptera frugiperda (Lepidoptera, Noctuidae). PLoS One 2018; 13:e0197378. [PMID: 29787608 PMCID: PMC5963752 DOI: 10.1371/journal.pone.0197378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 05/01/2018] [Indexed: 11/18/2022] Open
Abstract
We applied the ddRAD genotyping-by-sequencing technique to investigate the genetic distinctiveness of Brazilian populations of the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW), and the role of host-plant association as a source of genetic diversification. By strain-genotyping all field-collected individuals we found that populations collected from corn were composed primarily of corn-strain individuals, while the population collected from rice was composed almost entirely of rice-strain individuals. Outlier analyses indicated 1,184 loci putatively under selection (ca. 15% of the total) related to 194 different Gene Ontologies (GOs); the most numerous GOs were nucleotide binding, ATP binding, metal-ion binding and nucleic-acid binding. The association analyses indicated 326 loci associated with the host plant, and 216 loci associated with the individual strain, including functions related to Bacillus thuringiensis and insecticide resistance. The genetic-structure analyses indicated a moderate level of differentiation among all populations, and lower genetic structure among populations collected exclusively from corn, which suggests that the population collected from rice has a strong influence on the overall genetic structure. Populations of S. frugiperda are structured partially due to the host plant, and pairs of populations using the same host plant are more genetically similar than pairs using different hosts. Loci putatively under selection are the main factors responsible for the genetic structure of these populations, which indicates that adaptive selection on important traits, including the response to control tactics, is acting in the genetic differentiation of FAW populations in Brazil.
Collapse
Affiliation(s)
- Karina Lucas Silva-Brandão
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Campus "Luiz de Queiroz", Laboratório de Melhoramento de Plantas, Piracicaba, São Paulo, Brazil
- * E-mail:
| | - Aline Peruchi
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Campus "Luiz de Queiroz", Laboratório de Melhoramento de Plantas, Piracicaba, São Paulo, Brazil
| | - Noemy Seraphim
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, campus Campinas CTI Renato Archer, Campinas, São Paulo, Brazil
| | - Natália Faraj Murad
- Programa de Pós-graduação em Genética e Biologia Molecular, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | - Juliano Ricardo Farias
- Instituto Phytus, Departamento de Entomologia, Rua Duque de Caxias, Santa Maria, Rio Grande do Sul, Brazil
| | - Celso Omoto
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Departamento de Entomologia e Acarologia, Piracicaba, São Paulo, Brazil
| | - Fernando Luis Cônsoli
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Departamento de Entomologia e Acarologia, Piracicaba, São Paulo, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Campus "Luiz de Queiroz", Laboratório de Melhoramento de Plantas, Piracicaba, São Paulo, Brazil
| | - Marcelo Mendes Brandão
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
44
|
Zuo YY, Huang JL, Wang J, Feng Y, Han TT, Wu YD, Yang YH. Knockout of a P-glycoprotein gene increases susceptibility to abamectin and emamectin benzoate in Spodoptera exigua. INSECT MOLECULAR BIOLOGY 2018; 27:36-45. [PMID: 28753233 DOI: 10.1111/imb.12338] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
P-glycoprotein [P-gp or the ATP-binding cassette transporter B1 (ABCB1)] is an important participant in multidrug resistance of cancer cells, yet the precise function of this arthropod transporter is unknown. The aim of this study was to determine the importance of P-gp for susceptibility to insecticides in the beet armyworm (Spodoptera exigua) using clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) gene-editing technology. We cloned an open reading frame (ORF) encoding the S. exigua P-gp protein (SeP-gp) predicted to display structural characteristics common to P-gp and other insect ABCB1 transporters. A knockout line with a frame shift deletion of four nucleotides in the SeP-gp ORF was established using the CRISPR/Cas9 gene-editing system to test its potential role in determining susceptibility to chemical insecticides or insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). Results from comparative bioassays demonstrate that knockout of SeP-gp significantly increases susceptibility of S. exigua by around threefold to abamectin and emamectin benzoate (EB), but not to spinosad, chlorfenapyr, beta-cypermethrin, carbosulfan indoxacarb, chlorpyrifos, phoxim, diafenthiuron, chlorfluazuron, chlorantraniliprole or two Bt toxins (Cry1Ca and Cry1Fa). Our data support an important role for SeP-gp in susceptibility of S. exigua to abamectin and EB and imply that overexpression of SeP-gp may contribute to abamectin and EB resistance in S. exigua.
Collapse
Affiliation(s)
- Y-Y Zuo
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - J-L Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - J Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Y Feng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - T-T Han
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Y-D Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Y-H Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
45
|
Editorial for Special Issue: The Insecticidal Bacterial Toxins in Modern Agriculture. Toxins (Basel) 2017; 9:toxins9120396. [PMID: 29232854 PMCID: PMC5744116 DOI: 10.3390/toxins9120396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 11/23/2022] Open
|
46
|
Endo H, Tanaka S, Imamura K, Adegawa S, Kikuta S, Sato R. Cry toxin specificities of insect ABCC transporters closely related to lepidopteran ABCC2 transporters. Peptides 2017; 98:86-92. [PMID: 28416297 DOI: 10.1016/j.peptides.2017.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 12/26/2022]
Abstract
In this study, we examined insect and human ABCC transporters closely related to the lepidopteran ABC transporter C2 (ABCC2), a powerful receptor for the Bacillus thuringiensis Cry toxin, for their responses to various Cry toxins. ABCC2 and the lepidopteran ABC transporter C3 (ABCC3) conferred cultured cells with susceptibility to a lepidopteran-specific Cry1Aa toxin but not to lepidopteran-specific Cry1Ca and Cry1Da. One coleopteran ABCC transporter specifically responded to a coleopteran-specific Cry8Ca toxin. ABCC transporters from a dipteran insect and humans did not respond to any of the tested Cry toxins that are active to lepidopteran and coleopteran insects. These results yield important information for our understanding of insect specificity of Cry toxins and provide the first demonstration of a coleopteran ABCC transporter that serves as a Cry toxin receptor.
Collapse
Affiliation(s)
- Haruka Endo
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; Japan Society for the Promotion of Science, Japan
| | - Shiho Tanaka
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Kazuhiro Imamura
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Satomi Adegawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Shingo Kikuta
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
47
|
Banerjee R, Hasler J, Meagher R, Nagoshi R, Hietala L, Huang F, Narva K, Jurat-Fuentes JL. Mechanism and DNA-based detection of field-evolved resistance to transgenic Bt corn in fall armyworm (Spodoptera frugiperda). Sci Rep 2017; 7:10877. [PMID: 28883440 PMCID: PMC5589895 DOI: 10.1038/s41598-017-09866-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/31/2017] [Indexed: 01/28/2023] Open
Abstract
Evolution of resistance threatens sustainability of transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). The fall armyworm (Spodoptera frugiperda) is a devastating pest of corn in the Western Hemisphere initially controlled by transgenic Bt corn producing the Cry1Fa insecticidal protein (event TC1507). However field-evolved resistance to TC1507 was observed in Puerto Rico in 2007 and has subsequently been reported in a number of locations in North and South America. Early studies on Puerto Rico fall armyworm populations found that the resistance phenotype was associated with reduced expression of alkaline phosphatase. However, in this work we show that field-evolved resistance to Cry1Fa Bt corn in Puerto Rico is closely linked to a mutation in an ATP Binding Cassette subfamily C2 (ABCC2) gene that functions as a Cry1Fa receptor in susceptible insects. Furthermore, we report a DNA-based genotyping test used to demonstrate the presence of the resistant (SfABCC2mut) allele in Puerto Rico populations in 2007, coincident with the first reports of damage to TC1507 corn. These DNA-based field screening data provide strong evidence that resistance to TC1507 in fall armyworm maps to the SfABCC2 gene and provides a useful molecular marker for detecting the SfABCC2mut allele in resistant fall armyworm.
Collapse
Affiliation(s)
- Rahul Banerjee
- Genome Science and Technology Graduate Program, University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Robert Meagher
- Center for Medical, Agricultural and Veterinary Entomology, Insect Behavior and Biocontrol Research Unit, USDA-ARS, Gainesville, FL, 32608, USA
| | - Rodney Nagoshi
- Center for Medical, Agricultural and Veterinary Entomology, Insect Behavior and Biocontrol Research Unit, USDA-ARS, Gainesville, FL, 32608, USA
| | - Lucas Hietala
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | | | - Juan Luis Jurat-Fuentes
- Genome Science and Technology Graduate Program, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
48
|
Li J, Ma Y, Yuan W, Xiao Y, Liu C, Wang J, Peng J, Peng R, Soberón M, Bravo A, Yang Y, Liu K. FOXA transcriptional factor modulates insect susceptibility to Bacillus thuringiensis Cry1Ac toxin by regulating the expression of toxin-receptor ABCC2 and ABCC3 genes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 88:1-11. [PMID: 28736301 DOI: 10.1016/j.ibmb.2017.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Cry toxins produced by Bacillus thuringiensis (Bt) are insecticidal proteins widely used in insect control. Recently, it was shown that ATP-binding cassette transporter proteins (ABC) such as ABCC2, ABCC3, ABCG1 and ABCA2 are implicated in the insecticidal action of Cry toxins as putative receptors. However, the transcriptional regulators involved in the expression of ABC transporter genes remain unknown. Sequence analysis of promoter regions of ABCC2 gene from Helicoverpa armigera and ABCC3 gene from Spodoptera litura Sl-HP cultured cells, revealed the potential participation of Forkhead box protein A (FOXA), a transcription factor that regulates the expression of genes through remodeling chromatin. To determine if FOXA was involved in regulating expression of ABCC2 and ABCC3 genes, the expression of FOXA, ABCC2 and ABCC3 was compared in Sl-HP cells that are sensitive to Cry1Ac toxin with those in S. frugiperda Sf9 cells that are not sensitive to the toxin. Expression levels of those genes were significantly higher in Sl-HP than in Sf9 cells. Transient expression of FOXA in Sf9 cells activated ABCC2 and ABCC3 transcription, which directly correlated with enhanced Cry1Ac-susceptibility in these cells. Silencing of FOXA gene expression by RNAi in H. armigera larvae resulted in a decreased expression of ABCC2 and ABCC3 without affecting expression of other Cry toxin receptor genes such as alkaline phosphatase, aminopeptidase or cadherin. Silencing of FOXA gene expression also resulted in a Cry1Ac-tolerant phenotype since lower mortality and higher pupation rate were observed in diet containing Cry1Ac protoxin in comparison with the control group. These results demonstrate that FOXA up-regulates expression of the Cry1Ac-toxin receptor ABCC2 and ABCC3 genes, and that lower FOXA expression correlates with tolerance to Cry toxin in cell lines and in lepidopteran larvae.
Collapse
Affiliation(s)
- Jianghuai Li
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yuemin Ma
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Wanli Yuan
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Chenxi Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing 100193, China
| | - Jia Wang
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Jianxin Peng
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Rong Peng
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
| | - Yongbo Yang
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Kaiyu Liu
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|